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Tumor cell population consists of genetically heterogeneous subpopula-
tions, known as subclones. Bulk sequencing data using high-throughput se-
quencing technology provide total and variant DNA and RNA read counts
for many nucleotide loci as a mixture of signals from different subclones.
We present RNDClone as a tool to deconvolute the mixture and reconstruct
the subclones with distinct DNA genotypes and RNA expression profiles. In
particular, we infer the number and population frequencies of subclones as
well as subclonal copy numbers, variant allele numbers and gene expression
levels by jointly modeling DNA and RNA read counts from the same tu-
mor samples based on generalized latent factor models. Incorporating data
at the RNA level provides new insights into intra-tumor heterogeneity in
addition to the existing DNA-based inference. Performance of RNDClone
is assessed using simulated and real-world datasets, including an analysis
of three samples from a lung cancer patient in The Cancer Genome At-
las (TCGA). A potential fatal subclone is identified from the primary tu-
mor which could explain the rapid prognosis and sudden death of the pa-
tient despite a promising diagnosis by conventional standards. The R package
RNDClone is available in the Supplementary Material (Zhou et al. (2020))
and online at https://github.com/tianjianzhou/RNDClone.

1. Introduction. We develop a novel framework for statistical inference to understand
intra-tumor heterogeneity. Biologically, the proposed approach is the first one to coherently
combine information from both DNA and RNA level data using total and variant DNA and
RNA read counts. Methodologically, the proposed inference is the first approach to formally
cast the question as a generalized factor analysis problem. Adequate inference for tumor
heterogeneity is a key ingredient for precision oncology.

1.1. Background. During tumorigenesis, tumor cells acquire and accumulate somatic
mutations that give rise to genetically different cell subpopulations (Nowell (1976), Heppner
(1984), Shackleton et al. (2009)). This phenomenon is known as intra-tumor heterogeneity.
Each cell subpopulation, referred to as a subclone, consists of cells that have the same genetic
architecture, such as point mutations and copy number aberrations (CNAs). These modifi-
cations must exert their effects through downstream cascades of molecular events, such as
transcription or translation. Therefore, it is of great interest and importance to understand the
downstream functional effects of the genetic modifications. For example, do subclonal DNA
mutations affect mRNA expression? Is the effect subclonal as well? With DNA and RNA
sequencing data on the same set of tumor samples, it is possible to simultaneously infer the
subclones, their genetic architecture and the impact on mRNA expression.

In this paper the problem of subclone reconstruction is about the identification of the
number, population frequencies, genotypes and gene expression profiles of the subclones
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from the matched DNA and RNA sequencing data. We take an important step beyond the
previous work in subclone reconstruction, based on DNA modifications only (Section 1.2),
and ask the questions whether and how genetic changes affect transcriptomic landscape in
a subclone-specific fashion. Knowledge of tumor subclones is clinically important because
it provides information about tumor progression and further suggests personalized treatment
strategy (Misale et al. (2012), Landau et al. (2013), Schmitt, Loeb and Salk (2016)). Through
a reanalysis of DNA and RNA data from a deceased stage 1 lung cancer patient, we show that
subclone reconstruction might have altered the treatment strategy for the patient and might
have potentially avoided the unexpected rapid disease progression that led to the fatality
event.

