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Time-course experiments are commonly conducted to capture temporal
changes. It is generally of interest to detect if any changes happen over time,
which we define as a detection problem. If there is a change, it is informative
to know when the change is, which we define as an identification problem. It
is often desired to control Type I error rate at a nominal level while applying
a testing procedure to detect or identify these changes. Quite a few analytic
methods have been proposed. Most existing methods aim to solve either the
detection problem or, more recently, the identification problem. Here, we pro-
pose to solve these two problems using a unified multiple-testing framework
built upon an empirical Bayes change-point model. Our model provides a
flexible framework that can account for sophisticated temporal gene expres-
sion patterns. We show that our testing procedure is valid and asymptotically
optimal in the sense of rejecting the maximum number of null hypotheses,
while the Bayesian false discovery rate (FDR) can be controlled at a prede-
fined nominal level. Simulation studies and application to real transcriptome
time-course data illustrate that our proposed model is a flexible and powerful
method to capture various temporal patterns in analysis of time-course data.

1. Introduction. Gene expression temporal patterns can reveal regulation networks
(Bar-Joseph, Gitter and Simon (2012), Calvano et al. (2005)). The transcriptome time-course
experiment measures thousands of gene expression levels during relatively few time points.
In such experiments, the number of time points is usually small, such as three to 20. Many
such experiments are not replicated due to cost and other limitations, and, when replicates
are available, the numbers are typically also small (Tai and Speed (2005)). Technologies for
measuring genes include microarrays and RNA-seq. These technologies have been used to
capture the temporal gene expression fluctuations in many biological processes, such as reg-
ulation of development (Arbeitman et al. (2002)), immune responses (Calvano et al. (2005))
and tissue inflammation programs (Tian, Nowak and Brasier (2005)).

Most transcriptome time-course experiments aim to detect variably expressed genes. Such
genes are often related to the biological processes motivating the experiments, for example,
the genes related to the immune response. The statistical challenge of transcriptome time-
course experiment arises from the fact that the number of time points is relatively small,
and the number of genes is usually large (e.g., about 20,000 genes in human). Methods spe-
cially designed to deal with this situation are developed, such as ANOVA (classical ANOVA
or modified model) (Diggle et al. (2002)), regression approach (Zhao, Prentice and Breeden
(2001)), contrasts (Lönnstedt et al. (2005)) and hidden Markov models (Sun and Wei (2011)).
The Gaussian process (GP) regression has proven to be more flexible and powerful compared
to the linear or spline regression models and has been widely applied for the analysis of time
series. In fact, spline regression can be considered as one special case of GP (Kimeldorf
and Wahba (1970)). However, it has two main issues: typically, GP needs many observa-
tions to obtain acceptable performance (usually tens to hundreds); GP regression time-course
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methods use a log-likelihood ratio to rank the differentially expressed genes which makes it
impossible to report the p-values and to control the false positive rate at the nominal level
(Kalaitzis and Lawrence (2011), Yang et al. (2016)). Usually, there are thousands of genes
in the context of the transcriptome time-course experiments, which motivates the use of the
empirical Bayes approach to make inference (Efron et al. (2001), Tai and Speed (2006),
Kendziorski et al. (2003)). The empirical Bayes approach can pool and exploit information
across many genes under investigation (Efron (2010)), so it is a good choice to develop a
statistical method for the analysis of time-course gene expression data. Empirical Bayes has
been widely used in the analysis of other types of genomic data, including the differential ex-
pression gene (DEG) analysis (Robinson, McCarthy and Smyth (2010), Smyth (2005), Love,
Huber and Anders (2014)) and genomic variants identification (Zhao, Wang and Wei (2013)).

One characteristic of transcriptome time-course experiments is that, if the expression level
of a gene changes at a given time point, it is very likely to return to its initial expression
level later if we could measure it for longer intervals; that is, it will only appear to remain
at that level if the measurement interval is short. The assumption that expression levels will
return to normal is reasonable given the need to maintain homeostasis in all organisms. The
change-point model assumes a sequence of data can be broken into segments, and observa-
tions from each segment follow a same statistical distribution. In the context of transcriptome
time-course experiments, because of a relatively small number of time points measured, this
experiment may be unable to capture the continuously changing process of expression levels.
The change-point model can be a good choice to describe these observations. Considering
the change and the recovery of temporal gene expression levels in this context, we build a
change-point model with two change points, one for change and the other one for recovery.
The change-point model has been proved to be a useful approach to analyze next generation
sequencing data (Wang, Wei and Li (2014), Zhang and Wei (2016)), and this method can
answer two kinds of questions simultaneously: detection, to detect which genes’ expression
levels have been changed; identification, to identify when the change happens. Most previous
statistical methods focus on the first detection question, such as (Smyth (2005), Tai and Speed
(2006), Kalaitzis and Lawrence (2011)), but can’t answer the second identification question.
Yang et al. proposed a GP regression method for transcriptome time-course data that was
able to answer the two questions, but the method essentially needed two conditions to be
compared, and FDR levels could not be controlled (Yang et al. (2016)). Here, we present a
method based on the change-point model that can deal with both two questions on very few
time points and control the FDR at a nominal level. Our model is flexible and applicable to
more complicated applications. Meanwhile, our model can deal with both microarray data
and RNA-Seq data with a proper normalization technique.

2. Model.

2.1. Notations of the transcriptome time-course change-point problem. In time-course
experiments, the expression levels of genes are measured longitudinally. For each gene G,
G = G1,G2, . . . ,GN , we have N time-series sequences of expression levels. By following
the previous change-point model (Barry and Hartigan (1993), Denison et al. (2002), Xuan and
Murphy (2007)), we assume one gene could have two possible patterns, expressed constantly
or expressed differentially. Furthermore, we assume the genes that are expressed differentially
could have one or two change points: for genes with one change point, which means gene
expression levels change at one time point and remain at that level until the end of experiment;
for genes with two change points, expression levels change at one time point and then are
restored later (Figure 1).

