
The Annals of Probability
2020, Vol. 48, No. 5, 2323–2343
https://doi.org/10.1214/20-AOP1424
© Institute of Mathematical Statistics, 2020

LIMIT PROFILE FOR RANDOM TRANSPOSITIONS1

BY LUCAS TEYSSIER

Département de mathématiques et applications, École normale supérieure, lucas.teyssier@univie.ac.at

We present an improved version of Diaconis–Shahshahani upper bound
lemma, which is used to compute the limiting value of the distance to station-
arity. We then apply it to the random transposition shuffle.

1. Introduction.

1.1. Main results. Let Sn be the symmetric group of indice n and Pn the probability on
Sn defined by

(1.1) Pn(Id) = 1

n
and Pn(τ) = 2

n2 if τ is a transposition.

This is the random transposition shuffle on Sn, as studied in a landmark paper of Diaconis
and Shahshahani [10].

Let also Un be the uniform probability on Sn. If E is a set and μ, ν are probabilities on
E, we define the total variation distance1 between μ and ν by the formula

(1.2) dTV(μ, ν) = 1

2
d1(μ, ν) = 1

2

∑
x∈E

∣∣μ(x) − ν(x)
∣∣.

In [10], Diaconis and Shahshahani showed that this random walk undergoes a cutoff phe-
nomenon at 1

2n log(n), that is, letting f (n) = 1
2n log(n), that for all 0 < ε < 1,

(1.3) dTV
(
P ∗�(1−ε)f (n)�

n ,Un

) −−−→
n→∞ 1 and dTV

(
P ∗�(1+ε)f (n)�

n ,Un

) −−−→
n→∞ 0.

Despite a lot of work on mixing times in general and on random transpositions in particular
(see references below), obtaining a precise description of the way this transition occurs has
remained an open problem, formally asked at an AIM workshop on Markov chains mixing
times in 2016 (http://aimpl.org/markovmixing/5/).

Problem 5.3. [Nathanaël Berestycki] Can we obtain the cutoff profile for the uniform random trans-
position walk on Sn?

Our main result is the following.

THEOREM 1.1. Let c ∈R. Then we have

(1.4) dTV
(
P

∗� 1
2 n log(n)+cn�

n ,Un

) −−−→
n→∞ dTV

(
Poiss

(
1 + e−2c),Poiss(1)

)
,

where Poiss(a) stands for the Poisson law of parameter a.
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1.2. Limiting profile conjectures. We anticipate the limiting profile

dTV
(
Poiss

(
1 + e−c),Poiss(1)

)
,

which we obtain in our problem if we replace the time �1
2n log(n) + cn� by a slightly more

natural time, �1
2(n log(n)+cn)�, to arise for many other mixing time problems on Sn, namely

the problems where the last things to be mixed are the fixed points. It seems to be often
the case when the probability Pn is constant over conjugacy classes. For example, using
the formulas in [12], one can adapt the present proof for random k-cycles (k fixed) at time
�1

k
(n log(n) + cn)�, and we conjecture that the same limiting profile still holds for random

conjugacy classes of size o(n), as studied in [4], but that it would be technically much harder
to adapt the present proof in that case. For this general case, a beautiful formula (Proposi-
tion 10.15 in [19]) used in the proof of the Stanley–Féray formula, which allows to compute
any reduced character as an expectation, χλ(μ) = E[(−1)inv(σμ)], might be very useful.

We conjecture that this profile also holds for the random involution walk studied by Megan
Bernstein in [5], at time � 1

log(p)
(log(n) + c)�. For other problems where the limiting profile

is known, see [2] and [15].

1.3. Links with previous results and idea of the proof.

1.3.1. Links with previous results. In 1981, Diaconis and Shahshahani showed in [10],
using representations of the symmetric group, a cutoff2 at �1

2n log(n)� for the random trans-
position shuffle, giving asymptotic inequalities at time �1

2n log(n)+cn�, c > 0 fixed. In 1987,
Matthews gave in [18] a very precise lower bound, which matches with the limiting profile.
(However, the upper bound part of Matthews’ proof has a flaw, as pointed out in 2017 by
Graham White in [23]. In 2019, Graham White presented in [24] an alternative probabilistic
proof of the upper bound.) In 2011, Berestycki, Schramm and Zeitouni generalized in [3] the
previous result to the shuffle by random k-cycles, for k fixed as n → ∞, proving a cutoff at
�1

k
n log(n)�, conjectured by Diaconis. Finally, in 2014, Berestycki and Şengül generalized

again this result, in [4], to any conjugacy class whose support is o(n), and without represen-
tation theory.

Before giving more details about our proof, let us mention some other interesting related
works and sources. For a study of couplings for the random transposition walk, see Blum-
berg’s thesis [7]. For other bounds on the characters of the symmetric group, see [17], by
Lulov and Pak. Also, an intriguing cutoff at 3

4n log(n) − 1
4n log log(n) for the random to ran-

dom card shuffle was proven by Bernstein and Nestoridi in [6]. About spacial mixing, see
the very recent article [9] by Diaconis and Pal. For polynomial bounds on the diameter and
mixing time of shuffles with random sets of generators, see [1] by Babai and Hayes, and [13]
by Helfgott, Seress and Zuk. Finally, about cutoff on compact quantum groups, see [11] by
Freslon.

To learn about mixing times, an excellent source is the book [16] by Levin and Peres.
Another very good source is the lecture notes by Salez, [20]. About representation theory, the
first part of Serre’s book, [22], gives nice and clear introduction. To study more specifically
the representations of the symmetric group, see the very complete book by Méliot, [19],
which contains many recent results.

The proof in [10] relies on the so-called Diaconis–Shahshahani upper bound lemma,
which leads to a sum over irreducible representations which they delicately bound with rep-
resentation theory and analysis. Actually we can observe that the only place where a lot of

2In fact their lower bound is 1/e so it is not exactly a cutoff.
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information (we lose a factor e in the limit c → ∞ of the limit profile) is lost on the limit
profile is at the very begining, when the Cauchy–Schwarz inequality is used in the proof
of the upper bound lemma. Section 2 presents a remedy to this information loss, improving
the upper bound lemma to an approximation lemma (Lemma 2.1) which is asymptotically
much more precise. Section 4.1, which is quite technical, generalizes the asymptotic bounds
of Diaconis and Shahshahani to any c ∈ R.

Another crucial point of our proof is to pack together, in the sums over the irreducible
representations λ = (λ1, . . .) of Sn, all the partitions with the same λ1. More precisely, Sec-
tion 4.2 shows that when j ∈ N∗ is fixed, we can study the sum over the partitions with λ1
equal to n − j as a sum over the partitions of the integer j , resulting in explicit manipulable
formulas.

To understand where the limiting profile comes from, observe that, thanks to the lower
bound of Matthews, the key observable is the number of fixed points. The limit profile is
the distance between the asymptotic distribution of the number of fixed points of our walk
at time �1

2n log(n) + cn�, which is a Poiss(1 + e−2c) distribution, and that of a permutation
taken uniformly at random, that is, Poiss(1).

Theorem 1.1 stated above gives support to the following conjecture of Nathanaël Beresty-
cki.

CONJECTURE 1.2. Let τn be the first time that all cards have been touched, and let Xτn

be the state of the deck of cards at this (random) time. Then dTV(Xτn,Un) → 0 as n → ∞.