The advent of next-generation sequencing (NGS) technology (Mardis (2008)) has enabled
researchers to study the genomic landscape of tumor subclones with greater details. In NGS
experiments for DNA or RNA molecules, fragmented DNA or cDNA (complementary DNA
for RNA sequencing) molecules are extracted from the tumor cells and are sequenced using
short or long reads that are mapped to the corresponding loci in the reference genome. We
consider experiments in which DNA and RNA from the same tumor samples are sequenced.
In particular, for DNA we consider whole-exome sequencing (WES), and for RNA we con-
sider RNA sequencing (RNA-seq) which covers the entire transcriptome. Comprehension of
Figure 1 is essential in order to follow the upcoming discussion and requires domain knowl-
edge in cancer biology, bioinformatics and statistics. We display four plots in the figure to
simplify the discussion which lay out the biological and statistical problems to be addressed.
Figure 1(a) illustrates the biology of tumor subclonal evolution, Figure 1(b) shows the hetero-
geneous tumor subclones with different somatic point mutations, copy number changes and
gene expression levels; Figure 1(c) demonstrates the sequencing data from a tumor sample,
and Figure 1(d) shows the statistical quantities (in matrix form) to be inferred that describe
the subclone structure. We provide a detailed description of the four plots to motivate our
problem next. At the DNA level, point mutations and copy number changes usually drive the
subclonal expansion. This is also seen in Figure 1(b), such as the mutation from “C” to “G”
at locus 2, with a copy number gain. The relative subclonal gene expression (RSGE) refers
to the relative expression level of a certain gene in a specific subclone which measures the
relative abundance of the mRNA molecules produced by that gene. Here, “relative” means
that the expression levels of different genes in different subclones are compared with each
other. For example, if the RSGE of gene g1 in subclone c1 is two times larger than that of
gene g2 in subclone c2, gene g1 in subclone c1 produces two times more mRNA molecules
than gene g2 in subclone c2. Figure 1(b) shows hypothetical RSGEs for different genes in
different subclones. Figure 1(c) shows that the DNA allele carrying the “G” nucleotide at
locus 2 is captured by the short reads which are mapped to the reference genome. In addition,
the RNA-seq data show that both “G” and “C” alleles are expressed at this locus. However,
this is not always the case. Consider locus s = 4. Although there is a point mutation from “T”
to “C” in subclone 3 (Figure 1(b)), the RNA short reads only show the “U” allele but not the
“C” allele, potentially indicating that the DNA mutation is not transcribed to RNA. Of course,
proper modeling is needed to account for the variability of the data which is the main goal
of this paper. If done properly, using the short read data in Figure 1(c), the statistical model
should provide the four matrices in Figure 1(d) which describes the subclonal architecture in
both DNA and RNA level.

NGS data are usually overdispersed and are subject to noise and artifacts. Furthermore, the
observed data may be explained by different subclone structures, that is, multiple solutions
exist for the same subclone reconstruction problem. Therefore, proper statistical modeling
and assumptions are necessary for valid subclone reconstruction, including a propagation of
uncertainties that arise from this ambiguity. In this paper we propose a Bayesian approach,
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FIG. 1. All loci are assumed to reside in exons. Panel (a) illustrates tumor cell evolution and emergence of
three subclones from the original normal cell population. A star or a triangle represents distinct mutations. Panel
(b) shows the genotypes of the three subclones at four loci belonging to three genes as well as their population
frequencies in the two samples. The bold italic letters represent somatic mutations including point mutations and
CNAs. Panel (c) shows a number of DNA and RNA short reads mapped to the four loci in panel (b). The short
line segments indicate the alignment of the read relative to the four loci. The bold italic letters indicate the short
reads that bear variant sequences. Panel (d) demonstrates a mathematical representation of the three subclones in
panel(b) with four matrices, where L represents copy numbers, Z represents variant allele numbers, � represents
RSGEs and W represents population frequencies.

named RNDClone, to reconstruct tumor subclones by integrating matched DNA and RNA
sequencing data from the same tumor samples. We develop sampling models which take into
account over-dispersion and noise in the data. We represent subclones as latent factors to
capture the coexistence of multiple mutations in the same subclone. Importantly, we allow a
simultaneous inference of the RSGEs so that the transcriptional impact of the DNA modifica-
tions can be learned. The R package RNDClone is provided in the Supplementary Material
(Zhou et al. (2020)) and can also be accessed at https://github.com/tianjianzhou/RNDClone.

1.2. Existing methods. Numerous methods have been developed for the subclone recon-
struction problem. A large portion of these methods are based on DNA sequence data only
and deal with intra-tumor heterogeneity, such as THetA (Oesper, Mahmoody and Raphael
(2013)), PyClone (Roth et al. (2014)), PyloWGS (Deshwar et al. (2015)), Clomial (Zare et al.
(2014)), BayClone2 (Lee et al. (2016)), Cloe (Marass et al. (2016)), PairClone (Zhou et al.
(2019a)), TreeClone (Zhou et al. (2019b)) and SIFA (Zeng, Warren and Zhao (2019)). Some
methods are based on RNA sequence data only and handle intertumor heterogeneity, includ-
ing csSAM (Shen-Orr et al. (2010)), CAM (Wang et al. (2016)) and BayCount (Xie, Zhou and
Xu (2018)). Yet, inference on intra-tumor heterogeneity based on integrating DNA and RNA
data remains an underexplored topic. A few methods (Wilkerson et al. (2014), Radenbaugh
et al. (2014)) have proposed integrated analyses for mutation detection using both DNA and
RNA data. We take a different perspective. We aim to reconstruct the subclones that have

https://github.com/tianjianzhou/RNDClone
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distinct DNA mutations and RNA expression profiles, potentially better characterizing the
impact of subclonal DNA mutations to the downstream RNA expression.

