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In this work, we estimate extreme sea surface temperature (SST)
hotspots, that is, high threshold exceedance regions, for the Red Sea, a vital
region of high biodiversity. We analyze high-resolution satellite-derived SST
data comprising daily measurements at 16,703 grid cells across the Red Sea
over the period 1985–2015. We propose a semiparametric Bayesian spatial
mixed-effects linear model with a flexible mean structure to capture spatially-
varying trend and seasonality, while the residual spatial variability is modeled
through a Dirichlet process mixture (DPM) of low-rank spatial Student’s t

processes (LTPs). By specifying cluster-specific parameters for each LTP
mixture component, the bulk of the SST residuals influence tail inference and
hotspot estimation only moderately. Our proposed model has a nonstation-
ary mean, covariance, and tail dependence, and posterior inference can be
drawn efficiently through Gibbs sampling. In our application, we show that
the proposed method outperforms some natural parametric and semiparamet-
ric alternatives. Moreover, we show how hotspots can be identified, and we
estimate extreme SST hotspots for the whole Red Sea, projected until the year
2100, based on the Representative Concentration Pathways 4.5 and 8.5. The
estimated 95% credible region, for joint high threshold exceedances include
large areas covering major endangered coral reefs in the southern Red Sea.

1. Introduction. Sea surface temperature (SST) has an immense environmental and eco-
logical impact on marine life and ecosystems worldwide, and in particular for the Red Sea,
for example, affecting the survival of endangered animal species, including corals (Reaser,
Pomerance and Thomas (2000), Berumen et al. (2013), Lewandowska et al. (2014)), and it
also has an important economic impact for neighboring countries which depend on it for
their local fisheries and tourism. Hence, the identification of the regions within the Red Sea
where SST may exceed high thresholds is a vital concern, and this motivates a proper statis-
tical analysis of (present and future) extreme hotspots from a high-resolution spatiotemporal
SST dataset. Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) produces
satellite-derived daily SST data at 0.05◦ × 0.05◦ resolution (Donlon et al. (2012)). Over the
whole Red Sea, daily SST data are available at 16,703 grid cells between 1985–2015, and we
consider these data for estimating extreme hotspots.

The most common model in spatial geostatistics is the Gaussian process (GP), due to
its appealing theoretical and computational properties (Gelfand and Schliep (2016)). How-
ever, fitting an ordinary GP model involves computing the determinant and the inverse of
the spatial covariance matrix which is excessively prohibitive in dimensions as high as the
Red Sea SST data (here, available at 16,703 grid cells). A variety of methods have been
proposed to tackle this problem. These include approaches based on kernel convolutions
(Higdon (2002)), low-rank methods using basis functions (Wikle and Cressie (1999)), the
predictive process (Banerjee et al. (2008)), approximations of the likelihood in the spectral
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domain (Stein (1999), Fuentes (2007)) or by a product of appropriate conditional distribu-
tions (Vecchia (1988), Stein, Chi and Welty (2004)), covariance tapering (Furrer, Genton and
Nychka (2006), Anderes et al. (2013)) and Markov random fields (Rue and Held (2005),
Rue, Martino and Chopin (2009)); see Heaton et al. (2019) for a comparative overview of
(some of) these methods. Irrespective of being an ordinary GP or a low-rank GP (LGP)
model, the marginal normal density functions are thin-tailed, and, hence, they can heavily
underestimate the probabilities of extreme events. Additionally, the tails of multivariate nor-
mal distributions lead to independent extremes asymptotically, except in the trivial case of
perfect dependence which can result in disastrous underestimation of the simultaneous oc-
currence probabilities of extreme events (Davison, Huser and Thibaud (2013)). Hence, both
GPs and LGPs have been criticized when the main interest lies in the tail behavior. Relaxing
the parametric GP assumption, Gelfand, Kottas and MacEachern (2005) propose a flexible
nonparametric Bayesian model based on a Dirichlet process mixture (DPM) of spatial GPs in
the context of geostatistical analysis; however, Hazra et al. (2018) showed that the joint tail of
a finite mixture of GPs also leads to independent extremes. There are more flexible nonpara-
metric spatial models available in the geostatistics literature (see, e.g., Duan, Guindani and
Gelfand (2007)), but these are often not computationally suitable for large spatial datasets.

While GPs and related processes are typically used to describe the bulk behavior, models
stemming from extreme-value theory are designed to accurately describe the tail behavior.
The classical modeling of spatial extremes usually relies on sitewise block maxima or peaks
over some high threshold (Smith (1990), Davison, Padoan and Ribatet (2012), Davison and
Huser (2015), Davison, Huser and Thibaud (2019), Huser and Wadsworth (2021)). They can
be divided into three main categories: (asymptotic) max-stable and Pareto processes (Smith
(1990), Padoan, Ribatet and Sisson (2010), Davison, Padoan and Ribatet (2012), Reich and
Shaby (2012), Opitz (2013), Thibaud and Opitz (2015), de Fondeville and Davison (2018)),
latent variable models (Sang and Gelfand (2009, 2010), Cooley and Sain (2010), Opitz et al.
(2018), Castro-Camilo, Huser and Rue (2019)) and subasymptotic models (Huser, Opitz and
Thibaud (2017), Morris et al. (2017), Hazra, Reich and Staicu (2020), Huser and Wadsworth
(2019)). Max-stable and Pareto processes are asymptotically justified models for spatial ex-
tremes, but likelihood computations are usually challenging, even for low or moderate spa-
tial dimensions (see, e.g., Castruccio, Huser and Genton (2016) and Huser et al. (2019)).
An exception is the max-stable model of Reich and Shaby (2012) which is computationally
tractable for higher spatial dimensions; see also Bopp, Shaby and Huser (2021). However,
this max-stable model has been criticized for its lack of flexibility in a variety of applica-
tions. Analogously, de Fondeville and Davison (2018) show how Pareto processes can be
efficiently fitted to high-dimensional peaks-over-thresholds using proper scoring rules, but
their approach is limited to a few thousand sites and cannot easily be accommodated to
the Bayesian setting. Alternatively, Morris et al. (2017) propose a Bayesian model for high
threshold exceedances based on the spatial skew-t process which lacks the strong asymptotic
characterization of max-stable and Pareto processes but benefits from exceptionally faster
computation. Instead of considering only block maxima or peaks-over-thresholds, as in the
above-mentioned approaches, Hazra et al. (2018) consider a DPM of spatial skew-t processes
where the extremes are selected probabilistically through the Dirichlet process prior; hence,
this modeling approach does not require any arbitrary high thresholding but assumes that
identically distributed temporal replicates are available. More recently, Bopp et al. (2020)
have proposed a Bayesian analogue model where the intensity of flood-inducing precipita-
tion is modeled using a mixture of Student’s t processes. However, these approaches are
applicable only for relatively low spatial dimensions, and they are not directly applicable for
large spatiotemporal datasets with trend and seasonality, such as our Red Sea SST dataset.
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In this paper, we propose a low-rank semiparametric Bayesian spatial mixed-effects linear
model, which extends the spatial model of Hazra et al. (2018), to handle large, highly nonsta-
tionary spatiotemporal datasets. Following Fix et al. (2018), we assume the mean SST profile
to be comprised of a spatially-varying trend that is linearly related to the mean annual sea
surface temperature projections for the Red Sea under the Representative Concentration Path-
way (RCP) 4.5 and 8.5, adopted by the Intergovernmental Panel on Climate Change (IPCC),
where RCP 8.5 corresponds to the pathway with high greenhouse gas emissions, while RCP
4.5 describes a moderate mitigation pathway. Additionally, we also consider a nonlinear sea-
sonality term (modeled using B-splines), and, for computational tractability with high spatial
resolution, we consider a low-rank approximation of the spatially-varying coefficients in-
volved within the trend and seasonality components. While the use of splines implies some
degree of regularity, it is justified in our case since SST data vary smoothly over space. More-
over, unlike the max-stable model of Reich and Shaby (2012) whose dependence structure is
constructed from smooth kernels, here we only consider the mean structure to be comprised
of splines, while the dependence structure of residuals has a more flexible stochastic repre-
sentation. Specifically, we model the residual variability using a DPM of low-rank spatial
Student’s t processes (LTPs), abbreviated by LTP-DPM in short. The DPM is constructed
using a (truncated) stick-breaking prior (Sethuraman (1994)). The LTP mixture components
are constructed by a scalar product of multivariate normal random effects with orthonormal
spatial basis functions and then multiplied by an inverse-gamma random scaling. The ran-
dom effects are assumed to be independent and identically distributed (i.i.d.) across time
points. The proposed model has nonstationary mean, covariance, and tail dependence struc-
ture, and, under a suitable asymptotic regime, its covariance structure spans the class of all
covariance structures from squared-integrable stochastic processes with continuous covari-
ance functions. We draw posterior inference about the model parameters through an efficient
Gibbs sampler.

