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CRISPR technology has enabled cell lineage tracing for complex multi-
cellular organisms through insertion-deletion mutations of synthetic genomic
barcodes during organismal development. To reconstruct the cell lineage tree
from the mutated barcodes, current approaches apply general-purpose com-
putational tools that are agnostic to the mutation process and are unable to
take full advantage of the data’s structure. We propose a statistical model for
the CRISPR mutation process and develop a procedure to estimate the result-
ing tree topology, branch lengths and mutation parameters by iteratively ap-
plying penalized maximum likelihood estimation. By assuming the barcode
evolves according to a molecular clock, our method infers relative ordering
across parallel lineages, whereas existing techniques only infer ordering for
nodes along the same lineage. When analyzing transgenic zebrafish data from
(Science 353 (2016) aaf7907), we find that our method recapitulates known
aspects of zebrafish development and the results are consistent across sam-
ples.

1. Introduction. Recent advancements in genome editing with CRISPR! have enabled
the construction of large-scale cell lineage trees for complex organisms (McKenna and
Gagnon (2019), McKenna et al. (2016), Schmidt et al. (2017), Spanjaard et al. (2018),
Woodworth, Girskis and Walsh (2017)). One of the pioneering methods—and the focus of
this paper—is Genome Editing of Synthetic Target Arrays for Lineage Tracing (GESTALT)
(McKenna et al. (2016)). GESTALT integrates an array of CRISPR/Cas9 targets, referred
to as a barcode, into the genome of an embryo. Cas9 enzymes injected into the embryo are
directed by single guide RNAs (sgRNAs) to bind and cleave the barcode. A mutation is intro-
duced when nucleotides are deleted and/or inserted during DNA repair. As the organism de-
velops, the barcode accumulates these random mutations, and the mutated barcode is passed
from parent cell to daughter cell which thereby encodes the ontogeny. These mutated bar-
codes are sequenced from the organism at some timepoint, and computational phylogenetic
methods are used to estimate the cell lineage tree. Due to the high diversity of the mutated bar-
codes, GESTALT has the potential to reveal organism development in high resolution. Other
CRISPR-based lineage-tracing methods are similar but can vary in which genomic regions
they target and how Cas9 is expressed; see McKenna and Gagnon (2019) for a comprehensive
review of current CRISPR-based lineage-tracing technologies.

Current computational phylogenetic tools to analyze GESTALT data are insufficient. The
most common methods are Camin—Sokal (C-S) parsimony (Camin and Sokal (1965)) and
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the neighbor-joining distance-based method (Saitou and Nei (1987)). Tree estimates from
these methods have limited interpretability since the branch lengths are, in terms of an ab-
stract notion, of distance rather than time. Thus, they can only order nodes on the same
lineage but not on parallel lineages. In addition, these general-purpose methods are blind
to the mutation mechanism in GESTALT, so their accuracy can be poor (Salvador-Martinez
et al. (2018)). Finally, because parsimony is a coarse scoring metric, C-S parsimony often
generates many parsimony-optimal trees—over 10,000 in some existing datasets—requiring
the user to choose one of them.

We set out to develop a statistical model and estimation method to address these chal-
lenges. Because the mutation process violates the classical statistical phylogenetic assump-
tions, no appropriate probabilistic model is currently available for GESTALT. For example,
long tracts of DNA can be deleted from the barcode during GESTALT, so the usual assump-
tions that mutations occur pointwise and that individual positions are independent are not
satisfied (Felsenstein (2004), Yang (2014)). Moreover, the GESTALT mutation process is
irreversible, unlike most models in phylogenetics.

We introduce a statistical model for GESTALT and an iterative penalized maximum like-
lihood procedure to estimate the tree topology, branch lengths and mutation parameters. Our
method, called GAPML (GESTALT analysis using penalized maximum likelihood), models
the mutation process as a two-step procedure: Targets are cut according to a continuous time
Markov chain, immediately followed by random insertions or deletions of nucleotides (in-
dels). We have carefully tailored a new set of assumptions and approximations for GESTALT
that makes the likelihood tractable yet maintains biological realism. We show that the Markov
process can be modeled using a higher-level Markov process with many fewer “lumped”
states (Kemeny and Snell (1976)). We then combine lumpability with Felsenstein’s pruning
algorithm to efficiently compute the likelihood (Felsenstein (1981)). Throughout, we treat the
GESTALT barcode as a molecular clock and obtain time estimates with respect to this clock.