Statistically, we develop an approach based on latent-factor modeling which has been
widely used already in many applications (e.g., West (2003), Carvalho et al. (2008),
Bhattacharya and Dunson (2011) and Gao, Brown and Engelhardt (2013)). The idea of
latent-factor modeling has been applied to infer intra-tumor heterogeneity based on DNA
sequence data as seen in Zare et al. (2014), Lee et al. (2016), Marass et al. (2016), Zhou
et al. (2019a, 2019b) and Zeng, Warren and Zhao (2019). Interestingly, similar ideas have
also been used in RNA subclone inference (Shen-Orr et al. (2010), Wang et al. (2016), Xie,
Zhou and Xu (2018)), although the goal there is to infer inter-tumor heterogeneity.

The rest of the paper is structured as follows. In Section 2 we develop a statistical frame-
work for RNDClone, including a sampling model and a prior model. In Section 3 we propose
a scheme for posterior inference. In Section 4 we evaluate operating characteristics of RND-
Clone with two simulation studies. In Section 5 we apply RNDClone to the analysis of three
samples from one patient in a lung cancer dataset from The Cancer Genome Atlas (TCGA).
Finally, in Section 6 we conclude with a discussion.

2. Statistical model.

2.1. Notation. We first introduce some notation to represent the observed data. Suppose
T tissue samples are dissected from the same patient, obtained either at different time points,
at different spatial locations within the same tumor or at different metastatic sites. Let s =
1, . . . , S index the loci of the nucleotides (base pairs) that are covered by short reads produced
by NGS experiments. The observed data are collected into four S × T matrices, N = [Nst ],
n = [nst ], M = [Mst ] and m = [mst ]. We denote the data as D = (N ,n,M,m) in short. The
values of Nst , nst , Mst and mst represent the total number of DNA reads, number of DNA
reads that bear a variant sequence, total number of RNA reads and number of RNA reads
that bear a variant sequence at locus s for sample t , respectively. The total read count is also
referred to as read depth, and we refer to the reads that bear a variant sequence as variant
reads in short. In principle, each read can bear any of the four possible nucleotides, A, C, G
and T at any locus. However, it is unlikely to observe more than two sequences across short
reads at a single locus, as this would require repeated mutations at the same locus. Therefore,
we only distinguish the reads according to whether a read possesses a reference or a variant
sequence (compared to the reference genome). For example, in Figure 1(c) a total of N2t = 5
DNA reads and M2t = 6 RNA reads are mapped to the locus s = 2. Among all the reads,
there are n2t = 2 DNA variant reads and m2t = 4 RNA variant reads.

2.2. Representation of subclones. Next, we introduce a mathematical representation of
subclones. Since we only consider intra-tumor heterogeneity where the T samples are from
the same patient, we assume the samples share the same subclones. However, the population
frequencies of the same subclone are allowed to vary across different samples. The same
assumption is made by most existing methods and is thought to be realistic. Denote by C

the number of subclones, where C is unknown and needs to be inferred. Tumor samples
are in general not pure, in the sense that they contain some proportions of normal cells.
Therefore, among the C subclones we always include a first subclone of normal cells. The
normal subclone does not possess any somatic mutation, as in Figure 1(b).

To represent the gene-level RSGE, suppose the S nucleotide loci reside in G genes. We
index the genes by g = 1, . . . ,G, where g = g(s) : {1, . . . , S} �→ {1, . . . ,G} represents the
gene in which nucleotide s resides. In WES and RNA-seq data, most of the genes possess up
to one variant, while a few hypermutated genes possess multiple variants.

We encode the underlying subclone structure in the following four matrices, the construc-
tion of which is implicitly conditional on C:
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FIG. 2. Graphical representation of the RNDClone model. Nodes represent random variables, arrows indicate
dependencies and plates (rectangles) represent replicates. The shaded nodes are observations, and the striped
nodes represent subclone structure and are the quantities of major interest. A ‘‘·” in the subindex indicates a
vector over all subclones c = 1, . . . ,C.

1. An S × C matrix L = [lsc], with lsc representing the subclonal copy number of locus
s in subclone c, s = 1, . . . , S, c = 1, . . . ,C. The first subclone (normal cells) does not have
any CNA, that is, ls1 = 2 for all s.

2. An S × C matrix Z = [zsc], with zsc recording the number of variant alleles for locus
s in subclone c, zsc ≤ lsc, s = 1, . . . , S, c = 1, . . . ,C. The first subclone (normal cells) does
not have any mutation, that is, zs1 = 0 for all s.

