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In this paper we consider the Anderson Hamiltonian with white noise
potential on the box [0,L]2 with Dirichlet boundary conditions. We show that
all of the eigenvalues divided by logL, converge as L→∞, almost surely to
the same deterministic constant which is given by a variational formula.

1. Introduction. We consider the Anderson Hamiltonian (also called random
Schrödinger operator), formally defined by H = � + ξ , under Dirichlet boundary condi-
tions on the two-dimensional box [0,L]2, where ξ is considered to be white noise. We are
interested in the behaviour of this operator, as the size of the box, L, tends to infinity. In this
paper we prove the following asymptotics of the eigenvalues. Let λ(L)= λ1(L) > λ2(L) ≥
λ3(L) · · · be the eigenvalues of the Anderson Hamiltonian on [0,L]2. For all n ∈ N, almost
surely

lim
L∈Q
L→∞

λn(L)

logL
= 4 sup

ψ∈C∞c (R2)

‖ψ‖2
L2=1

‖ψ‖2
L4 −

∫
R2
|∇ψ |2 = χ,

where χ is the smallest C > 0 such that ‖f ‖4
L4 ≤ C‖∇f ‖2L2‖f ‖2L2 for all f ∈H 1(R2) (this

is Ladyzhenskaya’s inequality).

1.1. Main challenge and literature. In the one-dimensional setting, that is, on the box
[0,L], the Anderson Hamiltonian can be defined using the associated Dirichlet form, as the
white noise is sufficiently regular; see Fukushima and Nakao [14] (see [35] for the regularity
of white noise). In dimension two the regularity of white noise is too small to allow for the
same approach. A naive way to tackle the problem of the construction is to take a smooth
approximation of the white noise ξε so that the operator Hε = � + ξε is well defined as
an unbounded selfadjoint operator, and then take the limit ε ↓ 0. However, Hε does not
converge, but Hε − cε does converge to an operator H for certain renormalisation constants
cε↗ε↓0∞. This has been shown by Allez and Chouk [1] for periodic boundary conditions,
using the techniques of paracontrolled distributions introduced by Gubinelli, Imkeller and
Perkowski [16] in order to study singular stochastic partial differential equations. In this
paper we extend this to Dirichlet boundary conditions.

Recently, also Labbé [21] constructed the Anderson Hamiltonian with both periodic and
Dirichlet boundary conditions, using the tools of regularity structures. Gubinelli, Ugurcan
and Zachhuber [17] extend the work of Allez and Chouk to define the Anderson Hamiltonian
with periodic boundary conditions also for dimension 3.

One of the main interests in the study of this operator is due to its universal property,
more precisely, it was proved by Chouk, Gairing and Perkowski [8], Theorem 6.1, that, under
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periodic boundary conditions, the operator H is the limit under a suitable renormalisation
of the discrete Anderson Hamiltonian HN = �N + 1

N
ηN , defined on the periodic lattice

( 1
N
Z/NZ)2, where �N is discrete Laplacian and (ηN(i), i ∈ Z2) are centred I.I.D. random

variables with normalised variance and finite pth moment, for some p > 6.
Recently, Dumaz and Labbé [13] proved the Anderson localization for the one-dimensional

case for the largest eigenvalues, and they obtain the exact fluctuation of the eigenvalue and
the exact behaviour of the eigenfunctions near their maxima. Unfortunately, their approach
used to tackle the Anderson localization in the one-dimensional setting is strongly attached
to the SDE, obtained by the so-called Riccati transform, and cannot be adapted to the two-
dimensional setting. Also, Chen [7] not only the one-dimensional setting for the white noise

(and shows λ(L)≈ (logL)
2
3 ) but also a higher-dimensional setting for the more regular frac-

tional white noise (where λ(L) ≈ (logL)β for some β ∈ (1
2 ,1) (and β ∈ (1

2 ,
2
3) for d = 1),

where β is a function of the degree of singularity of the covariance at zero). The techniques
in his work do not allow for an extension to a higher-dimensional setting with a white noise
potential.

The asymptotics of the principal eigenvalue is of particular interest for the asymptotics
of the total mass of the solution to the parabolic Anderson model: ∂tu = �u+ ξu =H u.
Chen [7] shows that with U(t), the total mass of u(t, ·), one has logU(t)≈ tλ(Lt ) for some
almost linear Lt , so that the asymptotics of λ(L) lead to asymptotics of logU(t): In d = 1

with ξ white noise, logU(t)≈ t (log t)
2
3 ; for d ≥ 1 with ξ a fractional white noise logU(t)≈

t (log t)β , with β as above. For smooth Gaussian fields ξ , Carmona and Molchanov [5] show

logU(t) ∼ t (log t)
1
2 . In a future work by König, Perkowski and van Zuijlen, the following

asymptotics of the total mass of the solution to the parabolic Anderson model with white
noise potential in two dimensions will be shown: logU(t)≈ t log t .

For a general overview about the parabolic Anderson model and the Anderson Hamilto-
nian, we refer to the book by König [20].

Let us mention that our main result is already applied in [27] to prove that the super Brow-
nian motion in static random environment is almost surely super-exponentially persistent.

1.2. Outline. In Section 2 we state the main results of this paper. In Section 3 we give a
proof of the tail bounds of the eigenvalues, using the other ingredients presented in Section 2,
and use this to prove the main theorem. The definitions of our Dirichlet and Neumann (Besov)
spaces and para- and resonance products between those spaces are given in Section 4. With
the definitions given we can properly define the Anderson Hamiltonian on its Dirichlet do-
main and state the spectral properties in Section 5. In Section 6 we prove the convergence to
enhanced white noise that will be used to extend properties for smooth potentials to analogue
properties where enhanced white noise is taken. In Section 7 we prove scaling and translation
properties. In Section 8 we compare eigenvalues on boxes of different size. In Section 9 we
prove the large deviation principle of the enhanced white noise. This leads to the large devia-
tion principle for the eigenvalues. In Section 10 we study infima over the large deviation rate
function which are used to express the limit of the eigenvalues. The more cumbersome cal-
culations needed to prove convergence to enhanced white noise are postponed to Section 11
and Section 12.

1.3. Notation. N = {1,2, . . . }, N0 = {0} ∪ N, N−1 = {−1} ∪ N0. δk,l is the Kronecker
delta, that is, δk,k = 1 and δk,l = 0 for k �= l. i=√−1. For f,g ∈ L2(D), for some domain
D ⊂ Rd we write 〈f,g〉L2(D) =

∫
D f g. We write TdL for the d-dimensional torus of length

L> 0, that is, Rd/LZd . (�,P) will be our underlying complete probability space. In order to
avoid cumbersome administration of constants, for families (ai)i∈I and (bi)i∈I in R, we also
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write ai � bi to denote that there exists a C > 0 such that ai ≤ Cbi for all i ∈ I and ai � bi
to denote that both ai � bi and ai � bi (i.e., bi � ai ). We write C∞c (A) for those functions in
C∞(A) that have compact support in A◦.

2. Main results. In this section we give the main results of this paper without the tech-
nical details and definitions; the main theorem is Theorem 2.8.

We build on the methods on the construction of the Anderson Hamiltonian in [1]. In that
paper the operator is considered on the torus or, differently said, on a box with periodic
boundary conditions. In order to consider Dirichlet boundary conditions, we will consider
the domain to be a subset of H 1

0 . The construction in [1] relies on Bony estimates for para-
and resonance products. We therefore have to find the right space in which we take ξ in order
to be able to take para- and resonance products of ξ with elements in the domain. For this
reason we construct the framework of Dirichlet, Bd,α

p,q , and Neumann Besov spaces, Bn,α
p,q in

Section 4. We will show that Hγ0 agrees with Bd,γ
2,2 and show that the Bony estimates extend

to products between elements of Dirichlet and Neumann spaces. Basically, the idea is as
follows, for d = 1 and L= 1. Instead of the basis for the periodic Besov space L2, given by
x �→ e2π ikx , we build the Dirichlet Besov space by the basis of L2 given by x �→ sin(πkx)
and the Neumann Besov space by x �→ cos(πkx). The elements of the Dirichlet/Neumann
Besov space on [0,L] then extend oddly/evenly to elements of the periodic Besov space on
T2L. We show that the extension of a product is the same as the product of the respective
extensions which allows us to obtain the Bony estimates from the periodic spaces. Moreover,
this also allows us to extend the main theorem in [1] to Dirichlet boundary conditions on
QL = [0,L]2, as we present in the following theorem. We will consider ξ in Cαn and its
enhancement in Xαn which are the Neumann analogues of Cα and Xα .

THEOREM 2.1 (Summary of Theorem 5.4). Let α ∈ (−4
3 ,−1). Let y ∈ R2,L > 0 and

� = y + QL. For an enhanced Neumann distribution ξ = (ξ,�) ∈ Xαn(�), we construct
a stongly paracontrolled Dirichlet domain Dd

ξ (�) such that the Anderson Hamiltonian on

Dd
ξ (�) maps in L2(�) and is selfadjoint as an operator on L2(�) with a countable spectrum

given by eigenvalues λ(�, ξ) = λ1(�, ξ) > λ2(�, ξ) ≥ · · · (counting multiplicities). For all
n ∈ N, the map ξ �→ λn(�, ξ) is locally Lipschitz. Moreover, a Courant–Fischer formula is
given for λn (see (44)).

In Section 6 we show that there exists a canonical enhanced white noise in Xαn :

THEOREM 2.2 (See Theorem 6.4 and 6.5). Let α ∈ (−4
3 ,−1). For all y ∈R2 and L> 0,

there exists a canonical ξ
y
L = (ξyL,�yL) ∈ Xαn(y +QL) such that ξyL is a white noise (in the

sense that is described in that theorem).

We will write ξL = ξ0
L, ξL = ξ0

L,�L =�0
L and, for β > 0,

λn(y +QL,β)= λn(y +QL, (βξyL,β2�
y
L

))
, λn(y +QL)= λn(y +QL,1).

Now, we have the framework set and can get to the key ingredients, of which two are given
in Section 7, the scaling and translation properties:

2.3.

(a) (Lemma 7.3) For L,β, ε > 0, λn(QL,β)
d= 1
ε2 λn(QL

ε
, εβ)+ 1

2π log ε.

(b) (Lemma 7.4) For y ∈ R2 and L,β > 0, λn(QL,β)
d= λn(y + QL,β). Moreover, if

y +Q◦L ∩Q◦L =∅, then λn(QL,β) and λn(y +QL,β) are independent.
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In [15], Proposition 1, and [3], Lemma 4.6, the principal eigenvalue on a large box is
bounded by maxima of principal eigenvalues on smaller boxes. We extend these results from
smooth potentials to enhanced potentials.

THEOREM 2.4 (Consequence of Theorem 8.61). There exists a K > 0 such that, for all
ε > 0 and L> r ≥ 1, the following inequalities hold almost surely:

max
k∈N2

0,|k|∞<Lr −1
λ(rk+Qr, ε)≤ λ(QL, ε)≤ max

k∈N2
0,|k|∞<Lr +1

λ(rk +Q 3
2 r
, ε)+ 4K

r2 .

Moreover, for n ∈N and L> r ≥ 1, if x, y ∈R2 and x+Qr ⊂ y+QL, then λn(x+Qr, ε)≤
λn(y +QL,ε); if y, y1, . . . , yn ∈R2 are such that (yi +Qr)ni=1 are pairwise disjoint subsets
of y +QL, then almost surely λn(y +QL,ε)≥mini∈{1,...,n} λ(yi +Qr, ε).

Another important tool that we prove is the large deviations of the eigenvalues, which—
by the contraction principle and continuity of the eigenvalues in terms of its enhanced
distribution—is a consequence of the large deviations of (

√
εξL, ε�L), proven in Section 9.

THEOREM 2.5 (See Corollary 9.3). λn(QL,
√
ε) = λn(QL, (√εξL, ε�L)) satisfies the

large deviation principle with rate ε and rate function IL,n :R→[0,∞] given by

IL,n(x)= inf
V∈L2(QL)

λn(QL,V )=x

1

2
‖V ‖2

L2 .

In Section 10 we study infima over the large deviation rate function over half-lines, in
terms of which the almost sure limit of the eigenvalues will be described.

THEOREM 2.6. There exists a C > 0 such that, for all n ∈ N, �n = infL>0 inf IL,n[1,
∞)= limL→∞ inf IL,n[1,∞) > C and

2

�n
= 4 sup

V∈C∞c (R2)

‖V ‖2
L2≤1

sup
F�C∞c (R2)
dimF=n

inf
ψ∈F

‖ψ‖2
L2=1

∫
R2
−|∇ψ |2 + Vψ2.(1)

Moreover,

2

�1
= 4 sup

ψ∈C∞c (R2)

‖ψ‖2
L2=1

‖ψ‖2
L4 −

∫
R2
|∇ψ |2 = χ,(2)

where χ is the smallest C > 0 such that ‖f ‖4
L4 ≤ C‖∇f ‖2L2‖f ‖2L2 for all f ∈H 1(R2) (this

is Ladyzhenskaya’s inequality).

Using the scaling and translation properties of 2.3, the comparison of the eigenvalue with
maxima of eigenvalues of smaller boxes in Theorem 2.4 and the large deviations in Theo-
rem 2.5, we obtain the following tail bounds in Section 3.

1In this statement we have choosen a = 1
2 r .
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THEOREM 2.7. Let K > 0 be as in Theorem 8.6. Let r, β > 0. We will abbreviate Ir,1 by
Ir . For all μ > inf Ir(1,∞) and κ < inf I 3

2 r
[1− 16K

r2 ), there exists an M > 0 such that, for

all L,x > 0 with L
√
x >M ,

P
(
λ(QL,β)≤ x)≤ exp

(
−e

2 logL− μ

β2 xx

2r2

)
,(3)

P
(
λ(QL,β)≥ x)≤ 2

r2 xe
2 logL− κ

β2 x.(4)

Using the tail bounds and the limit in Theorem 2.6 we obtain our main result by a Borel–
Cantelli argument and the “moreover” part of Theorem 2.4. For the details, see Section 3.

THEOREM 2.8. Let I⊂ (1,∞) be an unbounded countable set, and let β > 0. For L ∈ I
let yL ∈R2 be such that yr +Qr ⊂ yL +QL for r,L ∈ I with L> r . Then, for n ∈N,

lim
L∈I
L→∞

λn(yL +QL,β)
logL

= 2β2

�1
= β2χ a.s.

3. Proofs of Theorem 2.7 and Theorem 2.8. In this section we prove Theorem 2.7 and
Theorem 2.8 by using 2.1–2.6.

3.1. Let K > 0 be as in Theorem 2.4. To simplify notation, we take β = 1. By consec-
utively applying the scaling in 2.3(a), the bounds in Theorem 2.4 and then the independence
and translation properties in 2.3(b), we get, for L, r, ε > 0 with L

ε
> r ≥ 1,

P
(
ε2λ(QL)≤ 1

)= P
(
λ(QL

ε
, ε)+ ε

2

2π
log ε ≤ 1

)

≤ P
(

max
k∈N2

0,|k|∞< L
εr
−1

λ(rk +Qr, ε)≤ 1− ε
2

2π
log ε

)
(5)

= P
(
λ(Qr, ε)≤ 1− ε

2

2π
log ε

)#{k∈N2
0:|k|∞< L

εr
−1}
,

and, similarly,

P
(
ε2λ(QL)≥ 1

)= P
(
λ(QL

ε
, ε)+ ε

2

2π
log ε ≥ 1

)

≤ P
(

max
k∈N2

0,|k|∞< L
εr
+1

λ(rk +Q 3
2 r
, ε)+ 4K

r2 +
ε2

2π
log ε ≥ 1

)
(6)

≤ #
{
k ∈N2

0 : |k|∞ <
L

εr
+ 1

}
P
(
λ(Q 3

2 r
, ε)≥ 1− 4K

r2 −
ε2

2π
log ε

)
.

As #{k ∈N2
0 : |k|∞ ≤ n} = (n+ 1)2 for n ∈N, we have

lim
M→∞

#{k ∈N2
0 : |k|∞ <M ± 1}
M2 = 1.

Observe that there exists anM > 0 such that, for all L, r, ε > 0 with L
εr
>M ,

1

2

(
L

εr

)2
≤ #

{
k ∈N2

0 : |k|∞ <
L

εr
± 1

}
≤ 2

(
L

εr

)2
.
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By combining the above observations we have obtained the following.

LEMMA 3.2. Let K > 0 be as in Theorem 8.6. Let β > 0. There exists an M > 1 such
that, for all L, r, ε > 0 with L

ε
>Mr > r ≥ 1,

P
(
ε2λ(QL,β)≤ 1

)≤ P
(
λ(Qr, εβ)≤ 1− ε

2

2π
log ε

) 1
2 (
L
εr
)2

,(7)

P
(
ε2λ(QL,β)≥ 1

)≤ 2
(
L

εr

)2
P
(
λ(Q 3

2 r
, εβ)≥ 1− 4K

r2 −
ε2

2π
log ε

)
.(8)

3.3. Let r > 0. Let us now use the large deviation principle in Corollary 9.3. First, ob-
serve that as limε↓0

ε2

2π log ε = 0, also λ(Qr, εβ)+ ε2

2π log ε satisfies the large deviation prin-
ciple with the rate function β−2Ir,n (by exponential equivalence; see [10], Theorem 4.2.13).
Hence, for all μ > inf Ir,n(1,∞) and κ < inf I 3

2 r,n
[1− 4K

r2 ,∞), there exists a ε0 such that,
for ε ∈ (0, ε0), we have the following bound on the probability appearing in (7) (using that
1− x ≤ e−x for x ≥ 0):

P
(
λ(Qr, εβ)≤ 1− ε

2

2π
log ε

)
≤ 1− e−

μ

ε2β2 ≤ e−e
− μ

ε2β2
,(9)

P
(
λ(Q 3

2 r
, εβ)≥ 1− 4K

r2 −
ε2

2π
log ε

)
≤ e−

κ

ε2β2 .(10)

PROOF OF THEOREM 2.7. This now follows by Lemma 3.2 and the bounds (9) and (10).
�

First, we prove the convergence of the eigenvalues along the set {2m :m ∈N} before prov-
ing Theorem 2.8. Observe that in Theorem 3.4, contrary to Theorem 2.8, we do not impose a
condition on the sequence (ym)m∈N.

THEOREM 3.4. Let n ∈N and β > 0. For any sequence (ym)m∈N in R2.

lim
m∈N,m→∞

λn(ym +Q2m,β)

log 2m
= 2β2

�1
= 4β2 sup

V∈C∞c (R2)

‖V ‖2
L2≤1

sup
ψ∈C∞c (R2)

‖ψ‖2
L2=1

∫
R2
−|∇ψ |2 + Vψ2 a.s.

PROOF. Without loss of generality, we may assume ym = 0 for allm ∈N and take β = 1:
• First, we prove the convergence of the principal eigenvalue, that is, we consider n= 1.

Let p,q ∈R be such that p < 2
�1
< q . We show that

lim inf
m→∞

λ(Q2m)

log 2m
> p a.s., lim sup

m→∞
λ(Q2m)

log 2m
< q a.s.

By the lemma of Borel–Cantelli, it is sufficient to show that

∞∑
m=1

P
[
λ(Q2m)

log 2m
< p

]
<∞,

∞∑
m=1

P
[
λ(Q2m)

log 2m
> q

]
<∞.

By Lemma 10.1,

lim
r→∞ inf Ir(1,∞)= lim

r→∞ inf I 3
2 r

[
1− 16K

r2 ,∞
)
= �1.
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Let r > 0 be large enough such that

p inf Ir(1,∞) < 2< q inf I 3
2 r

[
1− 16K

r2 ,∞
)
.