We denote expression level of gene Gi at time point j (j = 1,2, . . . , T ) as xij , so that
the time sequence of Gi can be written as Xi = xi1, xi2, . . . , xiT for T observations. With
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the proposed change-point model, the sequence can be considered as one, two or three ho-
mogeneous sequences, � = �1, . . . ,�Q, with Q = 1,2,3, namely, represent situations that
the gene has 0, 1 or 2 change points. We assume that measurements within the same homo-
geneous sequence share a common mean expression level μq and arise independently and
identically from an observation component f (Xi,�q |μq). We consider μq as arising from a
common genome-wide distribution π(μq) which represents fluctuations in mean expression
levels among genes. Since μq is latent and not our primary interest, we integrate it away and
have

f (Xi,�q ) =
∫ ( ∏

t∈�q

f (Xi,t |μq)

)
π(μq) dμq.

We will specify f (Xi,t |μq) and π(μq) in the next subsection. Since one gene can have two
change points at most, we introduce a variable ρi = (ρi1, ρi2) to denote the change-point
pattern for gene Gi , where ρi1 ∈ {0,1,2, . . . , T − 1} and ρi2 ∈ {0,1,2, . . . , T − 1} indi-
cate the positions of change points for gene Gi . To specify, if Gi doesn’t have any change
point, then ρi1, ρi2 = 0, and the whole sequence of Gi will be homogeneous with one la-
tent mean μ1 (Q = 1 and �1 = {1, . . . , T }). If Gi only has one change point, then we
let ρi1 = 0 and ρi2 = τi , τi ∈ {1,2, . . . , T − 1}, which implies expression levels of Gi be-
fore time point τi (Xi,1:τi

= xi1, xi2, . . . , xiτi
) follow a homogeneous sequence with one la-

tent mean μ1 and expression levels after τi (Xi,(τi+1):T = xi(τi+1), . . . , xiT ) follow another
homogeneous sequence with a different latent mean μ2. Thus, Q = 2, �1 = {1, . . . , τi}
and �2 = {τi + 1, . . . , T }. Meanwhile, if Gi has two change points, we let ρi1 = τi1 and
ρi2 = τi2, with τi1, τi2 ∈ {1,2, . . . , T − 1} and τi1 < τi2, represent gene Gi having change
points at τi1 and τi2 time points. These two change points divide the gene-expression se-
quence into Q = 3 homogeneous segments, �1 = {1, . . . , τi1}, �2 = {τi1 + 1, . . . , τi2} and
�3 = {τi2 + 1, . . . , T }, with latent means μ1, μ2 and μ3, respectively. In biology, most
genes will restore to their original expression levels. Having a new μ3 will help to char-
acterize some genes more precisely, at the price of a more complex model, while for many
other genes restoring to original levels, it may not be necessary. Therefore, we let μ3 = μ1
and merge �3 with �1. Namely, before time point τi1 and after time point τi2, expres-
sion levels of Gi (Xi,1:τi1∪(τi2+1):T = xi1, xi2, . . . , xiτi1, xi(τi2+1), . . . , xiT ) follow a homo-
geneous sequence; expression levels of Gi after time point τi1 and before time point τi2
(Xi,(τi1+1):τi2 = xi(τi1+1), . . . , xiτi2 ) follow another homogeneous sequence. We think this set-
ting is more representative of biological scenarios and provides a reasonable trade-off be-
tween generality and efficiency gain.

2.2. Normal Normal-Gamma model. It is intuitive to characterize relative or absolute
gene expression levels by a normal distribution, especially when considering log scaled data.
Therefore, we consider a normal distribution for defining f (Xi,t |μq). As illustrated in Fig-
ure 1, if gene Gi expresses constantly, then observed expression levels across all time points
follow one normal distribution with a common mean μi1, namely, N (μi1, σ

2
i1). If Gi has

change points, based on the number and positions of change points of Gi , we can charac-
terize expression levels by two different normal distributions: if Gi has one change point at
time point τi , then expression levels before τi follow one normal distribution N (μi1, σ

2
i1)

with mean μi1 and follow another normal distribution N (μi2, σ
2
i2) with a different mean μi2

after time point τi ; if Gi has two change points at time points τi1 and τi2, then we can govern
expression levels before τi1 (include τi1) and after τi2 by N (μi1, σ

2
i1) and expression levels

from τi1 + 1 to τi2 by N (μi2, σ
2
i2). Formally:

1. No change point, then ρi = (ρi1, ρi2), where ρi1 = 0, ρi2 = 0

(2.1) xij |ρi ∼ N
(
μi1, σ

2
i1

);
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FIG. 1. Illustration of different time series patterns. The horizontal dashed lines are expected expression levels
and the vertical lines are the positions of change points. The first row are examples of zero change point, in
which expression levels remain constant across time points. The second row are examples of one change point,
whose expression levels have a expected mean at the beginning and then change to another expected mean at
a time point.The third row are examples of two change points, expression levels change at one time points and
restore later. In our notations, gene Gi without change point corresponds to ρi1 = 0 and ρi2 = 0; having one
change point corresponds to ρi1 = 0 and ρi2 = τi (τi = 1,2, . . . , T − 1); having two change points corresponds
to ρi1 = τi1, ρi2 = τi2, and τi1, τi2 = 1,2, . . . , T − 1 (τi1 < τi2).