3. A G × C matrix � = [λgc], with λgc representing the RSGE of gene g in subclone c,
g = 1, . . . ,G, c = 1, . . . ,C.

4. A T ×C matrix W = [wtc], where wtc represents the population frequency of subclone
c in sample t , t = 1, . . . , T , c = 1, . . . ,C. The proportion of tumor cells in a tumor sample,
(1 − wt1), is called tumor purity.

Using the terminology of latent factor models, L, Z, � are essentially factor matrices, and
W is the loading matrix. Figure 1(d) demonstrates the mathematical representation of the
three subclones in Figure 1(b) using the four matrices. For example, l22 = 3 represents three
copies of the base pair at locus 2 in subclone 2; z22 = 2 indicates that two out of the three
alleles have a variant sequence.

Our goal is to infer the latent quantities of interest, L, Z, �, W and C, from the observed
data, D = (N ,n,M,m). Taking a Bayesian approach, the desired inference is achieved by
sampling from the posterior distribution

p(L,Z,�,W ,C | D) ∝ p(D | L,Z,�,W ,C)p(L,Z,�,W ,C),

where the sampling model p(D | L,Z,�,W ,C) and the prior model p(L, Z, �, W , C) are
to be specified next.

The structure of the full inference model is summarized in Figure 2, which shows how
the sampling distribution for the data (N ,n,M,m) is indexed by the number of subclones
C, the latent structure (L, Z, �, W ) that describes the tumor heterogeneity and additional
hyperparameters. In particular, in Figure 2 ls· = (ls1, . . . , lsC), zs· = (zs1, . . . , zsC), λg· =
(λg1, . . . , λgC), wt · = (wt1, . . . ,wtC), and ζ , π , lD0, zD0, νDt , γDt , φt , lR0, zR0, νRt , γRt

and ψt represent additional hyperparameters, the meaning of which will be more clear later.

2.3. Sampling model. Throughout the paper we write E(·) for expectation and Var(·) for
variance. We denote by Bin(·, ·) a binomial distribution, Neg-Bin(·, ·) a negative binomial
distribution, Be-Bin(·, ·) a beta-binomial distribution, Be(·, ·) a beta distribution, Ga(·, ·) a
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gamma distribution, Dir(·, . . . , ·) a Dirichlet distribution and Unif(·, ·) a uniform distribu-
tion. Lastly, we use subscripts D and R to represent parameters related to DNA and RNA,
respectively. We specify the sampling model p(D | L, Z, �, W , C) as follows.

Sampling model for the total number of DNA reads Nst . We start with the sampling model
for Nst . It is generally assumed that the total number of DNA short reads mapped to a ge-
nomic region (i.e., read depth) scales linearly with the number of times the region appears in
the DNA sample (i.e., copy number, Magi et al. (2011)). Based on this assumption, previous
methods (Klambauer et al. (2012), Lee et al. (2016)) used a Poisson distribution to model Nst .
The Poisson model relies on the assumption that the reads are randomly and independently
sampled from any location of the test genome with equal probability, while, in reality, the
distribution of read counts is typically slightly overdispersed (Magi et al. (2011)). To account
for this overdispersion of read counts, we model Nst using a negative-binomial distribution.
Let φt denote the expected number of DNA reads in sample t if there were no CNAs. We
assume

Nst | φt ,Ast , γDt ∼ Neg-Bin(φtAst/2, γDt ),(2.1)

with

Pr(Nst | φt ,Ast , γDt )

= 	(Nst + γ −1
Dt )

Nst !	(γ −1
Dt )

(
1

1 + γDtφtAst/2

)1/γDt
(

γDtφtAst/2

1 + γDtφtAst/2

)Nst

.

We have E(Nst ) = φtAst/2 and Var(Nst ) = E(Nst ) + γDtE(Nst )
2, with γDt being a disper-

sion parameter. Here, Ast is the average copy number for locus s in sample t and is modeled
as

Ast = wt0lD0 +
C∑

c=1

wtclsc.

Specifically, wt0 represents the proportion of a “background” subclone in sample t with no
biological meaning. The background subclone is only used as a mathematical tool to account
for tiny subclones that are not detectable or cannot be inferred with sufficient statistical power
and also for noise and artifacts in the NGS data (sequencing errors, mapping errors, etc.). The
term wt0lD0 models random noise in the total DNA read counts, where lD0 can be viewed as
the copy number in the background subclone. We assume the random noise does not differ
across different loci, thus lD0 does not have an index s.

Sampling model for the number of variant DNA reads nst . Conditional on Nst , we model nst

as the number of successful trials from a beta-binomial distribution; see, for example, Marass
et al. (2016). For each read, let p̃st denote the probability that it bears a variant sequence. We
assume

nst | Nst , p̃st ∼ Bin(Nst ; p̃st ),

and the success probability p̃st follows a beta distribution, given by

p̃st | pst , νDt ∼ Be
(
ν−1
Dt pst , ν

−1
Dt (1 − pst )

)
.