Let μ> inf Ir(1,∞) be such that pμ< 2 and κ < inf I 3
2 r
[1− 16K

r2 ,∞) be such that qκ > 2.
By Theorem 2.7 forM ∈N large enough,

∞∑
m=M

P
[
λ(Q2m)

log 2m
< p

]
≤
∞∑
m=M

2−m
p2(2−pμ)m

2r2 <∞,

which is finite because p2(2−pμ)m
8r2 > 1 for large m, as 2− pμ> 0. Also

∞∑
m=M

P
[
λ(Q2m)

log 2m
> q

]
≤
∞∑
m=M

2m log 2

r2 2(2−κq)m,

which is finite, as 2− κq < 0 (and because 2−αmm→ 0 for α > 0).
• Let n ∈ N. Let us first observe that, as λn(Q2m) ≤ λ(Q2m), we have

lim supm→∞
λn(Q2m)

log 2m ≤ 2
�1

. Let x1, . . . , xn ∈Q2n be such that (xi +Q1)
n
i=1 are disjoint. By

Theorem 2.4 we obtain almost surely

lim inf
m→∞

λn(Q2n+m)

log 2n+m
≥ min
i∈{1,...,n} lim

m→∞
λ(2mxi +Q2m)

log 2n + log 2m
= 2

�1
. �

PROOF OF THEOREM 2.8. The condition on yL is assumed in order to have the mono-
tonicity of L �→ λn(yL) on I. Therefore and for convenience, we assume yL = 0 for all L ∈ I.
Also, we take β = 1. Write s = 2

�1
. Let ε ∈ (0, s). By Theorem 3.4 there exists an M such

that, for all m≥M , (
log 2m

)
(s − ε)≤ λn(Q2m)≤ (log 2m

)
(s + ε) a.s.

Let a ∈ [1,2], then almost surely, as L �→ λn(QL) is an increasing function(
loga2m−1)(s − ε)≤ λn(Q2m)≤ λn(Qa2m)≤ λn(Q2m+1)≤ (loga2m+1)(s + ε),

and (
1− log 2

log(2m)

)
(s − ε)≤

(
1− log 2

log(a2m)

)
(s − ε)

≤ λn(Qa2m)

log(a2m)
≤
(

1+ log 2

log(2m)

)
(s + ε).

From this it follows that almost surely limL∈I,L→∞ λn(QL)
log(L) = s. �

4. Dirichlet and Neumann Besov spaces, para- and resonance products. Let d ∈ N.
Let L > 0. We will first introduce Dirichlet and Neumann spaces on QL = [0,L]d . In order
to do this, we use three different bases of L2([0,L]d), one standard (the ek’s), one as an
underlying basis for Dirichlet spaces (the dk’s) and one as an underlying basis for Neumann
spaces (the nk’s). After defining these spaces (in Definition 4.9), we prove a few results that
compare Besov and Sobolev spaces. Later, in Definition 4.19 we show how to generalize this
to spaces on general boxes of the form

∏d
i=1[ai, bi]. Then, we present bounds on Fourier

multipliers (Theorem 4.20) and define para- and resonance products (Definition 4.24) and
state their Bony estimates (Theorem 4.26).
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In the following we will introduce some notation. For q ∈ {−1,1}d and x ∈Rd , we use the
following shorthand notation (q ◦ x is known as the Hadamard product):(∏

q
)
=

d∏
i=1

qi , q ◦ x = (q1x1, . . . ,qdxd).

We call a function f : [−L,L]d→C odd if f (x)= (∏q)f (q ◦ x) for all q ∈ {−1,1}d , and,
similarly, we call f even if f (x) = f (q ◦ x) for all q ∈ {−1,1}d . For any f : [0,L]d → C,
we write f̃ : [−L,L]d → C for its odd extension (the ∼ notation is taken as it looks like
the graph of an odd function) and f : [−L,L]d → C for its even extension (similarly, the
notation—is taken, as it looks like the graph of an even function), that is, for the functions
that satisfy

f̃ (q ◦ x)=
(∏

q
)
f (x), f (q ◦ x)= f (x) for all x ∈ [0,L]d,q ∈ {−1,1}d .

If a function f : [−L,L]d → C is periodic, which means that f (y,L) = f (y,−L) and
f (L,y) = f (−L,y) for all y ∈ [−L,L], then it can be extended periodically on Rd (with
period 2L); we will also consider it to be a function on the domain Td2L. Note that if f is
periodic and odd, then f = 0 on ∂[0,L]d .

For k = (k1, . . . , kd) ∈Nd0 , let νk = 2− 1
2 #{i:ki=0}, and write dk,L and nk,L or, simply, dk and

nk for the functions [0,L]d → C and ek,2L or, simply, ek for the function [−L,L]d → C
given by:

dk,L(x)= dk(x)=
(

2

L

) d
2
d∏
i=1

sin
(
π

L
kixi

)
,(11)

nk,L(x)= nk(x)= νk
(

2

L

) d
2
d∏
i=1

cos
(
π

L
kixi

)
,(12)

ek,2L(x)= ek(x)=
(

1

2L

) d
2
e
π i
L
〈k,x〉.(13)

Note that d̃k(x) equals the right-hand side of (11) and nk(x) equals the right-hand side of (12)
for x ∈ [−L,L]d so that d̃k and nk are elements of C∞(Td2L). We can also write d̃k and nk as
follows:

d̃k(x)=
(

2

L

) d
2
d∏
i=1

e
π i
L
kixi − e− π i

L
kixi

2i
= (−i)d

∑
q∈{−1,1}d

(∏
q
)
eq◦k(x),(14)

nk(x)= νk
(

2

L

) d
2
d∏
i=1

e
π i
L
kixi + e− π i

L
kixi

2
= νk

∑
q∈{−1,1}d

eq◦k(x).(15)

For an integrable function f : Td2L→C, its kth Fourier coefficient is defined by

Ff (k)= 〈f, ek〉 = 1

(2L)
d
2

∫
Td2L

f (x)e−
π i
L
〈k,x〉 dx

(
k ∈ Zd).

4.1. It is not difficult to see that for ϕ,ψ ∈L2([0,L]d), the following equalities hold:

F(ϕ̃)(k)=
(∏

q
)
F(ϕ̃)(q ◦ k) for all k ∈ Zd,q ∈ {−1,1}d,(16)

F(ϕ̃)(k)= 0 for all k ∈ Zd with ki = 0 for some i,(17)
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F(ϕ)(k)=F(ϕ)(q ◦ k) for all k ∈ Zd,q ∈ {−1,1}d,(18)

〈ϕ̃, ψ̃〉L2[−L,L]d = 2d〈ϕ,ψ〉L2[0,L]d = 〈ϕ,ψ〉L2[−L,L]d ,(19)

〈ϕ,dk〉 = idF(ϕ̃)(k) for all k ∈Nd,(20)

〈ϕ,nk〉 =F(ϕ)(k) for all k ∈Nd0 .(21)

4.2. By partial integration one obtains that F(∂αf )(k) = (π i
L
k)αF(f )(k). So that

F(�f )(k) = −|π
L
k|2F(f )(k). Consequently, 〈�f,dk〉 = −|πLk|2〈f,dk〉 and 〈�f,nk〉 =

−|π
L
k|2〈f,nk〉. This will be used later to define (a −�)−1 for a ∈R \ {0}.

Moreover, from this one obtains that the spectrum of −� is given by {π2

L2 |k|2 : k ∈ Zd} and
that every ek is an eigenvector.

LEMMA 4.3. {dk : k ∈Nd} and {nk : k ∈Nd0} form orthonormal bases for L2([0,L]d).

PROOF. We leave it to the reader to check that those sets are orthonormal. Let ϕ ∈
L2([0,L]d). By expressing ϕ̃ and ϕ in terms of the basis {ek : k ∈ Zd} and using 4.1, one
obtains ϕ̃ =∑k∈Nd 〈ϕ,dk〉L2[0,L]2 d̃k and ϕ =∑k∈Nd0 〈ϕ,nk〉L2[0,L]2nk . �

DEFINITION 4.4. We define the set of test functions on [0,L]d that oddly and evenly
extend to smooth functions on Td2L (here S(Td2L)= C∞(Td2L)),

S0
([0,L]d) := {ϕ ∈C∞([0,L]d) : ϕ̃ ∈ S(Td2L)},

Sn

([0,L]d) := {ϕ ∈C∞([0,L]d) : ϕ ∈ S(Td2L)}.
We equip S0([0,L]d), Sn([0,L]d) and S(Td2L) with the Schwarz-seminorms. Note that2

C∞c ([0,L]d) is a subset of both S0([0,L]d) and Sn([0,L]d).

In the following theorem we state how one can represent elements of S , S0 and Sn and of
S ′, S ′0 and S ′n in terms of series in terms of ek , dk and nk .

THEOREM 4.5. (a) Every ω ∈ S(Td2L), ϕ ∈ S0([0,L]d) and ψ ∈ Sn([0,L]d) can be rep-
resented by

ω= ∑
k∈Zd

akek, ϕ = ∑
k∈Nd

bkdk, ψ = ∑
k∈Nd0

cknk,(22)

where (ak)k∈Zd , (bk)k∈Nd and (ck)k∈Nd0 in C are such that

∀n ∈N : sup
k∈Zd

(
1+ |k|)n|ak|<∞, sup

k∈Nd
(
1+ |k|)n|bk|<∞,

sup
k∈Nd0

(
1+ |k|)n|ck|<∞,(23)

and ak = 〈ω,ek〉, bk = 〈ϕ,dk〉 and ck = 〈ψ,nk〉.
Conversely, if (ak)k∈Zd , (bk)k∈Nd and (ck)k∈Nd0 satisfy (23), then

∑
k∈Zd akek ,

∑
k∈Nd bkdk

and
∑
k∈Nd0 cknk converge in S(Td2L), S0([0,L]d) and Sn([0,L]d), respectively.

2For the notation, see Section 1.3.
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(b) Every w ∈ S ′(Td2L), u ∈ S ′0([0,L]d) and v ∈ S ′n([0,L]d) can be represented by

w = ∑
k∈Zd

akek, u= ∑
k∈Nd

bkdk, v = ∑
k∈Nd0

cknk,(24)

where (ak)k∈Zd , (bk)k∈Nd and (ck)k∈Nd0 in C are such that

∃n ∈N : sup
k∈Zd

|ak|
(1+ |k|)n <∞, sup

k∈Nd
|bk|

(1+ |k|)n <∞,

sup
k∈Nd0

|ck|
(1+ |k|)n <∞

(25)

and ak = 〈w,ek〉, bk = 〈u,dk〉 and ck = 〈v,nk〉.
Conversely, if (ak)k∈Zd , (bk)k∈Nd and (ck)k∈Nd0 satisfy (25), then

∑
k∈Zd akek ,

∑
k∈Nd bkdk

and
∑
k∈Nd0 cknk converge in S ′(Td2L), S ′0([0,L]d) and S ′n([0,L]d), respectively.

PROOF. Let ω ∈ S(Td2L). As one has the relation F(�nω)(k)= (−π2

L2 |k|2)nF(ω)(k) for

all n ∈ N0, we have (23) and
∑
k∈Zd :|k|≤N F(ω)(k)ek

N→∞−−−−→ ω in S(Td2L); see also [33],
Corollary 2.2.4.

Let ϕ ∈ S0([0,L]d). Using the shown convergence above for ω = ϕ̃, by (14), (16), (17)
and (20) ∑

k∈Zd|k|≤N

F(ϕ̃)(k)ek =
∑
k∈Nd|k|≤N

∑
q∈{−1,1}d

F(ϕ̃)(q ◦ k)eq◦k =
∑
k∈Nd|k|≤N

〈ϕ,dk〉d̃k.

Hence,
∑
k∈Nd :|k|≤N 〈ϕ,dk〉dk converges to ϕ in S0([0,L]d).

Let ψ ∈ Sn([0,L]d). Using the shown convergence above for ψ , by (15), (18) and (21),∑
k∈Zd|k|≤N

F(ψ)(k)ek =
∑
k∈Nd0|k|≤N

2−#{i:ki=0} ∑
q∈{−1,1}d

F(ψ)(q ◦ k)eq◦k =
∑
k∈Nd0|k|≤N

cknk.

Hence,
∑
k∈Nd :|k|≤N 〈ψ,nk〉nk converges to ψ in Sn([0,L]d).

(b) follows from (a). �

For ϕ ∈ S0([0,L]d), note that ϕ̃ =∑k∈Nd 〈ϕ,dk〉d̃k . Moreover, note that ω ∈ S(Td2L) is
odd if and only if 〈ω,eq◦k〉 = (∏q)〈ω,ek〉 for all k ∈ Zd and q ∈ {−1,1}d . This motivates
the following definition.

DEFINITION 4.6. For u ∈ S ′0([0,L]d), we write ũ for the distribution in S ′(Td2L) given
by ũ=∑k∈Nd 〈u,dk〉d̃k . For v ∈ S ′n([0,L]d), we write v for the distribution in S ′(Td2L) given
by v = ∑

k∈Nd0 〈u,nk〉nk . A w ∈ S ′(Td2L) is called odd if 〈w,eq◦k〉 = (∏q)〈w,ek〉 for all

k ∈ Zd and q ∈ {−1,1}d . If instead 〈w,eq◦k〉 = 〈w,ek〉 for all k ∈ Zd and q ∈ {−1,1}d , then
w is called even.

Note that ũ is odd and v is even.

By (19) and Theorem 4.5, for u ∈ S ′0([0,L]d), ϕ ∈ S0([0,L]d) and v ∈ S ′n([0,L]d), ψ ∈
Sn([0,L]d),

〈u,ϕ〉 = 2−d〈ũ, ϕ̃〉, 〈v,ψ〉 = 2−d〈v,ψ〉.(26)
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THEOREM 4.7.

(a) We have

S̃0
(
Td2L

) := {ϕ̃ : ϕ ∈ S0
([0,L]d)}= {ψ ∈ S(Td2L) :ψ is odd

}
,

Sn

(
Td2L

) := {ϕ : ϕ ∈ Sn

([0,L]d)}= {ψ ∈ S(Td2L) :ψ is even
}
,

and S̃0(Td2L) and Sn(Td2L) are closed in S(T2L).
(b) S(Td2L), S0([0,L]d) and Sn([0,L]d) are complete.
(c) We have

S̃ ′0
(
Td2L

) := {ũ : u ∈ S ′0([0,L]d)}= {w ∈ S ′(Td2L) :w is odd
}
,

S ′n
(
Td2L

) := {v : v ∈ S ′n([0,L]d)}= {w ∈ S ′(Td2L) :w is even
}
,

and S̃ ′0(Td2L) and S ′n(Td2L) are closed in S ′(Td2L).
(d) S ′(Td2L), S ′0([0,L]d) and S ′n([0,L]d) are (weak∗) sequentially complete.

PROOF. (a) follows as convergence in S implies pointwise convergence and, therefore,
the limit of odd and even functions is again odd and even, respectively. (b) follows from (a),
as S(Td2L) is complete (see [12], Page 134). (c) If a net (wι)ι∈I in S̃ ′0 converges in S ′ to some
w, then 〈wι, ek〉 → 〈w,ek〉 for all k so that w is odd. (d) follows from (c), as S ′(Td2L) is
weak∗ sequentially complete (see [12], page 137). �

As we index the basis ek , dk and nk by elements k in Zd and not in 1
L
Zd , in the next defi-

nition of a Fourier multiplier we have an additional 1
L

factor in the argument of the functions
τ and σ .

DEFINITION 4.8. Let τ :Rd→ R, σ : [0,∞)d→ R, w ∈ S ′(Td2L), u ∈ S ′0([0,L]d) and
v ∈ S ′n([0,L]d). We define (at least formally) the so-called Fourier multipliers by

τ(D)w = ∑
k∈Zd

τ

(
k

L

)
〈w,ek〉ek,

σ (D)u= ∑
k∈Nd

σ

(
k

L

)
〈u,dk〉dk,(27)

σ(D)v = ∑
k∈Nd0

σ

(
k

L

)
〈v,nk〉nk.

Let (ρj )j∈N−1 form a dyadic partition of unity, that is, ρ−1 and ρ0 are C∞ radial functions
on Rd , where ρ−1 is supported in a ball and ρ0 is supported in an annulus, ρj = ρ(2−j ·) for
j ∈N0, and ∑

j∈N−1

ρj (y)= 1,
1

2
≤ ∑
j∈N−1

ρj (y)
2 ≤ 1

(
y ∈Rd),(28)

|j − k| ≥ 2 =⇒ suppρj ∩ suppρk =∅ (j, k ∈N0).(29)

Let w ∈ S ′(Td2L), u ∈ S ′0([0,L]d) and v ∈ S ′n([0,L]d). We define the Littlewood–Paley
blocks�jw,�ju and�jv for j ∈N−1 by�jw = ρj (D)w,�ju= ρj (D)u,�jv = ρj (D)v,
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that is,

�jw =
∑
k∈Zd
〈w,ek〉ρj

(
k

L

)
ek,

�ju=
∑
k∈Nd
〈u,dk〉ρj

(
k

L

)
dk,

�jv =
∑
k∈Nd0
〈v,nk〉ρj

(
k

L

)
nk.

Let σ : Rd→ R be the even extension of σ , that is, σ(q ◦ x)= σ(x) for all x ∈ [0,∞)d and
q ∈ {−1,1}d . As σ(D)dk = σ( kL)dk and σ(D)d̃k = σ( kL)d̃k , by Theorem 4.5 we obtain that,
for all u ∈ S ′0([0,L]d) and v ∈ S ′n([0,L]d),

σ̃ (D)u= σ(D)ũ, σ (D)v = σ(D)v.(30)

Moreover, with ad,p = 2−
d
p for p <∞ and ad,∞ = 1 we have, for all p ∈ [1,∞],∥∥σ(D)u∥∥Lp([0,L]d ) = ad,p∥∥σ̃ (D)u∥∥Lp(Td2L) = ad,p∥∥σ(D)ũ∥∥Lp(Td2L),∥∥σ(D)v∥∥Lp([0,L]d ) = ad,p∥∥σ(D)v∥∥Lp(Td2L) = ad,p∥∥σ(D)v∥∥Lp(Td2L).

Therefore, by applying the above to σ = ρj , with ‖ · ‖Bαp,q the standard Besov norm,

ad,p‖ũ‖Bαp,q =
∥∥(2iα‖�iu‖Lp )i∈N−1

∥∥
�q , ad,p‖v‖Bαp,q =

∥∥(2iα‖�iv‖Lp )i∈N−1

∥∥
�q .

This motivates the following definition.

DEFINITION 4.9. Let α ∈ R, p,q ∈ [1,∞]. We define the Dirichlet Besov space
Bd,α
p,q([0,L]d) to be the space of u ∈ S ′0([0,L]d) for which ‖u‖

B
d,α
p,q
:= ad,p‖ũ‖Bαp,q <∞.

Similarly, we define the Neumann Besov space Bn,α
p,q ([0,L]d) as the space of v ∈ S ′n([0,L]d)

for which ‖v‖Bn,α
p,q
:= ad,p‖v‖Bαp,q <∞.

We will abbreviate Cαn = Bn,α∞,∞, Hαn = Bn,α
2,2 . In Theorem 4.14 we show Hα0 = Bd,α

2,2 .

As Bαp,q(T
d
2L) is a Banach space, ‖ · ‖

B
d,α
p,q

is a norm on Bd,α
p,q([0,L]d) under which it is

a Banach space. Similarly, ‖ · ‖Bn,α
p,q

is a norm on Bn,α
p,q ([0,L]d) under which it is a Banach

space.

THEOREM 4.10. C∞c ([0,L]d) is dense in Bd,α
p,q([0,L]d) for all α ∈R, p,q ∈ [1,∞).

PROOF. The proof follows the same strategy as the proof of [2], Proposition 2.74. �

THEOREM 4.11. For α > 0, Hα(Rd) = Bα2,2(Rd) = �α2,2(Rd) and their norms are
equivalent (for the definitions, see [34], p. 36).