In other words, the conjecture says that τn is a stopping time at which the random per-
mutation is well mixed for all practical purposes. Note that at time τn − 1 the permutation
contains at least one fixed point, so that dTV(Xτn−1,Un) cannot converge to zero. Hence, the
conjecture implies that τn is in some strong sense optimal for mixing the deck of cards.

Let us now explain in what way Theorem 1.1 above is related to this conjecture. For any
time t , let Gt be the random graph which contains an edge (i, j) if and only if the corre-
sponding transposition has been applied at least once prior to time t . Then Gt is essentially
a realisation of the Erdős–Rényi random graph with parameters n and p = 1 − exp(−t/

(n
2

)
).

It is easy to check that any cycle of the random permutation Xt at time t , considered as a
set, is a subset of a connected component of Gt . Hence, it makes sense to consider the cycle
structure of the permutation restricted to any particular connected component of Gt . Let Ct

be the largest component of Gt (which is macroscopic if t ≥ cn for some c > 1, and actually
contains all vertices with high probability after time τn). Ct is called the giant component of
Gt . By a famous result of Schramm [21], the distribution of the lengths of the largest cycles
of Xt within Ct , normalised by the total size |Ct | of the giant component, converges to a
Poisson–Dirichlet distribution (in the sense of finite dimensional distributions). Hence, these
largest cycles can be seen to coincide in the limit with the distribution of a uniform permuta-
tion on the giant component (see, e.g., [3]). A stronger version of Schramm’s theorem would
be the following conjecture (also by Nathanaël Berestycki).

CONJECTURE 1.3. Suppose t ≥ cn/2 for some c > 1. Given Ct , the distribution of Xt |Ct
,

is approximately uniform, in the sense that dTV(Xt |Ct
,UCt

) → 0 in probability as n → ∞,
where UCt

is a uniform permutation on the giant component Ct .

It is not hard to see that Conjecture 1.3 implies Conjecture 1.2. Indeed, Conjecture 1.3
implies a very precise description of the structure of Xt close to the mixing time: if t =
�1

2n logn+cn�, then according to this conjecture Xt would consist, if τn > t of a permutation
that is approximately uniform on n− 1 points, plus an extra fixed point; and would otherwise
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be indistinguishable from a uniform permutation if τn ≥ t . Such a description would imply
that

(1.5) dTV(Xt ,Un) = dTV
(
Fix(Xt),Poiss(1)

) + o(1),

where Fix(Xt) is the number of fixed points of Xt . It is furthermore relatively easy to check
that P(τn > t) → e−2c and hence, still assuming Conjecture 1.3, we would deduce

(1.6) dTV(Xt ,Un) = dTV
(
Poiss

(
1 + e−2c),Poiss(1)

)
,

where the extra term e−2c in the right hand side accounts precisely for the probability that
τn > t . Of course, this last display is precisely the content of our Theorem 1.1.

1.3.2. Organisation of the article. In Section 2, we present the improvement of Diaconis–
Shahshahani upper bound lemma, using the noncommutative Fourier transform, which brings
us back to group representations. In Section 3, we will recall some results on the represen-
tations of the symmetric group, get precise estimations of the hook-length and Murnagham–
Nakayama combinatorial formulas when the size n of our partitions tend to infinity with
n − λ1 constant, and we will prove some upper bounds useful in the sequel. In Section 4, we
will prove the announced theorem decomposing approximation by approximation. From now
on, k will denote without ambiguity the integer

(1.7) k = k(n, c) =
⌊

1

2
n log(n) + cn

⌋
.

1.3.3. Idea of the proof. The algebraic objects Ŝn, triv, dλ, sλ and chλ will be defined
at the beginning of Section 2. For all σ ∈ Sn, Fix(σ ) will denote the number of fixed points
of the permutation σ . For j ∈ N∗, let us also define the polynomial Tj (z) by the formula∑j

i=0

( z
j−i

) (−1)i

i! . The idea is to first fix c ∈ R, and then to define for all ε > 0 an integer
M = M(c, ε) such that when n tends to infinity, all the following approximations are true up
to ε.

Rewriting the sum using the Fourier transform and the improvement of Diaconis–
Shahshahani lemma,

(1.8) d1
(
P ∗k

n ,Un

) = 1

|Sn|
∑

σ∈Sn

∣∣∣∣ ∑
λ∈Ŝn\{triv}

dλs
k
λchλ(σ )

∣∣∣∣ ≈ 1

n!
∑

σ∈Sn

∣∣∣∣ ∑
λ1≥n−M

dλs
k
λchλ(σ )

∣∣∣∣.
Then, thanks to the polynomial convergence lemma and letting M → ∞, we will get

1

n!
∑

σ∈Sn

∣∣∣∣ ∑
λ1≥n−M

dλs
k
λchλ(σ )

∣∣∣∣ ≈ 1

n!
∑

σ∈Sn

∣∣∣∣∣
M∑

j=1

e−2jcTj

(
Fix(σ )

)∣∣∣∣∣
≈ 1

n!
∑

σ∈Sn

∣∣∣∣∣
∞∑

j=1

e−2jcTj

(
Fix(σ )

)∣∣∣∣∣.
Finally, letting n → ∞,

1

n!
∑

σ∈Sn

∣∣∣∣∣
∞∑

j=1

e−2jcTj

(
Fix(σ )

)∣∣∣∣∣ = 1

n!
∑

σ∈Sn

∣∣e−e−2c(
1 + e−2c)Fix(σ ) − 1

∣∣
≈ E

∣∣e−e−2c(
1 + e−2c)Poiss(1) − 1

∣∣
= d1

(
Poiss

(
1 + e−2c),Poiss(1)

)
.
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2. Improvement of Diaconis–Shahshahani upper bound lemma. In this section, we
present the improvement of Diaconis–Shahshahani upper bound lemma. We will stay in the
framework of finite groups, but this lemma can be used in a wider framework, of compact
groups for example. Our aim is to get a better approximation than in [10] by not using
Cauchy–Schwarz before Fourier.

Let G be a finite group, CG the group algebra of G and Ĝ the set of the irreducible
representations of G. We recall that the convolution product on CG is defined, for all f1, f2 ∈
CG and z ∈ G, by the formula

(2.1) (f1 ∗ f2)(z) = ∑
xy=z

f1(x)f2(y).

We note triv the trivial representation of G and Ĝ∗ = Ĝ\{triv}. For α ∈ Ĝ, we also name ρα

the matrix of the representation α, chα its character and dα its dimension. Let us first recall
the inversion formula for the noncommutative Fourier transform, well explained in [19]. For
f : G →C and g ∈ G, we have

f (g) = ∑
α∈Ĝ

dα

|G| Tr
(
ρα(g)∗f̂ (α)

)
.

We deduce that for all t ∈ N,

d1
(
P ∗t ,U

) = ∑
g∈G

∣∣P ∗t (g) − U(g)
∣∣

= ∑
g∈G

∣∣∣∣∑
α∈Ĝ

dα

|G| Tr
( ̂(

P ∗t − U
)
(α)ρα(g)∗

)∣∣∣∣
= ∑

g∈G

∣∣∣∣ ∑
α∈Ĝ∗

dα

|G| Tr
(
P̂ ∗t (α)ρα(g)∗

)∣∣∣∣.
In addition, as P is a function which is constant on every conjugacy class, we know that for
each α, by Schur’s lemma, P̂ (α) is a homothety, of ratio

sα = Tr(P̂ (α))

dα

.