Here, p̃st is centered at the variant allele fraction (VAF) in the cell population, denoted by
pst and νDt controls the variance of the beta distribution. We define pst = Ãst /Ast , where
Ãst is the average number of variant alleles for locus s in sample t , defined as

Ãst = wt0zD0 +
C∑

c=1

wtczsc.
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To see this, recall that Ãst is the average number of variant alleles, and Ast is the average
number of alleles. Therefore, the ratio Ãst /Ast is the fraction of variant alleles, that is, the
VAF. The term wt0zD0 is used to account for random noise in variant DNA read counts, and
zD0 can be viewed as the number of variant alleles in the background subclone. Again, we
assume the random noise does not differ across different loci, thus zD0 does not have an index
s. Integrating out p̃st , nst follows a beta-binomial distribution given by

nst | Nst ,pst , νDt ∼ Be-Bin(Nst ;pst , νDt ),(2.2)

with

Pr(nst | Nst ,pst , νDt ) = Nst !
nst !(Nst − nst )!

× 	(ν−1
Dt )	(ν−1

Dt pst + nst )	(ν−1
Dt (1 − pst ) + Nst − nst )

	(ν−1
Dt pst )	(ν−1

Dt (1 − pst ))	(ν−1
Dt + Nst )

,

where E(nst | Nst ,pst , νDt ) = Nstpst and Var(nst | Nst ,pst , νDt ) = Nstpst (1 − pst )(1 +
NstνDt )/(1 + νDt ).

Sampling model for the total number of RNA reads Mst . Next, we model Mst . It follows
a similar construction as Nst . Suppose that the RSGE of gene g in subclone c is λgc. We
are only concerned about the relative expression levels. For example, λg1c1 > λg2c2 means
that gene g1 in subclone c1 produces more RNA molecules than gene g2 in subclone c2. The
average number of RNA copies in sample t that contain locus s is thus

Bst = wt0λg(s)0lR0 +
C∑

c=1

wtcλg(s)clsc.(2.3)

As before, we include wt0λg(s)0lR0 to account for random noise in the total RNA read counts.
We allow the random noise to be different for DNA and RNA reads by allowing lR0 and lD0
to be different.

Again, assuming that the total number of RNA reads mapped to a genomic region has a
linear relationship with the number of RNA copies of that region, we model Mst using a
negative-binomial distribution,

Mst | ψt,Bst , γRt ∼ Neg-Bin(ψtBst/2, γRt ).(2.4)

Here, ψt is the expected number of RNA reads at locus s in sample t if there were no CNAs
at the locus and the RSGE for gene g(s) was 1.

Sampling model for the number of variant RNA reads mst . Finally, we model mst condi-
tional on Mst . The average RNA copies in sample t that bear a variant sequence at locus s is
given by

B̃st = wt0λg(s)0zR0 +
C∑

c=1

wtcλg(s)czsc,

where wt0λg(s)0zR0 accounts for random noise in variant RNA read counts. We model mst

with a beta-binomial distribution,

mst | Mst , qst , νRt ∼ Be-Bin(Mst ;qst , νRt ),(2.5)

where qst is the fraction of RNA copies in sample t that bear a variant sequence at locus s,
qst = B̃st /Bst .
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Generalized factor analysis. Models (2.1), (2.2), (2.4) and (2.5) can be characterized as
generalized latent factor models, where each observation (Nst , nst ,Mst ,mst ) is modeled by
C interpretable and biologically meaningful latent factors, (lsc, zsc, λg(s)c) for c = 1, . . . ,C,
with the wtc coefficients playing the role of factor loadings. In particular,

E

⎛
⎜⎜⎝

N
n
M
m

⎞
⎟⎟⎠ = f −1

⎡
⎢⎢⎣

⎛
⎜⎜⎝

L
Z

�∗ ◦ L
�∗ ◦ Z

⎞
⎟⎟⎠W	

⎤
⎥⎥⎦ ,

where �∗ is a S × C matrix with λ∗
sc = λg(s)c, symbol ◦ refers to the Hadamard product, that

is, entrywise product and f −1 is a linear transformation as in equations (2.1), (2.2), (2.4) and
(2.5).