2. One change point at time point τi (τi = 1,2, . . . , T − 1), then ρi = (ρi1, ρi2), where
ρi1 = 0, ρi2 = τi

(2.2) xij |ρi ∼
{
N

(
μi1, σ

2
i1

)
j ≤ τi,

N
(
μi2, σ

2
i2

)
j ≥ τi + 1;

3. Two change points at time points τi1 and τi2 (τi1, τi2 = 1,2, . . . , T −1 and τi1 < τi2),
then ρi = (ρi1, ρi2), where ρi1 = τi1, ρi2 = τi2

(2.3) xij |ρi ∼
{
N

(
μi1, σ

2
i1

)
j ≤ τi1 or j ≥ τi2 + 1,

N
(
μi2, σ

2
i2

)
τi1 + 1 ≤ j ≤ τi2.

We further assume that latent means μiq and variance σiq (q = 1,2) for Gis follow a Normal-
Gamma distribution, which is a conjugate prior of the normal distribution, to characterize
different latent means and variances for different genes and sequences. We name this model
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as the hierarchical Normal Normal-Gamma model (NNG model for short), because we use
the hierarchical Normal and Normal-Gamma distributions to characterize gene expression
levels. Under the NNG model we assume that the observed individual gene expressions are
independent, given its mean, while the means of all individual genes follow a common dis-
tribution. The marginal gene expression levels can be dependent under such a hierarchical
model. Similar hierarchical models have been used in previous studies (Kendziorski et al.
(2003), Newton et al. (2001), Yuan and Kendziorski (2006)) for characterizing microarray
gene expression data.

Formally, if we define the precision λiq = σ−2
iq , then

(2.4) μiq, λiq ∼ NG(μ,λ|ν0, κ0, α0, β0) = N
(
μ|ν0, (κ0λ)−1)

�(λ|α0, β0).

We use an empirical Bayes approach to estimate hyperparameters ν0, κ0, α0 and β0 from
data which estimate parameters by maximizing the likelihood. From the hierarchical Normal
Normal-Gamma model, we have

f (xij |μiq, λiq) =
√

λiq

2π
exp

(
−λiq

2
(xij − μiq)

2
)
,

f (μiq, λiq |ν0, κ0, α0, β0) = 1

ZNG
λ

α0− 1
2

iq exp
(
−λiq

2

(
κ0(μiq − ν0)

2 + 2β0
))

,

(2.5)

where ZNG = �(α0)

β
α0
0

(2π
κ0

)
1
2 .We assume that gene-expression levels across time points are in-

dependent and identically distributed (i.i.d.), so the marginal likelihood of a homogeneous
sequence Xi,m:n = xim, xi(m+1), . . . , xin can be calculated as the product of likelihoods at
every time point

(Xi,m:n|ν0, κ0, α0, β0)

=
∫ ∞
−∞

∫ ∞
0

{
n∏

j=m

N (xij |μ,λ)

}
N

(
μ|ν0, (κ0λ)−1)

�(λ|α0, β0) dμdλ.
(2.6)

By applying calculus results of the normal distribution (Murphy (2007)), we can integrate out
latent variables μ and λ,

(2.7) 0(Xi,m:n|ν0, κ0, α0, β0) = �(αs)

�(α0)

β
α0
0

β
αs
s

(
κ0

κs

) 1
2
(2π)−

s
2 ,

where

κs = κ0 + s,

αs = α0 + s/2,

βs = β0 + 1

2

n∑
i=m

(xi − x̄i,m:n)2 + κ0s(x̄i,m:n − ν0)
2

2(κ0 + s)
.

Here, s is the length of homogeneous sequence: s = n − m + 1, and x̄i,m:n is the mean of
sequence Xi,m:n: x̄i,m:n = (

∑n
j=m xij )/s.

Now, it is straightforward to calculate the likelihood of genes with zero, one or two change
points as following:

1. No change point, ρi = (0,0), the expression levels of Gi are one homogeneous se-
quence:

(Xi,1:T |ν0, κ0, α0, β0,ρi ) = 0(Xi,1:T |ν0, κ0, α0, β0);
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2. One change point at time point τi , then ρi = (0, τi), the likelihood is the product of
two homogeneous sequences

(Xi,1:T |ν0, κ0, α0, β0,ρi ) = 0(Xi,1:τi
|ν0, κ0, α0, β0) × 0(Xi,(τi+1):T |ν0, κ0, α0, β0);

3. Two change points at time points τi1 and τi2, then ρi = (τi1, τi2), the likelihood is the
product of two homogeneous sequences, similar to the one change point case,

(Xi,1:T |ν0, κ0, α0, β0,ρi ) = 0(Xi,1:τi1∪(τi2+1):T |ν0, κ0, α0, β0)

× 0(Xi,(τi1+1):τi2 |ν0, κ0, α0, β0).

On a null hypothesis there is no change across all of the time points. All the observed
data values share the same mean expression value, and the data for a given gene Gi arise
from a joint probability density function (pdf) f0(Xi). Alternatively, we consider different
change-point patterns and denote the joint pdf as fk(Xi), k > 0. We don’t know a priori for
the underlying pattern of gene Gi and introduce discrete mixing parameters pk to denote the
unknown probabilities of expression pattern k. So, we can have the marginal distribution of
the data in a mixture of the form

(2.8) f (Xi) = p0f0(Xi) +
K∑

k=1

pkfk(Xi).

In our change-point model the number of all possible different change-point patterns is
K = (

T
2

)
for a T time-points experiment. By default, we assume each pattern having an

equal prior probability of happening. Suppose that the prior probability for each gene Gi to
have change points is P ; then, symbolically,

(2.9) Pr(ρi;P) =
⎧⎪⎨⎪⎩

1 − P (ρi1, ρi2) = (0,0),
P(
T
2

) at least one of (ρi1, ρi2) is not 0.

Thus, p0 = 1 − P and pk = P/K for k = 1, . . . ,K . We use a single parameter P to distin-
guish nonnulls from nulls but do not further differentiate nonnull patterns. This is a reasonable
setting because we do not want to be biased toward any nonnull pattern a priori. In contrast,
if needed we may allow each pattern to have its own parameter pk , subject to

∑K
k=0 pk = 1.