We hence obtain

d1
(
P ∗t ,U

) = 1

|G|
∑
g∈G

∣∣∣∣ ∑
α∈Ĝ∗

dαst
αchα(g)

∣∣∣∣.
Now, if instead of having a single group G we have an increasing sequence of groups

(Gn)n∈N, each group being provided with a probability measure Pn, and if t = t (n) is a well-
chosen time depending on n (and possibly on another parameter), we will wish to make n

tend to infinity inside our sums, and thus obtain a convergence to an explicit formula which
will prove a cutoff or give a limiting profile. The idea of the following lemma is to spot a
finite set of irreducible representations which will (asymptotically) have most of the mass, in
order to approximate the sum over all irreducible representations by a sum over only finitely
many terms, uniformly in n, and then be allowed to make n tend to infinity inside the finite
sum.

LEMMA 2.1 (Approximation lemma). Let G be a finite group, P a probability on G

constant on every conjugacy class, and S ⊂ Ĝ∗. Then,∣∣∣∣d1
(
P ∗t ,U

) − 1

|G|
∑
g∈G

∣∣∣∣∑
α∈S

dαst
αchα(g)

∣∣∣∣∣∣∣∣ ≤ ∑
α∈Ĝ∗\S

dα|sα|t .
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PROOF. Using the fact that ||a| − |b|| ≤ |a − b| and triangle inequalities,∣∣∣∣d1
(
P ∗t ,U

) − 1

|G|
∑
g∈G

∣∣∣∣∑
α∈S

dαst
αchα(g)

∣∣∣∣∣∣∣∣
≤ 1

|G|
∑
g∈G

∣∣∣∣ ∑
α∈Ĝ\S

dαst
αchα(g)

∣∣∣∣
≤ 1

|G|
∑
g∈G

∑
α∈Ĝ\S

dα|sα|t ∣∣chα(g)
∣∣

= ∑
α∈Ĝ\S

dα|sα|t 1

|G|
∑
g∈G

∣∣chα(g)
∣∣. (∗)

Now, for every irreducible character α, by Cauchy–Schwarz inequality and orthonormality
of the characters,

1

|G|
∑
g∈G

∣∣chα(g)
∣∣ ≤ 1

|G|
√

|G| ∑
g∈G

∣∣chα(g)
∣∣2 = 1.

Plugging into (∗), this concludes the proof. �

3. The symmetric group and its representations.

3.1. Hook-length formula. We recall a few facts from the representation theory of the
symmetric group, that we will naturally index by integer partitions λ. In a diagram associated
to a partition, the hook of a box is the number of boxes which are above or on the right of
our box (including our box). We call équ(λ) the product of the hooks of the partition λ. For
example, consider the partition λ = (7,3,2,1,1) of the integer 14 filled with its hooks:

12346811

136

14

2

1

.

In this case, we have

équ(7,3,2,1,1) = 11 × 8 × 6 × (4 × 3 × 2 × 1) × (6 × 3 × 1 × 4 × 1 × 2 × 1)

= 11 × 8 × 6 × 4! × équ(3,2,1,1).

We now recall the hook length formula, a proof of which can be found in Chapter 3 of
[19].

PROPOSITION 3.1 (Hook-length formula). If λ is a partition of some integer n, then
dλ = n!

équ(λ)
. In particular, d(n−j,λ2,λ3,...) ≤ (n

j

)
d(λ2,λ3,...).
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If λ = (λ1, λ2, λ3, . . .) is an integer partition, we will denote by λ∗ the truncated par-
tition (λ2, λ3, λ4, . . .), where the largest row has been removed. For example if λ = (n −
7,3,2,1,1), λ∗ = (3,2,1,1) and in this case we have when n → ∞,

dλ = n!
(n − 7 + 4)(n − 8 + 2)(n − 9 + 1)(n − 10)!

1

équ(λ∗)

= n!
(n − 7)! équ(λ∗)

(
1 − 7

n
+ O

(
1

n2

))
.

This can be easily generalized and gives the following asymptotic formula.

PROPOSITION 3.2 (Asymptotic hook-length formula). Let j ≥ 1 and λ2, λ3, ... be fixed
integers such that λ2 + λ3 + · · · = j . Then when n → ∞,

d(n−j,λ2,λ3,...) =
(
n

j

)
d(λ2,λ3,...)

(
1 − j

n
+ O

(
1

n2

))
.

PROOF. Let n ∈ N∗ and λ = λ(n) = (n− j, λ2, λ3, . . .). Then when n → ∞, denoting by
λ∗′

the conjugated partition of the partition λ∗ = (λ2, λ3, . . .),

d(n−j,λ2,λ3,...) = n!
(n − j + λ∗′

1 )(n − j − 1 + λ∗′
2 ) · · · (n − 2j + 1 + λ∗′

j )

1

équ(λ2, λ3, . . .)

= n!
(n − j)! équ(λ2, λ3, . . .)

n − j

n − j + λ∗′
1

n − j − 1

n − j − 1 + λ∗′
2

· · · n − 2j + 1

n − 2j + 1 + λ∗′
j

= n!
(n − j)! équ(λ2, λ3, . . .)

(
1 − λ∗′

1

n
+ O

(
1

n2

))
· · ·

(
1 − λ∗′

j

n
+ O

(
1

n2

))

=
(
n

j

)
d(λ2,λ3,...)

(
1 − j

n
+ O

(
1

n2

))
. �

3.2. Character ratios. Let τ be a transposition. We define as in [10] the character ratio

r(λ) = chλ(τ )
dλ

. We can give different explicit formulas for this object, among which is the
following symmetric one, which follows from Lemma 7.14 in [19].

If λ = (λ1, λ2, . . . , λn) is a partition of the integer n, then we have

r(λ) = 1(n
2

) n∑
i=1

(
λi

2

)
−

(
λ′

i

2

)
,

where λ′ denotes the conjugate partition of λ.
The modified character ratio, as defined in Section 2, writes as sλ = 1

n
+ n−1

n
r(λ) and takes

into account that we pick the identity with probability 1/n. The following upper bounds are
given in [8].

PROPOSITION 3.3. If λ is a partition of the integer n, then

sλ ≤ λ1

n
and

∣∣r(λ)
∣∣ ≤ λ1

n
.

Moreover, if λ1 ≥ n
2 , then

sλ ≤ 1 − 2(λ1 + 1)(n − λ1)

n2 .
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We will also need an asymptotic expansion of sλ, easily obtainable from the explicit
formula for r(λ): If j ∈ N∗ and λ2 ≥ λ3 ≥ · · · ≥ λr are nonnegative integers such that
λ2 + · · · + λr = j , then when n → ∞,

r(n − j, λ2, . . . , λr) = 1(n
2

)((
n − j

2

)
+ O(1)

)
= 1 − 2j

n
+ O

(
1

n2

)
,

and so

(3.1) sλ = 1 − 2j

n
+ O

(
1

n2

)
.