We have designed GAPML for datasets generated by a small number of barcodes be-
cause inserting many barcodes is currently a technical challenge. In fact, existing GESTALT
datasets were generated using only a single barcode. Maximum-likelihood phylogenetic
methods are known to be unstable when the number of parameters is large but the num-
ber of independent observations (barcodes) is small (Adams and Collyer (2018), Goolsby
(2016), Julien, Leandro and Hélene (2018)). Based on the success of penalization techniques
in the high-dimensional statistics literature (Hastie, Tibshirani and Friedman (2009)), we aug-
ment the objective with a penalty on the branch lengths and mutation parameters and design
an iterative tree search procedure compatible with this penalty. We note that penalties on
the distance between the tree estimate and a prespecified tree (Dinh et al. (2018), Wu et al.
(2013)) are not applicable here because we have little to no knowledge about the true tree.

Finally, our method estimates trees at a finer resolution compared to other methods.
Whereas C-S parsimony estimates trees with many multifurcations (nodes with three or more
children), GAPML resolves multifurcations as caterpillar trees to infer additional ordering
information. We efficiently tune the caterpillar tree orderings by solving a single continuous
optimization problem rather than a combinatorial one. This is noteworthy since there are very
few situations in phylogenetics in which a topology search can be formulated as a continuous
optimization problem.

The paper is organized as follows. Sections 2 and 3 present the probabilistic model and es-
timation method, respectively. We validate our method on simulated data in Section 4 and em-
pirical data in Section 5. Compared to existing tree-estimation methods, our method is more
accurate in simulations and better recapitulates the known biology of zebrafish development
given data from McKenna et al. (2016). Source code for replication is available in the Sup-
plementary Materials (Feng et al. (2021)) and online at https://github.com/matsengrp/gapml.
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FIG. 1. Overview of the GESTALT experimental setup. A barcode composed of CRISPR/Cas9 target sites is
embedded into the genome of a zygote. During development the barcode is inherited from mother to daughter
cells. Mutations accumulate along the barcode when the Cas9 enzyme cuts target(s) and an error-prone repair
process deletes and/or inserts nucleotides.
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2. GESTALT model. Our goal is to reconstruct the cell lineage tree using data from
McKenna et al. (2016) which is generated using a barcode with 10 contiguous CRISPR/Cas9
target sites. Nodes in the tree represent cell divisions, and branch lengths represent time
between cell divisions. The full tree describes the relationships of all cells in the organism.
Our goal is to recover the subtree for the observed sequences.

The experimental protocol in McKenna et al. (2016) is as follows. At the single-cell zy-
gote stage, a single barcode is integrated into the genome and Cas9 enzyme and sgRNAs
are injected (Figure 1). Each target in the barcode is 23 nucleotides long, including the re-
quired protospacer adjacent motif and are separated by a four base spacer. Individual sgRNAs
matching the nucleotide sequence of a single unmodified target guide Cas9 enzymes to make
double-stranded breaks at a specific cut site within each target. Mutations are introduced
when a break is repaired in an error-prone fashion, and nucleotides are inserted or deleted
around the cut site. Sometimes, two targets are cut, the intervening sequence is removed and
nucleotides are inserted/deleted during repair. Once a target is modified, the sgRNA no longer
matches, and the target can no longer be cut.

Since barcodes are inherited from mother to daughter cells, mutations accumulate along
the barcodes in a lineage-specific fashion. These mutated barcodes, which we refer to as
alleles, are recovered by DNA sequencing at the timepoint of interest. The number of unique
sampled alleles are typically on the order of hundreds or thousands. Future experiments will
likely include multiple barcodes to increase the number of unique alleles.

We model the GESTALT barcode as a continuous time Markov chain (CTMC). Calculating
the likelihood of the tree for a general CTMC is computationally intractable for two reasons:
First, the mutation rate can depend on the entire barcode sequence, and second, because long
deletion tracts mask previous mutation events, we must marginalize over an infinite number of
possible ancestral states. To simplify the calculations, we propose the following assumptions
which are formalized mathematically later:

1. An indel is introduced by cuts at the outermost cut sites.
2A. The cut rates only depend on which targets are unmodified.
2B. The conditional probability that an indel is introduced only depends on which targets
were cut.
2C. The mutation process is irreversible.