This is a more complex model with K more parameters. It may be appropriate if we expect
all patterns will involve a significant number of genes.

2.3. Hyperparameter estimator. Empirical Bayes is an approach of statistical inference
that combines Bayesian and frequentist reasoning, in which the prior distribution is esti-
mated from data (Efron (2010)). It estimates hyperparameters by the approach of maximum
marginal likelihood. In our Normal Normal-Gamma model, formally, we denote � as the set
of parameters with � =(P,ν0, κ0, α0, β0).The locations of change points ρi1 and ρi2 are la-
tent, and we sum them out. Then, the maximum marginal likelihood estimation of �, applied
to total N genes, can be written as

�̂ = arg max
�

log

(
N∏

i=1

f (Xi;�)

)
= arg max

�
log

(
N∏

i=1

∑
ρi

Pr(ρi;�)(Xi |ρi;�)

)
.

Here, ρi = (ρi1, ρi2). (ρi1, ρi2) = (0,0), or (ρi1, ρi2) = 0,1, . . . , T − 1 and ρi1 < ρi2.
We apply the Adam optimization algorithm (Kingma and Ba (2014)) to estimate param-

eters � with some reasonable constraints (e.g., 0 ≤ P ≤ 1). We implement this procedure
using the Tensorflow R package (Abadi et al. (2016), Allaire and Tang (2020)).
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2.4. Empirical Bayes testing and decision procedure to detect change points in time series
data. In the context of transcriptome time-course experiments, we have two questions aimed
to answer:

Q1: Detection, which genes’ expression levels have changed across time series? So, we
need to detect which genes have change points.

Q2: Identification: If any genes with a change, at which time point(s) have the expression
levels changed? Namely, we need to identify the positions of change points.

For Q1, we detect the existence of change points for a gene. For Q2, we aim to find the
accurate location of change points; that is, we need not only to detect the existence of change
points but also to identify the exact locations of change points. Given the estimated parame-
ters �̂, we can calculate the posterior probability of each change-point pattern for gene Gi ,

P̂r
(
ρi = (τi1, τi2)|Xi

) = (Xi |ρi = (τi1, τi2), �̂) × Pr(ρi = (τi1, τi2)|�̂)∑
τi1,τi2

(Xi |ρi = (τi1, τi2), �̂) × Pr(ρi = (τi1, τi2)|�̂)
.

Here, τi1, τi2 = 0, or τi1, τi2 = 0,1, . . . , T − 1 and τi1 < τi2.
We let

π̂i0 = P̂r
(
ρi = (0,0)|Xi

)
,

π̂∗
i = max

{
P̂r(ρi = (τi1, τi2)|Xi

}
τi1, τi2 = 0,1, . . . , T − 1 and τi1 < τi2.

Here, π̂i0 is the probability of Gi and has no change points; and π̂∗
i means the probability of

the most likely change-point pattern for Gi , under the condition of estimated hyperparame-
ters.

For both two questions we will develop a procedure for controlling the false discovery
rate (FDR) (Benjamini and Hochberg (1995)) at a nominal level α and find as many genes as
possible with change points. Symbolically, our empirical Bayes test and decision procedures
for Q1 and Q2 are described, respectively.

Empirical Bayes testing and decision procedure for Q1:

1. Order genes by π̂i0 in an ascending order and denote them as π̂
(1)
0 , π̂

(2)
0 , . . . , π̂

(N)
0 .

2. Let m = max{n : 1
n

∑n
i=1 π̂

(i)
0 ≤ α}.

3. Report gene Gi to have change points if Gi ∈ GDetection, where GDetection = {i : π̂i0 ≤
π̂

(m)
0 }.
Empirical Bayes testing and decision procedure for Q2:

1. Order genes by 1− π̂∗
i in an ascending order and denote them as π̂

(1)∗ , π̂
(2)∗ , . . . , π̂

(N)∗ .

2. Let m = max{n : 1
n

∑n
i=1 π̂

(i)∗ ≤ α}.
3. Report gene Gi to have changes points at τ ∗

i1 and τ ∗
i2 if Gi ∈ GIdentification, where

P̂r(ρi = (τ ∗
i1, τ

∗
i2)|Xi) = π̂∗

i and GIdentification = {i : (1 − π̂∗
i ) ≤ π̂

(m)∗ }.
In the following sections we illustrate that the proposed empirical Bayes testing and de-

cision procedures for Q1 and Q2 are both powerful and attain the performance of the oracle
procedures asymptotically in controlling FDR at α level by asymptotic analysis and simula-
tion experiments.
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3. Asymptotic property. In this section we develop gene-wise hypotheses and demon-
strate that the proposed empirical Bayes testing and decision procedure for Q1 and Q2 are
both optimal. Our key testing statistics are based on the posterior probability of change-point
pattern, which is

P(ρi = k|Xi) ∝ pkfk(Xi).

3.1. Multiple testing of detection. For the problem of detecting genes with change points,
let wi ∈ {0,1} denote whether gene Gi has change points. Given wi = 0, then gene Gi has
no change point. If wi = 1, then gene Gi has one or two change points. The selection task
aims to test N hypotheses, that is, for i = 1, . . . ,N ,

H 0
i : wi = 0 VS Hα

i : wi = 1.