REMARK 3.4. In the general case, to guess the cutoff time, we want to find a t = t (n)

for which dα|sα|t = θ(1) as n → ∞, for the representations α which have the most mass. In
the case of the symmetric group, as dλ ≈ nj , we want to find t such that |sλ|t ≈ n−j . For
instance, for random transpositions, it is very natural to expect a cutoff at 1

2n log(n) from the

formula of sλ, as
(
1 − 2j

n

) 1
2 n log(n) ≈ n−j .

3.3. Mass transfer in the Young graph. It will be convenient to use the formalism of the
Young graph for some calculations. We will need them in Lemma 4.3, to study the behavior
of the main term.

Let us first recall the definition of a Young diagram, quoting [19]. Given an integer partition
λ, we call Young diagram of λ the array of boxes with λ1 boxes on the first row, λ2 boxes on
the second row, etc.

We will write λ 
 m for some m ≥ 1 to indicate that λ is a partition of the integer m. We
will also write λ ↗ � if λ 
 m and � 
 m + 1 to say that the diagram of � can be obtained
from the diagram of λ by adding a box.

The Young graph is the infinite oriented graph of all integer partitions with an edge from
λ to � if and only if λ ↗ �. We are going to study, in the Young graph, a measure transfer
from a row to the next one, which can be extended by recurrence to several lines.

Let us fix an integer j ≥ 1. We recall the transition formula for the dimensions of diagrams,
which we can find in [14] or [19]. If we fix λ 
 j , then we have the following transfer, which
may be of independent interest: ∑

�:λ↗�

d� = (j + 1)dλ.

Let j be an integer and (γλ)λ
j a sequence of real numbers. We extend this line to the next
line, j + 1, as follows, following the edges of the graph. If � 
 j + 1, we set γ� = ∑

λ↗� γλ.
Then we have the following transfer.

PROPOSITION 3.5. ∑
�
j+1

γ�d� = (j + 1)
∑
λ
j

γλdλ.

PROOF. ∑
�
j+1

γ�d� = ∑
�
j+1

( ∑
λ:λ↗�

γλ

)
d�

= ∑
λ
j

∑
�
j+1

1λ↗�γλd�
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= ∑
λ
j

γλ

∑
�:λ↗�

d�

= (j + 1)
∑
λ
j

γλdλ.
�

3.4. Permutations usually do not have only little cycles. We set, for n ∈ N∗ and 1 ≤
j ≤ n,

Sn,j = {σ ∈ Sn : all the cycles of σ are of length ≤ j}.
Let us show that when j is fixed, Sn,j is asymptotically much smaller than Sn.

We will use the next proposition in the proof of Lemma 4.2.

PROPOSITION 3.6. Let j ≥ 2 be a fixed integer. Then for n large enough,

log
( |Sn,j |

|Sn|
)

≤ −n log(n)

T(j)
,

where T(j) = 1 + 2 + · · · + j .

PROOF. We can see that in Sn,j , there are at most (n + 1)j conjugacy classes, because
such a conjugacy class is determined by the number of fixed points, 2-cycles, . . . , j -cycles
of a representative, each one necessarily between 0 and n. Let us give an upper bound on the
cardinality of such a class. Let n ≥ j be a large integer, μ = (μ1, . . . ,μr) a partition of the
integer n such that μ1 ≤ j and μr ≥ 1, and Cμ the associated conjugacy class. Then if kq

denotes the number of μi equal to q , we have for n big enough:

|Cμ| = n!
2k23k3 · · · jkj k2!k3! · · ·kj !(n − 2k2 − 3k3 − · · · − jkj )!

≤ n!
k2!k3! · · ·kj !(n − 2k2 − 3k3 − · · · − jkj )!

=
(

n(
2k2, . . . , jkj , (n − 2k2 − · · · − jkj )

)) (2k2)!
k2! · · · (jkj )!

kj !

≤
⎛⎝ n(

n

j
,
n

j
, . . . ,

n

j

)⎞⎠ (2k2)!
k2! · · · (jkj )!

kj !

≤ jn (2k2)!
k2! · · · (jkj )!

kj ! .

Moreover this latest product will be greater if the ki increase, so we can assume without loss
of generality that 2k2 + · · · + jkj ≥ n − 1. One of the ki is therefore necessarily of cardinal
greater than n−1

2+3+···+j
= n−1

T (j)−1 . Furthermore, as (2k2)! · · · (jkj )! ≤ n!, we obtain:

|Cμ| ≤ jn n!
( n−1
T(j)−1)! .

Thus for n large enough,

(3.2)
|Sn,j |
|Sn| ≤ (n + 1)j jn 1

( n−1
T(j)−1)! ,
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that is,

log
( |Sn,j |

|Sn|
)

≤ j log(n + 1) + n log(j) − log
((

n − 1

T(j) − 1

)
!
)

∼ − n log(n)

T(j) − 1
.

As T(j) − 1 < T(j), this leads to the desired asymptotic upper bound. �

REMARK 3.7. This upper bound proves in particular that the ratio |Sn,j |
|Sn| tends to 0, even

multiplied by any power function, or polynomial. It is this fact that we will use. The case
j = 1 that we did not process is trivial because in this case |Sn,1| = 1.

Besides, if we had proceeded more carefully, we could have shown that kj ∼ n
j

maximizes
the heavy terms of the cardinality of the conjugacy class, and therefore that log(|Sn,j |) ∼
(1 − 1

j
)n log(n).

3.5. Upper bound on the number of q-cycles. For every permutation σ ∈Sn and q ∈ N∗,
let Nq(σ) = N

(n)
q (σ ) denote the number of q-cycles in the cycle decomposition of σ . We

recall the well-know law for the number of fixed points of a random permutation3

(3.3) P
(
σ ∈ Sn : N1(σ ) = m

) = 1

m!
n−m∑
i=0

(−1)i

i! , 0 ≤ m ≤ n.

In particular, we deduce that for all 0 ≤ m ≤ n, P(σ ∈ Sn : N1(σ ) = m) ≤ 1
m! . Now we

generalize this upper bound to the number of q-cycles.

PROPOSITION 3.8. Let q,m ∈N∗, then

P
(
σ ∈ Sn : Nq(σ) = m

) ≤ 1

qmm! .

PROOF. As in the previous paragraph, if μi is a partition of the integer n, we denote by
kq the number of μi equal to q:

P
(
σ ∈ Sn : Nq(σ) = m

)
= 1

n!
∑
μ
n
kq=m

|Cμ|

=
∞∑

r=1

∑
μ=(μ1,...,μr≥1)
n

kq=m

1

2k23k3 · · · rkr k2!k3! · · ·kr !(n − 2k2 − 3k3 − · · · − rkr)!

= 1

qmm!

×
∞∑

r=1

∑
μ=(μ1,...,μr≥1)
n−qm

kq=0

1

2k23k3 · · · rkr k2!k3! · · ·kr !(n − qm − 2k2 − 3k3 − · · · − rkr)!

≤ 1

qmm!
3For m = 0, we apply the inclusion-exclusion principle to

⋃n
i=1 Fi , where Fi = {σ ∈ Sn : σ(i) = i}, and then

generalize for any m.
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×
∞∑

r=1

∑
μ=(μ1,...,μr≥1)
n−qm

1

2k23k3 · · · rkr k2!k3! · · ·kr !(n − qm − 2k2 − 3k3 − · · · − rkr)!