In addition, we introduce approximations of the likelihood that significantly speeds up com-
putation. Figure S1 in the Supplementary Material summarizes how the main results are
derived from the assumptions and approximations.

2.1. Definitions and notation. We begin with presenting mathematical abstractions for
GESTALT. Table S1 in the Supplementary Material is provided as a reference for the main
definitions used in this paper.
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FIG. 2. Left: A barcode with M targets. The cut site of the targets c(-) are indicated by bold lines. The posi-
tions associated with each target are highlighted using gray boxes. Right: Example allele with two indel tracts
ITpo,i, P1,i>Si» Jo,i» J1,i] for i = 1,2. The first one was introduced by a cut at a single target and inserted
nothing. The second one was introduced by cuts at two targets and the insertion of s,.

2.1.1. Barcode. The unmodified barcode is a nucleotide sequence composed of M dis-
joint subsequences called targets (Figure 2 left). The targets are numbered from 1 to M from
left to right, and the positions spanned by target j are specified by the set pos(j). Each target
Jj is associated with a single cut site c¢(j) € pos(j). For convenience, define pos(0) = {0} and
pos(M + 1) = {l + 1} where [ is the length of the barcode.

A barcode can be modified by the introduction of an indel tract. An indel tract, denoted by
IT[po, p1, S, jo, j1], is a mutation event in which targets jo and j| are cut (jo < ji), positions
po, po+ 1, ..., p1 — 1 in the unmodified barcode are deleted and a nucleotide sequence s is
inserted. If jo = j;, only a single target is cut. When pg = p1, no positions are deleted. A
valid indel tract must modify the sequence (pg < p; or s has positive length) and have cut
sites for its targets nested within positions pg and pj.

An allele is a sequence of m > 0 disjoint indel tracts (Figure 2 right),

(1) a = {IT[po.k, P1.k, Sks Jo.ks J1.k) ik € {1, ... ,m}},

where p1x < pok+1 and ji x < jo.k+1 fork=1,..., m — 1. Note that the indices are always
defined with respect to the original unmodified barcode. Let €2 be the set of all possible
alleles.

Target j is active in allele a if no nucleotides in pos(j) are modified. We denote the target’s
status as TargStat(j; a), where zero means the target is active and one otherwise,

TargStat(j; a) = 1{3IT[po, p1. s, jo, ji]l € a and Ip" € pos(j) s.t. po < p' < p1}.
For convenience, denote the target status of allele a as
() TargStat(a) = (TargStat(1; a), ..., TargStat(M; a)).

The mutation process can introduce indel tract d = IT[po, p1, S, jo, j1] into an allele if
and only if: (i) targets jo and j; are active and (ii) pp and p; have not been deleted. Let
Apply(a, d) be the resulting allele from introducing indel tract d into allele a. A new indel
tract either does not overlap existing indel tracts, completely masks other indel tracts, or
merges with other indel tracts by partially overlapping or being adjacent to them (Figure 3).

2.1.2. Mutation process. The mutation process up to time 7 is formulated as a continu-
ous time Markov chain {X (¢) : 0 <t < T} with state space 2. Since €2 is defined as the set of
possible alleles, we have implicitly assumed that indel tracts are introduced instantaneously,
that is, nucleotides are inserted and/or deleted immediately after target(s) are cut.

For tree T, denote the leaves for node N as Leaves(N); use Leaves(T) to denote the set of
all leaves. Let az, be the allele observed at leaf node L. For the branch ending with node N,
denote its length as #y and the Markov process along it as {Xy(#) : 0 <t < fy}. For simplicity,
we present the model in the context of a single barcode. If there are multiple barcodes, we
assume in this paper that they are sufficiently far apart that they act in an independent and
identically distributed (i.i.d.) manner.
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FI1G. 3.  Possible transitions from the left allele are shown on the right. From top to bottom, the mutation process
can introduce a new indel tract that does not overlap, completely masks, partially overlaps or is adjacent to the
previous indel tract.