Denote di as the 0–1 decision rule for the i hypothesis, namely, if di = 1, then we reject
the null hypothesis. In that sense it can be deemed as a classification task. Moreover, theoret-
ically, Yuan and Kendziorski (2006) demonstrate that maximizing a posterior can optimize
a classification problem. Sun and Wei (2011) further justify the equality between the multi-
ple testing and weighted classification problems. It is reasonable to find the optimal decision
rule of multiple testing through minimizing the classification error. Let D = {d1, . . . , dN } and
W = {w1, . . . ,wN }. We define a loss function

(3.1) L(W,D) = 1

N

N∑
i=1

{
λ1(1 − wi)di + wi(1 − di)

}
,

where λ1 is the ratio of Type I error to Type II error for Q1.
It is known that wi = 0 represents gene Gi having no changes, that is, ρi1 = 0,

ρi2 = 0. Then, Pr(wi = 0) = Pr(ρi = (0,0)) = 1 − P . So, πi0 = Pr(wi = 0|Xi) =
Pr(Xi |wi=0)Pr(wi=0)

Pr(Xi)
= (1 − P)f0(Xi)/f (Xi). Let π0 = {π10, . . . , πN0}. To minimize

E{L(W,D)}, we have the rule D{π0, t1} = (di, i = 1, . . . ,N), where di = I (πi0 < t) and
t = 1/(λ1 + 1).

In most real scenarios it is of special attention to control the false discovery rate (FDR)
at a nominal level α. We consider the FDR and FNR (False Nondiscovery Rate) which are
defined as

FDR = E

∑N
i=1(1 − wi)di∑N

i=1 di ∨ 1
, FNR = E

∑N
i=1 wi(1 − di)∑N
i=1(1 − di) ∨ 1

.

According to the definition of π0, we can rewrite FDR in the following form:

FDRπ0 = E

∑N
i=1(1 − wi)di∑N

i=1 di ∨ 1

= E

[
1∑N

i=1 di ∨ 1

N∑
i=1

Ewi |Xi

{
(1 − wi)di |Xi

}]

= E

∑N
i=1 I (πi0 < t)πi0∑N

i=1 I (πi0 < t)

which increases as t increases. Hence, to control the FDRπ0 at a nominal level α, we can
find a value t (α) that satisfies the decision Bayes rule. Following Theorem 1 and Theorem 2
of Sun and Wei (2011), we can reach the property that: (1) E{L(W,D)} can be minimized
by D(πi0, t (α)1); (2) D(πi0, t (α)1) is optimal in the weighted classification problem and
optimal in the multiple testing problem. It guarantees that the FNRπ0 is optimized at the
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smallest level while the FDRπ0 is controlled at α level. Suppose that hyperparameters � are
known, that is, P , Pk , fk are known. So, the oracle multiple testing procedure is of the form

(3.2) D(π0, tOR1) = [
I (πi0 < tOR) : i = 1, . . . ,N

]
,

where the oracle cutoff tOR = SUP{t ∈ (0,1) : FDRπ0(t) ≤ α}. Since it is not easy to obtain
tOR, as mentioned in Section 2.4, we propose to obtain the estimated cutoff t̂EB through
the proposed empirical Bayes testing and decision procedure. Next we show its asymptotic
consistency with the oracle optimal procedure in choosing the cutoff.

THEOREM 3.1. Consider the change-point model defined by (2.1)–(2.9). Let �̂ be an

estimate of the change-point models � such that �̂
p−→ �. Let F̂DRπ0 and F̂NRπ0 be the FDR

and FNR level through empirical Bayes procedure for the detection problem, respectively.
Then,

F̂DRπ0 = FDROR
π0

+ o(1), F̂NRπ0 = FNROR
π0

+ o(1),

where FDROR
π0

and FNROR
π0

are the FDR and FNR level of the oracle procedure (3.2).

The maximum likelihood estimate (MLE) is used to estimate �. Under certain regular-
ity conditions, the MLE is strongly consistent and asymptotically normal. Here, when the

number of genes N → ∞, we have �̂
p−→ �.

3.2. Multiple testing of identification. For the identification problem we aim to iden-
tify the change-point pattern ρi for gene Gi , i = 1, . . . ,N . There are

(
T
2

)
possible different

change-point patterns after excluding the (0,0) pattern. The selection task requires N hy-
potheses. For the ith nonnull hypothesis, i = 1, . . . ,N , we assume that the change-point
pattern for gene Gi is the one who has the largest posterior probability given Xi . Define

�α
i = {

ρi : argmax
ρi

{
Pr(ρi |Xi)

}}
.

Then, the N hypotheses are given as follows: for i = 1, . . . ,N ,

H 0
i : ρi /∈ �α

i VS Hα
i : ρi ∈ �α

i .

Define the binary vector � = (γ1, . . . , γN) ∈ {0,1}N , where

γi =
{

1 if ρi ∈ �α
i ,

0 otherwise.

Let δi be the 0–1 decision rule for the ith hypothesis in the identification problem. The
null hypothesis is then rejected if δi = 1. Here, it turns to be a classification task as well. Let
� = {δ1, . . . , δN }. We define a loss function

(3.3) L(�,�) = 1

N

N∑
i=1

{
λ2(1 − γi)δi + γi(1 − δi)

}
,

where λ2 is the ratio of Type I error to Type II error for Q2.
It is easy to see that Pr(γi = 1|Xi) = maxρi

{Pr(ρi |Xi)} = π∗
i and Pr(γi = 0|Xi) = 1 −π∗

i .
Specifically, π∗

i = max
k=1,...,(

T

2
)
{pkfk(Xi)}/f (Xi). Let π∗ = {π∗

1 , . . . , π∗
N }. To minimize

E{L(�,�)}, we have the rule �{π∗, t1} = (δi, i = 1, . . . ,N), where δi = I (1 − π∗
i < t)

and t = 1
λ2+1 . The FDR for this problem, therefore, becomes

FDRπ∗ = E

∑N
i=1 I (1 − π∗

i < t)(1 − π∗
i )∑N

i=1 I (1 − π∗
i < t)

.
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FNRπ∗ can be generated in a similar way which, to save space, is omitted here. Note that
FDRπ∗ is monotonically increasing with respect to t . Hence, the oracle multiple-testing pro-
cedure for Q2 is of the form,

(3.4) �
(
π∗, tOR1

) = [
I
(
1 − π∗

i < tOR
) : i = 1, . . . ,N

]
,

where the oracle cutoff tOR = SUP{t ∈ (0,1) : FDRπ∗(t) ≤ α}. Given the proposed procedure
for identification problem Q2 to determine cutoff in Section 2.4, the next theorem shows
its asymptotic performance with the oracle procedure in controlling FDR and choosing the
cutoff.