= 1

qmm!P
(
σ ∈Sn−qm : Nq(σ) = 0

)
≤ 1

qmm! . �

4. Proof of Theorem 1.1. For this whole section, we fix c ∈ R. We recall that k =
k(n, c) = �1

2n log(n) + cn�.

4.1. Bounding the error. The upper bound is similar to the upper bound of the sum ap-
pearing in [8] after applying Diaconis–Shahshahani upper bound lemma. However, as we
want a more precise result, there will be some additional technical difficulties as c may be
negative.

We can observe that the representations of the symmetric group which contribute the most
in the sum

d1
(
P ∗k

n ,Un

) = 1

|Sn|
∑

σ∈Sn

∣∣∣∣ ∑
λ∈Ŝn

∗
dλs

k
λchλ(σ )

∣∣∣∣
correspond to partitions with a large first row. We will therefore naturally split according to
λ1. We set for all M ∈ N∗, and integer n large enough,

SM(n) = {
λ ∈ Ŝn

∗ : λ1 ≥ n − M
}
.

From Lemma 2.1, we get that for all M ≥ 1,∣∣∣∣d1
(
P ∗k

n ,Un

) − 1

|Sn|
∑

σ∈Sn

∣∣∣∣ ∑
λ∈SM(n)

dλs
k
λchλ(σ )

∣∣∣∣∣∣∣∣ ≤ ∑
λ∈Ŝn;λ1<n−M

dλ|sλ|k.

It remains to prove that the right-hand side of this inequality tends to 0 uniformly in n when
M → ∞, and to estimate the second term in the left-hand side. Our first task is to bound the
error in the approximation.

LEMMA 4.1 (Upper bound on the remainder). For all ε > 0 there exist M = M(c, ε) ≥ 1
and n0 = n0(M) ∈ N such that if n ≥ n0, then∑

λ1≤n−M

dλ|sλ|k ≤ ε.

PROOF. We recall that sλ = 1
n

+ n−1
n

r(λ). Observe that if λ is a partition of n such that
r(λ) ≥ 0, then r(λ′) = −r(λ) and so sλ = |sλ| ≥ |sλ′ |. Let us first bound

∑
λ1≤n−1 dλ|sλ|k

splitting the sum into pieces. Note that λ1 = n corresponds to r(λ) = 1, that is, to λ = (n),
the trivial representation, which disappeared when we used the Fourier transform. Likewise,
r(λ) = −1 corresponds to λ = (1n).∑

r(λ)<1

dλ|sλ|k = d(1n)|s(1n)|k + ∑
−1<r(λ)≤− 2

n

dλ|sλ|k + ∑
− 2

n
<r(λ)< 2

n

dλ|sλ|k + ∑
2
n
≤r(λ)<1

dλ|sλ|k

= S1 + S2 + S3 + S4.



2334 L. TEYSSIER

Let us bound these different pieces separately, using Proposition 3.3. The first one is the
easiest:

S1 =
(

1 − 2

n

)� 1
2 n log(n)+cn�

= o(1),

S3 ≤ ∑
− 2

n
<r(λ)< 2

n

dλ

(
3

n

)k

≤
( ∑

λ∈Ŝn
∗
d2
λ

)(
3

n

)k

≤ n!
(

3

n

) 1
2 n log(n)+cn

= o(1),

S2 = ∑
2
n
≤r(λ)<1

dλ

(
|sλ| − 2

n

)k

≤ ∑
2
n
≤r(λ)<1

dλ|sλ|k
(

1 − 2

n

)k

≤ e− 2
n
( 1

2 n log(n)+cn)S4 = e−2c

n
S4,

where we used in the upper bound for S2 that |sλ| ≤ 1. If we succeed in proving that S4 is
bounded (in n), then we will be able to conclude that

∑
r(λ)<1 dλ|sλ|k is bounded (in n). We

will bound a sum a little larger than S4, namely
∑

0≤r(λ)<1 dλ|sλ|k . Let us begin by a crude
bound which will prove useful in the sequel. If 1 ≤ j ≤ n, we have

∑
λ1=n−j

dλ ≤ ∑
λ∗
j

(
n

j

)
dλ∗ ≤

(
n

j

)√√√√( ∑
λ∗
j

12
)( ∑

λ∗
j

d2
λ∗

)
≤ nj

j !
√

2j j ! ≤ nj 2j/2
√

j ! , (∗∗)

where the two first inequalities come from Proposition 3.1 and Cauchy–Schwarz, and the
before last inequality comes from the fact that each partitions of the integer j can be seen as
one of the 2j subsets of the set with j elements. Therefore we have, using Proposition 3.3
(note that r(λ) ≥ 0 implies that s(λ) > 0)

S4 ≤ ∑
0≤r(λ)<1

dλs
k
λ

=
n−1∑
j=1

∑
λ1=n−j

0≤r(λ)<1

dλs
k
λ

≤
�n/1000�∑

j=1

( ∑
λ1=n−j

dλ

)(
1 − 2j (n − j + 1)

n2

)k

+
n−1∑

j=�n/1000�+1

( ∑
λ1=n−j

dλ

)(
1 − j

n

)k

= A1 + A2.

Let us bound A1. We have, using (∗∗) and 1 + x ≤ expx,

A1 ≤
�n/1000�∑

j=1

nj 2j/2
√

j !
(

1 − 2j (n − j + 1)

n2

)k

≤
�n/1000�∑

j=1

2j/2
√

j !e
j log(n)e

− 2j (n−j+1)

n2 ( 1
2 n log(n)+cn)

=
�n/1000�∑

j=1

2j/2
√

j !e
j log(n)e−j (1− j−1

n
)(log(n)+2c)

=
�n/1000�∑

j=1

2j/2
√

j !e
−2jcej (j−1)

log(n)+2c
n .
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Let aj (n) be the summand in the right-hand side, and note that

aj+1(n)

aj (n)
= e

log(2)
2 −2c

√
j + 1

e2j
log(n)+2c

n .

As a function of j when n is fixed, this is decreasing until j = n
4(log(n)+2c)

and then increasing.
If the first and the last ratios are (strictly) less than 1, then we will have a subgeometric sum,
which will hence be bounded. The last ratio, at n

1000 , is equal to
√

1000e
log(2)

2 −2c+ 4c
1000 n

2
1000 − 1

2 −−−→
n→∞ 0.

For the first ratio, we need to be a little more careful. At j = 1, we can have a ratio much
larger than 1, all the more when c is little (i.e., negative and far from 0). So we will need to
split once more and consider the sum starting at a suitably chosen M , depending on c but
not on n. Thus, though the convergence is fast in the case of a positive c, already treated by
Diaconis and Shahshahani, if c is very negative, we will have to consider a very large amount
of terms, and the convergence will be much slower. Let M be such that

e
log(2)

2 −2c

√
M + 1

≤ 1

4
,

and n large enough such that

e2M
log(n)+2c

n ≤ 2,

and that the ratio
aj+1(n)

aj (n)
at j = n/1000 be less than 1/2. Then as all the ratios from j = M

are less than 1/2, we have
n/1000∑
j=1

aj (n) ≤
M∑

j=1

aj (n) + aM(n)

∞∑
i=1

1

2i
−−−→
n→∞

M∑
j=1

2j/2
√

j !e
−2jc + 2M/2

√
M!e

−2Mc.

Thus, as c ∈ R is fixed, A1 is bounded uniformly in n. Let us now treat A2, which will be
slightly easier.