Beyond modeling the SST data, our ultimate goal is to identify regions “at risk,” where
the SST level might exceed a high threshold at some future time. Similar problems arise in
a wide range of scientific disciplines, for example, environmental health monitoring (Bolin
and Lindgren (2015)), brain imaging (Mejia et al. (2020)), astrophysics (Beaky, Scherrer
and Villumsen (1992)) and climatology (Furrer et al. (2007), French and Sain (2013)). The
easiest and most naive approach for estimating exceedance regions (i.e., hotspots) is to per-
form site-specific exceedance tests at each grid cell separately (see, e.g., Eklundh and Olsson
(2003)). However, if such an approach does not adequately account for multiple testing nor
spatial dependence, it will fail to accurately represent the co-occurrence of extreme events.
A better approach for estimating hotspots is to set the joint probability of exceeding a high
threshold over the whole region being equal to some predefined value. In this spirit a variety
of more advanced methods have been proposed for identifying hotspots (see, e.g., Cressie,
Zhang and Craigmile (2005), Craigmile et al. (2005), French and Sain (2013), Bolin and
Lindgren (2015)). In particular, French and Sain (2013) provide a sampling-based method
for constructing confidence regions for Gaussian processes that contain the true exceedance
regions with some predefined probability. Here, we develop a similar approach to estimate
extreme hotspots by extending the Gaussian-based method of French and Sain (2013) and
French and Hoeting (2016) to the more general framework of our semiparametric LTP-DPM
model, which is better suited for capturing the joint tail behavior of complex spatiotemporal
processes.

The paper is organized as follows. In Section 2, we present the Red Sea SST dataset and
some exploratory analysis. Our proposed LTP-DPM model and its properties are discussed in
Section 3. In Section 4, we discuss Bayesian computational details and the hotspot estimation
technique. In Section 5, we apply the proposed methodology to the Red Sea SST dataset and
discuss the results. We conclude with some discussion and perspectives on future research in
Section 6.
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FIG. 1. Observed SST profiles across the Red Sea for three extremely hot days: September 12, 1998 (left), August
30, 2010 (middle) and September 18, 2015 (right). All subfigures are on the same scale.

2. The Red Sea SST dataset and exploratory analysis. The OSTIA project generates
satellite-derived daily SST estimates (free of diurnal variability) at an output grid resolution
of 0.05◦ × 0.05◦ (about six km). This yields 16,703 grid cells for the whole Red Sea. The
data can be freely obtained from the website http://ghrsst-pp.metoffice.com/ostia-website/,
and were also (partly) analyzed for the data competition organized for the 11th International
Conference on Extreme-Value Analysis, 2019, though with a different objective; see Huser
(2021). Figure 1 shows spatial maps of observed SST profiles for three different days with
high spatially-averaged SST. For all three days, the SST values are lowest near the Gulfs of
Aqaba and Suez in the north and highest in the southern Red Sea near the coast of Eritrea and
the southwest of Saudi Arabia.

Some exploratory analysis (not shown) reveals that daily SST data are highly autocorre-
lated in time and that the temporal dependence strength varies strongly over space. It would
be extremely statistically and computationally challenging—if possible at all—to flexibly
account for spatially-varying autocorrelation in a single fully Bayesian model for a dataset
of this size (16,703 grid cells and 11,315 days). Therefore, for simplicity, we here analyze
temporally-thinned data, keeping only one day per week at each grid cell, thus greatly reduc-
ing the temporal autocorrelation. Hence, we obtain seven (correlated) subdatasets, each com-
prising 1612 spatial fields (i.e., one per week), that we treat as independent time replicates.
The results are observed to be consistent across the sub-datasets. To concisely summarize
the results for all subdatasets, and to reduce the overall uncertainty in our final estimates, we
obtain the results separately for each subdataset, check that they are indeed mutually consis-
tent and then report the averages. As our main goal is to draw spatial inference, and estimate
spatial (rather than spatiotemporal) hotspots, this approach is reasonable.

Considering the spatially-varying nature of SST across the Red Sea and the long data
collection period of 31 years from 1985 to 2015, a period that faced global warming, we
first conduct a preliminary site-by-site average and trend analysis of the annual mean SST
as well as the quarterly mean SST by fitting simple linear regression models estimated by
least squares. The mean SST across the Red Sea is lowest during the first quarter and highest
during the third quarter. The trend profiles (decadal rate of change) of the first-quarterly,
third-quarterly, and annual mean SST are displayed in Figure 2. For the first-quarterly and
annual mean SST, the slopes are the highest near the latitude 22◦N and are the lowest near
the southern end of the Red Sea between Eritrea and Yemen. However, for the third-quarterly
mean SST, the highest slopes are observed throughout the coast of Egypt in the northwest, and

http://ghrsst-pp.metoffice.com/ostia-website/
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FIG. 2. Decadal rate of change of the quarterly average SST for the first (left) and the third (middle) quarters
and also of the annual average SST (right) over the Red Sea. All subfigures are on the same scale.

the lowest values are observed near the southwest of Saudi Arabia. Thus, Figure 2 explains
the need for spatially-, as well as seasonally-, or weekly-varying coefficients for modeling
the marginal SST distributions.

We then study the seasonality profile (averaged across years) at various grid cells. The
results are reported in the Supplementary Material (Hazra and Huser (2021a)). Significantly
different patterns are observed throughout the Red Sea. The hottest weeks (maximizing the
annual weekly average SST) vary mainly between weeks 32 and 35 (above the latitude 20◦N)
and weeks 37 and 42 (below 20◦N). The observed nonstationarity of SST across weeks ex-
plains the need for a flexible modeling of seasonality, for example, through some linear com-
bination of local basis functions with spatially-varying coefficients.

While the seasonal pattern and the spatial variability of the mean SST profile may be
estimated from observed data, future SST projections require the use of an additional co-
variate that accurately represents the long-term trend by incorporating climate physics and
anthropogenic influence through greenhouse gas emission scenarios. For this purpose, we
consider the output from the Geophysical Fluid Dynamics Laboratory (GFDL) model GFDL-
CM3 simulation (Shaltout (2019)) based on current century Coupled Model Intercomparison
Project Phase 5 (CMIP5) scenarios RCP 4.5 and RCP 8.5. The GFDL-CM3 simulation out-
puts can be downloaded from the website https://cds.climate.copernicus.eu. While the GFDL-
CM3 simulations are available over a 1◦ × 1◦ grid (39 grid cells for the Red Sea), we here
average the annual simulated SST for the entire Red Sea region which yields only one value
per year. Figure 3 displays the SST projections based on RCP 4.5 and 8.5. We performed two
separate analyses based on these two RCP scenarios. The two RCPs are the same during the
historic period (1985–2005) and start to diverge during the future period (2006–2100). Here,
we mainly focus on our findings based on the RCP 8.5 SST trajectory which is sometimes re-
ferred to as a “business-as-usual” scenario (without mitigation measures) and sometimes as a
worst-case scenario. We thus consider it as a relatively pessimistic upper bound for SST pro-
jections, while RCP 4.5 is a more optimistic, moderate case scenario. For completeness, we
also report the results for RCP 4.5 in the Supplementary Material (Hazra and Huser (2021a)).

We then compute the sitewise standard deviations (SDs) of the detrended SST data (with
trend obtained by spline smoothing as discussed in Section 3.2). The results are presented in
the left panel of Figure 4. Again, there is a highly nonstationary pattern with high SDs near
the northeast region and low SDs near the southeast region. The middle panel of Figure 4
shows the spatial correlation structure with respect to the central grid cell (38.48◦E, 20.62◦N).

https://cds.climate.copernicus.eu
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FIG. 3. Annual mean SST projections for the Red Sea, based on RCP 4.5 (blue) and RCP 8.5 (red) scenarios. The
two RCPs are the same during the historic period (1985–2005) and different during the future period (2006–2100).

The correlation values in the northern region are significantly higher than the values in the
southern region despite being at the same distance. This suggests that the spatial correlation
structure is also highly nonstationary.

To investigate the extremal dependence structure, whose specification and estimation is
crucial for hotspot detection, we then compute the empirical tail dependence coefficient with
respect to the same center grid cell (38.48◦E, 20.62◦N). The tail dependence coefficient be-
tween two random variables Y1 and Y2 is defined as χ = limu→1 χu (provided the limit ex-
ists), where

(1) χu = Pr
{
Y1 > F−1

1 (u) | Y2 > F−1
2 (u)

}
and F1 and F2 are the marginal distribution functions of Y1 and Y2, respectively. A nonzero
value of χ indicates asymptotic dependence while χ = 0 indicates asymptotic independence.
Here, we estimate χ with the empirical conditional probability χ̂u with u = 0.99. The values
are reported on the right panel of Figure 4. The observed values are nonzero throughout a
major portion of the spatial domain indicating the necessity for a model that can capture
nonzero extremal dependence (unlike GPs) at large distances and high thresholds.

Finally, we investigate the bias in estimating high quantiles when fitting normal and Stu-
dent’s t distributions. High biases observed at many grid cells indicate the need for a more

FIG. 4. Grid cellwise SD (left), spatial correlation (r , middle) and extremal dependence (χ0.99, right) profiles
corresponding to the grid cell (38.48◦E, 20.62◦N), respectively.
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flexible model than the usual parametric alternatives. As mixture models fit low through high
quantiles of the distributions more flexibly, a semiparametric model is warranted.