PROOF. For Hα(Rd) = Fα2,2(Rd), see [34], p. 88; for Fα2,2(R
d) = Bα2,2(Rd), see [34],

p. 47, and for Bα2,2(R
d)=�α2,2(Rd), see [34], p. 90. �
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LEMMA 4.12. For α ∈ R, the spaces Bα2,2(T
d
2L) and Hα(Td2L) (see [31], p. 168) are

equal with equivalent norms. Here, Hα(Td2L) is the space of distributions in S ′(Td2L) for
which ‖u‖Hα <∞, where

‖u‖Hα =
√√√√√∑
k∈N2

0

(
1+

∣∣∣∣ kL
∣∣∣∣2)α〈u, ek〉2.

PROOF. Observe that by the properties of the dyadic partition, for all α ∈ R, there exist
cα,Cα > 0 such that

cα

(
1+

∣∣∣∣ kL
∣∣∣∣2)α ≤ ∑

j∈N−1

22αjρj

(
k

L

)2
≤ Cα

(
1+

∣∣∣∣ kL
∣∣∣∣2)α.(31)

Therefore, the equivalence of the norms follows by Plancherel’s formula. �

The following is a consequence of the fact that the norms of Hα(Td2L) (see [31], p. 168)
and Bα2,2(T

d
2L) are equivalent.

THEOREM 4.13. For all α ∈R, we have, for u ∈ S ′n([0,L]d) and v ∈ S ′0([0,L]d),

‖u‖Bn,α
2,2

�

√√√√√∑
k∈N2

0

(
1+

∣∣∣∣ kL
∣∣∣∣2)α〈u,nk〉2, ‖v‖

B
d,α
2,2

�

√√√√√∑
k∈N2

0

(
1+

∣∣∣∣ kL
∣∣∣∣2)α〈v,dk〉2.

THEOREM 4.14. For α > 0, the spaces Bd,α
2,2 ([0,L]d) and Hα0 ([0,L]d) are equal with

equivalent norms, where Hα0 ([0,L]d) is the closure of C∞c ([0,L]d) in Hα(Rd).

PROOF. As C∞c ([0,L]d) is dense in Bd,α
2,2 ([0,L]d) (Theorem 4.10), it is sufficient to

prove the equivalence of the norms on C∞c ([0,L]d). Let f ∈ C∞c ([0,L]d). By definition

of the �α2,2 norm, ‖f ‖�α2,2(TdL) = ‖f ‖�α2,2(Rd ). As Dβf̃ = D̃βf , we have ‖f̃ ‖�α2,2(Td2L) =
2
d
2 ‖f ‖�α2,2(TdL). Because ‖f̃ ‖Bα2,2(Td2L) = 2

d
2 ‖f ‖

B
d,α
2,2 ([0,L]d ) (by definition), the proof follows

by Theorem 4.11. �

THEOREM 4.15. Let p,q ∈ [1,∞] and β,γ ∈R, γ < β . Then, Bβp,q(Td2L) is compactly

embedded in Bγp,q(Td2L), that is, every bounded set in Bβp,q(Td2L) is compact in Bγp,q(Td2L).

The analogous statement holds for Bd,β
p,q([0,L]d) and Bn,β

p,q ([0,L]d) spaces. In particular, the

injection j :Hβ0 ([0,L]d)→H
γ
0 ([0,L]d) is a compact operator.

PROOF. We consider the underlying space to be Td2L, that is, periodic boundary condi-

tions; the other cases follow by Theorem 4.7. Suppose that un ∈ Bβp,q and ‖un‖Bβp,q ≤ 1 for

all n ∈ N. We prove that there is a subsequence of (un)n∈N that converges in Bγp,q . By [2],
Theorem 2.72, there exists a subsequence of (un)n∈N, which we assume to be the sequence
itself, such that un→ u in S ′ and ‖u‖

B
β
p,q
≤ 1. As 〈un, ek〉 → 〈u, ek〉 for all k ∈ Zd , we

have ‖�j(un − u)‖Lp→ 0 for all j ∈N−1. Let ε > 0. Choose J ∈N large enough such that
2(γ−β)J < ε so that, for all n ∈N,∥∥(2γj∥∥�j(un − u)∥∥Lp )∞j=J+1

∥∥
�q ≤ 2(γ−β)J

∥∥(2βj∥∥�j(un − u)∥∥Lp )∞j=J+1

∥∥
�q

≤ 2(γ−β)J
(‖un‖Bβp,q + ‖u‖Bβp,q )< 2ε.
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Then, by choosing N ∈N large enough such that ‖(2γj‖�j(un − u)‖Lp)Jj=−1‖�q < ε for all
n≥N , one has with the above bound that ‖un − u‖Bγp,q < 3ε for all n≥N . �

4.16. Observe that by Lemma 4.3 H 0
0 ([0,L]d) = H 0

n ([0,L]d) = L2([0,L]d) and ‖ ·
‖H 0

0
� ‖ · ‖H 0

n
� ‖ · ‖L2 .

4.17. By 4.2 we have (a −�)−1f = σ(D)f for σ(x)= (a + π2|x|2)−1.

4.18. For any function ϕ and λ ∈ R, we write lλϕ for the function x �→ ϕ(λx). For a
distribution u we write lλu for the distribution given by 〈lλu,ϕ〉 = λ−d〈u, l 1

λ
ϕ〉. As lλek,2L =

λ− d2 e
k, 2L
λ

and 〈lλu, ek, 2L
λ
〉 = λ− d2 〈u, ek,2L〉, we have, for u ∈ S ′(Td2L),

lλ
[
σ(λD)u

]= σ(D)[lλu].(32)

Similarly, (32) holds for u ∈ S ′0([0,L]d) and u ∈ S ′n([0,L]d) (use, e.g., 4.1).

DEFINITION 4.19. Let y ∈ Rd , s ∈ (0,∞)d and � = y + ∏d
i=1[0, si]. Let l :∏d

i=1[0, si]→ [0,1]d be given by l(x)= (x1
s1
, . . . , xd

sd
). For a function ϕ we define new func-

tions lϕ and Tyϕ by lϕ(x) = ϕ ◦ l(x) and Tyϕ(x) = ϕ(x − y), and for a distribution u we
define the distributions lu and Tyu by 〈lu,ϕ〉 = |det l|−1〈u, l−1ϕ〉 and 〈Tyu,ϕ〉 = 〈u,T −1

y ϕ〉.
We define

S0(�) := Tyl
[
S0
([0,1]d)], S ′0(�) := Tyl

(
S ′0
([0,1]d)),

σ (D)u := Tyl
[
(lσ )(D)

(
(Tyl)−1u

)]
for u ∈ S ′0(�).

(33)

Note that the definition of σ(D)u is consistent with (27) by 4.18. Moreover, we define �i =
ρi(D) (as in (33)) and

‖u‖
B
d,α
p,q
(�) := ∥∥(2iα‖�iu‖Lp )i∈N−1

∥∥
�q .

Similarly, we define Sn(�),S ′n(�),Bn,α
p,q(�) and ‖ · ‖Bn,α

p,q (�)
.

The following theorem gives a bound on Fourier multipliers, similar as in [2], Theo-
rem 2.78. However, considering the particular choice Hγ (Td2L) = Bγ2,2(Td2L) allows us to
reduce condition to control all derivatives of σ to a condition that only controls the growth of
σ itself.

THEOREM 4.20. Let γ,m ∈R and M > 0. There exists a C > 0 such that the following
statements hold:

(a) For all bounded σ :Rd→R such that |σ(x)| ≤M(1+ |x|)−m for all x ∈Rd ,∥∥σ(D)w∥∥Hγ+m ≤C‖w‖Hγ (
w ∈ S ′(Td2L)).(34)

By (30), one may replace “H” and “S ′(Td2L)” by “H0” and “S ′0([0,L]d)” or “Hn” and
“S ′n([0,L]d)” in (34).

(b) For all σ :Rd→R, which are C∞ on Rd \ {0}, such that |∂ασ (x)| ≤M|x|−m−|α| for
all x ∈Rd \ {0} and α ∈Nd0 with |α| ≤ 2�1+ d

2 �,∥∥σ(D)w∥∥Cγ+m ≤C‖w‖Cγ (
w ∈ S ′(Td2L)).(35)

By (30), one may replace “C” and “S ′(Td2L)” by “Cn” and “C′n([0,L]d)” in (35).
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PROOF. Let a > 0 be such that ρ(k) = 0 if |k| < a. Then, for j ≥ 0 one has
|ρj (k)σ (k)| ≤M(1+ a2j

L
)−mρj (k)≤MLma−m2−jmρj (k) for all k ∈ Zd . As σ is bounded

on the support of ρ−1, there exists a C > 0 such that, for all j ∈N−1,

∥∥σ(D)�jw∥∥L2 =
√√√√∑
k∈Zd

∣∣w(ek)∣∣2∣∣∣∣σ( kL
)∣∣∣∣2∣∣ρj (k)∣∣2 ≤ C2−jm‖�jw‖L2 .

(35) follows from [2], Lemma 2.2. �

4.21. Using the multivariate chain rule (Faà di Bruno’s formula), one can prove that
σ(x)= (1+ π2|x|2)−1 satisfies the conditions in Theorem 4.20 (those needed for (35)).

One other bound that we will refer to is a special case of [2], Proposition 2.71.

THEOREM 4.22. For all α ∈R, there exists a C > 0 such that ‖w‖Cαn ≤ C‖w‖
H
α+ d2
n

for

all w ∈ S ′n([0,L]d).
Now, we consider (para- and resonance-) products between elements of S ′0([0,L]d) and

S ′n([0,L]d) and between elements of S ′n([0,L]d).
4.23. Let w1,w2 ∈ S ′(Td2L) be represented by w1 =∑k∈Zd akek and w2 =∑l∈Zd blel .

Then, formally, w1w2 =∑m∈Zd cmem, with cm =∑k,l∈Zd ,k+l=m akbl .
Of course this series is not always convergent (e.g., take ak = bk = |k|n for some n ∈ N

and see (25)). But if it does, then due to the identities

(2L)
d
2 d̃knl = νl

∑
p∈{−1,1}d

d̃k+p◦l,(36)

(2L)
d
2 d̃kd̃l = (−1)d

∑
p∈{−1,1}d

ν−1
k+p◦l

(∏
p
)
nk+p◦l,(37)

(2L)
d
2 nknl =

∑
p∈{−1,1}d

νkνl

νk+p◦l
nk+p◦l,(38)

the product obeys the following rules:

even× even= even, odd× even= odd, odd× odd= even.

For example, if u ∈ S ′0 and v ∈ S ′n and uv exists in a proper sense, then uv ∈ S ′0.

DEFINITION 4.24. For u ∈ S ′0([0,L]d) ∪ S ′n([0,L]d) and v ∈ S ′n([0,L]d), we write (at
least formally)

u� v = v � u= ∑
i,j∈N−1
i≤j−1

�iu�jv, u� v = ∑
i,j∈N−1|i−j |≤1

�iu�jv.(39)

4.25. As d̃knm = d̃knm and nknm = nknm, we have (at least formally)

ũ� v = ũ� v, ũ� v = ũ� v, ũ� v = ũ� v,(40)

u� v = u� v, u� v = u� v, u� v = u� v.(41)

With this one can extend the Bony estimates on the (para-/resonance) products on the torus to
Bony estimates between elements of Bd,α

p,q([0,L]d) and Bn,β
p,q ([0,L]d) and between elements

of Bn,β
p,q ([0,L]d). We list some Bony estimates in Theorem 4.26.
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THEOREM 4.26 (Bony estimates).

(a) For all α < 0, γ ∈R, there exists a C > 0 such that, for all L> 0,

‖f � ξ‖
H
α+γ
0
≤ C‖f ‖Hγ0 ‖ξ‖Cαn

(
f ∈ S ′0

([0,L]d), ξ ∈ S ′n([0,L]d)).
(b) For all δ > 0, γ ≥−δ and β ∈R, there exists a C > 0 such that, for all L> 0,

‖f � ξ‖
H
β−δ
0
≤ C‖f ‖Hγ0 ‖ξ‖Cβn

(
f ∈ S ′0

([0,L]d), ξ ∈ S ′n([0,L]d)).
(c) For all α,γ ∈R with α + γ > 0, there exists a C > 0 such that, for all L> 0,

‖f � ξ‖
H
α+γ
0
≤ C‖f ‖Hγ0 ‖ξ‖Cαn

(
f ∈ S ′0

([0,L]d), ξ ∈ S ′n([0,L]d)),
‖f � ξ‖Cα+γn

≤ C‖f ‖Cγn‖ξ‖Cαn
(
f, ξ ∈ S ′n

([0,L]d)).
(d) For all α,γ ∈ R with α + γ > 0 and δ > 0, there exists a C > 0 such that, for all

L> 0,

‖f ξ‖
H
α∧γ−δ
0

≤ C‖f ‖Hγ0 ‖ξ‖Cαn
(
f ∈ S ′0

([0,L]d), ξ ∈ S ′n([0,L]d)).
The above statements also hold by simultaneously replacing “H0” and “S ′0” with “Hn” and
“S ′n.”

PROOF. By 4.25 it is sufficient to consider the analogue statements with periodic bound-
ary conditions, that is, considering the underlying space Td2L. For (a) and (b), see [28],
Lemma 2.1, and [2], Proposition 2.82, where the underlying space is Rd rather than the
torus. For (c), see [2], Proposition 2.85. (d) follows from the rest. �

The last observation we make is that one can also define Besov spaces with mixed bound-
ary conditions, to which we refer in Definition 5.2.

4.27 (Besov spaces with mixed boundary conditions). Beside the Dirichlet and Neu-
mann Besov spaces one can define Besov spaces with mixed boundary conditions as follows.
First, observe that, for k ∈ Nd0 , the function dk,L is the product of the one-dimensional func-
tions dki ,L, in the sense that dk,L(x) =∏di=1 dki ,L(xi). Similarly, nk,L(x) =∏di=1 nki ,L(xi).
One could interpret this as taking Dirichlet (or Neumann) boundary conditions in ev-
ery direction. Instead, one could, for example, for d = 2, take the function fk,L(x) =
dk1,L(x1)nk2,L(x2) and, analogously to Definition 4.9, define a Besov space with mixed
boundary conditions. Moreover, analogous to Definition 4.24 one can define the para- and
resonance products as in (39) and obtain the Bony estimates as in Theorem 4.26 for elements
with “opposite boundary conditions.”

5. The operator � + ξ with Dirichlet boundary conditions. We define the Anderson
Hamiltonian with Dirichlet boundary conditions and study its spectral properties that will be
used in the rest of the paper. In this section we assume d = 2, y ∈ R2 and s ∈ (0,∞)2 and
write � = y +∏2

i=1[0, si]. Moreover, we let α ∈ (−4
3 ,−1) and ξ ∈ Cαn (�). We abbreviate

Cαn (�) by Cαn , Hγ0 (�) by Hγ0 , etc. We write σ :R2→ (0,∞) for the function given by

σ(x)= 1

1+ π2|x|2 .

Additional assumptions are given in 5.10. Remember, see 4.17 that σ(D)= (1−�)−1.
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DEFINITION 5.1. For β ∈ R, we define the space of enhanced Neumann distributions,
written X

β
n , to be the closure in Cβn × C2β+2

n of the set{(
ζ, ζ � σ(D)ζ − c) : ζ ∈ Sn, c ∈R}.

We equip X
β
n with the relative topology with respect to Cβn × C2β+2

n .

We will now define the Dirichlet domain of the Anderson Hamiltonian analogously to [1]
did on the torus.

DEFINITION 5.2. Let ξ = (ξ,�) ∈Xαn . For γ ∈ (0, α+ 2), we define Dd,γ
ξ = {f ∈Hγ0 :

f �ξ ∈H 2γ
0 }, where f �ξ := f − f � σ(D)ξ . Moreover, we define an inner product on Dd,γ

ξ ,

written 〈·, ·〉Dd,γ
ξ

, by 〈f,g〉Dd,γ
ξ
= 〈f,g〉Hγ0 + 〈f �ξ , g�ξ 〉H 2γ

0
.

For γ ∈ (−α2 , α + 2), we define the space of strongly paracontrolled distributions by

D
d,γ

ξ = {f ∈Hγ0 : f �ξ ∈H 2
0 }, where f �ξ := f �ξ − B(f, ξ) and B(f, ξ)= σ(D)(f�+ f �

ξ − ((�− 1)f ) � σ(D)ξ − 2
∑d
i=1 ∂xi f � ∂xi σ (D)ξ) (for the paraproducts under the sum,

see 4.27). We define an inner product on D
d,γ

ξ , written 〈·, ·〉
D

d,γ

ξ
, by 〈f,g〉

D
d,γ

ξ
= 〈f,g〉Hγ0 +

〈f �ξ , g�ξ 〉H 2
0
. As in the periodic setting, one has Dd,γ

ξ ⊂Hα+2−
0 for all γ ∈ (−α2 , α+ 2). We

write Dd
ξ = {f ∈Hα+2−

0 : f �ξ ∈H 2
0 }.

We will define the Anderson Hamiltonian on the Dirichlet domain in a similar sense, as is
done on the periodic domain; however, we choose to change the sign in front of the Laplacian,
as this is more common in literature on the parabolic Anderson model.

DEFINITION 5.3. Let γ ∈ (−α2 , α + 2), ξ ∈ Xαn . We define3 the operator Hξ : Dd,γ
ξ →

H
γ−2
0 by

Hξf =�f + f � ξ ,

where f � ξ = f � ξ + f �ξ � ξ +R(f, σ (D)ξ, ξ)+ f�+ f � ξ and R(f, g,h) := (f �

g)� h− f (g � h).

We state the main results about the spectrum of the Anderson Hamiltonian on its Dirichlet
domain. These results are analogous to the Anderson Hamiltonian on the torus [1] (one can
just read the theorem below without the Dirichlet and Neumann notations, i.e., the sub- or
superscripts “0, d, n” and with the spaces interpreted to be defined on a torus). Moreover, they
are similar to the results of [21] which proof is based on the theory of regularity structures.

THEOREM 5.4. For γ ∈ (−α2 , α+ 2), there exists a C > 0 such that

‖Hξf ‖Hγ−2
0
≤ C‖f ‖Dd,γ

ξ

(
1+ ‖ξ‖Xαn

)2 (
f ∈Dd,γ

ξ , ξ ∈Xαn
)
.(42)

Hξ (D
d
ξ )⊂ L2 and Hξ :Dd

ξ → L2 is closed and selfadjoint as an operator on L2, and Dd
ξ is

dense in L2. There exist λ1(�, ξ) > λ2(�, ξ)≥ λ3(�, ξ)≥ · · · such that limn→∞ λn(�, ξ)=

3The definition needs, of course, justification to show H
γ−2
0 is really the codomain; this is shown in Theo-

rem 5.4.
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−∞, σ(Hξ ) = σp(Hξ ) = {λn(�, ξ) : n ∈ N} and #{n ∈ N : λn(�, ξ) = λ} = dim ker(λ −
Hξ ) <∞ for all λ ∈ σ(Hξ ). One has

Dd
ξ =

⊕
λ∈σ(Hξ )

ker(λ−Hξ ).

There exists anM > 0 such that, for all n ∈N and ξ , θ ∈Xαn ,∣∣λn(�, ξ)− λn(�, θ)∣∣≤M‖ξ − θ‖Xαn
(
1+ ‖ξ‖Xαn + ‖θ‖Xαn

)M
.(43)

With the notation � for “is a linear subspace of,”

λn(�, ξ)= sup
F�Dd

ξ

dimF=n

inf
ψ∈F
‖ψ‖

L2=1

〈Hξψ,ψ〉L2(44)

In particular, λ1(�, ξ)= supψ∈Dd
ξ :‖ψ‖L2=1〈Hξψ,ψ〉L2 .

REMARK 5.5. Let us mention that, in an analogous way, one can state (and prove) the
same statement for the operator with Neumann boundary conditions by replacing “d” by “n”
and “H0” by “Hn.”