We observe that for all j ≥ 0, jj ≤ j !3j , hence by (∗∗),∑
λ1=n−j

dλ ≤ nj 6j/2

jj/2 .

Let j be an integer between n/1000 and n − 1. Then

nj 6j/2

jj/2

(
1 − j

n

)k

= nj 6j/2

jj/2 ek log(1− j
n
)

≤ nj 6j/2

jj/2 e
−k(

j
n
+ j2

2n2 )

≤ nj 6j/2

jj/2 e
−( 1

2 log(n)+c)(j+ n

2·106 )

= 6j/2e
j
2 log( n

j
)
e
−c(j+ n

2·106 )
e
− 1

4·106 n log(n)

≤ 6j/2e
j
2 log(1000)e

|c|(j+ n

2·106 )
e
− 1

4·106 n log(n)

≤ en
log(6)

2 en log(1000)e
|c|(n+ n

2·106 )
e
− 1

4·106 n log(n)

= eKn−K ′n log(n),
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where K is a real constant and K ′ is a positive constant. Thus,

A2 ≤ neKn−K ′n log(n) −−−→
n→∞ 0.

Now we are able to conclude, using the bounds in the proof for A1. Let ε > 0, and let

M = M(c, ε) ≥ 1 such that e
log(2)

2 −2c√
M+1

≤ 1
4 and 2 2M/2√

M!e
−2Mc < ε. Then for n large enough,

∑
λ1≤n−M

dλ|sλ|k ≤ S1 + S2 + S3 +
n/1000∑
j=M

aj (n) + A2

≤
n/1000∑
j=M

aj (n) + o(1)

≤ aM(n)

∞∑
i=0

1

2i
+ o(1)

≤ 2
2M/2
√

M!e
−2Mc + o(1)

< ε + o(1) as n → ∞. �

4.2. Polynomial convergence lemma. We now start to estimate the main term.

LEMMA 4.2. Let 
 ∈ N∗. Then when n → ∞,

1

n!
∑

σ∈Sn

∣∣∣∣∣

∑

j=1

∑
λ1=n−j

dλs
k
λchλ(σ )

∣∣∣∣∣ = 1

n!
∑

σ∈Sn

∣∣∣∣∣

∑

j=1

e−2jcTj

(
Fix(σ )

)∣∣∣∣∣ + o(1),

where we recall that

Tj (z) =
j∑

i=0

(
z

j − i

)
(−1)i

i! .

Let us first show how the polynomials Tj , a key element of the proof, arise naturally.

LEMMA 4.3. Let j ∈ N∗ be a fixed integer, and σ ∈ Sn a permutation with at least one
cycle of length greater4 than j (i.e., σ ∈ Sn\Sn,j ). Then

1

j !
∑

λ∈Ŝn:λ1=n−j

dλ∗chλ(σ ) = Tj

(
Fix(σ )

)
,

where we recall that λ∗ = (λ2, λ3, λ4, . . .) is the truncated partition of λ = (λ1, λ2, λ3, . . .).

PROOF OF LEMMA 4.3. This proof is combinatorial and strongly relies on the
Murnagham–Nakayama rule (formula (3.10), page 108 in [19]). We first consider σ ∈
Sn\Sn,j as an indeterminate in chλ(σ ) and recall that, for any permutation σ and q ∈ N∗,
Nq(σ) is the number of q-cycles in the cycle decomposition of σ . For example, if λ =

4It still works for σ ∈Sn\Sn,j−1.
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(n− 4,1,1,1,1) and σ has a cycle of length greater than 4, we have, using the Murnagham–
Nakayama formula and writing Ni for Ni(σ ),

chλ(σ ) =
(
N1
4

)
+N3N1 +

(
N2
2

)
−N4 −

((
N1
3

)
−N2N1 +N3

)
+

((
N1
2

)
−N2

)
−N1 + 1.

We can observe that chλ(σ ) is a polynomial in N1(σ ) = Fix(σ ),N2(σ ), . . . ,Nj (σ ). The key
observation is that we will be able to compute everything when we take the sum at λ1 = j

constant, and that our polynomial, which seemingly has j indeterminates, will in reality be
a polynomial in only one variable, N1(σ ), the number of fixed points of σ . This comes from
the orthogonality of some characters and the mass transfer (Proposition 3.5), which will make
all the other terms cancel. Let us give a little more details.

For the polynomial algebra C[z1, z2, . . .], we will not use the canonical basis generated by
the z

j
i , but rather the one generated by the

(zi

j

)
, better suited here.

Let σ ∈ Sn\Sn,j . If λ is a partition of n such that λ1 = n − j , then the coefficient of(N1(σ )
j

)
in chλ(σ ) is naturally the number of ways we can fill the Young diagram of λ∗ with

all the numbers from 1 to j with line and column growth, that is, the number of standard
tableaux of λ∗, which is dλ∗ = chλ∗

(Id).
More generally, if j1, . . . , jr ∈N are such that j1 +2j2 +· · ·+ rjr = j , then the coefficient

of (
N1(σ )

j1

)(
N2(σ )

j2

)
· · ·

(
Nr(σ )

jr

)
in chλ(σ ) is

chλ∗(
rjr , . . . ,2j2,1j1

)
.

Thus, by orthogonality of the characters, the coefficient of
(N1(σ )

j1

)(N2(σ )
j2

) · · · (Nr(σ )
jr

)
in the sum∑

λ∈Ŝn:λ1=n−j

dλ∗chλ(σ )

is ∑
λ∈Ŝn:λ1=n−j

dλ∗chλ∗(
rjr , . . . ,2j2,1j1

) = ∑
λ∈Ŝn:λ1=n−j

chλ∗
(Id)chλ∗(

rjr , . . . ,2j2,1j1
) = 0.

By mass transfer (Proposition 3.5), we can also observe that for 1 ≤ j ′ ≤ j1, if σ has at least
j ′ fixed points (if it has less, the coefficient is zero), the coefficient of(

N1(σ )

j1 − j ′
)(

N2(σ )

j2

)
· · ·

(
Nr(σ )

jr

)
in the sum ∑

λ∈Ŝn:λ1=n−j

dλ∗chλ(σ )

is (−1)j
′

times j (j − 1) · · · (j − j ′ + 1) times the coefficient of(
N2(σ )

j2

)
· · ·

(
Nr(σ )

jr

)
in the sum ∑

λ∈Ŝn−j ′ :λ1=n−j+j ′
dλ∗chλ(

σ ′),
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where σ ′ has j ′ less fixed points than σ , but as many i-cycles for each i ≥ 2, coefficient
which is zero except when j2 = · · · = jr = 0, where it is equal to 1. To summarize, we have
shown that

1

j !
∑

λ∈Ŝn:λ1=n−j

dλ∗chλ(σ ) =
(
N1(σ )

j

)
−

(
N1(σ )

j − 1

)
+ 1

2

(
N1(σ )

j − 2

)
+ · · · + (−1)j

j !
= Tj

(
Fix(σ )

)
. �

PROOF OF LEMMA 4.2. Using the fact that ||a|− |b|| ≤ |a − b| and the triangle inequal-
ity, ∣∣∣∣∣ 1

n!
∑

σ∈Sn

∣∣∣∣∣

∑

j=1

∑
λ1=n−j

dλs
k
λchλ(σ )