More details on the exploratory analysis are provided in the Supplementary Material
(Hazra and Huser (2021a)). To summarize, we need a model that accounts for spatially-
varying trend and seasonality components within the mean structure, while the residual vari-
ability needs to be modeled through a mixture of spatial processes that allows for extremal
dependence. Considering the high dimension, a low-rank approach is necessary to ensure that
inference is practically feasible.

3. Modeling.

3.1. General framework. Let D denote the spatial domain of the Red Sea. We model the
Red Sea SST data as

(2) Yt (s) = μt(s) + εt (s),

where Yt (s) denotes the observed SST at location s ∈D and, at time t ∈ {1,2, . . . , T = 1612},
μt(s) is the mean SST profile and εt (s) is the corresponding error component.

In Section 3.2 we first discuss the modeling of the mean term μt(s), and in Section 3.3
we then discuss the modeling of the residual process εt (s) for s ∈ D and t ∈ {1,2, . . . , T }. In
Section 3.4 we specify the overall Bayesian model, and in Section 3.5, we describe the model
properties.

3.2. Mean modeling. By an abuse of notation, we write μt(s) = μ(t1, t2, s) where
t1 = �t/52� denotes the year corresponding to time t and t2 = t − 52(t1 − 1) denotes the
corresponding week within the t1th year. Here, t1 ∈ {1, . . . , T1 = 31} for 31 years of data and
t2 ∈ {1, . . . , T2 = 52} for the 52 weeks within each year. Henceforth, this one-to-one relation
between t and (t1, t2) holds for the rest of the paper. In spite of the data being observed at
discrete time points, we model the mean SST profile as a continuous function of t1 and t2.

Let x∗
t1

be the mean simulated SST based on a RCP scenario for the t1th year. We as-

sume that μ(t1, t2, s) is linear in x∗
t1

, and we define μ(t1, t2, s) = β1(t2, s)x
(0)
t1,1

+β2(t2, s)x
(0)
t1,2

,

where x
(0)
t1,1

is a standardized version of the intercept, x(0)
t1,2

is a standardized version of x∗
t1

, and
β1(t2, s), β2(t2, s) denote the regression coefficients (intercept and slope with respect to x∗

t1
,

respectively) that vary over space as well as for each week of a specific year. Furthermore, we
write the regression coefficients βp0(t2, s),p0 = 1,2, as βp0(t2, s) = ∑PT

p1=1 βp0,p1(s)x
(1)
t2,p1

,

where x
(1)
t2,p1

,p1 = 1, . . . ,PT , are cubic B-splines defined over the continuous interval [1, T2]
with equidistant knots and evaluated at t2 and thus the seasonal variation is modeled as a
smooth function of week within each year. Considering one B-spline per month, we have
PT = 12 that helps capturing the monthly-varying features. Finally, let the grid cells within
D be denoted by s1, . . . , sN . In order to reduce the computational burden due to the high spa-
tial dimension N = 16,703, we consider a low-rank approximation of the spatially-varying
coefficients by specifying βp0,p1(sn) = ∑PS

p2=1 βp0,p1,p2x
(2)
n,p2 , where x

(2)
n,p2 are suitable spa-

tial basis functions. While other choices are also possible, we consider tensor products of
cubic B-splines defined over a rectangular surface covering D. A large number of basis func-
tions PS provides a lot of local detail, but it also increases the computational burden. On the
contrary, a small PS is computationally appealing but might over-smooth the spatial mean
surfaces. In practice, this trade-off depends on the computational resources available and the
required modeling accuracy.

To be more precise, we now discuss further technical details regarding the design matrices.
Let X0 denote the (T1 × 2)-dimensional matrix with (t1,p0)th entry, denoted by x

(0)
t1,p0

. We
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standardize covariates such that x
(0)
t1,1

= T
−1/2
1 and x

(0)
t1,2

= (x∗
t1

− x∗)/{∑T1
t∗1 =1(x

∗
t1

− x∗)2}1/2,

with x∗ = T −1
1

∑T1
t∗1 =1 x∗

t1
. This ensures that X0 is an orthonormal matrix which is impor-

tant from a computational perspective. For the low-rank structure of βp0(t2, s), we consider
the same B-spline basis functions for p0 = 1,2 for convenience, though other choices are
also possible. We denote the (T2 × PT )-dimensional design matrix corresponding to the sea-
sonal effects by X1, with (t2,p1)th entry x

(1)
t2,p1

. For choosing suitable basis functions for the
βp0,p1(sn)’s, taking the elongated geometry of the Red Sea into account, we place 30 equidis-
tant B-splines along the northwest–southeast direction and 10 equidistant B-splines along the
southwest–northeast direction. Out of these 300 B-splines, we only keep the PS = 189 of
them that represent more than 99% of the total weight over s1, . . . , sN . The knots are well
spread across all the Red Sea, and, hence, the splines are able to capture local characteristics
quite well. We denote the corresponding (N × PS)-dimensional design matrix by X2, with
(n,p2)th entry x

(2)
n,p2 .

In summary, we model the mean SST at spatial location sn and time point t as

(3) μt(sn) =
2∑

p0=1

PT∑
p1=1

PS∑
p2=1

βp0,p1,p2x
(0)
t1,p0

x
(1)
t2,p1

x(2)
n,p2

.

Let the spatial mean vector at time t be μt = [μt(s1), . . . ,μt (sN)]′, and, combining
all time points, let μ = [μ′

1, . . . ,μ
′
T ]′. Grouping the regression coefficients, let βp0,p1

=
[βp0,p1,1, . . . , βp0,p1,PS ]′ and βp0

= [β ′
p0,1, . . . ,β

′
p0,PT ]′. Denoting the two columns of X0

by X0;1 and X0;2, respectively, we can write μ in vectorial form as μ = [X0;1 ⊗ X1 ⊗
X2]β1 + [X0;2 ⊗ X1 ⊗ X2]β2, where ⊗ denotes the Kronecker product between two matri-
ces.

3.3. Spatial dependence modeling. We now discuss the modeling of the residual process
εt (s). We here assume that the εt (s)’s are i.i.d. across time with zero mean, and we write ε(s)
for a generic copy of εt (s). Our semiparametric Bayesian model for the spatial residual pro-
cesses εt (·) is based on a Dirichlet process mixture (DPM) of parametric low-rank Student’s
t processes (LTPs). We first describe the construction of LTPs and then discuss the modeling
based on mixtures.

3.3.1. Low-rank Student’s t process (LTP). LTPs are richer than LGPs, as they have
heavier marginal and joint tails, and they can capture spatial extremal dependence contrary
to Gaussian processes. At a spatial location s, we model a realization from an LTP as

(4) ε(s) = σ
{
h′(s)Z + η(s)

}
, s ∈D,

where h(s) denotes the vector of length L comprised of some spatial basis functions evaluated
at s. The random effects are specified as Z ∼ NormalL(0,�) for some positive definite matrix
�, while σ 2 ∼ Inverse-Gamma(a

2 , a
2 −1), a > 2, and η(·) denote a spatial white noise process

(i.e., nugget effect) such that η(s)
i.i.d.∼ Normal(0, τ 2), τ > 0.

For the N spatial grid cells s1, . . . , sN , let ε = [ε(s1), . . . , ε(sN)]′ be the vector of observed
values from the process ε(·). Moreover, let H be the (N × L)-dimensional matrix, whose
columns are the different spatial basis functions evaluated at s1, . . . , sN . After marginaliza-
tion over the random effects Z and σ 2, the joint distribution of ε is

(5) ε ∼ Ta

(
0N,

a − 2

a

(
H�H ′ + τ 2IN

))
,

where Tã(μ̃, �̃) denotes the multivariate Student’s t distribution with location vector μ̃, dis-
persion matrix �̃ and degrees of freedom ã, IN is the N -by-N identity matrix and 0N is the
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zero vector of length N . In case (temporal) replications are available from the spatial process
ε(·), a rough estimate of the spatial covariance matrix of ε (which exists since a > 2) can be
obtained upfront using the sample covariance matrix �̂ = Ĉov(ε), with ε obtained from a pre-
liminary least-squares fit of model (2) based on the specification (3) after subtracting the fitted
mean from the data. Here, we consider spatial basis functions to be the L � N eigenvectors
of �̂ with the largest corresponding eigenvalues. In other words, the matrix H is comprised of
empirical orthogonal functions (EOFs). Specifically, let � be the diagonal matrix with the L

largest eigenvalues of �̂ and H be the matrix with column vectors equal to the corresponding
eigenvectors. Then, we have the low-rank approximation �̂ ≈ H�H ′, where the right-hand
side has rank L. Other choices of basis functions h(s) are also possible (even in case repli-
cates are unavailable); a detailed discussion about the choice of h(s) is provided in Wikle
(2010). For illustration, the six most important EOFs for the Red Sea data are displayed in
the Supplementary Material (Hazra and Huser (2021a)). They reveal interesting geographic
patterns which indicate that our EOF-based approach makes sense from a practical perspec-
tive. While obtaining the (N × N)-dimensional matrix �̂ is computationally intensive, we
here need to compute it only once upfront (before running the MCMC algorithm), and the
function cova from the R package Rfast (Papadakis et al. (2017)) can be exploited to
speed up the computation. Furthermore, obtaining all the eigenvalues and the corresponding
eigenvectors would also be time-consuming, but the function eigs_sym from the R pack-
age rARPACK (Qiu and Mei (2016)) can be used to very efficiently compute a small number
of highest eigenvalues and the corresponding eigenvectors. While � = � could be assumed
to be fixed, we consider instead � in (5) to be unknown and use an informative prior on �
with prior mean equal to �. The nugget component η = [η(s1), . . . , η(sN)]′ is important for
Cov(ε) to be full-rank, though τ 2 is expected to be small. The specific parametrization of σ 2

ensures that Cov(ε) = H�H ′ + τ 2IN , so, plugging the prior mean of �, we get the approxi-
mation Cov(ε) ≈ H�H ′ + τ 2IN ≈ �̂. Hence, overall, we construct a zero-mean LTP, where
the covariance structure resembles the sample covariance estimated in a preliminary step.