REMARK 5.6. In [1] it is pointed out that in (44) one may replace Dd
ξ by Dγξ for γ ∈

(2
3 , α+2) and 〈Hξψ,ψ〉L2 by

H
−γ
0
〈Hξψ,ψ〉Hγ0 , where

H
−γ
0
〈·, ·〉Hγ0 :H

−γ
0 ×Hγ0 →R is the

continuous bilinear map (see [2], Theorem 2.76) given by

H
−γ
0
〈f,g〉Hγ0 =

∑
i,j∈N−1|i−j |≤1

〈�if,�jg〉L2 .

This is done for the periodic setting, but the arguments can easily be adapted to our setting.

5.7. Let η ∈ L2 (which equals H 0
n , see 4.16). By Theorem 4.20 σ(D)η ∈H 2

n which is
included in C1

n by Theorem 4.22. Then, by Theorem 4.26, η � σ(D)η ∈ H 1
n . Moreover, if

ηε→ η in L2, then ηε � σ(D)ηε→ η � σ(D)η in H 1
n (by the same theorems). Hence, by

Theorem 4.22 we obtain the following convergence in Xαn for all α ≤−1:(
ηε, ηε � σ(D)ηε

)→ (
η,η � σ(D)η

)
.

We write λn(�,η)= λn(�, (η, η � σ(D)η)).

By 5.7 and the continuity of ξ �→ λn(�, ξ) (see (43) in Theorem 5.4), we obtain the fol-
lowing lemma.

LEMMA 5.8. The map L2(�)→R, η �→ λn(�,η) is continuous.

5.9. Let ζ ∈ S∞n . Then, ζ := (ζ, ζ � σ(D)ζ ) ∈ X
β
n , f � σ(D)ζ ∈ Hβ0 for all β ∈ R

and B(f, ζ ) ∈ H 2
0 and f ∈ Hγ0 with γ ∈ (0,1) (use Theorems 4.20, 4.21 and 4.26). There-

fore, for all γ ∈ (0,1), Dd,γ
ζ = H 2γ

0 and D
d,γ
ζ = H 2

0 and for f ∈ Hγ0 , f � ζ = f �ζ � ζ +
R(f, σ (D)ζ, ζ )+ f (ζ � σ(D)ζ ) so that

Hζ f :=�f + f ζ =Hζf.(45)

Now, suppose ζ ∈ L∞ ⊂ C∞n . Then, ζ := (ζ, ζ � σ(D)ζ ) ∈ X0
n, but the Bony estimates give

f �σ(D)ζ ∈H 2−
0 (and not ∈H 2

0 ). Nevertheless, by the Kato–Rellich theorem [29], Theorem
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X.12, on the domain H 2
0 , the operator Hζ , defined as in (45), is selfadjoint. As the injection

map, H 2
0 → L2 is compact (see Theorem 4.15); every resolvent is compact. Hence, by the

Riesz–Schauder theorem [29], Theorem VI.15, and the Hilbert–Schmidt theorem [29], The-
orem VI.16, there exist λ1(�, ζ )≥ λ2(�, ζ )≥ · · · such that σ(Hζ )= σp(Hζ )= {λn(�, ζ ) :
n ∈ N} and #{n ∈ N : λn(�, ζ )= λ} = dim ker(λ−Hζ ) <∞ for all λ ∈ σ(Hζ ). Moreover,
by Fischer’s principle [23], Section 28, Theorem 4, p. 318,4 and Lemma A.2,

λn(�, ζ )= sup
F�H 2

0
dimF=n

inf
ψ∈F
‖ψ‖

L2=1

〈Hζψ,ψ〉L2

= sup
F�C∞c

dimF=n
inf
ψ∈F
‖ψ‖

L2=1

∫
−|∇ψ |2 + ζψ2.

(46)

The proof of Theorem 5.4 follows from the results of the Anderson Hamiltonian on the
torus with the help of Lemma 5.12. The proof is written below Lemma 5.12. We may restrict
ourselves to the case � =QL.

5.10. For the rest of this section y = 0 and bi = L for all i, that is, � =QL = [0,L]2.

5.11. For q ∈ {−1,1}d and w ∈ S ′, we write lqw for the element in S ′ given by
〈lqw,ϕ〉 = 〈w,ϕ(q ◦ ·)〉 for ϕ ∈ S . Then, w is odd if and only if w = (∏q)lqw for all
q ∈ {−1,1}d , and w is even if and only if w = lqw for all q ∈ {−1,1}d .

LEMMA 5.12. Let ξ ∈Xαn . Let 2
3 < γ < α+ 2. Write ξ = (ξ,�), Dγ

ξ
=Dγ

ξ
(Td2L), D

γ

ξ
=

D
γ

ξ
(Td2L):

(a) D̃d,γ
ξ = {w ∈ Dγ

ξ
: w is odd}, D̃

d,γ

ξ = {w ∈ D
γ

ξ
: w is odd}, H̃ξf = Hξ f̃ and

‖f ‖Dd,γ
ξ

� ‖f̃ ‖Dγ
ξ

uniformly for all f ∈ Dd,γ
ξ and ‖f ‖

D
d,γ

ξ
� ‖f̃ ‖Dγ

ξ
uniformly for all f ∈

D
d,γ

ξ .

(b) Hξ (Dd,γ
ξ )⊂Hγ−2

0 , Hξ (D
d,γ

ξ )⊂ L2.

(c) Hξ (lqf )= lqHξf for all f ∈Dγ
ξ

and q ∈ {−1,1}2.
(d) σ(Hξ ) ⊂ σ(Hξ ) (for the operators either on the D or D domains) and for all a ∈

C \ σ(Hξ ) the inverse of a −Hξ :Dd
ξ → L2 is selfadjoint and compact.

(e) Dd
ξ is dense in Dd,γ

ξ , and Dd,γ
ξ is dense in L2.

PROOF. (a) follows from the identities (40), f̃ �ξ = f̃ �ξ , B̃(f, ξ) = B(f̃ , ξ), f̃ �ξ = f̃ �ξ
and because ‖g̃‖Hγ � ‖g‖Hγ0 for all γ ∈R and g ∈Hγ0 ([0,L]d) (indeed, ‖g‖

B
d,γ
2,2
= ‖g̃‖Bγ2,2

by definition and ‖ · ‖Hγ0 � ‖ · ‖
B
d,γ
2,2

and ‖ · ‖Bγ2,2 � ‖ · ‖Hγ by Theorems 4.11 and 4.14).

(b) follows from (a) as Hξ (D
γ

ξ
)⊂Hγ−2 and Hξ (Dξ )⊂H 0 (see [1]).

(c) follows by a straightforward calculation; use that F(lqf )= lqF(f ), lqρi = ρi , lqξ = ξ
and lq�=� for q ∈ {−1,1}2.

4In this reference the operator is actually assumed to be compact and symmetric, whereas we apply it to Hξ .
But the compactness is only assumed to guarantee that the spectrum is countable and ordered so that the arguments
still hold.
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(d) Let a ∈ C be such that a −Hξ has a bounded inverse Ra . By (c) (a −Hξ )f is odd
if and only if f is odd; indeed, if (a −Hξ )f is odd, then (a −Hξ )[f − (

∏
q)lqf ] = 0

(see 5.11), and, thus, f = (∏q)lqf . Hence, a −Hξ has a bounded inverse Rd
a such that

R̃d
ah=Rah̃. From the fact that Ra is selfadjoint and compact, it follows that Rd

a is too.

S0 and thus L2 is dense in Hγ−2
0 (see [2], Theorem 2.74, and Theorem 4.14), therefore,

for a /∈ σ(Hξ ) and Ga = (a −Hξ )
−1, Dd

ξ = GaL2 is dense in Dd,γ
ξ = GaHγ−2

0 . That Dd,γ
ξ is

dense in L2 follows from the periodic counterpart which is proven in [1], Lemma 4.12. This
proves (e). �

PROOF OF THEOREM 5.4. By Lemma 5.12 it follows that Hξ is a closed densely de-
fined symmetric operator and that σ(Hξ )⊂ σ(Hξ ) so that Hξ is indeed selfadjoint (see [9],
Theorem X.2.9). As the resolvents are compact, the statements in Theorem 5.4 up to (43) fol-
low by the Riesz–Schauder theorem [29], Theorem VI.15, and the Hilbert–Schmidt theorem
[29], Theorem VI.16, because of the following identity, where Rμ = (μ−Hξ )

−1:

σ(Hξ )= σp(Hξ )=
{
μ− 1

λ
: λ ∈ σp(Rμ) \ {0}

}
;

this means that λ−Rμ is boundedly invertible (or injective) if and only if μ− 1
λ
−Hξ is

and, in turn, follows from the identity

λ

(
μ− 1

λ
−Hξ

)
= λ(μ−Hξ )− 1= (λ−Rμ)(μ−Hξ )

= (μ−Hξ )λ− 1= (μ−Hξ )(λ−Rμ).
As every eigenvalue of Hξ is an eigenvalue of Hξ , which is locally lipschitz in the analogues
sense of (43), also (43) holds by the equivalences of norms in Lemma 5.12(a). (44) follows
from Fischer’s principle [23], Section 28, Theorem 4, p. 318. That λ1 > λ2 or, in other words
that the first eigenvalue is simple, follows from [30], Theorem XIII.44. The only condition
to prove for that theorem is that the semigroup etHξ is positivity improving or, differently,
called the strong maximum principle for etHξ . The strategy to obtain this we borrow from
[4], Theorem 5.1. With ut := etHξu0, the map (t, x) �→ ut(x) is the solution to the parabolic
Anderson model ∂tu = �u + u � ξ , hence satisfies sups∈[0,t] ‖us‖Bd,1−ε∞,∞ <∞ for all ε > 0
(see [16]; the extension to Dirichlet boundary conditions follows similar as the extension of
the operator) and ut = Ptu0 + ∫ t0 Pt−s(us � ξ)ds, where Ptu0(x) = pt ∗ u0(x) and pt the

standard heat kernel pt(x)= (2πt)− d2 e−|x|
2

2t . The next step is to prove that Ptu0 is larger than
the supremum norm of

∫ t
0 Pt−s(us � ξ)ds. In [4] it is shown that, for all ρ > 0, there exists

a tρ such that Pt1B(x,δ) ≥ 1
41B(x,δ+ρt) for t ∈ (0, tρ]. On the other hand, one can prove that,

for ε ∈ (0,1), there exists a C > 0 such that ‖ ∫ t0 Pt−s(us � ξ)ds‖
B
d,ε∞,∞ ≤ Ct1−ε . Hence, we

can choose t0 ∈ (0, tρ) such that Ct1−ε0 ≤ 1
8 . This implies that ut ≥ 1

8 on B(x, δ + ρt0). Let
T ,ρ > 0, by choosing n such that T

n
≤ t0, by repeating the argument we have uT ≥ (1

8)
n

on B(x, δ + ρT ). As this holds for arbitrary ρ > 0, this implies that UT is strictly positive
everywhere. �

6. Enhanced white noise. In this section we prove Theorem 6.4; we first recall a defi-
nition and introduce notation.

DEFINITION 6.1. A white noise on Rd is a random variable W : �→ S ′(Rd,R) such
that, for all f ∈ S(Rd,R), the random variable 〈W,f 〉 is a centered Gaussian random vari-
able.
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6.2. Because ‖〈W,f 〉‖L2(�,P) = ‖f ‖L2(Rd ), the function f �→ 〈W,f 〉 extends to a
bounded linear operator W : L2(Rd) → L2(�,P) such that, for all f ∈ L2(Rd), Wf
is a complex Gaussian random variable, Wf = Wf and E[WfWg] = 〈f,g〉L2 for all
f,g ∈ L2(Rd).

6.3. Let W be a white noise on R2 and W be as in 6.2. For the rest of this section, we
fix L> 0. Unless mentioned otherwise, τ ∈ C∞c (Rd, [0,1]) is an even function that is equal
to 1 on a neighbourhood of 0. Define ξL,ε ∈ Sn([0,L]d) by (for 〈W,nk,L〉, we interpret nk,L
to be the function in L2(Rd) being equal to nk,L on [0,L]d and equal to 0 elsewhere)

ξL,ε =
∑
k∈Nd0

τ

(
ε

L
k

)
〈W,nk,L〉nk,L.(47)

For k ∈Nd0 , define Zk := 〈W,nk,L〉. Then, Zk is a (real) normal random variable with

E[Zk] = 0, E[ZkZl] = δk,l.(48)

Before we state the convergence to the enhanced white noise, let us discuss our choice of
regularization (47). We use the regularisation by means of a Fourier multiplier, as in [1]. This
basically means we “project” the white noise on the Neumann space on the box and then
take the regularisation corresponding to a Fourier multiplier. Another option is to consider
mollified white noise on the full space by convolution and then project the white noise on
the Neumann space. In a future work by König, Perkowski and van Zuijlen, it will be shown
that both choices lead to the same limiting object (up to a constant, by using techniques
from Section 11). This also confirms that our construction of the Anderson Hamiltonian with
enhanced white noise agrees with the construction of the Anderson Hamiltonian in [21],
where the Anderson Hamiltonian is considered a limit of the operators with mollified white
noise as potentials.

THEOREM 6.4. Let d = 2. For all α <−1, there exists a ξL ∈Xαn such that the following
convergence holds almost surely in Xαn , that is, on a measurable set �L with P(�L)= 1:

lim
ε↓0,ε∈Q∩(0,∞)

(
ξL,ε, ξL,ε � σ(D)ξL,ε − cε)= ξL,(49)

where cε = 1
2π log(1

ε
)+ cτ ∈R and cτ only depends on τ . ξL does not depend on the choice

of τ . ξL is a white noise in the sense that for ϕ,ψ ∈ Sn(QL), ξL(ϕ) and ξL(ψ) are Gaussian
random variables with

E
[
ξL(ϕ)

]= 0, E
[
ξL(ϕ)ξL(ψ)

]= 〈ϕ,ψ〉L2([0,L]d ).(50)

Moreover, for ϕ ∈ C∞c (QL) one has almost surely (i.e., on �L)

〈ξL,ϕ〉 = lim
ε↓0
〈ξL,ε, ϕ〉 =

∑
k∈Nd0
〈W,nk,L〉〈nk,L, ϕ〉 = 〈W,ϕ〉.

Hence, for every L > 0, the W viewed as an element of D′(QL) extends almost surely
uniquely to a ξL in Cαn .

Instead of taking QL as an underlying space, we can also take a shift of the box, that is,
y +QL.
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6.5. For y ∈Rd , we define

ξ
y
L,ε = Ty

[∑
k∈Nd0

τ

(
ε

L
k

)〈
T −1
y W,nk,L

〉
nk,L

]
.

If d = 2, by Theorem 6.4 there exists a ξ
y
L = (ξyL,�yL) ∈Xαn(y+QL) such that almost surely

lim
ε↓0,ε∈Q∩(0,∞)

(
ξ
y
L,ε, ξ

y
L,ε � σ(D)ξyL,ε −

1

2π
log

(
1

ε

))
= ξ

y
L(51)

and such that ξyL is a white noise in the sense described in Theorem 6.4 (i.e., T−yξyL satisfies
(50)).

For the rest of this section, we fix L> 0 and drop the subindex L; we write ξε = ξL,ε and
nk = nk,L.

DEFINITION 6.6. Define �ε ∈ Sn(QL) by

�ε(x)= ξε � σ(D)ξε(x)−E
[
ξε � σ(D)ξε(x)

]
.(52)

The strategy of the proof of the following theorem is rather similar to the proof on the torus
in [1], but, due to the differences of the Dirichlet setting and for the sake of selfcontainedness,
we provide the proof.

THEOREM 6.7. For all α <−d2 , ξε converges almost surely as ε ↓ 0 in Cαn to the white
noise ξL (as in Theorem 6.4). Moreover, for d = 2 and all α < −1, �ε converges almost
surely as ε ↓ 0 in C2α+2

n ; the limit is independent of the choice of τ .

PROOF. The proof relies on the Kolmogorov–Chentsov theorem (Theorem 6.8). Lem-
ma 6.10(a) shows that the required bound for this theorem can be reduced to bounds on the
second moments of �i(ξε − ξδ)(x) and �i(�ε −�δ)(x), given in 6.11 (the proofs of these
bounds are lengthy and, therefore, postponed to Section 11). (50) follows from

E
[〈ξε, ϕ〉〈ξε,ψ〉]= ∑

k∈Nd0
τ(εk)2〈ϕ,nk〉〈ψ,nk〉 ε↓0−−→ ∑

k∈Nd0
〈ϕ,nk〉〈ψ,nk〉 = 〈ϕ,ψ〉.

That the limit of �ε is independent of the choice of τ , follows from Theorem 11.2 (a). �

THEOREM 6.8 (Kolmogorov–Chentsov theorem). Let ζε be a random variable with val-
ues in a Banach space X for all ε > 0. Suppose there exist a, b,C > 0 such that, for all
ε, δ > 0,

E
[‖ζε − ζδ‖aX]≤ C|ε− δ|1+b.

Then, there exists a random variable ζ with values in X such that in La(�,X) and almost
surely limε↓0,ε∈Q∩(0,∞) ζε = ζ .

PROOF. This follows from the proof of [19], Theorem 2.23. �

In Lemma 6.10(a) we show how we obtain Lp bounds on the Cn norm from bounds on
squares of the Littlewood–Paley blocks. Lemma 6.10(b) follows from (a) and will be used in
Section 8 to prove Theorem 8.7.

To prove Lemma 6.10, we use the following auxiliary lemma. It is generally known that
the pth moment of a centered Gaussian random variable Z can be bounded by its second
moment, as E[|Z|p] = (p− 1)!!E[|Z|2]p2 (see [26], p. 110). We will use the generalisation of
this bound which is a consequence of the so-called hypercontractivity.
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LEMMA 6.9 ([25], Theorem 1.4.1 and equation (1.71)). Suppose that Zn for n ∈ N are
independent standard Gaussian random variables. If Z is a random variable in the first or
second Wiener chaos, which means it is of the form

∑
n∈N anZn or

∑
n,m∈N an,m(ZnZm −

E[ZnZm]) with an, an,m ∈C, then, for p > 1,

E
[|Z|p]≤ ppE[|Z|2]p2 .

LEMMA 6.10. Let A> 0 and a ∈R:

(a) Suppose ζ is a random variable with values in S ′n([0,L]d) such that �iζ(x) is a
random variable of the form as Z is, as in Lemma 6.9 for all i ∈ N−1 and x ∈ [0,L]d .
Suppose that, for all i ∈N−1, x ∈ [0,L]d

E
[∣∣�iζ(x)∣∣2]≤A2ai .(53)

Then, for all κ > 0, there exists a C > 0 independent of ζ such that, for all p ≥ 1,

E
[‖ζ‖p

C
− a2−κ− 2

p
n

]≤ CppLdAp
2 .(54)

(b) Suppose that (ζε)ε>0 is a family of such random variables for which (53) holds for all
i ∈N−1 and x ∈ [0,L]d , and that, for all k ∈Nd0 ,

E
[∣∣〈ζε,nk,L〉∣∣2]→ 0.(55)

Then, for all κ > 0 and p > 1,

E
[‖ζε‖p

C
− a2−κ− 2

p
n

]→ 0.

Consequently, we have ζε
P−→ 0 (convergence in probability) in C

− a2−κ− 2
p

n ([0,L]d).
PROOF. (a) For κ > 0, by Lemma 6.9 with Cκ =∑∞i=−1 2−κi ,

E
[‖ζ‖p

B
n,− a2−κ
p,p

]= ∞∑
i=−1

2(−
a
2−κ)piE

[‖�iζ‖pLp ]≤ ppLd
( ∞∑
i=−1

2−pκi
)
A
p
2 ≤CκppLdAp

2 .

Using the embedding property of Besov spaces [2], Proposition 2.71, which implies the ex-
istence of a C > 0 such that ‖ · ‖

C
− a2−κ− 2

p
n

≤ C‖ · ‖
B
n,− a2−κ
p,p

, one obtains (54).