2.2. Assumptions. We now formalize the assumptions presented before. Assumption 1
states that for any indel tract that cuts targets jo and ji, its deletions cannot extend past the
cut site of neighboring targets jo — 1 and j; + 1. Note that it can still deactivate neighboring
targets by mutating nucleotides at the edge of these targets. We use this assumption to limit
the set of possible mutation histories.

ASSUMPTION 1. Each indel tract IT[po, p1, s, jo, j1] satisfies c(jo — 1) < po < c(jo)
and c(j1) < p1 <c(j1 +1).

To formalize Assumptions 2A—C, define a target tract as a set of indel tracts that cut and
deactivate the same target(s). A target tract, denoted TT[jg, jo, j1, ji1 (jy < jo < j1 < ji), is
the set of all indel tracts that cut targets jo and j; and delete nucleotides such that targets j;
through j; are inactive, that is,

3) TTLjo- jo- j1. j1] = {ITpo. p1.s. jo. j1l: po € pos(jy). p1 € pos(ji)}-

For instance, TT[2, 2, 3, 4] is the set of indel tracts that cut targets 2 and 3, introduce deletions
rightward that deactivate target 4 but not beyond and introduce short deletions leftward so that
target 1 is unaffected. Every indel tract d belongs to a single target tract, which we denote
TT(d).

The second assumption states that the instantaneous rate of introducing indel tract d into
allele a is the product of the rate of introducing any element from TT(d), which only depends
on the target status of a, and the conditional probability of introducing d given TT(d). It
also states that the mutation process is irreversible and homogeneous. As such, we treat the
GESTALT barcode as a molecular clock. Note that the total mutation rate of a barcode varies
over time based on which targets are active, but the model for the transition rates is stationary.

ASSUMPTION 2. Let a be an allele, d be an indel tract that can be introduced into a and
7 = TT(d). The instantaneous rate of introducing d in a at time ¢ can be factored into two
terms: First, a function that only depends on the triple (r, TargStat(a), ) and, second, the
conditional probability of introducing d given 7,

4(a. Apply(a.d)) := lim Pr(X(A) = APPIYA(a, d)| X (0) = a)

= h(z, TargStat(a)) Pr(d | 7).

Moreover, h(t, TargStat(a)) = 0 if T cuts a target that is inactive in a.




348 J.FENGET AL.

Using Assumptions 1 and 2, we can calculate the (approximate) likelihood efficiently as
described below. Assume the topology is fixed, for now, which we denote as T.

2.3. Summing over likely ancestral states. The first step to calculating the likelihood is
to characterize the possible ancestral states. In this section we provide a recursive algorithm
for characterizing a subset of the ancestral states which should capture all the likely ancestral
states and only exclude those with very small probability.

Our approximation of the likelihood excludes mutation histories where overlapping indel
tracts merged but did not fully mask one another.

APPROXIMATION 1. The probability of indel tracts merging is approximately zero, that
is,
Pr(Xy,(f,) = apVL € Leaves(T))

4)
~ Pr(Xy,(f1,) = ap,V L € Leaves(T), no indel tracts merged).

We will refer to the right-hand probability as the approximate likelihood. We believe merge
events are rare since they occur when deletion lengths are long, whereas most deletions are
short in McKenna et al. (2016). By excluding merge events, we show that the set of ancestral
states in Approximation 1 can be expressed compactly.

Now, let us define a partial ordering among alleles using Approximation 1 and Assump-
tion 1. Given two alleles a, a’ € 2, a < a’ means that a can transition to a’ without merging
indel tracts, that is, there is a sequence of indel tracts {d;};_, for some m > 0 such that

a’ = Apply(dm, Apply(dm—1, ... Apply(di, @))),

where no indel tracts merge. Then, the set of “likely” ancestral states at internal node N in
tree T is defined as

3) AncState(N) = {a € Q:a < ay, VL € Leaves(N) }.

(Note that AncState(-) is also defined for leaf nodes, in which case it is the set of alleles
that likely preceded the observed allele.) To calculate the approximate likelihood in (4), we
marginalize over AncState(N) at each internal node N.