Understanding the model as an instance of factor analysis, one might wonder why the
factors L and Z should be constrained to integer scores. We strongly prefer the restriction to
integer scores to maintain the interpretability of equations (2.1) through (2.5) as mapping the
relevant biology. While a relaxation would likely improve mixing of posterior Markov chain
Monte Carlo simulation, the loss in ease of communication cannot be justified by minor
gains in computational efficiency, considering also that inference need not be carried out in
real time.

2.4. Prior model. We build a hierarchical prior model for the unknown parameters, in-
cluding the key quantities of interest, L, Z, �, W and C.

Prior for C. We start with a truncated geometric prior for C,

Pr(C) ∝ (1 − α)C−1α, 1 ≤ Cmin ≤ C ≤ Cmax.

The hyperparameter α (0 < α < 1) implies a prior preference for a parsimonious model;
larger α represents more shrinkage. We assume that C is a priori restricted to Cmin ≤ C ≤
Cmax. The bounds are only used to simplify implementation. Since we only consider het-
erogeneous cell samples, we can set Cmin = 2. When computational resources allow, Cmax
can be set sufficiently large. Empirically, we find that the maximum number of subclones
that can be inferred with sufficient statistical power is usually limited by the number of sam-
ples and sequencing depth. With the usual sequencing depths in WES experiments, setting
Cmax = T + 4 suffices, where T is the number of tissue samples. This can also be understood
from the latent factor model perspective. The number of factors (C) that can be reliably in-
ferred is usually less than the rank of the data matrix which is bounded by the number of
samples here.

Prior for L. Next, we construct the prior model for the copy numbers L. The first column
of L represents the normal subclone and is fixed at ls1 = 2 for all s. For locus s of subclone
c (c 
= 1), we assume a truncated geometric-type prior for lsc,

Pr(lsc = k | πc,C) ∝ (1 − πc)
|k−2|πc, 0 ≤ Kmin ≤ k ≤ Kmax.(2.6)

Here, πc is the probability for subclone c having a copy number 2 at a locus, and (1 − πc) is
the probability of a copy number change. We assume a beta prior,

πc | C ∼ Be(aπ , bπ).

The prior bounds of lsc, Kmin and Kmax are only used to simplify implementation. Suitable
values for Kmin and Kmax can be explored by running copy number callers on the WES data
or comparing the minimum and maximum read depths with the mean read depth. When such
information is not available, we recommend setting Kmin = 0 and choosing a sufficiently
large Kmax.
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Prior for Z. Conditional on L, we define the prior model for the variant allele numbers Z,
subject to 0 ≤ zsc ≤ lsc. The first column of Z corresponds to the normal subclone and is
fixed at zs1 = 0 for all s. For locus s of subclone c (c 
= 1), we assume a truncated geometric
prior for zsc,

Pr(zsc = k | lsc, ζc,C) ∝ (1 − ζc)
kζc, 0 ≤ k ≤ lsc,

and zsc = 0 if lsc = 0. Here, (1 − ζc) is the probability of observing a mutation in subclone c

at a locus. We put a beta distribution prior on ζc,

ζc | C ∼ Be(aζ , bζ ).

The prior for L penalizes for deviations from copy number 2. Similarly, the prior for Z
penalizes for large numbers of variant alleles. Such prior specifications impose some sparsity
structure on the latent factors to improve the identifiability of the latent subclones, especially
when the number of samples (T ) is small. If desired, the prior models could be modified
without changing anything in the rest of the discussion. For example, one may use discrete
uniform priors for lsc and zsc.

Prior for �. The RSGEs � should be nonnegative, λgc ≥ 0. We assume a gamma prior,

λgc | C i.i.d.∼ Ga(aλ, bλ).

Prior for W . The population frequencies of the subclones satisfy
∑C

c=0 wtc = 1 for all t .
Recall that wt1 stands for the proportion of the normal subclone (subclone 1), that is, (1 −
tumor purity). In addition, wt0 is the proportion of the “background” subclone that is only
used to model tiny subclones and noise. We assume a beta-Dirichlet prior on wt , such that

wt1 | C ∼ Be(aw, bw) and

(wt0,wt2, . . . ,wtC)/(1 − wt1) | wt1, C ∼ Dir(d0, d, . . . , d).

We set d0 � d to reflect the nature of the background subclone. Informative prior can be
elicited for wt1 based on information from some tumor purity caller.

Hyperpriors. We complete the model with priors for lD0, zD0, lR0, zR0, φt , ψt , γDt , νDt ,
γRt , νRt and λg0. We assume

lD0 ∼ Unif(Kmin,Kmax), zD0 | lD0 ∼ Unif(0, lD0),

lR0 ∼ Unif(Kmin,Kmax), zR0 | lR0 ∼ Unif(0, lR0),

φt ∼ Ga(aφt , bφt ), ψt ∼ Ga(aψt , bψt ),

γDt
i.i.d.∼ Ga(aγD

, bγD
), νDt

i.i.d.∼ Ga(aνD
, bνD

),

γRt
i.i.d.∼ Ga(aγR

, bγR
), νRt

i.i.d.∼ Ga(aνR
, bνR

).