∣∣∣∣∣ − 1

n!
∑

σ∈Sn

∣∣∣∣∣

∑

j=1

e−2jcTj

(
Fix(σ )

)∣∣∣∣∣
∣∣∣∣∣

≤ 1

n!
∑

σ∈Sn

∣∣∣∣∣

∑

j=1

∑
λ1=n−j

dλs
k
λchλ(σ ) −


∑
j=1

e−2jcTj

(
Fix(σ )

)∣∣∣∣∣
≤ 1

n!
∑

σ∈Sn


∑
j=1

∣∣∣∣( ∑
λ1=n−j

dλs
k
λchλ(σ )

)
− e−2jcTj

(
Fix(σ )

)∣∣∣∣.
Let us now split the sum on Sn into two parts, along Sn,
 and Sn\Sn,
, and let us bound
each of these two sums separately. We recall that Sn,
 = {σ ∈ Sn : all the cycles of σ are of
length ≤ 
}. We begin by the sum on Sn,
. By triangle inequality,

SSn,

:= 1

n!
∑

σ∈Sn,



∑
j=1

∣∣∣∣ ∑
λ1=n−j

dλs
k
λchλ(σ ) − e−2jcTj

(
Fix(σ )

)∣∣∣∣
≤ 1

n!
∑

σ∈Sn,



∑
j=1

∑
λ1=n−j

(
dλs

k
λ

∣∣chλ(σ )
∣∣ + ∣∣e−2jcTj

(
Fix(σ )

)∣∣).
Moreover, 0 ≤ sλ ≤ 1, chλ(σ ) ≤ dλ, and Tj (Fix(σ )) ≤ ∑j

i=0 Fix(σ )j−i ≤ (
 + 1)n
, so

SSn,

≤ 1

n!
∑

σ∈Sn,



∑
j=1

∑
λ1=n−j

(
d2
λ + e−2jc(
 + 1)n
).

By Proposition 3.1, dλ ≤ (n
j

)
dλ∗ , so

SSn,

≤ 1

n!
∑

σ∈Sn,



∑
j=1

∑
λ1=n−j

(((
n

j

)
dλ∗

)2
+ e−2jc(
 + 1)n


)
.

Finally, using
(n
j

)
dλ∗ ≤ nj

j ! dλ∗ ≤ nj ≤ n
 and equation (3.2) in the proof of Proposition 3.6,

SSn,

≤ K(
, c)n2
 |Sn,
|

|Sn| = o(1),

where K(
, c) is a constant depending only on l and c.
Let us treat the second sum, which we rewrite using Lemma 4.3:

1

n!
∑

σ∈Sn\Sn,



∑
j=1

∣∣∣∣( ∑
λ1=n−j

dλs
k
λchλ(σ )

)
− e−2jcTj

(
Fix(σ )

)∣∣∣∣
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= 1

n!
∑

σ∈Sn\Sn,



∑
j=1

∣∣∣∣ ∑
λ1=n−j

(
dλs

k
λ − e−2jc dλ∗

j !
)

chλ(σ )

∣∣∣∣
≤ 1

n!
∑

σ∈Sn\Sn,



∑
j=1

∑
λ1=n−j

∣∣∣∣dλs
k
λ − e−2jc dλ∗

j !
∣∣∣∣∣∣chλ(σ )

∣∣.
Let 1 ≤ j ≤ 
, 1 ≤ r ≤ j , and λ2 ≥ λ3 ≥ · · · ≥ λr ≥ 1 such that λ2 + · · · + λr = j . Let
λ = (n − j, . . . , λr) so that λ∗ = (λ2, . . . , λr).

From equation (3.1), we have

(4.1) sk
λ =

(
1 − 2j

n
+ O

(
1

n2

))� 1
2 n log(n)+cn�

= n−j e−2jc

(
1 + O

(
log(n)

n

))
.

Using equation (4.1), Proposition 3.2 and n−j
(n
j

) = 1
j !(1 + O( 1

n
)), we deduce that

dλs
k
λ = e−2jc dλ∗

j !
(

1 + O

(
log(n)

n

))
,

which we can rewrite as

(4.2) dλs
k
λ − e−2jc dλ∗

j ! = O

(
log(n)

n

)
.

As 
 is fixed, there are only a finite number of such λ, so the O(
log(n)

n
) can be used for all

these λ simultaneously.
We split the right-hand side according to whether max(N1(σ ), . . . ,N
(σ )) is larger or

smaller than n
1
2
 . On the one hand,

1

n!
∑

σ∈Sn\Sn,


max(N1(σ ),...,N
(σ ))≤n1/(2
)


∑
j=1

∑
λ1=n−j

∣∣∣∣dλs
k
λ − e−2jc dλ∗

j !
∣∣∣∣∣∣chλ(σ )

∣∣

= O

(
log(n)

n

)
1

n!
∑

σ∈Sn\Sn,


max(N1(σ ),...,N
(σ ))≤n1/(2
)


∑
j=1

∑
λ1=n−j

K(
, c)max
(
N1(σ ), . . . ,N
(σ )

)


= O

(
log(n)

n

)
1

n!
∑

σ∈Sn\Sn,


max(N1(σ ),...,N
(σ ))≤n1/(2
)


∑
j=1

∑
λ1=n−j

O
(
n

1
2
)

= O

(
log(n)

n1/2

)
.

On the other hand,

1

n!
∑

σ∈Sn\Sn,


max(N1(σ ),...,N
(σ ))>n
1
2



∑
j=1

∑
λ1=n−j

∣∣∣∣dλs
k
λ − e−2jc dλ∗

j !
∣∣∣∣∣∣chλ(σ )

∣∣

= 1

n!
∑

σ∈Sn\Sn,


max(N1(σ ),...,N
(σ ))>n
1
2



∑
j=1

∑
λ1=n−j

O

(
log(n)

n

)
K(
, c)max

(
N1(σ ), . . . ,N
(σ )

)
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≤ P
(
σ ∈ Sn : max

(
N1(σ ), . . . ,N
(σ )

)
> n

1
2


)
O

(
log(n)

n

)
O

(
n
)

≤

∑

i=1

P
(
σ ∈Sn : Ni(σ ) > n

1
2


)
O

(
log(n)

n

)
O

(
n
)

= O

(
1

(n
1
2
 )!

)
O

(
log(n)

n

)
O

(
n
) from Proposition 3.8

= o(1). �

4.3. Neglecting polynomials of high degree.

LEMMA 4.4. Let ε > 0. There exists M0 = M0(ε, c) such that for all M ≥ M0 and n ∈
N∗, ∣∣∣∣∣ 1

n!
∑

σ∈Sn

∣∣∣∣∣
M∑

j=1

e−2jcTj

(
Fix(σ )

)∣∣∣∣∣ − 1

n!
∑

σ∈Sn

∣∣∣∣∣
∞∑

j=1

e−2jcTj

(
Fix(σ )

)∣∣∣∣∣
∣∣∣∣∣ ≤ ε.