We can characterize AncState(N) using only two building blocks (Figure 4), wildcards and
singleton-wildcards. A wildcard®> WCJ jo, ji] is the set of all indel tracts that only deactivate
targets within the range jp to ji, inclusive,

(6) WCljo. j1l = {IT[py. p1. 5", jo. j1] : posCio — 1) < pg. P} < pos(ji + D}

A singleton-wildcard SGWC][ po, p1, S, jo, j1] is the union of the singleton set {IT[ po, p1, s,
Jjo, j11} and its inner wildcard WC[ jo + 1, j; — 1], if it exists,

SGWClpo, pi1. s, jo. j1l

) _ JITlpo, p1.s, jo. N1} UWCLjo+ 1, j1 — 11 if jo+1<j1 -1,
{IT[po, p1,s, jo, j1l} otherwise .

Two or more wildcards (WCs) and/or singleton-wildcards (SGWCs) are disjoint if the maxi-
mum ranges of targets deactivated by indel tracts in these sets do not overlap.

2In software systems a wildcard is a symbol used to represent one or more characters (e.g., “*”). Similarly, we
define wildcard here as all indel tracts that only deactivate targets within a specified range.
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FI1G. 4. Relationship between indel tracts (IT), target tracts (TT), wildcards (WC) and singleton-wildcards
(SGWC). Each IT is shown in the context of a barcode, and the unmodified barcode is shown underneath for
reference. Each box represents a set of [Ts. For example, the singleton set {IT[po, p1, s, 1,41} is the indel tract that
cuts targets 1 and 4, deletes positions pq to p| and inserts sequence s. Wildcard WC|2, 3] contains all indel tracts
that only deactivate targets 2 and/or 3. SGWCl| pg, p1, s, 1, 4] is the union of the singleton set {IT[pg, p1, s, 1,41}
and the internal wildcard WC|[2, 3]. TT[1, 1, 3, 4] is the set of indel tracts that cut targets 1 and 3 and deactivate
1t04.

Given a set of indel tracts D, let the alleles generated by D, denoted Alleles(D), be the set
of alleles that can be created using subsets of D,

{ITpok, p1.ks ). Jok jiil}iey S D
m €N, p1x < poi+1, Jik < jok+1 Vk=1,...,m—1}.

Then, for leaf L with allele {IT[po.k, P1.k> Sk» Jo.k> jl,k]}?:p AncState(L) is any subset of the
alleles generated by its corresponding singleton-wildcards, that is,

AncState(L):Alleles( L SGWClpox. pri sk, jox: jl,k]>.

k=1,....m

We now define a recursive procedure to characterize AncState(-) for all nodes in the tree.
We have already established that AncState for a leaf node is characterized by a union of
disjoint SGWCs. To recur up the tree, Lemma 1 states that AncState(N) for node N is also
characterized by a union of disjoint WC/SGWCs. The proof is given in Section B.

LEMMA 1. Consider any internal node N with children nodes Cy, ..., Ck. For each child
Ck, suppose
Mc,
(8) AncState(Cy) C Alleles( U Dck,m),
m=1

M
where {Dck,m}mi"1 are pairwise disjoint wildcards and/or singleton-wildcards. Then,

AncState(N) can be written in the form of (8) where {Dl\L,,l},/ZIi1 are disjoint wildcards and/or
singleton-wildcards and is equal to the nonempty intersections of Dc, m, N+ -N Dcy oy, that
is,

9) {De,iy NN Degmg mi=1,....Mc,,....mg=1,.... Mc,} \ @.

In practice, we use the recursive algorithm in Section B.2 of the Supplementary Material
to compute AncState(-) exactly for additional computational efficiency.
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FI1G. 5. An example of lumping together barcodes that share the same target activity. The two outer boxes
correspond to two of the lumped states. The left box is the grouped state for possible ancestral barcode states
where the second target is no longer active, while the right box represents when the second, fourth and fifth
targets are no longer active. The arrows represent possible transitions, and the color represents the transition
rates. Notice that each barcode in the left box has the same set of outgoing arrows. To show that the states are
lumpable, we show that the total transition rate out of a barcode in the left box to the right box is identical for all
barcodes in the left box.