Among these parameters, informative priors are necessary for φt and ψt . For example, the
parameters (ψt , λgc) and (ψt/a, a · λgc) lead to exactly the same data likelihood for any pos-
itive constant a. To help identify the parameters, we can match the prior means of φt and ψt

with the mean DNA and RNA read depths in copy number neutral regions, respectively. This
can be done by running a bioinformatics copy number caller on the DNA sequencing data. If
such information is not available, we recommend setting the priors for φt and ψt such that
E(φt ) and E(ψt ) are centered at the mean DNA and RNA read depths, respectively. Infor-
mative priors can also be elicited for the overdispersion parameters, φt , ψt , γDt , νDt , γRt ,
νRt . For example, the variance of total DNA read count is Var(Nst ) = E(Nst ) + γDtE(Nst )

2.
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We can choose the prior for γDt , according to the dispersion of Nst , in copy number neutral
regions. Finally, we set λg0 = (

∑C
c=1 wtcλgc)/(

∑C
c=1 wtc) to let the magnitude of the random

noise in the total RNA read counts (equation (2.3)) match the average expression level.
The RNDClone hierarchical model is summarized in Figure 2 using a graphical model

representation.

2.5. Special cases. In special cases, RNDClone reduces to a model based on DNA or
RNA data only:

DClone. When only DNA data (N and n) are available, we can still infer L, Z, W , C and
DNA-related hyperparameters such as φt , γDt and νDt . We cannot estimate � and RNA-
related hyperparameters. In this case we refer to our model as DClone. DClone is similar to
some existing DNA-based methods such as Zeng, Warren and Zhao (2019) and Lee et al.
(2016).

RClone. Typically, RNA-based methods only take as input the total RNA counts M and do
not consider variant RNA counts. When only total RNA counts are available, we can still infer
�, W , C and some RNA-related hyperparameters such as ψt and γRt . We cannot estimate
L, Z and DNA-related hyperparameters. Without loss of generality, we can set lsc = 2 and
zsc = 0 for all s and c. In this case we refer to our model as RClone. RClone is similar to
some existing RNA-based methods such as Xie, Zhou and Xu (2018), although the goal there
is to infer inter-tumor heterogeneity.

3. Posterior inference. Taking a Bayesian approach, inference on the quantities of in-
terest is contained in their posterior distribution. We use Markov chain Monte Carlo (MCMC)
simulations to draw J samples {L(j),Z(j),�(j),W (j),C(j), . . . ; j = 1, . . . , J } from the pos-
terior distribution. Transdimensional MCMC and parallel tempering are needed to ensure
proper convergence. The exact form of the posterior distribution is described in the Supple-
mentary Material, Section S.1.1 (Zhou et al. (2020)).

Transdimensional MCMC. Let x = (L, Z, �, W , π , ζ , φ, ψ , γ D , νD , γ R , νR , lD0,
zD0, lR0, zR0) denote all unknown parameters, except the random number of subclones
C. Sampling (x,C) involves transdimensional MCMC (Green (1995)), as the dimensions
of L, Z, �, W , π and ζ depend on C. Prior to each MCMC transition, denote the cur-
rent state by (x,C). We propose a new C̃ from q(C̃ | C). We use a uniform proposal,
(C̃ | C) ∼ Unif(Cmin, . . . ,Cmax). Next, we propose a new x̃ whose dimension is consistent
with C̃ from q(x̃ | C̃) = pτ (x̃ | C̃), where

pτ (x | C) ∝ p(x | C)p(D | x,C)τ for 0 ≤ τ ≤ 1.(3.1)

The proposal of x̃ is motivated by the idea of power prior (Ibrahim and Chen (2000)), who
used a fraction τ of the historical data likelihood to define an informative prior based on
historical data. The acceptance probability of the proposal (x̃, C̃) is calculated by

pacc(x,C, x̃, C̃) = 1 ∧ p(D | x̃, C̃)1−τ�����
pτ (x̃ | C̃)p(C̃)

p(D | x,C)1−τ
�����pτ (x | C)p(C)

· ����
q(x | C)q(C | C̃)

����
q(x̃ | C̃)q(C̃ | C)

.