3.3.2. Dirichlet process mixture (DPM) of LTPs. In case we do not have any (temporal)
replicates of the process ε(·), parametric assumptions are required (though �̂—and hence
H—are not available and another choice of basis functions is required). However, for the Red
Sea data, independent temporal replicates of the anomalies, εt (s), t = 1, . . . , T , are available,
and we can thus estimate the underlying spatial process semiparametrically.

Considering that our focus mainly lies in inferences from the tail, we here extend the con-
struction (4) by modeling the residuals using a DPM in the same spirit as Hazra et al. (2018),
where the characteristics of the bulk and the tail of the anomaly process are described by
different mixture components with component-specific parameters. Thus, our approach can
automatically and probabilistically cluster observations into weeks characterized by “normal
conditions” or weeks characterized by “abnormal (extreme) conditions” without any artificial
and subjective thresholding. Thus, tail inference is expected to be minimally influenced by
observations from the bulk while providing a reasonable fit on the entire probability range.

Now, we assume that, for all t , εt = [εt (s1), . . . , εt (sN)]′ are i.i.d., N -dimensional realiza-
tions from a LTP-DPM model with K mixture components for some natural number K . The
corresponding multivariate density function is

(6) fDPM(ε) =
K∑

k=1

πkfT (ε;�k),

where πk > 0 are the mixture probabilities with
∑K

k=1 πk = 1, �k denotes the set of parame-
ters of the kth LTP component and fT (·) denotes the density of an N -dimensional realization
from the LTP in (5). When K = ∞, the model becomes fully nonparametric.
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The main advantage of the LTP-DPM model lies in its hierarchical Bayesian model rep-
resentation. The model can be rewritten as a clustering model, where, conditional on the
random cluster label gt with probability mass function Pr(gt = k) = πk , k ∈ {1, . . . ,K}, we
have εt ∼ fT (· | �gt ). Thus, our LTP-DPM model assumes that weeks with similar residuals
can be clustered together, their distribution being described by the same LTP. Treating the
cluster labels gt as unknown, the model accounts for uncertainty in cluster allocation.

We assign a truncated stick-breaking prior distribution (Sethuraman (1994)) on the mix-
ture probabilities, πk , k ∈ {1, . . . ,K}. Precisely, we have the following constructive represen-
tation: π1 = V1 ∼ Beta(1, δ) for some Dirichlet process concentration parameter δ > 0 and,

subsequently, πk = (1−∑k−1
i=1 πi)Vk for k = 1, . . . ,K −1 with Vk

i.i.d.∼ Beta(1, δ). As we con-
sider K to be finite, we set VK = 1 so that

∑K
k=1 πk = 1. In our MCMC implementation, we

exploit the one-to-one correspondence between the πk’s and the Vk’s by iteratively updating
the latter to estimate the former. We write π = [π1, . . . , πK ]′ ∼ Stick-Breaking(δ).

3.4. Overall model. Considering two types of spatial basis functions within μt(s) and
εt (s) leads to collinearity issues between fixed and random effects. To resolve this issue, we
divide the matrix X2 from Section 3.2 into two parts based on its projection onto the column
space of the matrix H from Section 3.3. The projection matrix is P H = H (H ′H )−1H ′ =
HH ′, as H is an orthonormal matrix. We have X2 = X2;1 + X2;2 where X2;1 = P HX2 and
X2;2 = (IN − P H )X2, and then rewrite μ = ∑2

i=1
∑2

j=1(X0;i ⊗ X1 ⊗ X2;j )βi;j with two
separate vectors of coefficients corresponding to X2;1 and X2;2 for each of the intercept-
related and slope-related terms. For a specific grid cell sn and time point t , μt(sn) =∑2

i=1
∑2

j=1 x
(0;i)
t1

(x
(1)
t2

⊗ x
(2;j)
n )βi;j , where x

(0;i)
t1

is the t1th entry of X0;i , x
(1)
t2

is the t2th

row of X1, and x
(2;j)
n is the nth row of X2;j .

Overall, given the cluster label gt = k, our hierarchical model is defined as follows:

Yt (s) = μt(s) + σt

{
h′(s)Zt + ηt (s)

}
,

Zt ∼ NormalL(0,�k), ηt (s)
i.i.d.∼ Normal

(
0, τ 2

k

)
,(7)

σ 2
t ∼ Inverse-Gamma

(
ak

2
,
ak

2
− 1

)
,

where μt(s) is the mean SST profile, h(s) is the vector of spatial basis functions as described
in Section 3.3, and Zt and σt denote independent copies of the corresponding random effects.
The set of parameters of the LTP corresponding to time t is �k = {�k, τ

2
k , ak}. We treat the

cluster-specific parameters �k as unknown and put hyperpriors on them. We assume that

�k
i.i.d.∼ G�, where the components of �k , that is, �k, τ

2
k and ak , are treated as independent

of each other. Our choice of hyperpriors is discussed in Section 4.1.

3.5. Model properties. For model (7) the conditional mean and covariance structure of
Yt (sn), given the coefficients βi;j , and the cluster-specific parameters �k are

E
{
Yt (sn) | β i;j , i, j = 1,2

} = μt(sn) =
2∑

i=1

2∑
j=1

x
(0;i)
t1

(
x

(1)
t2

⊗ x(2;j)
n

)
βi;j ,

(8)

Cov
{
Yt (sn1), Yt (sn2) | �k;k = 1, . . . ,K

} =
K∑

k=1

πk

(
hn1�kh

′
n2

+ τ 2
k I{n1=n2}

)
,

where hn denotes the nth row of H and I{n1=n2} = 1 if n1 = n2 and zero otherwise.
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The mean structure is nonstationary both in space and time, nonlinear, and includes inter-
action terms between the spatial and temporal effects. Thus, the model can capture spatially-
varying seasonality and trend as well as seasonally-varying trends at each spatial grid cell.
Because we specify high-resolution B-spline knot locations both over space and time, our
model can capture the local features in the mean behavior reasonably well.

The covariance between the observations at grid cells sn1 and sn2 is dependent on both
sn1 and sn2 and cannot be reduced to a function of the spatial lag sn1 − sn2 . Hence, the
covariance structure is also nonstationary. For the Dirichlet process atoms �k , k = 1, . . . ,K ,
we consider priors so that E(�k) = �; recall Section 3.3. Marginalizing over �k , we get
Cov{Yt (sn1), Yt (sn2)} = hn1�h′

n2
+τ 2

I{n1=n2}, where τ 2 = ∑K
k=1 πkτ

2
k . Considering τ 2 to be

small, we get the approximation Cov(Y t ) ≈ �̂, where Y t = [Yt (s1), . . . , Yt (sN)]′ and �̂ is as
discussed in Section 3.3. Thus, the LTP-DPM model is centered around a low-rank Student’s
t process, constructed as in Section 3.3 with mean structure discussed in Section 3.2.

Considering εt (·) as an infinite-dimensional spatial process and ignoring the nugget term,
for L = ∞, we can write εt (s) = ∑∞

l=1 Zlthl(s). For any pair l1 and l2 with l1 �= l2, the vector
[Zl1t ,Zl2t ]′ follows a DPM of bivariate zero-mean Student’s t distributions which spans any
bivariate zero-mean distribution when K = ∞. Integrating with respect to the priors of �k ,
Cov(Zl1t ,Zl2t ) = 0. Thus, for L,K = ∞, the covariance of the proposed model satisfies the
criteria of the Karhunen–Loève Theorem (Alexanderian (2015)) and spans the covariance
structure of all squared-integrable stochastic processes with continuous covariance functions.
Under suitable regularity conditions, posterior consistency of the proposed model holds (Wu
and Ghosal (2010), Ghosal and van der Vaart (2017)).