2.4. Lumpability. The previous section discussed approximating the likelihood by sum-
ming over likely ancestral states. Nevertheless, there are still an infinite number of these
likely ancestral states. Next, we use Assumption 2 and efficiently compute the approximate
likelihood by marginalizing over a small number of “lumped” states.

Lumpability, a well-studied property for Markov chains, states that the behavior of a
Markov process can be described by a Markov process over the lumped states (Hillston
(1995), Kemeny and Snell (1976)) (Figure 5).

DEFINITION 1. Let X (¢) be a continuous time Markov chain with state space €. If there

exists a partition {Aq,..., Ay} of Q and a continuous time Markov chain Y (¢) with state
space {A1, ..., Ay} such that
(10) Pr(X(t) e Aj)=Pr(Y(1) =A;) Vi=1,....M,

then X is lumpable.

If we can find a partition that satisfies (10), then we can calculate the likelihood over
the lumped states instead. The main practical hurdle in using lumpability is finding such a
partition (Ganguly, Petrov and Koeppl (2014)).

There is relatively little work on using lumpability in phylogenetics. The one application in
Davydov, Robinson-Rechavi and Salamin (2017) calculates the likelihood of a codon model,
approximately, by assuming states are lumpable, even though this is not satisfied. Here, we
show that lumpability is satisfied exactly in our setting. Since our solution partitions the state
space differently at each node, we must extend Felsenstein’s pruning algorithm (Felsenstein
(1981)) to calculate the approximate likelihood (4).

We will define a partition of 2 at node N denoted {g(b; N) : b € B} for some index set B.
We partition the states based on their target status and whether or not they are likely ancestral
states (Figure 5), as defined below.

DEFINITION 2. Define index set B to be {0, 1} U {other}.
For internal tree node N, partition the state space €2 into

g(b; N) = {a € AncState(N) : TargStat(a) = b} Vb € {0, 1}M,

11
(b g(other; N) =  — AncState(N).
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For leaf node N, partition the state space €2 into

g(b;N) = {ay} if b = TargStat(ay),
(12) gh;N) =9 if b € {0, 1} and b # TargStat(ay),
g(other; N) = Q2 — {ay}.

Using Assumption 2, we prove in Lemma 4 (see Supplementary Material) that for any
b,b’ € {0, 1}, the instantaneous transition rate from any allele a in g(b;N) to g(b'; N) is
the same. Therefore, we can construct a Markov process over the lumped states {g(b; N) :
b € B}, calculate its instantaneous transition rate matrix Qump,y as defined in Lemma 4 and
exponentiate this matrix to calculate the transition probability

(13) Pr(Xu(t) € g(b'; N)| Xu(0) € g(b: N)) = {eQumeat} Vb, b € B.

The following theorem extends Felsenstein’s pruning algorithm to calculate the phyloge-
netic likelihood by marginalizing over at most 2" lumped states. For b € B, let the probability
of observing the data (marginalizing over likely ancestral states), given that the allele at node
N is in partition g(b; N), be denoted

(14) pr(b) =Pr(X1,(fr,) = ar,VL € Leaves(N) | Xy(fy) € g(b; N)).

THEOREM 1. Suppose Assumptions 1 and 2 and Approximation 1 hold. For any internal
tree node N, target status b and nonempty allele group g(b; N), we have

sy =[] { 3 pc(b/)Pr(Xc(tc)eg(b/;c)|xc<0)eg<b;c>)},

cechildren(N) * p/ g0, 1}M
g';0)#£2

where Pr(Xc(tc) € g(b'; )| Xc(0) € g(b; C)) is defined in (13).
The proof for the above theorem is given in Section C.

2.5. Caterpillar trees. We would like to estimate trees at the finest resolution possible.
C-S parsimony produces estimates at a coarse resolution: If the ordering between nodes is
ambiguous, they are all grouped under a single parent node. We propose estimating trees by
resolving multifurcations at the finer resolution of caterpillar trees (Figure 6a). A caterpillar
tree is one where all subtrees branch off of a central path called the spine. We do not assume
that the true tree is a caterpillar tree. Rather, we use the caterpillar tree to uncover the order
in which indel tracts were introduced.