THEOREM 3.2. Consider the change-point model defined by (2.1)–(2.9). Let �̂ be an

estimate of the change-point models � such that �̂
p−→ �. Let F̂DRπ∗ and F̂NRπ∗ be the FDR

and FNR level through empirical Bayes procedure for the identification problem, respectively.
Then,

F̂DRπ∗ = FDROR
π∗ + o(1), F̂NRπ∗ = FNROR

π∗ + o(1),

where FDROR
π∗ and FNROR

π∗ are the FDR and FNR level of the oracle procedure (3.4).

Similarly, when the number of genes N → ∞, we have �̂
p−→ �.

The proofs for Theorem 3.1 and 3.2 are provided in Section A.2 of the Supplementary
Material (Tian, Cheng and Wei (2021a)).

3.3. Asymptotic property under explicit short-ranged dependency. We assume that the
observed individual gene expressions are independent, given its latent mean, while the means
of all individual genes follow a common distribution. The marginal gene-expression levels
can be dependent under such a hierarchical model. We can further allow individual gene
expressions to have short-ranged dependency explicitly, conditional on their means. We show
that the corresponding asymptotic properties hold when gene expressions are short-ranged
dependent conditional on their latent means (See Section A.1 and A.2 in the Supplementary
Material (Tian, Cheng and Wei (2021a))).

4. Results.

4.1. Simulation settings. We conduct extensive simulation experiments to investigate
the performance of the proposed model under various biological scenarios. We generate
N = 5000 genes at T = 8 time points for each setting, and each time point has three
replicates. We vary P from small to large, to represent different proportions of genes with
changes. We select P · N genes to have change points randomly, then remaining (1 − P) · N
genes will be set without change point. For the genes with change points, they have

( 8
2

)
different patterns to have change points, and each pattern is selected randomly with an
equal probability. We set ν0 = 0, κ0 = 0.1, α0 = 1, β0 = 10 and vary P from 0.01 to 0.3
(P = 0.01,0.02,0.5,0.1,0.15,0.2,0.25,0.3). The hyperparameters are close to the ones we
estimate from real datasets. We set the nominal FDR level to be 0.1. The simulation is re-
peated 100 times for each parameter setting. Averaged sensitivity and FDR levels are re-
ported. The source code of the NNG model for replication is availabe in the Supplementary
Material (Tian, Cheng and Wei (2021b)).

We investigate the performance of our empirical Bayes method for both detection and
identification questions. Tai et al. developed a method to detect genes that are differ-
entially expressed from time-course data by utilizing moderated likelihood ratio statis-
tic and Hotelling T 2-statistic derived from a multivariate normal empirical Bayes model
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(Tai and Speed (2006)) (MN model for short). Kalaitzis et al. proposed to rank differentially
expressed gene from time series through the log-ratio of marginal likelihood of Gaussian
process regressions (Kalaitzis and Lawrence (2011)) (GP model for short). Limma is a linear
model for assessing differential expression in the context of microarray experiments (Smyth
(2005)). Here, limma is used to test if genes are constantly expressed across time points. We
use the MN model, the GP model and limma as the competing methods to be compared with
our Normal Normal-Gamma model (NNG model for short). It is noted that the MN model
and GP model give only rankings of genes, and cannot control type I error rate at a given
nominal level. In order to compare detection sensitivity of the two methods, we select the
same number of genes as the NNG model reports and summarize their FDR and sensitivity.
The MN model, GP model and limma do not report change-point positions. To make a com-
parison, we use a frequentist testing procedure to identify the change-point positions of genes
detected by the baseline methods. The frequentist method (Wang, Wei and Li (2014), Zhang
and Wei (2016)), essentially, scans the whole sequence and selects a position exhibiting the
most dramatic difference as potential change points to be determined by a statistical testing.
Here, in our time-course context we implement a frequentist method that scans the whole se-
quence for finding a change-point pattern from the

( 8
2

)
possible different patterns. The target

pattern has the most significant difference between the two sequences separated by change
points which is quantified by the p-value of the Student’s t-test.

It is good to evaluate the robustness of our procedures to model misspecification. There-
fore, we also use a Gamma-Gamma (GG) model (Newton et al. (2001), Kendziorski et al.
(2003)) to generate data. The GG model assumes data xij ∼ �(α,βi) and βi ∼ �(α0, ν).
Following (Kendziorski et al. (2003)), we set the GG model parameters as α = 12, α0 = 1,
ν = 36. The other simulation settings remain the same (e.g., N = 5000, T = 8). Our hi-
erarchical model assumes observed gene expressions are independent conditional on their
hidden means. Here, we also use simulation to demonstrate the performance of our testing
procedures for analyzing explicitly dependent data. We generate dependent data following
a multivariate normal distribution with a short-range dependent covariance structure (Xie et
al. (2011)) (see Section A.3 in Supplementary Material (Tian, Cheng and Wei (2021a)) for
details).

4.2. Simulation results. Parameter estimates averaged among 100 simulations are sum-
marized in Table 1. As shown, the estimated parameters are close to their true values with
small standard deviations (SD). This observation indicates that the empirical Bayes approach
can estimate parameters well.