The spatial tail dependence coefficient between two different grid cells sn1 and sn2 , de-
fined in (1), is nonstationary for the proposed LTP-DPM model, and it is easy to show that
it is determined by the heaviest-tailed mixture component in (6). Using the tail properties of
Student’s t copulas (Demarta and McNeil (2005)), its expression may be written explicitly
as χ(sn1, sn2) = 2FT (

√
(am + 1){1 − rm(sn1, sn2)}/{1 + rm(sn1, sn2)};0,1, am + 1), where

m = arg mink{ak} and rm(sn1, sn2) = hn1�mh′
n2

/
√∏

ñ=n1,n2
(hñ�mh′

ñ + τ 2
m) denotes the un-

derlying spatial correlation of the Gaussian term characterizing the mth mixture component,
and FT (· ;0,1, a) = 1 − FT (· ;0,1, a) is the survival function for a standard (univariate)
Student’s t distribution with a degrees of freedom; see, also Hazra et al. (2018). Here,
χ(sn1, sn2) > 0 for any pair of sites, so our model can capture asymptotic dependence, unlike
Gaussian processes, and is an increasing function of rm(sn1, sn2). Asymptotic dependence
holds, however, even when rm(sn1, sn2) = 0 (unless am → ∞). Therefore, the model can-
not capture full independence, and dependence persists at large distances, even in the tails.
This is a downside of the proposed model in case the spatial domain is large and the process
of interest is rough across the domain (e.g., with precipitation or wind speed data), but this
should not be a big limitation for our Red Sea SST data which remain strongly dependent at
large distances. From equation (8) and the expression for χ(sn1, sn2) above, we can see that
the dependence structure (both covariance, and tail dependence) is nonstationary and is not
impacted by the smooth spatiotemporal mean structure.

4. Bayesian inference and identification of hotspots.

4.1. Hyperpriors and an efficient Gibbs sampler. We draw posterior inference about the
model parameters in our model using Markov chain Monte Carlo (MCMC) sampling. Ex-
cept for the degrees of freedom parameters, ak , k = 1, . . . ,K , of the LTP components of the
LTP-DPM model, conjugate priors exist for all other model parameters which allows Gibbs
sampling. While Metropolis–Hastings sampling would be possible for the ak’s, we prefer to
consider discrete uniform priors on a fine grid of values which allows drawing samples from
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the full conditional distributions in a fast and easy manner. Due to its numerical stability, this
strategy is often considered in the literature; for example, Gelfand, Kottas and MacEachern
(2005) use it for posterior sampling from the range parameter of the spatial Matérn covari-
ance; see also Morris et al. (2017) and Hazra, Reich and Staicu (2020).

For the vectors of fixed effects involved within the mean terms, β i;j , i = 1,2, j = 1,2, we
consider the priors β i;j ∼ NormalP (μi;j 1P ,σ 2

i;jIP ), where 1P is the P -dimensional vector
of ones and IP is the P -by-P identity matrix with P = PT PS = 2268. While the posterior
distribution of βi;j is also a P -variate normal distribution, we exploit the Kronecker product
structure of the high-dimensional posterior covariance matrix to avoid its computationally
challenging inversion. For the hyperparameters μi;j , we consider the relatively noninforma-
tive priors μi;j ∼ Normal(0, s2

i;j ) with s1;j = 102 and s2;j = 10 for j = 1,2. The parameter
vectors β1;j , j = 1,2, correspond to the intercept term, while β2;j , j = 1,2, correspond to
the slopes with respect to the simulated RCP-based SST estimates. The absolute values of
the intercept-related terms are likely to be large, while the slope terms are likely to be small,
and, thus, we consider flatter prior for the μ1;j ’s. For the hyperparameters σ 2

i;j , we consider

the priors σ 2
i;j ∼ Inverse-Gamma(ai;j , bi;j ), i = 1,2, j = 1,2. We fix the hyperparameters to

a1;j = b1;j = 0.01 and a2;j = b2;j = 0.1 for j = 1,2. While both priors are quite noninfor-
mative, we choose the hyperpriors differently, following a similar logic as the one used when
considering the priors for the μi;j ’s.

The parameters involved in the distribution of the error terms εt (sn) are the component-
specific parameters and hyperparameters of the DPM model described in Section 3.3. For
the purpose of computation, we fix the number of components in the stick-breaking prior by
setting VK = 1 for some finite integer K . The choice of K is problem-specific and leads
to a bias–variance trade-off. Large K is desirable to increase the model flexibility (i.e.,
decrease the bias), but considering K to be very large may lead to spurious estimates, as
the sampling from the parameters of an LTP component depends on the observations from
that specific cluster and a large K may lead to very few observations within some clusters
(thus increasing the variance). In our application, we fit different models with K = 1,5,10
and compare them by cross-validation (see Section 5.1). The prior choices for the DPM

model parameters are �k
i.i.d.∼ Inverse-Wishart(L + 2,�), where � is the diagonal contain-

ing the L largest eigenvalues of �̂ (recall Section 3.3), τ 2
k

i.i.d.∼ Inverse-Gamma(1,1), and

ak
i.i.d.∼ Discrete-Uniform(2.1,2.2, . . . ,40.0). The prior for �k is conjugate, and it ensures

that E(�k) = �, although the variance of its elements is infinite. We choose hyperparameters
for the prior of τ 2

k so that the mass is mainly distributed near zero. The existence of a con-
tinuous conjugate prior for ak is unknown, and the discrete uniform prior avoids the need of
Metropolis–Hastings sampling, as mentioned above. The support of the distribution consid-
ered here covers a wide range of degrees of freedom. The smallest values within the support
of ak correspond to a heavy-tailed and strongly dependent process, while the largest values
practically correspond to a near-Gaussian behavior. For the mixing probabilities πk , we con-
sider a stick-breaking prior as discussed in Section 3.3. The distribution of π = [π1, . . . , πK ]′
involves the unknown concentration hyperparameter δ. We here consider a fairly noninfor-
mative conjugate hyperprior, δ ∼ Gamma(0.1,0.1).

The full conditional distributions required for model fitting and prediction are provided
in the Supplementary Material (Hazra and Huser (2021a)). In our data application, we im-
plement the MCMC algorithm in R (http://www.r-project.org), and our commented R code is
also provided in the Supplementary Material (Hazra and Huser (2021b)). We generate 60,000
posterior samples and discard the first 10,000 iterations as burn-in period. Subsequently, we
thin the Markov chains by keeping one out of five consecutive samples, and thus, we finally
obtain B = 10,000 samples for drawing posterior inference. Convergence and mixing are
monitored through trace plots.

http://www.r-project.org
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4.2. Hotspot estimation. Our main goal is to exploit the observed Red Sea SST data
to identify extreme hotspots, that is, to construct a “confidence region” that contains joint
threshold exceedances of some (very) high threshold u at some future time t0 with a pre-
defined probability. Our proposed approach developed below generalizes French and Sain
(2013) (who focus on Gaussian processes only, in the frequentist setting) and French and
Hoeting (2016) (extended to the Bayesian setting) to the more general and flexible case of
LTP-DPMs which better capture the joint tail behavior of complex spatiotemporal processes.
While other approaches based on alternative definitions of hotspots are also possible (see,
e.g., Bolin and Lindgren (2015)), the pragmatic sampling-based method of French and Sain
(2013) that we adopt here is easy to implement and computationally convenient, as it does
not rely on the solution of a complex optimization problem as in Bolin and Lindgren (2015).

Let D′ = {s1, . . . , sN } ⊂ D be our discretized domain of interest. We define the exceedance
region above a fixed threshold u at time t0 as E0

u+ = {s ∈ D′ : Yt0(s) ≥ u}. Note that, be-
cause Yt0(·) is a random process, E0

u+ is a random set. Our goal is to find a region D0
u+ that

contains the “true” exceedance region E0
u+ with some predefined probability 1 − α, that is,

Pr(E0
u+ ⊆ D0

u+) = 1 − α. While the target region D0
u+ is generally not unique, a valid solu-

tion to this problem may be obtained by viewing it through the lenses of multiple hypoth-
esis testing. The proposed approach works essentially as follows. For each fixed grid cell
sn ∈ D′, we first individually test the null hypothesis H0 : Yt0(sn) = u against the alterna-
tive H1 : Yt0(sn) < u based on some test statistic denoted by Ỹt0(sn). An obvious choice for
Ỹt0(sn) is to exploit (a rescaled version of) Ŷt0(sn), a predictor of Yt0(sn). Then, to find the
exceedance region, we combine these single-cell tests together by collecting all grid cells
sn ∈ D′ where we fail to reject H0. However, if each test is performed individually at the
confidence level 1 − α, this approach accurately identifies marginal threshold exceedances,
while it fails to correctly represent joint exceedances at the required overall confidence level.
Thus, we finally account for multiple testing by appropriately adjusting the critical value of
the tests in order to reach an overall familywise error rate α. Notice that, because of spatial
proximity, all the individual tests are dependent, and a sampling-based approach is here used
to precisely set the critical value.