Calculating the likelihood for all possible branch orderings in a caterpillar tree is compu-
tationally intractable because there are K! such orderings for K children nodes. We sidestep
this issue by approximating the likelihood using another lower bound: we only marginalize
over mutation histories where the alleles are constant along caterpillar spines. To see why
this a reasonable approximation, consider the example in Figure 6b. Because the GESTALT
mutation process is irreversible, the only possible ancestral state at many internal nodes along
the spine is the unmutated barcode. In other words, the allele was constant along most of the
spine. Thus, we propose the following approximation of the likelihood.

APPROXIMATION 2. We approximate Pr(X1(t1,) = apV L € Leaves(T)) by considering
only the mutation histories that have a constant allele along the caterpillar spines,

(16) Pr(X1,(1,) = ai,VL € Leaves(T), alleles are constant on all spines).
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(a) We show the subtree of a full cell lineage tree (top) from low (left) to high (right) resolutions. The
lowest resolution collapses ambiguous orderings as multifurcating nodes. To infer ordering informa-
tion, we increase the resolution of the tree by projecting onto the space of caterpillar trees (middle).
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(c) We parameterize the branch lengths in a
(b) Our method resolves multifurcating nodes caterpillar tree by associating each child node
as caterpillar trees. There are many possible or- C with parameters {¢c > 0 and ¢ € [0,1]. The
derings in a caterpillar tree, two of which are length of the caterpillar spine, highlighted in
shown above. We tune the ordering by maxi- bold, is the maximum value of {¢(1 — B¢) over
mizing the penalized log-likelihood. all children nodes C.

FI1G. 6. Caterpillar tree goals and parameterization.

This approximation is particularly attractive because it can be computed using the same
mathematical expression regardless of the ordering of the children nodes. This allows us to
tune the ordering in the caterpillar tree by solving a single continuous optimization problem
(Figure 6b).

We reparameterize the branch lengths for caterpillar branches (Figure 6¢). Consider a
caterpillar tree with root node N and child node C. Let £ indicate the distance between C
and N. For ¢ € (0, 1), let Bcfc be branch length of C. We can capture all possible orderings
for the caterpillar tree rooted at N by varying the values of (£, Bc) for each child node C.

With this parameterization, we now extend Theorem 1 to calculate (16). For allele a and
node N, define py(a) the same as (14) but now assuming both Approximations 1 and 2. Again,
apply Felsenstein’s pruning algorithm to recursively compute py for each node N. However,
if N is the root of a caterpillar tree, then py(a) is equal to

(17)  Pr(Xy(tspine) = alXn(0) =a)  [] { Y Pr(Xc(cfe) =a'|Xc(0) =a) ﬁc(a/)},

Cechildren(N) “a’e
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where f5pine = max{fc(1 — Bc) : C € children(N)}. To efficiently calculate the likelihood, we
marginalize over the corresponding lumped states instead.

In summary, we have shown how to tune caterpillar trees by solving a single continuous
optimization problem. Compared to considering each tree topology separately, this approach
is more computationally efficient and performs a more comprehensive search over tree space
in practice.

2.6. Model implementation. 'We briefly describe our specific model implementation here
and leave details to Section E. Each target is associated with a different cut rate A ;. If targets
Jo and jj are active, the rate for cutting target jo is A j,, and the rate for simultaneously cutting
targets jo and jj is w(A j, +A ;) for some w > 0. We model the distribution of deletion lengths
using zero-inflated truncated negative binomial random variables (RVs) and insertion lengths
using zero-inflated negative binomial RVs. Finally, Section F.2 discusses our actual code
implementation which includes an additional approximation used to limit memory usage.

3. Estimation method. Now that the approximate likelihood is computationally
tractable, we are ready to estimate the cell lineage tree and mutation model parameters.

3.1. A simple approach. Consider the following estimation procedure: Given a pool of
candidate tree topologies, select the one with the highest likelihood after optimizing over its
corresponding parameters. Unfortunately, this procedure can be highly inaccurate for existing
GESTALT datasets, where we must estimate thousands of parameters given data generated
by a single barcode. Because this problem is high dimensional, we found in simulations that
the maximum likelihood estimate tends to overestimate the length of the leaf branches and
the variance of the target rates.

3.2. Penalization. To improve the estimation accuracy, we propose performing penalized
maximum likelihood estimation instead. We penalize large differences in t