(b) By Lemma 6.9 (and Fubini)

E
[‖�iζε‖pLp ]≤ pp ∫ E

[∣∣�iζε(x)∣∣2]p2 dx � ppLd
(∑
k∈Nd0

ρi

(
k

L

)2
E
[∣∣〈ζε,nk〉∣∣2])p2 ,

and so

E
[‖ζε‖p

B
n,− a2−κ
p,p

]≤ ppLd( I∑
i=−1

2(−
a
2−κ)pi

(∑
k∈Nd0

ρi

(
k

L

)2
E
[∣∣〈ζε,nk〉∣∣2])p2 +Ap

2
∑
i≥I+1

2−κi
)
.

The latter becomes arbitrarily small by choosing I large and subsequently ε small. �

6.11. The following two statements are proved in Section 11:

(a) (Lemma 11.4) For all γ ∈ (0,1), there exists a C > 0 such that, for all i ∈N−1, ε, δ >
0, x ∈ [0,L]d ,

E
[∣∣�i(ξε − ξδ)(x)∣∣2]≤C2(d+2γ )i |ε− δ|γ .
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(b) (Lemma 11.11) Let d = 2. For all γ ∈ (0,1), there exists a C > 0 such that, for all
i ∈N−1, ε, δ > 0, x ∈QL,

E
[∣∣�i(�ε −�δ)(x)∣∣2]≤ C22γ i |ε− δ|γ .

DEFINITION 6.12. Define cε,L ∈R by

cε,L = 1

4L2

∑
k∈Z2

τ( ε
L
k)2

1+ π2

L2 |k|2
.(56)

In the periodic setting, one has that with ξε defined as in [1], E[ξε � σ(D)ξε(x)] = cε,L.
Observe that it is independent of x. In our setting, the Dirichlet setting, we have (remember
(48) and use that

∑
i,j∈N−1,|i−j |≤1 ρi(

k
L
)ρj (

k
L
)= 1)

E
[
ξε � σ(D)ξε(x)

]= ∑
k∈N2

0

τ( ε
L
k)2

1+ π2

L2 |k|2
nk(x)

2.(57)

By (38), as n0(x)= 2
L
ν0 = 1

L
and ν2k = νk ,

nk(x)
2 = 1

2L
νkn2k(x)+ 1

2L

ν2
k

ν(k1,0)
n(2k1,0)(x)+

1

2L

ν2
k

ν(0,k2)

n(0,2k2)(x)+
ν2
k

L2 .(58)

Note that

cε,L =
∑
k∈N2

0

τ( ε
L
k)2

1+ π2

L2 |k|2
ν2
k

L2 =
1

4
E
[
ξε � σ(D)ξε(0)

]
.(59)

Lemma 6.15 deals with this x dependence of E[ξε � σ(D)ξε(x)].
The following observations will be used multiple times.

6.13. As 0≤ ρi ≤ 1 and there is a b ≥ 1 such that ρi is supported in a ball of radius 2ib
for all i ∈N−1, one has, for all i ∈N−1, x ∈Rd and γ > 0

ρi(x)≤
(

2b
2i

1+ |x|
)γ
.(60)

THEOREM 6.14. Let τ :R2→[0,1] be a compactly supported even function that equals
1 on a neighbourhood of 0. There exists a C > 0 such that, for all γ ∈ R, L > 0 and h ∈
H
γ
n (QL), we have ‖h− τ(εD)h‖Hγn → 0 and, for β < γ ,∥∥h− τ(εD)h∥∥

H
β
n
≤ Cεγ−β‖h‖Hγn .

PROOF. By assumption on τ , there exists an a > 0 such that τ = 1 on B(0, a). Then,⎧⎪⎪⎨⎪⎪⎩
1− τ

(
ε

L
k

)
= 0, |k|< La

ε
,(

1+
∣∣∣∣ kL
∣∣∣∣2)β−γ � ε2(γ−β), |k| ≥ La

ε
.

By the following bounds the theorem is proved; by Theorem 4.13

∥∥h− τ(εD)h∥∥
H
β
n
�

√√√√√∑
k∈Nd0

(
1+

∣∣∣∣ kL
∣∣∣∣2)β(1− τ

(
ε

L
k

))2
〈h,nk〉2 � εγ−β‖h‖Hγn .

�
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LEMMA 6.15. Let τ :R2→[0,1] be a compactly supported even function that equals 1
on a neighbourhood of 0. Then, x �→ E[ξε � σ(D)ξε(x)] − cε,L converges in C−γn to a limit
that is independent of τ , as ε ↓ 0 for all γ > 0.

PROOF. Let γ > 0. As there are only finitely many k ∈ N2
0 for which τ( ε

L
k) �= 0, x �→

E[ξε � σ(D)ξε(x)] − cε,L is smooth. We can rewrite (58) and find uniformly bounded ak, bk

such that nk(x)2 − ν2
k

L2 = 1
2L [nk + akn(k1,0) + bkn(0,k2)](2x). By (59) this means that E[ξε �

σ(D)ξε(x)] (see (57)) can be decomposed into three sums.
For the first sum (by taking the part with “nk”), as δ0 ∈ H−1

n and 〈δ0,nk〉 = 2
L

for all
k ∈N2

0,

1

2L

∑
k∈N2

0

τ( ε
L
k)2

1+ π2

L2 |k|2
nk(2x)= 1

4

[
τ(εD)2σ(D)δ0

]
(2x).

By Theorem 4.20 σ(D)δ0 ∈H 1
n , so that by Theorem 6.14 τ(εD)2σ(D)δ0→ σ(D)δ0 inH 1−γ

n

and thus in C−γn (by [2], Theorem 2.71). This convergence is “stable” under “multiplying the
argument by 2” (see also 4.18).

Now, let us show the convergence of the other sums. We only consider the sum with
“akn(k1,0)” in it, as the sum with “bkn(0,k2)” follows similarly. Let us write hε for

hε(x)=
∑
l,m∈N0

τ( ε
L
(l,m))2

1+ π2

L2 (l
2 +m2)

a(l,m)n(l,0)(x).

With (60) ‖�in(l,0)‖L∞ � |ρi( lL,0)|� 2γ i(1+ l2

L2 )
−γ . Hence,

sup
i∈N−1

2−γ i
∥∥�i(hε − h0)

∥∥
L∞ �

∑
l,m∈N0

(
1+ l

2

L2

)−γ |τ( ε
L
(l,m))2 − 1|

1+ π2

L2 (l
2 +m2)

.

By Lebesgue’s dominated convergence theorem and the next bound, it follows that h0 ∈ C−γn

and hε→ h0 in C−γn . By using that 1+ l2 +m2 ≥ (1+ l)1− γ2 (1+m)1+ γ2 ,

∑
l,m∈N0

(1+ l2

L2 )
−γ

1+ π2

L2 (l
2 +m2)

�
∑
l,m∈N0

1

(1+ l)1+ γ2 (1+m)1+ γ2 <∞.

By these convergences and by plugging in the factor 2 also here, the convergence is proved.
�

Before we give the proof of Theorem 6.4, we study the behaviour of cε,L.

LEMMA 6.16. Let τ : R2→ [0,1] be almost everywhere continuous, be equal to 1 on
B(0, a) and zero outside B(0, b) for some a, b with 0 < a < b. There exist a cτ ∈ R that

only depends on τ , and (CL)L≥1 in R that do not depend on τ with CL
L→∞−−−→ 0 such that

cε,L − 1
2π log 1

ε
− cτ ε↓0−−→ CL for all L≥ 1.

PROOF. We define �y� = (�y1�, �y2�) and hL(y)= (L2 + π2|y|2)−1 for y ∈ R2. Then,
4cε,L = ∫R2 τ(

ε
L
�y�)2hL(�y�)dy. We first show that 4cε,L−∫R2 τ(

ε
L
y)2hL(y)dy→ 0. Write



1942 K. CHOUK AND W. VAN ZUIJLEN

A(s, t) for the annulus {y ∈R2 : s ≤ |y| ≤ t}. To shorten notation, we write δ = ε
L

. As |�y�−
y| ≤ √2,

4cε,L −
∫
R2
τ

(
ε

L
y

)2
hL(y)dy

=
∫
B(0, a

δ
−√2)

hL
(�y�)− hL(y)dy

+
∫
A( a

δ
−√2, b

δ
+√2)

τ
(
δ�y�)2hL(�y�)− τ(δy)2hL(y)dy.

As hL(�y�)−hL(y)= hL(�y�)hL(y)(|y|2−|�y�|2), hL(�y�)� hL(y) and (|y|2−|�y�|2)�
1 + |y|, we have hL(�y�) − hL(y) � (1 + |y|)hL(y)2. As the latter function is integrable
over R2, it follows by Lebesgue’s dominated convergence theorem that

∫
B(0, a

δ
−√2) hL(�y�)−

hL(y)dy converges in R to a CL for which CL
L→∞−−−→ 0. On the other hand, the integral over

the annulus can be written as∫
A(a−√2δ,b+√2δ)

τ (δ�x
δ
�)2

δ2L2 + π2δ2|�x
δ
�|2 −

τ(x)2

δ2L2 + π2|x|2 dx.(61)

Again, by a domination argument (note that 1
|x|2 is integrable over annuli), using that |x

δ
|2 ≤

4+ 2|�x
δ
�|2 ≤ 4(L2 + |�x

δ
�|2), we conclude that (61) converges to 0. Observe that∫

A(a−√2δ,b+√2δ)

τ (x)2

δ2L2 + π2|x|2 dx
δ↓0−−→

∫
A(a,b)

τ (x)2

π2|x|2 dx.

By some substitutions (remember δ = ε
L

), for ε < a

1

2π

∫
B(0, a

δ
−√2)

hL(y)dy =
∫ 1

0

s

1+ π2s2 ds +
∫ a

ε

1

s

1+ π2s2 ds −
∫ a
a−
√

2ε
L

s

ε2 + π2s2 ds.

The last integral converges as ε ↓ 0 to zero. For the second integral we consider∫ a
ε

1

s

1+ π2s2 −
1

π2s
ds =

∫ a
ε

1

−1

π2s(1+ π2s2)
ds,

∫ a
ε

1

1

π2s
ds = 1

π2 log
(
a

ε

)
.

Observe that if a ≤ 1, then
∫
A(a,1)

1
π2|x|2 dx =− 2

π
loga, and if a ≥ 1, then

∫
A(1,a)

1
π2|x|2 dx =

2
π

loga. Therefore, with

cτ =
∫
A(a∧1,b)

τ (x)2

π2|x|2 dx −
∫
A(a∧1,1)

1

π2|x|2 dx +
∫ 1

0

2πs

1+ π2s2 ds −
∫ ∞

1

2

πs(1+ π2s2)
ds,

we obtain that cε,L − 1
2π log 1

ε
− CL − cτ ε↓0−−→ 0. Observe that cτ does not depend on the

choice of a, b (such that τ = 1 on B(0, a) and τ = 0 outside B(0, b)). �

PROOF OF THEOREM 6.4. This is a consequence of Theorem 6.7 and Lemmas 6.15 and
6.16. �

7. Scaling and translation. In this section we prove the scaling properties of the eigen-
values by scaling the size of the box and the noise. In this section we fix L> 0 and n ∈N.

LEMMA 7.1. Suppose that V ∈ L∞([0,L]d). For all β > 0,

λn
([0,L]d,V )= 1

β2λn

([
0,
L

β

]d
, β2V (β·)

)
.
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PROOF. Fix n ∈ N, and write λ = λn([0,L]d,V ). Suppose that g ∈ H 2
0 (see 5.9) is an

eigenfunction for λ of �+ V . With gβ(x) := g(βx), we have, for almost all x,

�gβ(x)+ β2V (βx)= β2(�g)(βx)+ β2V (βx)= β2λgβ(x).

So that β2λ is an eigenvalue of �+ β2V (β·) on [0, L
β
]d . As the multiplicities of the eigen-

values on [0,L]d and [0, L
β
]d are the same, β2λ= λn([0, Lβ ]d, β2V (β·)). �

7.2. For y ∈R2, L> 0 and β ∈R, we write

λn(y +QL,β)= λn(y +QL, (βξyL,β2�
y
L

))
, λn(y +QL)= λn(y +QL,1),

where ξ
y
L = (ξyL,�yL) is as in 6.5.

LEMMA 7.3. For α,β > 0,

λn(QL,β)
d= 1

α2 λn(QL
α
,αβ)+ 1

2π
logα.

PROOF. For simplicity, we take β = 1. αlαξL is a white noise on QL
α

so that

〈αlαξL,nk〉 d= 〈ξL
α
,nk〉 for all k ∈ N2

0, and, thus, 1
α
ξL
α

d= lαξL. By 4.18, lαξL,ε =
τ( ε
α

D)[lαξL] d= 1
α
ξL
α
, ε
α

. So that by Lemma 7.1,

λn

(
QL,

(
ξL,ε, ξL,ε � σ(D)ξL,ε − 1

2π
log

(
1

ε

)))
= λn(QL, ξL,ε)− 1

2π
log

(
1

ε

)
d= 1

α2λn(QL
α
,αξL

α
, ε
α
)− 1

2π
log

(
1

ε

)
d= 1

α2λn

(
QL

α
,

(
αξL

α
, ε
α
, α2

[
ξL
α
, ε
α

� σ(D)ξL
α
, ε
α
− 1

2π
log

(
α

ε

)]))
+ 1

2π
logα.

Now, we can subtract cτ from both sides and take the limit ε ↓ 0. �

LEMMA 7.4. For y ∈R2 and β > 0,

λn(QL,β)
d= λn(y +QL,β).

Moreover, if y +Q◦L ∩Q◦L =∅, then λn(QL,β) and λn(y +QL,β) are independent.

PROOF. As (see also Definition 4.19, in particular, (33)) Hξ
y
L
f = Ty(HT−yξyL(T−yf )), it

is sufficient to show ξL
d= T−yξyL. As T−yW d=W , we have T−yξyL,ε

d= ξL,ε and hence obtain

ξL
d= T−yξyL by (49) and (51).

For the “moreover,” note that (〈T −1
y W,nk,L〉)k∈N2

0
and (〈W,nk,L〉)k∈N2

0
are independent

when y +Q◦L ∩Q◦L =∅ (as E[〈T −1
y W,nk,L〉〈W,nm,L〉] = 〈Tynk,L,nk,L〉 = 0). �
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8. Comparing eigenvalues on boxes of different size.

8.1. Bounded potentials. In this section we prove the bounds comparing eigenvalues on
large boxes with eigenvalues on smaller boxes for bounded potentials; see Lemma 8.1, The-
orem 8.4 and Theorem 8.5. In Section 8.2, Theorem 8.6, we extend this for white noise
potentials. We fix d ∈N and use the notation |k|∞ =maxi∈{1,...,d} |ki |.

LEMMA 8.1. Let L> r > 0 and ζ ∈ L∞([0,L]d). For all y ∈R2 such that y+[0, r]d ⊂
[0,L]d , we have

λn
(
y + [0, r]d, ζ )≤ λn([0,L]d, ζ ).

PROOF. This follows from (46), as one can identify a finite-dimensional F � H 2
0 (y +

[0, r]d) with a linear subspace of H 2
0 ([0,L]d) with the same dimension. �

We will now prove an upper bound for λn(QL, ζ ) in terms of a maximum over smaller
boxes. For this we cover QL by smaller boxes that overlap and correct the potential with a
function that takes into account the overlaps. We use the following lemma.

LEMMA 8.2. Let r > a > 0. There exists a smooth function η : Rd → [0,1] with η = 1
on [0, r − a]d and suppη ⊂ [−a, r]d such that ‖∇η‖∞ ≤ K

a
for some K > 0 that does not

depend on r and a, and ∑
k∈Zd

η(x − rk)2 = 1
(
x ∈Rd).(62)

PROOF. We adapt the proof of [15], Proposition 1, and [3], Lemma 4.6. Let ϕ : R→
[0,1] be smooth, ϕ = 0 on (−∞,−1] and ϕ = 1 on [1,∞) for all x ∈R. Let

ζ(x)=
√
ϕ

(
2x

a
+ 1

)(
1− ϕ

(
2(x − r)
a

+ 1
))
.

Then, ζ = 0 outside [−a, r], ζ = 1 on [0, r − a], and
∑
k∈Z ζ(x − rk)2 = 1. Moreover,

‖ζ ′‖∞ ≤ 2
a
[‖√ϕ′‖∞ + ‖√1− ϕ′‖∞]. Hence, with η : Rd → [0,1], defined by η(x) =∏d

i=1 ζ(xi), we have (62) and ‖∇η‖∞ ≤ C
a

for some C > 0. �

8.3 (IMS formula). Write ηk(x)= η(x − rk). Then,

η2
k�ψ +�

(
η2
kψ
)− 2ηk�(ηkψ)=ψ |∇ηk|2.

Consequently, with Hkψ = ηkH (ηkψ) (where H =Hζ ) and  =∑k∈Zd |∇ηk|2
H − = ∑

k∈Zd
Hk.(63)

(63) is also called the IMS-formula; see also [32], Lemma 3.1, with references to first works
in which it appears. The technique to prove [15], Proposition 1, which we slightly generalize,
is basically the IMS-formula.

THEOREM 8.4. For all r > a > 0, there is a smooth function  a,r :Rd→[0,∞) whose
support is contained in the a-neighbourhood of the grid rZd + ∂[0, r]d , is periodic in each
coordinate with period r , with ‖ a,r‖∞ ≤ K

a
for some K > 0 that does not depend on a and

r such that ζ ∈ L∞(Rd) and L> r ,

λ
([0,L]d, ζ )− K

a
≤ λ([0,L]d, ζ − a,r)≤ max

k∈Nd0 ,|k|∞<Lr +1
λ
(
rk + [−a, r]d, ζ ).(64)
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PROOF. Let η be as in Lemma 8.2, ηk(x) = η(x − rk) and  a,r = =∑k∈Zd |∇ηk|2.
By Lemma 8.2 it follows that ‖ ‖∞ ≤ K

a
for some K > 0 that does not depend on a and r .

Observe that
∑
k∈Nd0 :|k|∞<Lr +1 η

2
k equals 1 on [0,L]d . With Hk as in 8.3, Hk is selfadjoint,

and Hk ≤ λ(rk + [−a, r]d)η2
k for all k ∈ Zd . Hence, we have by the IMS-formula (63) on

H 2
0 ([0,L]d),

H − ≤ ∑
k∈Nd0 ,|k|∞<Lr +1

λ
(
rk + [−a, r]d)η2

k ≤ max
k∈Nd0 ,|k|∞<Lr +1

λ
(
rk + [−a, r]d).

�

THEOREM 8.5. Let ζ ∈ L∞(Rd). Let x, y1, . . . , yn ∈ Rd , L > r > 0 be such that (yi +
[0, r]d)ni=1 are pairwise disjoint subsets of x + [0,L]d . Then,

λn
(
x + [0,L]d, ζ )≥ min

i∈{1,...,n}λ
(
yi + [0, r]d, ζ ).(65)

PROOF. By (46) (see also (110)),

λn
(
x + [0,L]d, ζ )≥ sup

f1,...,fn,

fi∈C∞c (yi+[0,r]d ),‖fi‖L2=1

min
i∈{1,...,n}

∫
−|∇fi |2 + ζf 2

i ,

which proves (65) by (46) with n= 1. �

8.2. White noise as potential. In this section we prove analogous bounds to those in
Lemma 8.1, Theorem 8.4 and Theorem 8.5 by replacing the bounded potential ζ by white
noise, that is, we prove Theorem 8.6.