We now describe how we design the test statistic and how we set the critical value. First,
consider the marginal predictive distributions based on our proposed LTP-DPM model (7).
We have Yt0(sn) = μt0(sn) + εt0(sn). Let t01 = �t0/52� and t02 = t0 − 52(t01 − 1) be the year
and week, respectively, corresponding to the time point of interest, t0. From Section 3.2 and
Section 3.4, the mean of Yt0(sn) has the form

(9) μt0(sn) =
2∑

i=1

2∑
j=1

x
(0;i)
t01

(
x

(1)
t02

⊗ x(2;j)
n

)
βi;j ,

where x
(0;1)
t01

= T
−1/2
1 , x

(0;2)
t01

= (x∗
t01

− x∗)/{∑T1
t∗1 =1(x

∗
t1

− x∗)2}1/2 (with x∗ as in Section 3.2)

and x
(1)
t02

is the t02th row of X1. The density of the corresponding error term εt0(sn) is

(10) f (ε) =
K∑

k=1

πkfT

{
ε;0,

ak − 2

ak

(
hn�kh

′
n + τ 2

k

)
, ak

}
,

with fT (· ;0, σ̃ 2, ã) the univariate Student’s t density function with location 0, scale
σ̃ and degrees of freedom ã. Now, let Ŷt0(sn) be the posterior mean of Yt0(sn), es-
timated by averaging B roughly independent posterior predictive samples of Yt0(sn)

based on (9) and (10). Here, we have B = 104, and we simulate posterior samples for
the entire spatial process at once to account for spatial dependence among the tests.
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From the Bayesian central limit theorem, we then have the large-sample approximation
Ŷt0(sn) | Yt0(sn)

·∼ Normal(Yt0(sn), σ̃
2
t0
(sn)/B), where σ̃t0(sn) denotes the posterior standard

deviation of Yt0(sn), which we estimate from the B posterior samples. This leads us to con-
sider the test statistic

(11) Ỹt0(sn) = √
B

Ŷt0(sn) − u

σ̃t0(sn)

and to define a rejection region for H0 : Yt0(sn) = u (against H1 : Yt0(sn) < u) of the form
{Ỹt0(sn) < Cα} for some critical level Cα . Under H0, Ỹt0(sn) has an approximate standard
normal distribution. We further note that this test is equivalent to testing H0 : Yt0(sn) > u

against H1 : Yt0(sn) < u.
We finally need to adjust the critical value Cα , so that the familywise Type I error rate is

α. This ensures a confidence level of 1 − α for the confidence region D0
u+ . A Type I error

can only occur at locations sn within the true exceedance region, and, hence, to control the
overall Type I error, we need to consider the test statistic values only within E0

u+ . There-

fore, the critical value Cα should be chosen such that Pr(minsn∈E0
u+ {Ỹt0(sn)} < Cα) = α.

However, in practice, we ignore the true exceedance region E0
u+ , and, as a result, the distribu-

tion of minsn∈E0
u+ {Ỹt0(sn)} is also unknown. To circumvent this issue, we can again exploit

the B posterior samples to approximate the region E0
u+ as well as the required probability.

The critical level Cα is obtained as the empirical α-quantile based on posterior samples of
minsn∈E0

u+ {Ỹt0(sn)}. The steps for sampling from the posterior predictive distribution, along

with estimating the critical value Cα empirically, and for obtaining the estimated exceedance
set D0

u+ are provided in Algorithm 1. The proof that the familywise error rate is indeed α, as
required for the described algorithm, is provided in the Supplementary Material (Hazra and
Huser (2021a)).

Algorithm 1 Hotspot estimation at a future time t0
• Fix an overall Type-I error α and a threshold level u.
• Fit the model (7) to the data, and obtain B posterior samples from the parameters and hyperparam-

eters.
• For each posterior sample b = 1, . . . ,B:

– calculate μt0(sn) according to (9), and let μ
(b)
t0

(sn) denote the the bth sample.

– plug in πk = π
(b)
k , and simulate g

(b)
t0

from Pr(gt0 = k) = π
(b)
k . Assume that g

(b)
t0

= kb .

– plug in ak = a
(b)
k , and simulate σ

2(b)
t0

from σ 2
t0

∼ Inverse-Gamma(
a

(b)
kb

2 ,
a

(b)
kb

2 − 1).

– plug in �k = �
(b)
k , and simulate Z

(b)
t0

from Zt0 ∼ NormalL(0,�
(b)
kb

).

– plug in τ 2
k = τ

2(b)
k , and simulate η

(b)
t0

(sn), n = 1, . . . ,N , from ηt0(sn)
i.i.d.∼ Normal(0, τ

2(b)
kb

).

– calculate ε
(b)
t0

(sn) = σ
(b)
t0

{h′
nZ

(b)
t0

+ η
(b)
t0

(sn)}, the bth sample from εt0(sn).

– calculate Y
(b)
t0

(sn) = μ
(b)
t0

(sn) + ε
(b)
t0

(sn), the bth posterior predictive sample from Yt0(sn).

• Based on Y
(b)
t0

(sn), b = 1, . . . ,B:
– calculate Ỹt0(sn) according to (11), at each sn.

– identify the exceedance region Eb
u+ = {sn ∈D′ : Y (b)

t0
(sn) ≥ u}, for each b.

– calculate minsn∈Eb
u+ {Ỹt0(sn)}, for each b.

– estimate Cα by Ĉα , the empirical α-quantile of {minsn∈Eb
u+ {Ỹt0(sn)};b = 1, . . . ,B}.

• Return D0
u+ = {sn ∈D′ : Ỹt0(sn) ≥ Ĉα}.
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5. Data application.

5.1. Model fitting and cross-validation study. Here, we present the results based on RCP
8.5, considering it as a relatively pessimistic greenhouse gas emission scenario. The results
based on RCP 4.5 (moderate mitigation pathway) are provided in the Supplementary Material
(Hazra and Huser (2021a)). To fit our model, we first need to fix the number of mixture
components, K , and the number of spatial basis functions (EOFs), L. Both K and L affect
the bias-variance trade-off and the computational burden. We specify K = 5,10 and L =
arg maxl∈{1,...,N}{λl ≥ qλ1} with q = 0.005,0.01, where λ1 > λ2 > · · · , λN are the ordered
eigenvalues of �̂ (recall Section 3.3). For q = 0.01 and q = 0.005, we denote the values of
L by L1 and L2, respectively. For the Red Sea SST data, we obtain L1 = 15 and L2 = 24
for all the seven weekly subdatasets. We then compare the different choices of K and L by
cross-validation. Moreover, we also compare our proposed LTP-DPM model to some simpler
parametric and semiparametric submodels, namely, LGP (K = 1, ak = ∞), LTP (K = 1) and
LGP-DPM (ak = ∞).

For model comparison we divide each weekly Red Sea SST subdataset into two parts,
using the years 1985–2010 (1352 weeks) for training and keeping the years 2011–2015
(260 weeks) for testing. For each spatiotemporal observation in the test set, we estimate
the posterior predictive distribution, based on the posterior samples, and confront the es-
timated distribution with the test observation. Because our primary goal is to predict high
threshold exceedances, we use the Brier score (BS) and the tail-weighted continuous rank
probability score (TWCRPS), proposed by Gneiting and Raftery (2007) and Gneiting and
Ranjan (2011), respectively. For a single test sample y, the BS at a given level u is de-
fined as BSu(y,F ) = {I{y>u} − F(u)}2, where F(·) = 1 − F(·) is the survival function
corresponding to the posterior predictive distribution F . For a single test sample y, the
TWCRPS is defined as TWCRPSw(y,F ) = ∫ ∞

−∞ w(x){F(x) − I{y≤x}}2 dx, where w(·) is
a nonnegative weight function. To focus on the upper tail, we use w(x) = I{x>u} so that
TWCRPSw(y,F ) = ∫ ∞

u BSx(y,F )dx. Then, we define the Brier skill score (BSS) and tail-
weighted continuous rank probability skill score (TWCRPSS) for a model M as

BSSM = BSLGP − BSM

BSLGP
× 100%,

TWCRPSSM = TWCRPSLGP − TWCRPSM

TWCRPSLGP
× 100%,

(12)

using the LGP with L = L1 as the benchmark, where BSM and TWCRPSM are the short-
hand notation for the BS and TWCRPS for a model M , respectively. Higher values of BSS
or TWCRPSS indicate better prediction performance (compared to the benchmark). We re-
port the results by averaging values over the test set. We chose L1 basis functions for the LGP
benchmark because it corresponds to the simplest (i.e., most parsimonious) model fitted here.
Figure 5 reports the skill scores plotted as a function of the threshold u which ranges between
the 95% and the 99.9%-quantiles of the SST data. As all scores are positive, the LGP bench-
mark is consistently the worst, while our proposed LTP-DPM model (blue curves) performs
better than the others in most cases. Comparing across the choices of K and L, the predictive
performances of the LTP-DPM model for the cases K = 10,L = L1 and K = 5,L = L2 are
comparable, while the skill scores are noticeably lower for K = 5,L = L1 (most parsimo-
nious LTP-DPM) and slightly lower for K = 10,L = L2 (most complex LTP-DPM). Among
the two intermediate cases with best performances (K = 10,L = L1 and K = 5,L = L2),
the model with K = 10,L = L1 is the most parsimonious. As there is no visible difference
in their performances, we, therefore, proceed with K = 10,L = L1 to draw inference.
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FIG. 5. Averaged BSS (top) and TWCRPSS (bottom) for the models LTP (black), LGP-DPM (red) and LTP-DPM
(blue) considering the LGP as the reference model, plotted as a function of the threshold u ranging from the
95%-quantile to the 99.9%-quantile of the observed data. Higher values of BSS and TWCRPSS indicate better
prediction performance.