Averaged sensitivity and FDR are reported for varied simulation settings in Figure 2. For
Q1, our NNG model can control FDR precisely at the nominal level 0.1 for all settings. In
contrast, The MN and GP model shows much inflated FDR levels when selecting the same
number of genes as the NNG model. Limma tends to be conservative with FDR slightly
lower than the nominal level as P increases. Regarding sensitivity, the NNG model shows
a clear superiority, in comparison with the MN, GP and limma models, which indicates its
optimality. All methods show sensitivity increasing with P , which confirms that, when the
number of nonnulls (P ) is smaller, it is more challenging to detect them. It is interesting that
the NNG model shows a larger improvement under the more challenging settings.

For Q2, the NNG model again controls FDR precisely at the nominal level, while all
competing methods yield much inflated FDR. This is not surprising because those competing
methods are not designed to identify change-point positions, and their FDRs are thus out of
control. Regarding sensitivity, the NNG model outperforms all the competing methods with
a similar dominating pattern, which confirms its optimality.
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TABLE 1
Summary of parameter estimates. Parameter estimates are averaged over 100 simulations; standard deviations are shown in parentheses. For each simulation, ν0 = 0, κ0 = 0.1,

α0 = 1, β0 = 10

P

0.01 0.02 0.05 0.1 0.15 0.2 0.25 0.3

ν̂0 0.00046 (0.14) −0.027 (0.14) −0.004 (0.13) −0.009 (0.14) 0.008 (0.14) −0.016 (0.12) 0.01 (0.12) −0.0084 (0.12)
κ̂0 0.1 (0.0023) 0.1 (0.0024) 0.1 (0.0021) 0.1 (0.0021) 0.1 (0.0023) 0.1 (0.002) 0.1 (0.002) 0.1 (0.0022)
α̂0 1 (0.019) 1 (0.018) 1 (0.018) 1 (0.018) 1 (0.018) 1 (0.017) 1 (0.017) 1 (0.017)
β̂0 10 (0.24) 10 (0.24) 10 (0.24) 10 (0.23) 10 (0.24) 10 (0.24) 10 (0.25) 10 (0.22)
P̂ 0.01 (0.0012) 0.02 (0.0015) 0.05 (0.0021) 0.1 (0.003) 0.15 (0.0032) 0.2 (0.0037) 0.25 (0.0043) 0.3 (0.0042)



AN EB CHANGE-POINT MODEL FOR TEMPORAL PATTERNS 521

FIG. 2. Simulation results for different methods. Settings of parameters are: ν0 = 0, κ0 = 0.1, α0 = 1, β0 = 10;
and P varies from 0.01 to 0.3. Mean and standard deviation are plotted for 100 simulations on each settings.
“NNG model” stands for our Normal Normal-Gamma model, “MN model” stands for the multivariate normal
model, “GP model” stands for Gaussian process model, “limma” is the linear model for microarray data (MN,
GP and limma use the frequentist method to identify change-point positions).

When applied to the data generated from a Gamma-Gamma model, our NNG model shows
similar superiority in comparison with the competing methods which highlights the robust-
ness of our procedures to model misspecification (Figure A1 in the Supplementary Material
(Tian, Cheng and Wei (2021a))). Our simulation results also confirm that the proposed testing
procedures are able to control the FDR at the nominal level for short-range dependent data
(Figure A2 in the Supplementary Material (Tian, Cheng and Wei (2021a))). The running time
of our NNG model on simulated datasets of different numbers of genes is summarized in Fig-
ure A3 in the Supplementary Material (Tian, Cheng and Wei (2021a)). The result suggests
that the running time of NNG model scales linearly with the numbers of genes.

In summary, under extensive simulation scenarios we compare the sensitivity and FDR of
our NNG model with several baseline methods and observe the superiority in sensitivity and
the robustness of FDR control to detect and identify change points for both Q1 and Q2.

4.3. Real data application. To determine the performance on the real data, we apply our
NNG model to a public microarray time-course data that studies the systemic inflammation
in human (Calvano et al. (2005)). In the study, eight healthy humans were studied, among
them, four were selected as cases randomly, then the remaining four became controls. Gene-
expression levels were determined by Affymetrix U133A chips immediately before (0 h) and
at two, four, six, nine and 24 hours after the intravenous injection of bacterial endotoxin to
four cases and placebo to four controls. The goal of this time-course experiment is to iden-
tify functional networks responsible for the systemic inflammation activation. Based on the
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nature, we can label the inflammatory response process to be the “early” stage and the “late”
stage. In the early stage of activation of innate immunity, many inflammatory factors, in-
cluding cytokines and chemokines, are activated in response to the endotoxin. The activation
of proinflammatory factors subsequently triggers the activation of innate immune response
genes. Next, in the late period, activities of many negative feedback regulation factors in-
crease and will recover the whole system to normal expression levels finally. We use our NNG
model to detect differentially expressed genes and identify when the changes happened.

Some data processing was done before applying our NNG model. For Affymetrix
GeneChip one channel array, data processing involves background adjustment, normalization
and summarization (Gautier et al. (2004)). We used RMA (Irizarry et al. (2003)) to preprocess
raw Affymetrix array data and obtained normalized gene-expression levels. Two conditions
of data (cases and controls; note that cases and controls are not paired) were collected in
this inflammation time-course experiment. To apply our NNG model, we subtract averaged
expression levels of controls from averaged expression levels of cases at each time point to
remove baseline fluctuations of gene expressions, and only detect fluctuations specifically
related to the stimulus. As a result, we obtained N = 22,283 probes and T = six time-point
sequences that can be used to estimate parameters in NNG model.