THEOREM 8.6. Let L≥ r ≥ 1.
For all κ > 0 and x, y ∈R2 such that y +Qr ⊂ x +QL,

λn(y +Qr,κ)≤ λn(x +QL,κ) a.s.(66)

There exists a K > 0 such that, for all κ > 0, x ∈R2 and a ∈ (0, r),

λ(x +QL,κ)≤ max
k∈N2

0,|k|∞<Lr +1
λ(x + rk+Qr+a, κ)+ K

a2 a.s.(67)

For κ > 0 and x, y1, . . . , yn ∈ R2 such that (yi +Qr)ni=1 are pairwise disjoint subsets of
x +QL,

λn(x +QL,κ)≥ min
i∈{1,...,n}λ(yi +Qr,κ) a.s.(68)

Let us describe how the proof of Theorem 8.6 follows from the following theorem. Let
L≥ r ≥ 1, κ > 0. By performing a translation over x, we may assume x = 0.

It is sufficient to show that, for all y ∈ R2 and r > 0 such that y +Qr ⊂QL, one has the
following convergences in probability (and thus almost surely along a sequence (εn)n∈N in
(0,1) that converges to 0),

λn
(
y +Qr,κ(ξ ′L,ε − c′ε)) P−→ λn(y +Qr,κ)(69)

for the right choices ξ ′L,ε and c′ε . Indeed, for (66) and (68) this is clearly sufficient. For (67)
this is sufficient by “replacing L” in (69) with “3L” and “replacing r” with either “L” or
“r + a.”
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In this case we choose ξ ′L,ε like ξL,ε in (47) but with τ ′ = 1(−1,1)2 instead of τ and

c′ε = 1
2π log 1

ε
+ cτ ′ (the choice of τ ′ = 1(−1,1)2 is convenient for calculations in Section 12).

Observe that

λn
(
y +Qr,κξ ′L,ε

)= λn(y +Qr,κθyε )= λn(y +Qr, (κθyε , κ2θyε � σ(D)θyε
))

for θyε (which equals ξL,ε|y+Qr in L2(y +Qr)), given by

θyε =
∑
k∈N2

0

〈ξL,ε,Tynk,r〉L2(y+Qr)Tynk,r

= ∑
k∈N2

0

∑
m∈N2

0

1(−1,1)2

(
ε

L
m

)
〈W,nm,L〉〈nm,L,Tynk,r〉L2(y+Qr)Tynk,r .

(70)

Therefore, the following theorem resembles the missing part of the proof. Observe that θyε �

σ(D)θyε ∈H 1
n ⊂ C0

n as θyε ∈L2 =H 0
n (see also 5.7).

THEOREM 8.7. Let L> r ≥ 1 and x, y ∈R2 be such that y+Qr ⊂ x+QL. Let θyε be as

in (70). Then, (ξ ′L,ε, ξ ′L,ε �σ(D)ξ ′L,ε− c′ε) P−→ ξL in Xαn(QL), and (θyε , θ
y
ε �σ(D)θyε − c′ε) P−→

ξyr in Xαn(y +Qr).

We prove Theorem 8.7 in Section 11; it follows from Theorem 11.3.

9. Large deviation principle of the enhancement of white noise. In this section we as-
sume L> 0 and write ξ = (ξ,�) for the limit ξL, as in Theorem 6.4. We prove the following
theorem.

THEOREM 9.1. (
√
εξ, ε�) satisfies the large deviation principle with rate ε and rate

function Xαn→[0,∞], (ψ1,ψ2) �→ 1
2‖ψ1‖2L2 .

REMARK 9.2. Analogously, by some lines of the proof in a straightforward way, the
statement in Theorem 9.1 holds with underlying space the torus and (ξ,�) being the analogue
limit, as in Theorem 6.4 as is considered in [1].

As a direct consequence of this large deviation principle and the continuity of the eigen-
values in the (enhanced) noise (see (43)), we obtain the following by an application of the
contraction principle (see [10], Theorem 4.2.1).

COROLLARY 9.3. λn(QL, ε)= λn(QL, (εξL, ε2�L)) satisfies the large deviation prin-
ciple with rate ε2 and rate function IL,n :R→[0,∞] given by

IL,n(x)= inf
V∈L2(QL)

λn(QL,V )=x

1

2
‖V ‖2

L2 .(71)

Theorem 9.1 is an extension of the following theorem. A proof can be given by using [11],
Theorem 3.4.5, but as our proof is rather simple and, to our knowledge, different from proofs
in literature, we include it.

THEOREM 9.4.
√
εξ satisfies the large deviation principle with rate function

Cαn ([0,L]d)→[0,∞] given by ψ �→ 1
2‖ψ‖2L2 .
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PROOF. We use the Dawson–Gärtner projective limit theorem [10], Theorem 4.6.1, and
the inverse contraction principle [10], Theorem 4.2.4. Let J = N with its natural ordering.
Let Yi = Ri for all i ∈ J . Let pij be the projection Yj → Yi on the first i-coordinates. Let
Y be the projective limit lim←Yj (see [10], above Theorem 4.6.1, it is a subset of

∏
j∈J Yj ).

Let pj : Y→ Yi be the canonical projection.
Let s : N→ Nd0 be a bijection. Write d′n = ds(n). Let  : Cαn ([0,L]d)→ Y be given by

 (u)= (〈u,d′1〉, . . . , 〈u,d′n〉)n∈N. This is continuous and injective. We first prove that ◦ξ
satisfies the large deviation principle.

For every n ∈ N, the vector (〈ξ,d′1〉, . . . , 〈ξ,d′n〉) is an n-dimensional standard normal
variable, whence

√
ε(〈ξ,d′1〉, . . . , 〈ξ,d′n〉) = (〈

√
εξ,d′1〉, . . . , 〈

√
εξ,d′n〉) satisfies a large de-

viation principle on Rn with rate function given by In(y) := 1
2 |y|2 = 1

2
∑n
i=1 y

2
i . By the

Dawson–Gärtner projective limit theorem, the sequence
√
ε(〈ξ,d′1〉, . . . , 〈ξ,d′n〉)n∈N satisfies

the large deviation principle on Y with rate function

I
(
(y1, . . . , yn)n∈N

)= sup
n∈N
In(y1, . . . , yn)= sup

n∈N
1

2

n∑
i=1

y2
i .

The image of Cαn under  is measurable, which follows from the following identity:

 
(
Cαn
)= {(a1, . . . , an)n∈N : sup

i∈N−1

∥∥∥∥∑
n∈N
ρi

(
s(n)

L

)
and
′
n

∥∥∥∥∞ <∞
}
.

As P( (
√
εξ) ∈  (Cαn )) = 1 and the domain on which I is finite is contained in  (Cαn ),

that is, {y ∈ Y : I (y) <∞} ⊂  (Cαn ), by [10], Theorem 4.1.5,  (
√
εξ) satisfies the large

deviation principle on  (Cαn ) with rate function I (restricted to  (Cαn )).
Now, we apply the inverse contraction principle.  : Cαn →  (Cαn ) is a continuous bijec-

tion. Also, I ◦ (ψ)= 1
2‖ψ‖2L2 (by Parseval’s identity). Hence, the proof is finished by show-

ing that
√
εξ is exponentially tight in Cαn . Let m > 0 and Km := {ψ ∈ Cαn : I ◦ (ψ) ≤ m}.

As L2 is compactly embedded in Hα+1
n by Theorem 4.15, which is continuously embedded

in Cαn (by [2], Theorem 2.71, Km is relatively compact in Cαn . By the large deviation principle
of  (

√
εξ) on  (Cαn ) and because Km

c ⊂Kcm, it follows that

lim sup
ε↓0

ε logP
(√
εξ ∈Kmc)= lim sup

ε↓0
ε logP

(
 (
√
εξ) ∈ {y ∈ Y : I ≤m}c)≤−m.

This proves the exponential tightness of
√
εξ in Cαn which finishes the proof. �

To prove Theorem 9.1, we use Theorem 9.4 and the extension of the contraction principle:

THEOREM 9.5 ([10], Theorem 4.2.23). Let X be a Hausdorff space and (Y, d) be a met-
ric space. Suppose that (ηε)ε>0 are random variables with values in X that satisfy the large
deviation principle with (rate ε and) rate function I : X → [0,∞]. Furthermore, suppose
that Fδ : X → Y is a continuous map for all δ > 0, F : X → Y is measurable and that, for
all q ∈ [0,∞),

lim
δ↓0

sup
x∈X :I (x)≤q

d
(
Fδ(x),F (x)

)= 0(72)

and that Fδ(ηε) are exponential good approximations for F(ηε), that is, if for all κ > 0,

lim
δ↓0

lim sup
ε↓0

ε logP
(
d
(
Fδ(ηε),F (ηε)

)
> κ

)=−∞.(73)

Then, F(ηε) satisfies the large deviation principle with rate function Y→[0,∞] given by

y �→ inf
x∈X :F(x)=y I (x).
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LEMMA 9.6. Let α ∈ (−4
3 ,−1). Let τ : R2→ [0,1] be a compactly supported function

that equals 1 on a neighbourhood of 0. Write hδ = τ(δD)h. There exists a C > 0 such that,
for all δ > 0 and h ∈ L2,∥∥hδ � σ(D)hδ − h� σ(D)h

∥∥
C2α+2
n
≤Cδ−α−1‖h‖2

L2 .(74)

PROOF. This follows by Theorem 4.26 (note 2α + 4 > 0), Theorem 4.22 (also using
‖hδ‖Hα+1

n
� ‖h‖

Hα+1
n

� ‖h‖L2 , see also 4.16) and Theorem 6.14,∥∥hδ � σ(D)hδ − h� σ(D)h
∥∥
C2α+2
n

≤ ∥∥(h− hδ)� σ(D)hδ
∥∥
H 2α+4
n
+ ∥∥h� σ(D)(hδ − h)

∥∥
H 2α+4
n

� ‖h− hδ‖Hα+1
n
‖h‖

Hα+1
n

� δ−α−1‖h‖2
L2 . �

PROOF OF THEOREM 9.1. For δ > 0, we write hδ = τ(δD)h for τ as in 6.3 and define
Fδ : Cαn (QL)→Xαn(QL) by

Fδ(h)= (h,hδ � σ(D)hδ
)
.

We define F : Cαn (QL)→ Xαn(QL) as follows. If for h ∈ Cαn (QL) the function hδ � σ(D)hδ
converges in C2α+2

n , then F(h)= limδ↓0(h,hδ �σ(D)hδ); if hδ �σ(D)hδ does not converge,
but hδ � σ(D)hδ − cδ does (where cδ = 1

2π log(1
δ
)+ cτ ), then define F(h)= limδ↓0(h,hδ �

σ(D)hδ − cδ); whereas if hδ � σ(D)hδ − cδ also does not converge, then F(h)= 0.
With X = Cαn (QL) and Y =Xαn(QL) and ηε =√εξ , by Theorem 9.4 and Theorem 9.5 it is

sufficient to prove that (72) and (73) hold, because when F(φ)= (ψ1,ψ2) �= 0, then φ =ψ1:
• First, we check (72). By Lemma 9.6 we have (F(h)= (h,h� σ(D)h) and)

sup
h∈Cαn(QL):‖h‖L2≤q

∥∥Fδ(h)− F(h)∥∥Xαn � δ−α−1q2,

for all q ≥ 0, that is, (72) holds.
• Now, we check (73). Let κ > 0. We have that � := limδ↓0 ξδ �σ(D)ξδ− cδ exists almost

surely by Theorem 6.4. Hence, for p > 1,

P
(∥∥Fδ(√εξ)− F(√εξ)∥∥Xαn > κ)≤ εpκpE[∥∥ξδ � σ(D)ξδ −�

∥∥p
C2α+2
n

]
≤ ε

p2p

κp

(
c
p
δ +E

[∥∥ξδ � σ(D)ξδ − cδ −�
∥∥p
C2α+2
n

])
.

Let η =−(2α + 2). By Lemmas 6.10, 6.15, 6.16 and 11.11, there exists a C > 0 such that,
for all p > 1,

E
[∥∥ξδ � σ(D)ξδ − cδ −�

∥∥p
C2α+2
n

]≤ Cpppδηp.
Therefore (using that ap + bp ≤ (a + b)p),

P
(∥∥Fδ(√εξ)− F(√εξ)∥∥Xαn > κ)≤

[
2ε

κ

(
cδ +Cpδη)]p.

Hence, with p = 1
ε

we obtain

lim sup
ε↓0

ε logP
(∥∥Fδ(√εξ)− F(√εξ)∥∥Xαn > κ)≤ lim sup

ε↓0
log

[
2

κ

(
εcδ +Cδη)]

≤ log
(

2C

κ
δη
)
.
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So that

lim
δ↓0

lim sup
ε↓0

ε logP
(∥∥Fδ(√εξ)− F(√εξ)∥∥Xαn > κ)=−∞,

that is, (73) holds. �

10. Infima over the large deviation rate function. In this section we consider infima
over sets of the rate function IL,n, as in (71). We prove the results summarized in Theo-
rem 2.6.

LEMMA 10.1. For a, b ∈R and all δ > 0,

(1− δ) inf IL,n[b,∞)+ 1

2

(
1− 1

δ

)
L2a2 ≤ inf IL,n[b+ a,∞)

≤ (1+ δ) inf IL,n[b,∞)+ 1

2

(
1+ 1

δ

)
L2a2.

Consequently, for (aL)L>0 in R with limL→∞LaL = 0,

lim
L→∞ inf IL,n[b,∞)= lim

L→∞ inf IL,n[b+ aL,∞)
= lim
L→∞ inf IL,n(b+ aL,∞)= lim

L→∞ inf IL,n(b,∞).

PROOF. As λn(QL,V )+ a = λn(QL,V + a1QL), ‖a1QL‖L2 = aL, and 2〈V,a1QL〉 ≤
δ‖V ‖2

L2 + 1
δ
a2L2 for all δ > 0;

inf IL,n[b+ a,∞)= inf
V∈L2(QL)

λn(QL,V )≥b

1

2
‖V + a1QL‖2L2(QL)

≤ (1+ δ) inf
V∈L2(QL)

λn(QL,V )≥b

1

2
‖V ‖2

L2(QL)
+ 1

2

(
1+ 1

δ

)
a2L2.

The lower bound can be proven similarly. �

We define

μL,n := inf IL,n[1,∞), �n := inf
L>0

μL,n.(75)

We prove that �n is bounded away from 0 uniformly in n (Lemma 10.4) and give an alterna-
tive variational formula for �n (Lemma 10.5) from which we conclude Theorem 2.6.

LEMMA 10.2. μL,n = inf IL,n(1,∞)= inf V∈C∞c (QL)
λn(QL,V )≥1

1
2‖V ‖2L2 .

PROOF. The first equality follows by Lemma 10.1. The second follows by Lemma 5.8.
�

We will use Ladyzhenskaya’s inequality [22] which is a special case of the Gagliardo–
Nirenberg interpolation inequality [24].

LEMMA 10.3 (Ladyzhenskaya’s inequality). There exists a C > 0 such that, for f ∈
H 1(R2),

‖f ‖4
L4 ≤ C‖∇f ‖2L2‖f ‖2L2 .(76)
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LEMMA 10.4. Let C > 0 be as in Lemma 10.3. Then, �n ≥ 2
C

for all n ∈N.

PROOF. Let n ∈N. Let L> 0 and ε > 0. Let V ∈ C∞c (QL) be such that λn(QL,V )≥ 1
and 1

2‖V ‖2L2 ≤ μL,n + ε. By (46) there is a ψ ∈ C∞c (QL) with ‖ψ‖L2 = 1 such that (by
integration by parts)

1− ε ≤−‖∇ψ‖2
L2 +

∫
Vψ2 ≤−‖∇ψ‖2

L2 + ‖V ‖L2‖ψ‖2
L4 .

Hence, by using Ladyzhenskaya’s inequality (76), which implies ‖∇ψ‖2
L2 ≥ 1

C
‖ψ‖4

L4 ,

‖V ‖L2 ≥ 1− ε+ ‖∇ψ‖2
L2

‖ψ‖2
L4

≥ 1− ε
‖ψ‖2

L4

+ 1

C
‖ψ‖2

L4

As a2 + b2 ≥ 2ab, we have μL,n + ε ≥ 1
2‖V ‖2L2 ≥ 21−ε

C
. As this holds for all ε > 0, we

conclude that μL,n ≥ 2
C

for all L> 0. Hence, �n ≥ 2
C

. �

LEMMA 10.5. For all n ∈N, a > 0,

inf
L>0

inf
V∈C∞c (QL)
λn(QL,V )≥a

1

2
‖V ‖2

L2(QL)
= inf
L>0

inf
V∈C∞c (QL)
‖V ‖2

L2≤ 1
a

1

2λn(QL,V )
.(77)

Moreover, μL,n is decreasing in L, and one could replace “infL>0” in (77) by “limL→∞.”
In particular, �n = limL→∞μL,n.

PROOF. With W = L2V (L·), we have W ∈ C∞c (Q1), ‖W‖2L2(Q1)
= L2‖V ‖2

L2(QL)
and

by Theorem 7.1 λn(QL,V )= λn(QL, 1
L2W(

1
L
·))= 1

L2λn(Q1,W). Therefore,

inf
V∈C∞c (QL)
λn(QL,V )≥a

1

2
‖V ‖2

L2(QL)
= inf

W∈C∞c (Q1)

λn(Q1,W)≥aL2

1

2

1

L2 ‖W‖2L2(Q1)
,(78)

inf
V∈C∞c (QL)
‖V ‖2

L2≤ 1
a

1

2λn(QL,V )
= inf

W∈C∞c (Q1)

‖W‖2
L2≤L

2
a

L2

2λn(Q1,W)
.(79)

With this, (77) follows directly from Lemma 10.6. That μL,n and the left-hand side of (79)
are decreasing in L follows from Lemma 8.1. �

LEMMA 10.6. Let Y be a topological space and f,g : Y→R be continuous functions.
Let a > 0, and suppose that � := infL>0 infw∈Y:f (w)≥aL g(w)L > 0. Then,

inf
L>0

inf
w∈Y

f (w)≥aL

g(w)

L
= inf
L>0

inf
w∈Y

g(w)≤L
a

L

f (w)
.

PROOF. By definition, we have ∀L> 0 ∀w ∈ Y : 1
L
g(w) < �=⇒ f (w) < aL; by conti-

nuity of f and g, we obtain (by taking K =L�a)

∀K > 0 ∀w ∈ Y : g(w)≤ K
a
=⇒ f (w)

K
≤ 1

�
.
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Let ε > 0. Then, there exists an L > 0 and wL ∈ Y such that f (wL) ≥ aL and 1
L
g(wL) ≤

� + ε. Then, with K = La(� + ε), we have for w = wL that g(w)
K
≤ 1
a

and f (w)
K
≥ 1
�+ε . So

that supK>0 sup w∈Y
g(w)≤K

a

f (w)
K
= 1
�

. �

PROOF OF THEOREM 2.6. By (46) and Lemma 10.5 (for a = 1), we have

2

�n
= 4 sup

L>0
sup

V∈C∞c (QL)
‖V ‖2

L2≤1

sup
F�C∞c (QL)
dimF=n

inf
ψ∈F :
‖ψ‖2

L2=1

∫
QL

−|∇ψ |2 + Vψ2,

from which (1) follows. By Cauchy–Schwarz, for ψ ∈ C∞c (R2), the supremum of
∫
Vψ2

with respect to V ∈ C∞c (R2) with L2 norm equal to 1 is attained at V = ψ2

‖ψ2‖
L2

; therefore,

this supremum equals ‖ψ‖2
L4 , and, hence, we derive the first equality in (2). In Lemma 10.4

we have already seen that 2
ρ1
≤ χ . For the other inequality we refer to [6], Theorem C.1

(basically the trick is to replace “ψ” by “λf (λ·)” and optimise over λ > 0 first, then over
f ∈L2 with ‖f ‖L2 = 1). �

11. Convergence of Gaussians. In this section we prove the convergence of Gaussians
mentioned in Section 6 and Section 8. We bundle the proofs together in a general setting, as
they rely on similar techniques.