Detailed goodness-of-fit diagnostics for the LTP-DPM model are provided in the Supple-
mentary Material (Hazra and Huser (2021a)). To summarize, the mean and standard deviation
profiles are very well estimated overall, as demonstrated by very small root mean squared dif-
ferences between their corresponding empirical and fitted model-based estimates. Moreover,
while the difference between empirical and fitted pairwise correlations varies between −0.1
and 0.1, the empirical and fitted χ -coefficients appear to be more variable. There is indeed a
higher degree of uncertainty involved in the empirical χ -coefficients, due to the sparsity of
extreme events, which results in larger differences with their model-based counterparts. This,
however, does not necessarily indicate a lack of fit, as further explained in the Supplementary
Material (Hazra and Huser (2021a)).

To explore the DPM models further, we investigate the posterior distribution of stick-
breaking probabilities πk . Because the πk’s are not identifiable due to label-switching within
the MCMC algorithm, Figure 6 displays the estimated densities of the ordered probabilities,
π(k), k = 1, . . . ,K , for K = 10 and L = L1. For the LTP-DPM model, one single cluster fits
a large proportion of the temporal replicates, while the remaining nine clusters capture the
behavior of “abnormal weeks,” that is, extreme events. This property is desirable, as it allows

FIG. 6. Posterior densities of the 10 ordered stick-breaking probabilities π(1) > · · · > π(K), based on fitting the
LGP-DPM (red) and LTP-DPM (blue) models with K = 10 mixture components and L = L1 spatial EOFs.
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FIG. 7. Estimated decadal rate of change in mean SST profile for the coolest (seventh, left) and the warmest
(34th, middle) weeks along with the estimated overall rate obtained by averaging across the 52 weeks (right). The
subfigures are on the same scale.

us to have separate control over extreme events, being described by different mixture-specific
parameters. On the other hand, the LGP-DPM model allocates large probabilities to many
clusters. The thin-tailed LGP cluster components fail to allocate the bulk of the distribution
into a single cluster for our heavy-tailed SST data. This makes the identification of the bulk
and the tail more challenging and requires significantly more clusters for model fitting.

5.2. Estimated time trend and return levels. We now discuss the estimated spatial maps
of the decadal rate of change (DRC) in mean SST and the return levels (adjusted for nonsta-
tionarity) based on our best LTP-DPM model.

As the mean SST incorporates the simulated RCP-based SST projections as covariate, we
define the DRC for a specific week t2 at a spatial location s as DRCt2(s) = 10{μ(T1, t2, s) −
μ(1, t2, s)}/(T1 −1), where the notation is as described in Section 3.2. We present in Figure 7
the spatial maps of the estimated weekly-varying DRC in mean SST across the Red Sea
for Weeks 7 and 34 (the coolest and warmest weeks based on the averaged observed SST,
respectively) along with the overall DRC obtained by averaging across the 52 weeks. The
spatial patterns of DRC for the two weeks are significantly different and broadly consistent
with the exploratory analysis (Figure 2). For Week 7 (winter), the highest DRC values are
near the latitude 22◦N while the lowest values are observed near the southern end of the Red
Sea. For Week 34 (summer), the highest DRC values are near the northern tip of the Gulf
of Suez and over a large coastal region of Egypt as well as the coastal region of northwest
Saudi Arabia while the lowest values are observed near the coastal region of the southwest
Saudi Arabia. The spatial map of the overall DRC is smoother than the weekly profiles, with
higher values being observed near the coastal region of Egypt. In addition, we also calculate
the corresponding t-statistic for each spatial location; see the Supplementary Material (Hazra
and Huser (2021a)). A value of |t | > 2 indicates a (sitewise) significant change at the 95%
confidence level in mean SST over the years 1985–2015. While negative estimates of DRC
are obtained near the coast of Eritrea for Week 7 (for a total 896 grid cells), all such DRC
values are not significant except for 35 grid cells. Considering the overall DRC, the t-statistics
vary between 5.92 and 39.18, indicating that the overall DRC is positive and highly significant
at all the grid cells.

A T0-year return level of a stationary weekly time series is (approximately) the (1 −
1/[52T0])th quantile of its marginal distribution, given that there are about 52 weeks per
year. The LTP-DPM model, however, has a nonstationary mean and involves both trend and
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FIG. 8. Estimated 10 (left), 20 (middle) and 50 (right)-year return levels for Week 40, taking 2020 as the refer-
ence year and following Cheng et al. (2014) to account for nonstationarity. All subfigures share the same scale.

seasonality. Thus, quantiles—hence return levels—change over time. As the model involves
a trend that is linearly related to the RCP 8.5-based SST estimates for each week, we fol-
low Cheng et al. (2014), consider the average RCP 8.5-based SST estimate within the return
period and calculate the mean SST and return level accordingly. Here, we concentrate specif-
ically on some of the warmest weeks. While the SST spatial average is maximum for Week
34, Week 40 is the hottest week for 2860 grid cells spread between Eritrea and southwest
Saudi Arabia which covers some major coral reefs. The results for Weeks 33 and 34 are dis-
cussed in the Supplementary Material (Hazra and Huser (2021a)). For the Week 40, Figure 8
provides the spatial maps of 10-year, 20-year and 50-year estimated return levels considering
2020 as the reference year. For all three return periods, estimates are lower near the Gulf of
Suez and the Gulf of Aqaba and higher across a large region between the coast of Eritrea and
the southwest of Saudi Arabia. This suggests that very extreme sea temperatures might occur
over the next century, potentially causing severe ecological damages to endemic species (e.g.,
certain types of corals) and may have also economic consequences for neighboring countries.

5.3. Estimated joint exceedance probabilities. We now investigate model-based esti-
mates of joint exceedance probabilities in more detail and consider three specific regions: the
Dahlak Islands of Eritrea (40.13◦E, 15.77◦N), the Farasan Islands of Saudi Arabia (41.88◦E,
16.82◦N) and the region of Thuwal in Saudi Arabia (38.88◦E, 22.37◦N), where large coral
reefs are present. Considering the RCP 8.5-based Red Sea SST projections until 2100, the
highest projection (33.85◦C) corresponds to the year 2099; see Figure 3. For this particular
year, we estimate two types of exceedance probabilities, namely, Pr(

⋃
sn∈D0

{Yt0(sn) > u})
and Pr(

⋂
sn∈D0

{Yt0(sn) > u}), for a range of high temperature values u and different neigh-
borhoods D0, that is, sets of grid cells within a certain distance from the three specific lo-
cations. For D0, we consider distances 0 km (for which both types of probabilities coin-
cide with the marginal exceedance probability), 6 km (including the first order neighbors),
10 km, 20 km, 30 km and 50 km. A large value of Pr(

⋃
sn∈D0

{Yt0(sn) > u}) indicates a high
probability that at least one grid cell within D0 exceeds the threshold u. A large value of
Pr(

⋂
sn∈D0

{Yt0(sn) > u}) indicates a high probability that all grid cells within D0 exceed
the threshold u. These probabilities are different across weeks. The results for Weeks 33
and 34 are provided in the Supplementary Material (Hazra and Huser (2021a)). For Week
40 the values are presented in the top panel of Figure 9. For Dahlak Islands of Eritrea and
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FIG. 9. Exceedance probabilities of SST across all the grid cells (blue) or at least one grid cell (green) within
0 km (the marginal case), 6 km (including the first order neighbors), 10 km, 20 km, 30 km and 50 km distances from
(40.13◦E, 15.77◦N) near Dahlak Islands of Eritrea, (41.88◦E, 16.82◦N) near Farasan Islands of Saudi Arabia
and (38.88◦E, 22.37◦N) near Thuwal of Saudi Arabia at different temperature levels for Week 40 of the reference
year 2099 (corresponds to the highest RCP 8.5-based SST projection until 2100), considering fixed (top) or
spatially-varying (bottom) temperature thresholds. Vertical dashed lines show reference thresholds corresponding
to u = 35◦C (top) and the p = 0.9-quantile (bottom).

Farasan Islands of Saudi Arabia, the exceedance probabilities are high even for high thresh-
olds. As Week 40 is a postsummer week in the northern Red Sea, the exceedance proba-
bilities are comparatively lower for Thuwal, Saudi Arabia. At a threshold of 35◦C, the es-
timated probability values (combining both types of exceedance probabilities) range within
(0.0122,0.5277), (0.0137,0.7031) and (0.0004,0.0264) for the three regions, respectively.