After estimating hyperparameters, we answer both Q1 and Q2 for this real dataset on a
selected nominal FDR level of 0.1. For Q1, we use limma (Smyth (2005)) with a regression
spline to fit the temporal trend as the baseline method. The choice for effective degrees of
freedom of the cubic spline is five (suggested by the limma user guide). The limma spline
method compares differences in the curves between cases and controls, and uses the same
FDR level of 0.1. Under this FDR level, our NNG model detected 2767 probes, and limma
spline detected only 917 probes. The comparison of the two methods is summarized in the
Venn diagram (Figure 3). As we can see, our NNG model has detected a majority of probes
found by the limma spline method, and NNG is more sensitive (detected more probes under
the same FDR level). Pathway enrichment analysis is applied to evaluate the rationality of
genes represented by the probes detected by our NNG model (GO terms are used; download
from MSigDB Collections; the hypergeometric test is applied for the pathway enrichment
analysis). We present enriched pathways of all 2767 probes detected to be differentially ex-
pressed across time points by our NNG model and the unique 2174 probes detected by NNG
model only (Table 2). The result shows that the probes detected by our NNG model are

FIG. 3. Venn diagram of the differentially expressed probes detected by the NNG model (our Normal Nor-
mal-Gamma model) and limma spline at the FDR level of 0.1 on the human immune response microarray time–
course data.

http://software.broadinstitute.org/gsea/msigdb
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TABLE 2
Pathway enrichment analysis of probes detected to be differentially expressed by NNG model from the human

immune response microarray time-course data. Top five immunity-related pathways, multiple test adjusted
p-values and number of detected genes/total number of genes in a pathway (Hits/Total) are shown

GO term Adjusted p-value Hits/Total

(a) GO terms enriched in all 2767 probes detected to be differentially expressed by the NNG model
GO immune effector process 3.13E−40 309/1010
GO cell activation involved in immune response 1.06E−38 218/613
GO myeloid leukocyte mediated immunity 4.58E−38 187/488
GO leukocyte mediated immunity 3.21E−36 230/687
GO defense response 9.11E−31 350/1336

(b) GO terms enriched in 2174 probes uniquely detected to be differentially expressed by the NNG model
GO immune effector process 2.99E−29 215/1010
GO myeloid leukocyte activation 7.69E−29 147/566
GO myeloid leukocyte mediated immunity 3.46E−27 131/488
GO leukocyte mediated immunity 1.96E−25 159/687
GO defense response 3.53E−20 235/1366

mainly from immune system related genes which is consistent with the fact that this data was
collected to reflect inflammation response genes.

At FDR level of 0.1, we identified change-point positions of 409 probes. Expression pro-
files and change-point positions of these probes are plotted in Figure 4, and we can confirm
the positions of change points identified by the NNG model are indeed at the correct position
when changes happened. Gene expression levels separated by these change points are dra-
matically different. Combining the results on simulated and real data, we can conclude that
our NNG model is a compelling and solid method to analyze gene-expression time-course
data.

5. Discussion. In summary, we proposed an empirical Bayes change-point model to
identify genes with dynamic temporal expression patterns. Theoretically, we show that the
performance of our proposed procedure can be asymptotically consistent with the oracle
which guarantees that FDR is controlled at a nominal level while minimizing FNR. Simula-
tion and real data studies illustrate that our model is a powerful, accurate and efficient method.
To the best of our knowledge, it is the first statistical method for one-conditioned transcrip-
tome time-course data that can detect temporally, dynamically expressed genes and identify
when these changes happen on few observations simultaneously. In this change-point model
we assume one gene can have three patterns: (1) no change; (2) one change point, expres-
sion levels change at one time point and remain that level to the end of experiment; (3) two
change points, expression levels change at one time point and restore to original levels later.
When considering a scenario to detect genes that are activated by an external stimulus, it is
reasonable to assume gene expression levels should restore to normal levels if we can con-
duct this experiment long enough to capture gene expression levels. The universal existence
of the negative feedback regulation mechanism to maintain homeostasis in organisms makes
this assumption very reasonable.

With the development of transcriptome study technologies, RNA-seq (Wang, Gerstein and
Snyder (2009)) is more and more widely used and replaces microarrays in many research
fields. The assumption of our model is that gene-expression levels can be characterized by
the normal distribution. For RNA-seq data, we can use proper technique to normalize and
adjust RNA-Seq read counts data, so they can be approximated by a normal distribution,
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FIG. 4. Expression profiles and change-point positions of total 409 probes identified by the Normal Nor-
mal-Gamma model at FDR level of 0.1. Each heatmap represents the genes of the same change-point pattern.
Rows are probes and columns are time points. The number of rows represents the number of probes having the
change-point pattern as identified by our method. Expression levels above average are shown in red, below av-
erage are shown in blue, and equivalent to the average are in white. Change-point positions identified by NNG
model are shown as vertical black lines.

such as the “voom” method (Law et al. (2014)) which can generate log scaled counts per
million (CPM) values that can be used as input of our NNG model.

Our model considers only two types of change points: expression levels change at a single
time point, or expression levels change at one earlier time point and restore at one later time
point. Because of the relatively small numbers of time points measured in real experiments
(three to 20 usually), it is sufficient to describe the temporal pattern in gene expression levels.
However, our change-point model is a flexible framework that can be extended easily, just by
following the method for multiple change points (Barry and Hartigan (1992)). But it should be
noted multiple change points will introduce a factorial growing complexity of computation
and the caveat of over-fitting. The extending to multiple change points and sequences is a
future extension of our empirical Bayes change-point method.

Availability. The source code is available at https://github.com/ttgump/EBtimecourse.
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SUPPLEMENTARY MATERIAL

Supplementary material (DOI: 10.1214/20-AOAS1403SUPPA; .pdf). We provide proofs
for the condition of explicit short-ranged dependency, additional simulation results, and run-
ning time of the NNG model.

Source code for the NNG model (DOI: 10.1214/20-AOAS1403SUPPB; .zip). R source
code for the NNG model described in this paper.
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