For r ≥ 1, we let Xεk,r and Y εk,r be centered Gaussian variables for k ∈Nd0 , ε > 0 such that
every finite subset of {Y εk,r : k ∈Nd0 , ε > 0} ∪ {Xεk,r : k ∈Nd0 , ε > 0} is jointly Gaussian for all
r ≥ 1. We write

ξr,ε =
∑
k∈Nd0

Y εk,rnk,r , θr,ε =
∑
k∈Nd0

Xεk,rnk,r .(80)

Also, we introduce the notation

ρ� :Rd ×Rd→R, ρ�(x, y)= ∑
i,j∈N−1|i−j |≤1

ρi(x)ρj (y),

#r,ε = θr,ε � σ(D)θr,ε −E
[
θr,ε � σ(D)θr,ε

]
,

�r,ε = ξr,ε � σ(D)ξr,ε −E
[
ξr,ε � σ(D)ξr,ε

]
.

LEMMA 11.1. Let d = 2. Write Fr,ε(k, l)= E[Xεk,rXεl,r ]. Let I ⊂ [1,∞). Suppose that

∀δ > 0 ∃C > 0 ∀r ∈ I ∀k, l ∈N2
0 ∀ε > 0 :

∣∣Fr,ε(k, l)∣∣≤ C d∏
i=1

(
1+ |ki − li |)δ−1

.
(81)

For all γ ∈ (0,1), there exists a C> 0 such that, for all r ∈ I , i ∈N−1, ε > 0, x ∈Qr ,
E
[|�iθr,ε|(x)2]≤ Cr2γ 2(2+γ )i, E

[|�i#r,ε|(x)2]≤ Cr2γ 2γ i .(82)

PROOF. This follows from Lemma 11.5 and Lemma 11.12. �
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Observe that

θr,ε � σ(D)θr,ε − ξr,ε � σ(D)ξr,ε

= ∑
k,l∈N2

0

ρ�(k
r
, l
r
)

1+ π2

r2 |l|2
nk,rnl,r

[
Xεk,rX

ε
l,r − Y εk,rY εl,r

]
.

(83)

THEOREM 11.2. Let d = 2, I ⊂ [1,∞). We write R= {(k, l) ∈ N2
0 ×N2

0 : k1 �= l1, k2 �=
l2}. Let Gr,ε(k, l)= E[Xεk,rXεl,r − Y εk,rY εl,r ]. Consider the following conditions:

∀k ∈N2
0 ∀r ∈ I ; E

[∣∣Xεk,r − Y εk,r ∣∣2] ε↓0−−→ 0,(84)

∀r ∈ I ∀δ > 0 ∃C > 0 ∃ε0 > 0 ∀ε ∈ (0, ε0) ∀k, l ∈N2
0 :

∣∣Gr,ε(k, l)∣∣≤ C
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2∏
i=1

1

1+ |ki − r
ε
|)1−δ +

1

1+ |li − r
ε
|)1−δ , (k, l) ∈R,

2∑
i=1

1

1+ |ki − r
ε
|)1−δ +

1

1+ |li − r
ε
|)1−δ , (k, l) ∈N2

0 ×N2
0 \R.

(85)

(a) Suppose that (84) holds and that (81) holds for Fr,ε(k, l) being either E[Xεk,rXεl,r ],
E[Xεk,rY εl,r ] or E[Y εk,rY εl,r ]. Then, for r ∈ I , α <−1, in Xαn we have

(θr,ε − ξr,ε,#r,ε −�r,ε) P−→ 0.

(b) Suppose (85) holds. Then, E[θr,ε � σ(D)θr,ε − ξr,ε � σ(D)ξr,ε] → 0 in C−γn for all
γ > 0 and r ∈ I .

Consequently, if the above assumptions in (a) and (b) hold, then with c= 0, for r ∈ I , α <−1,
in Xαn (

θr,ε − ξr,ε, θr,ε � σ(D)θr,ε − ξr,ε � σ(D)ξr,ε
) P−→ (0, c).(86)

PROOF. (a) We use Lemma 6.10(b). By Lemma 11.1 we obtain (53) for ζ = θr,ε − ξr,ε
with a = 2+γ and for ζ =#r,ε−�r,ε with a = 2γ for γ ∈ (0,1). (84) implies that E[|〈θr,ε−
ξr,ε,nk,r〉|2] → 0, that is, (55) holds for ζε = θr,ε − ξr,ε . In Lemma 11.13 we show that (55)
holds for ζε =#r,ε −�r,ε .

(b) is shown in Lemma 11.14. �

THEOREM 11.3. Let τ ∈ C∞c (R2, [0,1]) and τ ′ : R2→ [0,1] be compactly supported
functions. Suppose τ and τ ′ are equal to 1 on a neighbourhood of 0:

(a) For all r ≥ 1 (86) holds with c = cτ ′ − cτ in case Xεk,r = τ ′( εr k)Zk and Yk,r =
τ(ε
r
k)Zk .

(b) Let L> r ≥ 1 and y ∈R2 be such that y +Qr ⊂QL. With W as in 6.2, for

Zm = 〈W,nm,L〉, Zk = 〈W,Tynk,r〉 =
∑
m∈N2

0

Zm〈nm,L,Tynk,r〉L2(Qr)
,

Xεk,r =
∑
m∈N2

0

1(−1,1)2

(
ε

L
m

)
Zm〈nm,L,Tynk,r〉L2(Qr)

, Y εk,r = 1(−1,1)2

(
ε

r
k

)
Zk.

(86) holds with c= 0.
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PROOF. (a) That (84) holds is clear. As |E[Xεk,rXεl,r ]| ∨ |E[Xεk,rY εl,r ]| ∨ |E[Y εk,rY εl,r ]| ≤
2δk,l , (81) also holds for each of those expectations, and, thus, the conditions of The-
orem 11.2(a) hold. Therefore, it is sufficient to show that E[θr,ε � σ(D)θr,ε − ξr,ε �

σ(D)ξr,ε] P−→ cτ ′ − cτ in C−γn for all γ > 0. This follows by Lemma 6.15 and Lemma 6.16,
as they show that E[θr,ε � σ(D)θr,ε] − cε − cτ ′ and E[ξr,ε � σ(D)ξr,ε] − cε − cτ converge to
the same limit in C−γn .

(b) We prove this in Theorem 12.1. �

11.1. Terms in the first Wiener chaos.

LEMMA 11.4. Consider the setting of 6.3, that is, Y εk,r = τ(εr k)Zk for i.i.d. standard

normal random variables (Zk)k∈Nd0 and τ ∈ C∞c (R2, [0,1]). For all γ ∈ (0,1), there exists a
C > 0 such that, for all r ≥ 1, i ∈N−1, ε, δ > 0, x ∈Qr ,

E
[∣∣�i(ξr,ε − ξr,δ)(x)∣∣2]≤ C2(d+2γ )i |ε− δ|γ .(87)

PROOF. Let γ ∈ (0,1). As �i(ξr,ε − ξr,δ)(x)=∑k∈N2
0
ρi(

k
r
)(τ (ε k

r
)− τ(δ k

r
))Zknk,r (x),

and ‖nk,r‖2∞ ≤ (2
r
)d , by (60) we have

E
[∣∣�i(ξr,ε − ξr,δ)(x)∣∣2]� r−d2(d+2γ )i

∑
k∈ 1

r
Nd0

(τ (εk)− τ(δk))2
(1+ |k|)d+2γ .

As |τ(εk)− τ(δk)| ≤ ‖∇τ‖∞|ε− δ||k| and ‖τ‖∞ = 1,(
τ(εk)− τ(δk))2 � ‖∇τ‖γ∞|ε− δ|γ |k|γ .(88)

Therefore, as
∑
k∈ 1

r
Zd r
−d |k|γ
(1+|k|)d+2γ <∞, we obtain (87). �

LEMMA 11.5. Suppose that (81) holds for Fr,ε(k, l) = E[Xεk,rXεl,r ]. For all γ ∈ (0,1),
there exists a C > 0 (independent of r) such that, for all i ∈N−1, ε > 0, x ∈Qr

E
[∣∣�iθr,ε(x)∣∣2]≤ Crdγ 2(d+γ )i .(89)

PROOF. By (60) 2−βi‖�ink,r‖L∞ � r− d2 (1 + | k
r
|)−β ≤ r− d2 ∏di=1(

1
r
+ ki

r
)−

β
d . Let δ >

0 be such that δ < γ (so that in particular δ < 1+γ
2 ). As |E[Xεk,rXεl,r ]| �

∏d
i=1(1 + |ki −

li |)δ−1 =∏di=1 r
δ−1(1

r
+ | ki

r
− li
r
|)δ−1, we have, by using Lemma 11.7,

2−(d+dγ )iE
[∣∣�iθr,ε(x)∣∣2L∞]

�
( ∑
k,l∈ 1

r
N0

1

(1
r
+ k) 1+γ

2

1

(1
r
+ l) 1+γ

2

rδ−2

(1
r
+ |k− l|)1−δ

)d

�
( ∑
k∈ 1

r
N0

rδ−1

(1
r
+ k) 1+γ

2

1

(1
r
+ k) 1+γ

2 −δ

)d
�
(
rδ
(

1

r

)δ−γ)d
� rdγ .

�

In the following two lemmas we present tools to bound sums by integrals which will be
frequently used.
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LEMMA 11.6. Let M ∈ N and f : [0,M] → R be a decreasing measurable func-
tion. Then,

∑M
m=1 f (m) ≤

∫M
0 f (x)dx ≤ ∑M−1

m=0 f (m). If f instead is increasing, then∑M−1
m=0 f (m)≤

∫M
0 f (x)dx ≤∑M

m=1 f (m).

LEMMA 11.7. Let γ, δ > 0 be such that δ < γ < 1. There exists a C > 0 such that, for
all r ≥ 1, b > 0 and u, v ∈R,∑

k∈N0

1

r

1

(b+ | k
r
− u|)γ

1

(b+ | k
r
− v|)1−δ ≤ C

(
b+ |u− v|)δ−γ ,(90)

and for all l ∈R2, ∑
k∈ 1

r
N2

0

1

r2

ρ�(k, l)

(1+ |k− l|)γ ≤ C
(
1+ |l|)2−γ .(91)

PROOF. We can bound both sums by “their corresponding integral” by observing the

following. For k ∈ Zd and x ∈Rd with |x − k
r
|∞ < 1

2r and thus |x − k
r
| ≤
√
d

2r , for u ∈Rd ,

|x − u| ≤
∣∣∣∣kr − u

∣∣∣∣+ ∣∣∣∣x − kr
∣∣∣∣≤ ∣∣∣∣kr − u

∣∣∣∣+
√
d

2r
.(92)

So that

1

(b+ | k
r
− u|)γ ≤

(b+
√
d

2r )
γ

(b+
√
d

2r + | kr − u|)γ
≤ (b+

√
d

2 )
γ

(b+ |x − u|)γ .

Then, (90) follows by Lemma B.1 and by Lemma 11.9 we have
∑
k∈ 1

r
N2

0

1
r2

ρ�(k,l)
(1+|k−l|)γ � 1+

2π
∫ c|l|

1
c
|l|

x
(1+|x−|l||)γ dx � (1+ |l|)2−γ . �

11.2. Terms in the second Wiener chaos. In order to bound terms in the second Wiener
chaos, that is, �r,ε , #r,ε and E[θr,ε � σ(D)θr,ε − ξr,ε � σ(D)ξr,ε], we start by presenting
auxiliary lemma’s and observations.

THEOREM 11.8 (Wick’s theorem, [18], Theorem 1.28). Let A,B,C,D be jointly Gaus-
sian random variables. Then,

E[ABCD] = E[AB]E[CD] +E[AC]E[BD] +E[AD]E[BC].
LEMMA 11.9. There exist b > 0 and c > 1 such that

suppρ� ⊂ B(0, b)2 ∪
{
(x, y) ∈Rd ×Rd : 1

c
|x| ≤ |y| ≤ c|x|

}
Consequently, uniformly in x, y ∈Rd

ρ�(x, y)

(1+ |x|2) �
ρ�(x, y)

(1+ |y|2) .(93)

PROOF. Let 0 < a < b be such that suppρ0 ⊂ {x ∈ Rd : a ≤ |x| ≤ b} and suppρ−1 ⊂
B(0, b). Let i, j ∈ N−1 and x, y ∈ R2 be such that ρi(x)ρj (y) �= 0. If i, j ∈ {−1,0}, then
x, y ∈ B(0, b). Suppose i, j ≥ 0 and |i− j | ≤ 1. Then, |x| ∈ [2ia,2ib] and |y| ∈ [2j a,2j b] ⊂
[2i−1a,2i+1b]. This in turn implies

a

2b
|x| ≤ a

2b
2ib= 2i−1a ≤ |y| ≤ 2i+1b ≤ 2b

a
2ia ≤ 2b

a
|x|. �
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11.10. Let k, l, z ∈Nd0 . We write nk = nk,r here. By (38) (and using (26)) and as nq◦k =
nk for all q ∈ {−1,1}d ,

〈nknl ,nz〉L2(Qr)
= (2r)− d2 ∑

p∈{−1,1}d
νkνl

νk+p◦l
〈nk+p◦l ,nz〉L2(Qr)

= (2r)− d2 ∑
p,q∈{−1,1}d

νkνl

νk+q◦p◦l
δq◦k+p◦l,z.

(94)

By combining this with (60), using that |nk(x)| ≤ (2
r
)− d2 , we have, for x ∈ (0, r)d and γ > 0,

rd
∣∣�i(nknl)(x)∣∣� ∑

p,q∈{−1,1}d
ρi

(
q ◦ k + p ◦ l

r

)
2γ i

(1+ | k
r
− l
r
|)γ .(95)

LEMMA 11.11. Let d = 2. Consider the setting of 6.3, as we did in Lemma 11.4. For all
γ ∈ (0,1), there exists a C > 0 (independent of r) such that, for all i ∈N−1, ε, δ > 0, x ∈Qr ,

E
[∣∣�i(�r,ε −�r,δ)(x)∣∣2]≤ C|ε− δ|γ 22γ i .(96)

PROOF. First, observe �r,ε =∑k,l∈N2
0
ρ�(k

r
, l
r
)
τ(ε k

r
)τ (ε l

r
)

1+ π2

r2
|l|2 [ZkZl − δk,l]nknl . By Theo-

rem 11.8 and (95) (as both contributions δk,mδl,n and δk,nδm,l can be bounded by the same
expression by Lemma 11.9),

2−2γ iE
[∣∣�i(�r,ε −�r,δ)(x)∣∣]

�
∑

k,l∈ 1
r
N2

0

1

r4

ρ�(k, l)2

(1+ π2|l|2)2
[τ(εk)τ (εl)− τ(δk)τ (δl)]2

(1+ |k− l|)2γ .

As 2(ab − cd) = (a − c)(b + d) + (a + c)(b − d) similar to (88), as in the proof of
Lemma 11.4, we obtain∣∣τ(εk)τ (εl)− τ(δk)τ (δl)∣∣2 ≤ 4‖∇τ‖γ∞|ε− δ|γ

(|k|γ + |l|γ ).
Using Lemma 11.9 and (91), we obtain

2−2γ iE
[∥∥�i(�r,ε −�r,δ)∥∥2

L∞
]
� |ε− δ|γ ∑

l∈ 1
r
N2

0

r−4

(1+ |l|)4−γ
∑
k∈ 1

r
N2

0

ρ�(k, l)2

(1+ |k− l|)2γ

� |ε− δ|γ ∑
l∈ 1
r
N2

0

r−2

(1+ |l|)2+γ . �

LEMMA 11.12. Suppose that (81) holds for Fr,ε(k, l)= E[Xεk,rXεl,r ]. For all γ ∈ (0,∞),
there exists a C > 0 (independent of r) such that, for all i ∈N−1, ε > 0,

E
[∣∣�i#r,ε(x)∣∣2]≤Cr2γ 2γ i .(97)

PROOF. First note that #r,ε = ∑
k,l∈N2

0

ρ�( k
r
, l
r
)

1+π2| l
r
|2nk,rnl,r [Xεk,rXεl,r − E[Xεk,rXεl,r ]]. By

Theorem 11.8,

E
([
Xεk,rX

ε
l,r −E

[
Xεk,rX

ε
l,r

]][
Xεm,rX

ε
n,r −E

[
Xεm,rX

ε
n,r

]])
= E

[
Xεk,rX

ε
m,r

]
E
[
Xεl,rX

ε
n,r

]+E
[
Xεk,rX

ε
n,r

]
E
[
Xεl,rX

ε
m,r

]
.
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By exploiting symmetries using Lemma 11.9 and by (95), we have

2−2γ iE
[∣∣�i#r,ε(x)∣∣2]� ∑

k,l,m,n∈ 1
r
N2

0

r−4ρ�(k, l)ρ�(m,n)|E[XεrkXεrm]E[XεrlXεrn]|
(1+ |k− l|)γ (1+ |m− n|)γ (1+ |l|2)(1+ |m|2) .

We will bound the ρ� function by 1, use the bound (81) for some δ > 0 (will be chosen small
enough later) and we “separate the dimensions” by using that 1+|k|2 � (1+ k1)(1+ k2) and
(1+ |k − l|)γ � (1

r
+ |k1 − l1|) γ2 (1

r
+ |k2 − l2|) γ2 and obtain

2−2γ iE
[∣∣�i#r,ε(x)∣∣2]

�
( ∑
k,l,m,n∈ 1

r
N0

r2δ−4(1
r
+ |k −m|)δ−1(1

r
+ |l − n|)δ−1

(1
r
+ |k− l|) γ2 (1

r
+ |m− n|) γ2 (1

r
+ l)(1

r
+m)

)2
.

(98)

For δ < γ
2, we have, by Lemma 11.7,

∑
n∈ 1

r
N0

r−1(1
r
+ |l − n|)δ−1

(1
r
+ |m− n|) γ2 ∨ ∑

k∈ 1
r
N0

r−1(1
r
+ |k −m|)δ−1

(1
r
+ |k − l|) γ2 � 1

(1
r
+ |m− l|) γ2−δ ,

and for δ < γ
4 , the square root of the right-hand side of (98) can be bounded by∑

m,l∈ 1
r
N0

r2δ−2

(1
r
+ |m− l|)γ−2δ

1
1
r
+m

1
1
r
+ l �

∑
l∈ 1
r
N0

r2δ−1

(1
r
+ l)γ−3δ

1
1
r
+ l � r

γ−2δ � rγ .

Hence, we obtain (97). �

LEMMA 11.13. Suppose that (84) holds and that (81) holds for Fr,ε(k, l), being either
E[Xεk,rXεl,r ], E[Xεk,rY εl,r ] or E[Y εk,rY εl,r ]. Then, E[|〈#r,ε −�r,ε,nz〉|2]→ 0 for all z ∈N2

0.

PROOF. Fix z ∈ N2
0. Given a function H : (N2

0)
4→ R, let us use the following (formal)

notation:

S(H)= ∑
k,l,m,n∈N2

0

ρ�(k, l)

1+ π2

r2 |l|2
ρ�(m,n)

1+ π2

r2 |n|2
∑

p,r,q,s∈{−1,1}2
δr◦k+p◦l,zδs◦m+q◦n,zH(k, l,m,n).

By (94), as 1
4 ≤ νk ≤ 1 for all k ∈N2

0,

E
[∣∣〈#r,ε −�r,ε,nz〉∣∣2]�S(Eε),

where

Eε(k, l,m,n)= E
([
Xεk,rX

ε
l,r − Y εk,rY εl,r

][
Xεm,rX

ε
n,r − Y εm,rY εn,r

])
−E

[
Xεk,rX

ε
l,r − Y εk,rY εl,r

]
E
[
Xεm,rX

ε
n,r − Y εm,rY εn,r

]
.