PROOF. Let M,n ∈ N∗. Then we have, using again ||a|− |b|| ≤ |a − b|, and splitting the
symmetric group according to the number of fixed points of permutations,∣∣∣∣∣ 1

n!
∑

σ∈Sn

∣∣∣∣∣
M∑

j=1

e−2jcTj

(
Fix(σ )

)∣∣∣∣∣ − 1

n!
∑

σ∈Sn

∣∣∣∣∣
∞∑

j=1

e−2jcTj

(
Fix(σ )

)∣∣∣∣∣
∣∣∣∣∣

≤ 1

n!
∑

σ∈Sn

∣∣∣∣∣
∞∑

j=M+1

e−2jcTj

(
Fix(σ )

)∣∣∣∣∣
=

∞∑
r=0

P
(
σ ∈Sn : N1(σ ) = r

)∣∣∣∣∣
∞∑

j=M+1

e−2jcTj (r)

∣∣∣∣∣
≤

∞∑
r=0

1

r!
∞∑

j=M+1

e−2jc
∣∣Tj (r)

∣∣ from Proposition 3.8 again.

Now we observe that if r ≥ j ,

∣∣Tj (r)
∣∣ =

∣∣∣∣∣
j∑

i=0

(
r

j − i

)
(−1)i

i!
∣∣∣∣∣ ≤

j∑
i=0

(
r

j − i

) ∣∣∣∣(−1)i

i!
∣∣∣∣ ≤

j∑
i=0

(
r

j − i

)
≤ 2r ,

and if r ≤ j ,

1

r!
∣∣Tj (r)

∣∣ = 1

r!
∣∣∣∣∣

j∑
i=j−r

(
r

j − i

)
(−1)i

i!
∣∣∣∣∣ ≤ 1

r!(j − r)!
j∑

i=j−r

(
r

j − i

)
≤ 1

((
j
2 )!)2

2r .

We therefore conclude that
∞∑

r=0

1

r!
∞∑

j=M+1

e−2jc
∣∣Tj (r)

∣∣
=

∞∑
j=M+1

e−2jc
j∑

r=0

1

r!
∣∣Tj (r)

∣∣ + ∞∑
j=M+1

∞∑
r=j+1

1

r!e
−2jc

∣∣Tj (r)
∣∣
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≤
∞∑

j=M+1

e−2jc

((
j
2 )!)2

j∑
r=0

2r +
∞∑

j=M+1

∞∑
r=j+1

1

r!e
2r|c|2r

≤
∞∑

j=M+1

e−2jc

((
j
2 )!)2

2j+1 +
∞∑

j=M+1

∞∑
r=j+1

1

r!e
2r|c|2r

= o(1)

when M → ∞. �

Before proving the last approximation, let us rewrite the infinite sum inside the absolute
values. Let us define

fc : x �→ e−e−2c(
1 + e−2c)x − 1.

PROPOSITION 4.5. Let N ∈ N. Then

∞∑
j=1

e−2jcTj (N) = fc(N).

PROOF. We just need to make a change of variables and swap the two sums:

∞∑
j=1

e−2jcTj (N) =
∞∑

j=1

j∑
i=0

e−2jc

(
N

j − i

)
(−1)i

i!

=
∞∑

j=1

j∑
i=0

e−2jc

(
N

i

)
(−1)j−i

(j − i)!

=
∞∑

j=0

j∑
i=0

e−2jc

(
N

i

)
(−1)j−i

(j − i)! − 1

=
∞∑
i=0

(
N

i

)
e−2ic

∞∑
j=i

e−2(j−i)c (−1)j−i

(j − i)! − 1

=
N∑

i=0

(
N

i

)
e−2ice−e−2c − 1

= e−e−2c(
1 + e−2c)N − 1. �

4.4. Conclusion of the proof. Before proving Theorem 1.1, let us show where the Poisson
law comes from.

LEMMA 4.6. When n → ∞, we have

1

n!
∑

σ∈Sn

∣∣fc

(
N

(n)
1 (σ )

)∣∣ −−−→
n→∞ E

∣∣fc

(
Poiss(1)

)∣∣,
where Poiss(1) denotes the Poisson law of parameter 1.
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PROOF. As factorials grow much faster than exponentials, and hence than fc, we have
as n → ∞, ∣∣∣∣E∣∣fc

(
Poiss(1)

)∣∣ − 1

n!
∑

σ∈Sn

∣∣fc

(
N

(n)
1 (σ )

)∣∣∣∣∣∣
=

∣∣∣∣∣
∞∑

r=0

e−1

r!
∣∣fc(r)

∣∣ − n∑
r=0

1

r!
(

n−r∑
i=0

(−1)i

i!
)∣∣fc(r)

∣∣∣∣∣∣∣
=

∣∣∣∣∣
n∑

r=0

1

r!
( ∞∑

i=n−r+1

(−1)i

i!
)∣∣fc(r)

∣∣ + ∞∑
r=n+1

e−1

r!
∣∣fc(r)

∣∣∣∣∣∣∣
= o(1). �

We are now ready to combine all our estimates.

PROOF OF THEOREM 1.1. Let ε > 0 and M , n0 such that for n ≥ n0, all the approxima-
tions be true up to ε. Let n ≥ n0.

From Lemma 2.1 and Lemma 4.1,∣∣∣∣d1
(
P ∗k

n ,Un

) − 1

n!
∑

σ∈Sn

∣∣∣∣ ∑
λ1≥n−M

dλs
k
λchλ(σ )

∣∣∣∣∣∣∣∣ ≤ ε.

From Lemma 4.2,∣∣∣∣∣ 1

n!
∑

σ∈Sn

∣∣∣∣ ∑
λ1≥n−M

dλs
k
λchλ(σ )

∣∣∣∣ − 1

n!
∑

σ∈Sn

∣∣∣∣∣
M∑

j=1

e−2jcPj

(
N1(σ )

)∣∣∣∣∣
∣∣∣∣∣ ≤ ε.

From Lemma 4.4,∣∣∣∣∣ 1

n!
∑

σ∈Sn

∣∣∣∣∣
M∑

j=1

e−2jcPj

(
N1(σ )

)∣∣∣∣∣ − 1

n!
∑

σ∈Sn

∣∣∣∣∣
∞∑

j=1

e−2jcPj

(
N1(σ )

)∣∣∣∣∣
∣∣∣∣∣ ≤ ε.

From Lemma 4.6, ∣∣∣∣∣ 1

n!
∑

σ∈Sn

∣∣∣∣∣
∞∑

j=1

e−2jcPj

(
N1(σ )

)∣∣∣∣∣ −E
∣∣fc

(
Poiss(1)

)∣∣∣∣∣∣∣ ≤ ε.

Consequently, by triangle inequalities,∣∣d1
(
P ∗k

n ,Un

) −E
∣∣fc

(
Poiss(1)

)∣∣∣∣ ≤ 4ε.

Thus, we proved that for all c ∈ R,

d1
(
P ∗k

n ,Un

) −−−→
n→∞ E

∣∣fc

(
Poiss(1)

)∣∣.
To conclude, let us rewrite this expectation into the natural form of the wording:

E
∣∣fc

(
Poiss(1)

)∣∣
=

∞∑
r=0

e−1

r!
∣∣e−e−2c(

1 + e−2c)r − 1
∣∣

=
∞∑

r=0

∣∣∣∣(e1+e−2c
)−1

r!
(
1 + e−2c)r − e−1

r! 1r

∣∣∣∣
= d1

(
Poiss

(
1 + e−2c),Poiss(1)

)
.

This concludes the proof of Theorem 1.1. �
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