We also estimate the same exceedance probabilities, but, instead of calculating them over
a range of spatially-constant temperature levels, we use an adaptive site-specific threshold.
Fixed or adaptive thresholds might be useful in different contexts: while a fixed threshold
is directly interpretable on the temperature scale, a spatially-varying threshold is more in
line with coral bleaching theory (see, e.g., Genevier et al. (2019)). For any p ∈ (0,1), let
Q

(n)
t0

(p) be the pth quantile function of the distribution of Yt0(sn) at the nth grid cell, sn,

for the reference time t0. We estimate the probabilities Pr(
⋃

sn∈D0
{Yt0(sn) > Q

(n)
t0

(p)}) and

Pr(
⋂

sn∈D0
{Yt0(sn) > Q

(n)
t0

(p)}) for the same choices of D0 as above. Let Q(n)(p) be the pth
quantile function of the (temporally invariant) distribution of εt0(sn). Following (2), we have

Q
(n)
t0

(p) = μt0(sn) + Q(n)(p), so Pr(
⋃

sn∈D0
{Yt0(sn) > Q

(n)
t0

(p)}) = Pr(
⋃

sn∈D0
{εt0(sn) >

Q(n)(p)}) which does not change over time. Similarly, we have that Pr(
⋂

sn∈D0
{Yt0(sn) >

Q
(n)
t0

(p)}) = Pr(
⋂

sn∈D0
{εt0(sn) > Q(n)(p)}). From low to high values of p, we present the

two types of exceedance probabilities in the bottom panel of Figure 9. At a marginal quantile
level of 0.9, the estimated probabilities range within (0.0088,0.3605), (0.0070,0.3933) and
(0.0155,0.3014) for the three regions, respectively, indicating high risk of simultaneously
large temperatures in these regions.
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FIG. 10. The 95% confidence regions D0
u+ of the Red Sea SST profile, projected to year 2099 (corresponds to

the highest RCP 8.5-based SST projection until 2100), for exceedance levels u = 33◦C, u = 33.5◦C and u = 34◦C
for Weeks 34 and 40.

5.4. Estimated hotspots. After exploring the joint threshold exceedance probabilities for
fixed regions, we now focus on identifying the regions at risk themselves, that is, hotspots,
for the year 2099. We estimate the 95% confidence regions D0

u+ for joint exceedance levels
u = 33◦C, u = 33.5◦C and u = 34◦C. The maps of D0

u+ for Weeks 34 and 40 are presented in
Figure 10. The results for other summer weeks are provided in the Supplementary Material
(Hazra and Huser (2021a)).

For Week 40, D0
u+ stretches over a major portion of the southern Red Sea for each tem-

perature threshold considered. When u = 33◦C, the estimated D0
u+ covers almost entirely

the area within the latitudes 13.5◦N and 19◦N and also a small region near coastal Djibouti.
When u = 33.5◦C, the estimated D0

u+ covers a large region between the latitudes 14◦N and
18◦N. Finally, when u = 34◦C, the estimated D0

u+ covers a narrower region stretched be-
tween the latitudes 15.5◦N and 17.5◦N, including, in particular, the Dahlak Islands of Eritrea
and Farasan Islands of Saudi Arabia which host many endemic species, including corals. The
number of grid cells within D0

u+ are 7136, 5487, and 2819 for the three different thresholds,
respectively. For Week 34, the estimated hotspots include 8905, 4186, and 2321 grid cells for
the three different thresholds, respectively, and mostly affect the southwestern part of the Red
Sea for high SST thresholds.

While the estimated hotspots based on RCP 8.5 presented here are quite alarming, the re-
sults for RCP 4.5 (see the Supplementary Material (Hazra and Huser (2021a))) are slightly
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less concerning. Nevertheless, from our analysis, it is likely that large parts of the south-
ern Red Sea, including major coral reefs, will experience joint extreme SST events within the
current century which may have important consequences in terms of coral bleaching and mor-
tality. As corals are believed to be somewhat resilient to their local environment, it would also
be interesting from an applied perspective to estimate hotspots for spatially-varying thresh-
olds. Moreover, for a better risk assessment of coral bleaching, a future research direction
could be to extend our model for capturing spatiotemporal dependence, in order to mea-
sure the persistence of high SST values over time and, eventually, to estimate spatiotemporal
hotspots.

6. Discussion and perspectives. In this paper, we have proposed a low-rank semipara-
metric Bayesian spatial model for high-dimensional spatiotemporal data with spatial tail-
dependence, where the observations are assumed to be independent across time. The pro-
posed model has a flexible mean structure that captures trend, seasonality and accounts for
spatial variability in the mean component. Using B-splines for modeling seasonality and spa-
tial variability helps to identify local spatiotemporal features. Relaxing the parametric Gaus-
sian process (GP) assumption that is generally used in the analysis of high-dimensional spa-
tial data, we propose here a flexible semiparametric model that better captures the marginal
and dependence structures. While a finite Dirichlet process mixture of GPs relaxes the para-
metric GP assumption, it is not apt for modeling spatial data with strong extremal depen-
dence, and we circumvent this issue through a mixture of low-rank Student’s t processes.
Furthermore, the covariance structure of the proposed model is constructed from empirical
orthogonal functions (EOFs), and it provides a reasonable sparse approximation to the highly
nonstationary sample spatial covariance while allowing for inference in high dimensions.
We have also developed a hotspot estimation method tailored for our proposed model which
allows us to identify regions at risk of joint extreme events.

Our statistical analysis revealed several important features of the Red Sea SST data. The
decadal rate of change in mean SST varies spatially as well as seasonally; during winter
weeks the highest values are near the latitude 22◦N, while the lowest values are observed
near the southern end of the Red Sea. During summer weeks, while the mean SST is generally
lower in the northern Red Sea (particularly, near the Gulf of Aqaba and Suez) compared to
other regions, its increasing rate is higher in those regions compared to the southern part.
Considering the overall decadal rate of change (averaged across weeks), the estimates are
positive and significant at every grid cell; higher values are observed all along the coast of
the northern Red Sea. Moreover, when including RCP 8.5-based SST as a covariate, the
estimated 50-year return levels turn out to be very high (≈ 35–36◦C) during the warmest
weeks in the southern Red Sea across a large region stretching from Eritrea to Southwestern
Saudi Arabia. Furthermore, joint exceedance probabilities for regions near the Dahlak Islands
and the Farasan Islands are estimated to be alarmingly high. Both areas host major coral
reefs, and our study indicates a high chance that the sea surface temperature will jointly
exceed high thresholds which has a direct impact on the risk of coral bleaching (even though
several other factors than SST are also important). Our estimation and prediction of hotspots
are useful to identify regions “at risk” from an environmental and ecological perspective.
Considering the very high (fixed) threshold of 34◦C, the estimated hotspots based on the
RCP 8.5 scenario indeed cover the Dahlak Islands and the Farasan Islands. Climate change
mitigation measures are necessary to safeguard coral reefs and ecosystems which are not only
important for ecological reasons but also because they support tourism in these regions.

While the proposed model is able to capture several features of the data very flexibly, it
has a few downsides. A first drawback is that the model assumes that the temporal repli-
cates are independent in time which may not be realistic with daily or subdaily data. The
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spatiotemporal model of Hazra et al. (2018), which assumes a copula structure in time, is
a possible solution to address this issue, but it is limited to small spatiotemporal datasets.
No closed-form expression of the full posterior exists for the random effects involved in
that model, and, hence, the analysis becomes computationally challenging for large tempo-
ral dimensions. The MCMC algorithm based on deterministic transformations proposed by
Dutta and Bhattacharya (2014) might be a computationally feasible solution. Additionally,
the model of Hazra et al. (2018) assumes that the temporal dependence structure is spatially
invariant which may not be a realistic assumption for large geographic regions like the Red
Sea. Another drawback is that our proposed model does not capture independence, as the dis-
tance between sites increases and its spatial extremal dependence remains nonzero through-
out the entire spatial domain. Although this does not seem to be an issue for our Red Sea
data, which are strongly dependent, it could be problematic in other data applications with
shorter-range spatial dependence. The approach of Morris et al. (2017), which breaks down
long-range dependence by introducing random partitions of the spatial domain, could be a
possible solution to address this issue.
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SUPPLEMENTARY MATERIAL

Supplementary material for “Estimating high-resolution Red Sea surface temper-
ature hotspots, using a low-rank semiparametric spatial model” (DOI: 10.1214/20-
AOAS1418SUPPA; .pdf). We first provide further results for the exploratory analysis, in
particular regarding the spatial variation of the SST seasonality profile across the Red Sea,
the estimated EOFs, and the comparison between marginal data quantiles and quantiles from
fitted univariate normal and Student’s t distributions. Then we discuss the MCMC steps for
model fitting and future prediction, and provide diagnostics to demonstrate the convergence
and mixing of the MCMC chains. We also prove that our hotspot estimation approach attains
the desired overall familywise error rate. We finally provide further results and diagnostics
for the fitted LTP-DPM model, in particular t-statistics for the estimated SST decadal rate of
change, return level maps, joint exceedance probabilities, and estimated hotspots for a few
summer weeks for the RCP 8.5-based analysis. We also discuss some results of the RCP
4.5-based analysis.

R code for “Estimating high-resolution Red Sea surface temperature hotspots, using
a low-rank semiparametric spatial model” (DOI: 10.1214/20-AOAS1418SUPPB; .zip).
We provide the R code for fitting the model, as well as for drawing inferences from the
MCMC chains. We also provide a detailed simulation example (similar to the Red Sea surface
temperature dataset) to illustrate the hotspot estimation method step by step.
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