We decompose Eε using Wick’s theorem (Theorem 11.8). Let us for a few lines write Ak =
Xεk,r and Bk = Y εk,r , then we obtain

E
([AkAl −BkBl][AmAn −BmBn])−E[AkAl −BkBl]E[AmAn −BmBn]
= E[AkAlAmAn] −E[AkAlBmBn] −E[BkBlAmAn] +E[BkBlBmBn]
− (E[AkAl] −E[BkBl])(E[AmAn] −E[BmBn])
= E[AkAm]E[AlAn] −E[AkBm]E[AlBn] −E[BkAm]E[BlAn] +E[BkBm]E[BlBn]
+E[AkAn]E[AmAl] −E[AkBn]E[BmAl] −E[BkAn]E[AmBl] +E[BkBn]E[BmBl].
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Observe that

E[AkAm]E[AlAn] −E[AkBm]E[AlBn]
= E[AkAm]E[Al(An −Bn)]−E

[
Ak(Bm −Am)]E[Al(Bn −An)]

−E
[
Ak(Bm −Am)]E[AlAn].

Hence, as E[|Ak − Bk|2] = E[|Xεk,r − Y εk,r |2] → 0 by (84), we have Eε(k, l,m,n)→ 0 for
all k, l,m,n ∈N2

0. We show that S(Eε) converges to zero by a dominated convergence argu-
ment. Let us write

J (k, l,m,n) :=
2∏
i=1

(
1+ |ki −mi |)δ−1(1+ |li − ni |)δ−1

and J̃ (k, l,m,n)= J (k, l, n,m). Then, by (81) we have Eε ≤ J + J̃ and, by the symmetries
obtained by Lemma 11.9, S(J̃ )�S(J ). Moreover, by “merging the p,q, r, s and k, l,m,n
variables” (in the sense of summing over k ∈ Z2 instead of q ◦ k with q ∈ {−1,1}2 and k ∈
N2

0), we have

S(J )�
∑
l,n∈Z2

1

1+ π2

r2 |l|2
1

1+ π2

r2 |n|2
2∏
i=1

(
1+ |li − ni |)2δ−2

,

which is finite by Lemma 11.7. �

LEMMA 11.14. If (85) holds, then E[θr,ε � σ(D)θr,ε − ξr,ε � σ(D)ξr,ε]→ 0 in C−γn for
all γ > 0.

PROOF. Let us abbreviate Gr,ε(k, l)= E[Xεk,rXεl,r − Y εk,rY εl,r ]. By (83) and (95),

sup
i∈N−1

2−γ i
∥∥�iE[θr,ε � σ(D)θr,ε − ξr,ε � σ(D)ξr,ε

]∥∥∞
�

∑
k,l∈N2

0

ρ�(k, l)

(1+ |l|2)
|Gr,ε(k, l)|
(1+ |k − l|)γ .

We use (85) and consider the sums over R and N2
0 ×N2

0 \R as in Theorem 11.2 separately.
• [Sum over R] By exploiting symmetries using Lemma 11.9,∑

(k,l)∈R

ρ�(k, l)

(1+ |l|2)
|Gr,ε(k, l)|
(1+ |k − l|)γ � Sε,1 + Sε,2,

Sε,1 =
∑
k,l∈N2

0

ρ�(k, l)

(1+ |l|2)
1

(1+ |k − l|)γ
1

(1+ | r
ε
− l1|)1−δ

1

(1+ | r
ε
− l2|)1−δ

Sε,2 =
∑
k,l∈N2

0

ρ�(k, l)

(1+ |l|2)
1

(1+ |k − l|)γ
1

(1+ | r
ε
− l1|)1−δ

1

(1+ | r
ε
− k2|)1−δ .

By (91), by using that (1+ |l|2)≥ (1+ l1)(1+ l2) and by using (90) with δ < γ ,

Sε,1 �
(∑
l∈N0

1

(1+ l) γ2
1

(1+ | r
ε
− l|)1−δ

)2
�
(

1+ r
ε

)δ−γ
� εγ−δ.
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For Sε,2, by Lemma 11.9 there exist b > 0, c > 1 such that (using that |k− l| ≥ |k1 − l1|)∑
k∈N2

0

ρ�(k, l)

(1+ |k− l|)γ
1

(1+ | r
ε
− k2|)1−δ

�
∑
k∈N2

0|k|≤b

1

(1+ | r
ε
− k2|)1−δ +

∑
k1∈N0
k1≤c|l|

1

(1+ |k1 − l1|)γ
∑
k2∈N0
k2≤c|l|

1

(1+ | r
ε
− k2|)1−δ .

We will bound the second sum on the right-hand side by its corresponding integrals (see
Lemma 11.6) and will bound these to get a bound on the sum over k. Straightforward calcu-
lations show ∫ c|l|

0

1

(1+ |x − l1|)γ dx �
(
1+ |l|)1−γ .

On the other hand, for δ > 0 and z > 0,∫ z
0

1

1+ | r
ε
− x| dx � log

(
1+ r

ε

)2
(1+ z)�

(
1+ r

ε

)2δ
(1+ z)δ.

Hence, for all δ > 0 (we use (90) for the last inequality),

Sε,2 �
∑
l∈N2

0

1

(1+ |l|2)
1

(1+ | r
ε
− l1|)1−δ (1+ l1 + l2)

1−γ+δ
(

1+ 1

ε

)2δ

�
∑
l∈N2

0

1

(1+ l1 + l2)1+γ−δ
1

(1+ | r
ε
− l1|)1−δ

(
1+ 1

ε

)2δ

�
∑
l2∈N0

1

(1+ l2)1+δ
∑
l1∈N0

1

(1+ l1)γ−2δ

1

(1+ | r
ε
− l1|)1−δ

(
1+ 1

ε

)2δ
�
(

1+ 1

ε

)5δ−γ
.

Therefore, by choosing δ < γ
5 , we also obtain Sε,2→ 0:

• [Sum over N2
0 × N2

0 \R] Observe that N2
0 × N2

0 \R = {(k, l) ∈ N2
0 × N2

0 : ∃i ∈ {1,2} :
ki = li}. Therefore, again by exploiting symmetries using Lemma 11.9 (we bound the sum
over N2

0 × N2
0 \R by the sum over all l ∈ N2

0, k2 ∈ N0 and take k1 = l1) and using (90) for
δ <

γ
2 ,

∑
(k,l)∈N2

0×N2
0\R

ρ�(k, l)

(1+ |l|2)
|Gr,ε(k, l)|
(1+ |k − l|)γ

�
∑
l∈N2

0

1

(1+ |l|2)
∑
k2∈N0

1

(1+ |k2 − l2|)γ
1

1+ | r
ε
− k2|

�
∑
l∈N2

0

1

(1+ l1)1+δ
1

(1+ l2)1−δ
1

(1+ | r
ε
− l2|)γ−δ �

(
1+ 1

ε

)2δ−γ
.

�

12. Proof of Theorem 11.3(b). In this section we consider d = 2, L> r ≥ 1 and y ∈R2

such that y + Qr ⊂ QL. We write τ = 1(−1,1)2 . We consider Xεk,r and Y εk,r , as in Theo-
rem 11.3(b). For m, l ∈N0 and z ∈ [0,L− r], we write

bzm,l = 〈nm,L,Tznl,r〉L2([0,r]).(99)
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Then, we have

Xεk,r =
∑
m∈N2

0

τ

(
ε

L
m

)
Zm

2∏
i=1

b
yi
mi,ki

, Y εk,r = τ
(
ε

r
k

) ∑
m∈N2

0

Zm
2∏
i=1

b
yi
mi,ki

.

And so with Gr,ε(k, l)= E[Xεk,rXεl,r − Y εk,rY εl,r ], as in Theorem 11.2

Gr,ε(k, l)=
∑
m∈N2

0

( 2∏
i=1

b
yi
mi,ki

b
yi
mi,li

)[
τ

(
ε

L
m

)2
− τ

(
ε

r
k

)
δk,l

]
.(100)

THEOREM 12.1. (84), (81) and (85) hold (for I = [1,L])

PROOF. For (84) we have

E
[∣∣〈θr,ε − ξr,ε,nk〉∣∣2]= E

[∣∣Xεk,r − Y εk,r ∣∣2]
�

∑
m∈Nd0

(
τ

(
ε

L
m

)
− τ

(
ε

r
k

))2 2∏
i=1

(
b
yi
mi,ki

)2
.

By Lebesgue’s dominated convergence theorem this converges to zero. (81) follows by The-
orem 12.4 by observing that E[Xεk,rY εl,r ] = τ(εr k)E[Xεk,rXεl,r ], E[Y εk,rY εl,r ] ≤ 2δk,l and that

|E[Xεk,rXεl,r ]| ≤
∏2
i=1(

∑
m∈N0
|byim,ki b

yi
m,li
|). (85) follows by Lemma 12.7. �

12.2. The estimates (81) and (85) will rely on bounds on bzm,l for m, l ∈ N0 and z ∈
[0,L− r]. Let us calculate bzm,l here. For notational convenience we put sin(πx)

x
and 1−cos(πx)

x
for x = 0 equal to 1 here. By using some trigonometric rules, one can compute that

bzm,l =
√
r

L

1

π
νmνl

[
fm,l cos

(
π

L
mz

)
+ gm,l sin

(
π

L
mz

)]
,(101)

where

fm,l =
∑

p∈{−1,1}

sin(π( r
L
m+ pl))

r
L
m+ pl

, gm,l =
∑

p∈{−1,1}

1− cos(π( r
L
m+ pl))

r
L
m+ pl

.

Let us demonstrate (101) in the easier case z = 0. Due to the identities 2 cos(a) cos(b) =∑
p∈{−1,1} cos(a + pb) and sin(π(a ± l))= (−1)l sin(πa) for a, b ∈R and l ∈ Z, we obtain

〈nm,L,nl,r〉L2([0,r]) =
2√
Lr
νmνl

∫ r
0

cos
(
π

L
mx

)
cos

(
π

r
lx

)
dx

=
√
r

L

1

π
νmνl

∑
p∈{−1,1}

sin(π(mr
L
+ pl))

mr
L
+ pl

.

(102)

As a consequence we obtain the following.

LEMMA 12.3. There exists a C > 0 (independent of r and L) such that, for all z ∈
[0,L− r] and m, l ∈N0, ∣∣bzm,l∣∣≤ C√ rL 1

1+ | r
L
m− l| .(103)
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PROOF. This follows from the expression (101) by using that | sin(πx)
x
| � 1

1+|x| and
1−cos(πx)

x
� 1

1+|x| . �

THEOREM 12.4. For all δ > 0, there exists a C > 0 (independent of L and r) such that,
for all k, l ∈N0 and z ∈ [0,L− r],

∑
m∈N0

∣∣bzm,kbzm,l∣∣≤ C(1+ |k− l|)δ−1
.(104)

PROOF. This follows by Lemma 12.3 and by (90), as 1+| r
L
m−u| ≥ (1+| r

L
m−u|)1− δ2

for δ > 0. �

12.5. Let C > 0 be as in Lemma 12.3.

(a) For all z ∈ [0,L− r] andM,k, l ∈N0 such that r
L
M ≤ l ≤ k, by Lemma 11.6

M−1∑
m=0

∣∣bzm,kbzm,l∣∣≤ C2
∫ M

0

1

(1+ l − r
L
x)2

dx ≤ C2 1

1+ |l − r
L
M| ,

(b) Similarly, for all z ∈ [0,L− r] andM,k, l ∈N0 such that l ≤ k ≤ r
L
M ,

∞∑
m=M

∣∣bzm,kbzm,l∣∣≤ (C2 + 1
) 1

1+ |k − r
L
M| .

As a consequence of the above and
∑
m∈N0

bzm,kb
z
m,l = δk,l , we obtain the following lemma.

LEMMA 12.6. There exists a C > 0 such that for all z ∈ [0,L − r], M ∈ [0,∞) and
k, l ∈N0: If either k �= l or k = l ≤ r

L
M , then

1

C

∣∣∣∣ ∑
m∈N0,m≥M

bzm,kb
z
m,l

∣∣∣∣≤ 1

(1+ |k− r
L
M|)1−δ +

1

(1+ |l − r
L
M|)1−δ ,(105)

and if either k �= l or k = l ≥ r
L
M ,

1

C

∣∣∣∣ ∑
m∈N0,m<M

bzm,kb
z
m,l

∣∣∣∣≤ 1

(1+ |k− r
L
M|)1−δ +

1

(1+ |l − r
L
M|)1−δ .(106)

PROOF. By (103) we may assumeM ∈N0. The statements for k = l follow immediately
by the bounds in 12.5. For k �= l, we have

∑
m∈N0,m<M

bzm,kb
z
m,l =

∑
m∈N0,m≥M b

z
m,kb

z
m,l so

that the rest follows by 12.5, and by observing that if l ≤ r
L
M ≤ k that |∑m∈N0,m<M

bzm,k ×
bzm,l|� 1

(1+|k−l|)1−δ by Theorem 12.4 which is less than the right-hand side of both (105) and
(106). �
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LEMMA 12.7. WriteGr,ε(k, l)= E[Xεk,rXεl,r −Y εk,rY εl,r ]. There exists a C > 0 such that,
for all ε > 0 and k, l ∈N2

0,

1

C

∣∣Gr,ε(k, l)∣∣≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2∏
i=1

1

(1+ |ki − r
ε
|)1−δ +

1

(1+ |li − r
ε
|)1−δ

if for i ∈ {1,2} either ki �= li
or ki = li ≥ r

ε
,

1

(1+ |ki − r
ε
|)1−δ +

1

(1+ |li − r
ε
|)1−δ

if either ki �= li or ki = li ≥ r
ε

and k3−i = l3−i < r
ε
,

1

(1+ |k1 − r
ε
|)1−δ +

1

(1+ |k2 − r
ε
|)1−δ

ki = li < r
ε

for i ∈ {1,2}.

(107)

PROOF. Let (k, l) ∈N2
0 ×N2

0 be such that k = l with |k|∞ < r
ε
. Then (see (100)),

∣∣Gr,ε(k, l)∣∣=
∣∣∣∣∣ ∑
m∈N2

0:|m|∞≥Lε

2∏
i=1

b
yi
mi,ki

b
yi
mi,li

∣∣∣∣∣�
∣∣∣∣ ∑
m∈N0,m≥Lε

(
b
y1
m,k1

)2∣∣∣∣+ ∣∣∣∣ ∑
m∈N0,m≥Lε

(
b
y2
m,k2

)2∣∣∣∣.
If k and l are not like that, then

Gr,ε(k, l)=
( ∑
m∈N0,m<

L
ε

b
y1
m,k1

b
y1
m,l1

)( ∑
m∈N0,m<

L
ε

b
y2
m,k2

b
y2
m,l2

)
,

so that the bound (107) follows from Lemma 12.6. �

APPENDIX A: THE MIN-MAX FORMULA FOR SMOOTH POTENTIALS

LEMMA A.1. Let f1, . . . , fn be pairwise orthogonal inH 2
0 . There exist pairwise orthog-

onal f1,k, . . . , fn,k in C∞c for k ∈N such that, for all i,

fi,k
k→∞−−−→ fi in H 2

0 .(108)

PROOF. Let gi,k ∈ C∞c be such that gi,k→ fi in H 2
0 for all i. By doing a Gram–Schmidt

procedure on g1,k, . . . , gn,k , we can give the proof by induction. We prove the induction step,
assuming that f1,k = g1,k, . . . , fn−1,k = gn−1,k are pairwise independent. We define

fn,k = gn,k −
n−1∑
i=1

〈gn,k, fi,k〉
〈fi,k, fi,k〉 fi,k.

Then, fn,k is pairwise independent from f1,k, . . . , fn−1,k . As for i ∈ {1, . . . , n− 1}, we have

〈gn,k, fi,k〉→ 〈fn,fi〉 = 0;
it follows that fn,k→ fn. �

LEMMA A.2. Let ζ ∈ L∞, n ∈N and L> 0. Then, (for notation, see 5.4),

λn(QL, ζ )= sup
F�H 2

0
dimF=n

inf
ψ∈F
‖ψ‖

L2=1

〈Hζψ,ψ〉 = sup
F�C∞c

dimF=n
inf
ψ∈F
‖ψ‖

L2=1

〈Hζψ,ψ〉.(109)
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PROOF. First observe that

λn(QL, ζ )= sup
f1,...,fn∈H 2

0〈fi,fj 〉H2
0
=δij

inf
ψ=∑n

i=1 αifi

αi∈[0,1],∑n
i=1 α

2
i =1

〈Hζψ,ψ〉.

Let f1, . . . , fn ∈H 2
0 with 〈fi, fj 〉H 2

0
= δij . By Lemma A.1 there exist f1,k, . . . , fn,k in C∞c

with 〈fi,k, fj,k〉H 2
0
= δij (by renormalising) such that (108) holds. Then,∣∣∣ inf

ψ=∑ni=1 αifi

αi∈[0,1],∑n
i=1 α

2
i =1

〈Hζψ,ψ〉 − inf
ψ=∑ni=1 αifi,k

αi∈[0,1],∑n
i=1 α

2
i =1

〈Hζψ,ψ〉
∣∣∣

≤ sup
ψ=∑ni=1 αifi ,ϕ=

∑n
i=1 αifi,k

αi∈[0,1],∑n
i=1 α

2
i =1

∣∣〈Hζψ,ψ〉L2 − 〈Hζ ϕ,ϕ〉L2
∣∣

� sup
αi∈[0,1],∑n

i=1 α
2
i =1

∥∥∥∥∥
n∑
i=1

αifi −
n∑
i=1

αifi,k

∥∥∥∥∥
H 2

0

≤
n∑
i=1

‖fi − fi,k‖H 2
0
→ 0.

This proves

λn(QL, ζ )= sup
f1,...,fn∈C∞c〈fi,fj 〉H2

0
=δij

inf
ψ=∑ni=1 αifi

αi∈[0,1],∑n
i=1 α

2
i =1

〈Hζψ,ψ〉(110)

and, therefore, (109). �

APPENDIX B: USEFUL BOUND ON AN INTEGRAL

LEMMA B.1. Let γ, θ ∈ (0,1) and γ + θ > 1. There exists a C > 0 such that, for all
b > 0 and u ∈R, ∫ ∞

0

1

(b+ |x − u|)γ
1

(b+ x)θ dx ≤ C(b+ |u|)1−γ−θ .(111)

Consequently, there exists a C > 0 such that, for all b > 0 and u, v ∈R,∫
R

1

(b+ |x − u|)γ
1

(b+ |x − v|)θ dx ≤ C(b+ |u− v|)1−γ−θ .(112)

PROOF. By a simple substitution argument we may assume b= 1. We have uniformly in
a ∈ (0,1),∫ ∞

0

1

(a + x)γ
1

(1+ x)θ dx ≤
∫ ∞

1

1

xγ+θ
dx +

∫ 1

0

1

(a + x)γ dx � 1+ (1+ a)1−γ � 1.

Hence, for all u≥ 0,∫ ∞
u

1

(1+ x − u)γ
1

(1+ x)θ dx

=
∫ ∞

0

1

(1+ x)γ
1

(1+ u+ x)θ dx(113)

= (1+ u)1−γ−θ
∫ ∞

0

1

( 1
1+u + x)γ

1

(1+ x)θ dx � (1+ u)1−γ−θ .
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On the other hand, we have∫ u
2

0

1

(1+ u− x)γ
1

(1+ x)θ dx ≤
(

1+ u
2

)−γ ∫ u
2

0

1

(1+ x)θ dx � (1+ u)1−γ−θ ,

and, similarly,
∫ u
u
2

1
(1+u−x)γ

1
(1+x)θ dx � (1 + u)1−γ−θ . In case u is negative, the bound is

already proved in (113) (by interchanging θ and γ ).
For (112) it is sufficient to observe that∫ ∞

v

1

(1+ |x − u|)γ
1

(1+ |x − v|)θ dx =
∫ ∞

0

1

(1+ |x + v− u|)γ
1

(1+ x)θ dx,∫ v
−∞

1

(1+ |x − u|)γ
1

(1+ |x − v|)θ dx =
∫ ∞

0

1

(1+ |x + u− v|)γ
1

(1+ x)θ dx. �
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