Here, a ∧ b represents the minimum of a and b. In summary, the effect of using q(x̃ | C̃) =
pτ (x̃ | C̃) is to replace the original posterior ratio in the acceptance probability with a frac-
tional (1 − τ) power likelihood ratio.

The purpose of using the power prior and power likelihood is to achieve reasonable accep-
tance probabilities for the proposals and a well mixing Markov chain. Since the likelihood
is highly informative, commonly used transdimensional proposals, such as the split-merge
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proposals (Richardson and Green (1997)), have a very low chance of being accepted and re-
sult in very slowly mixing Markov chains. On the other hand, proposals from the power prior
are more likely to be accepted. Importantly, the conditional posterior of x given C under this
transdimensional MCMC is exactly the same as what under the original model. Details in the
Supplementary Material, Section S.1.2 (Zhou et al. (2020)).

In contrast to many existing methods (such as Marass et al. (2016)) which use model
selection criteria to choose the optimal C, here, we use transdimensional MCMC to quantify
the uncertainty associated with the estimate of C. The marginal posterior of C implies a
model comparison among different C’s.

Parallel tempering and Gibbs sampler. The previously described transdimensional MCMC
scheme requires sampling from pτ (x | C) in (3.1). We use (separate, up-front) MCMC simu-
lation to generate from pτ (x | C). However, the posterior surface of pτ (x | C) is expected to
be highly multimodal. We therefore use parallel tempering (Geyer (1991)) to further improve
the mixing of the Markov chain. Consider I parallel Markov chains with decreasing temper-
atures {�1,�2, . . . ,�I }, where �I = 1. Let xi denote the state of the ith chain. The target
distribution for the ith chain is

pτ,i(xi | C) ∝ p(xi | C)p(D | xi ,C)τ/�i ,

thus the target distribution of the I th chain is the original target distribution pτ (x | C). At
each MCMC iteration we first independently update all I chains. Gibbs sampling transition
probabilities are used to update xi . Details of the full conditionals are in the Supplementary
Material, Section S.1.3 (Zhou et al. (2020)). Then, for i = 1,2, . . . , I − 1, we propose a swap
between xi and xi+1 and accept the proposal with probability

pswap(xi ,xi+1) = 1 ∧
[
p(D | xi+1,C)

p(D | xi ,C)

] 1
�i

− 1
�i+1

.

The value from the I th chain, xI , is kept.
To ensure that the Markov chain of x reaches the stationary distribution, for every possible

C ∈ {Cmin, . . . ,Cmax}, we run a sufficiently large number J0 of burn-in iterations. A draw of
x after the burn-in period can be seen as a draw from pτ (x | C). The detailed MCMC scheme
is summarized in the Supplementary Material, Algorithm S.1 (Zhou et al. (2020)).

Point estimate. Suppose we have obtained J posterior samples of (x,C), {(x(j),C(j)), j =
1, . . . , J }. As a point estimate for the number of subclones, C, we report the estimated pos-
terior mode, Ĉ = Mode({C(j), j = 1, . . . , J }). Conditional on Ĉ, we again use the posterior

mode as a point estimate for x, that is, x̂ = x(ĵ ), where

ĵ = arg max
j

p
(
D | x(j), Ĉ

)
p

(
x(j) | Ĉ)

,

where the maximization is over all iterations j with C(j) = Ĉ. That is, we report x̂ based on
the maximum a posteriori (MAP) estimator.

4. Simulation studies. We carry out simulation studies to explore the power of RND-
Clone to recover under realistic sample size and signal the true number of subclones C, copy
numbers L, variant allele numbers Z, RSGEs � and cellular proportions W . We define sub-
clone reconstruction errors by comparing the point estimates Ĉ, L̂, Ẑ, �̂ and Ŵ with the
simulation truth, similar to Marass et al. (2016). Let Cerr = |Ĉ − C|,

Lerr = 1

S(C − 1)

(∑
s,c

I (l̂sσ (c) 
= lsc)

)
,

Zerr = 1

S(C − 1)

(∑
s,c

I (ẑsσ (c) 
= zsc)

)
,
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�err = ∑
g,c |λ̂std

gσ(c) − λstd
gc |/(GC) and Werr = ∑

t,c |ŵtσ (c) − wtc|/(T C). Here, σ is a per-
mutation of subclones that minimizes Zerr to account for label-switching of subclones. The
value λstd

gc = λgc/sd(λgc) is the standardized RSGE. The reason for standardizing the RSGEs
is to put them on the same scale to allow for comparison among different datasets. In some
cases, RNDClone may fail to identify the correct number of subclones C. To avoid compar-
ing two matrices with different dimensions and to ease the calculation of Lerr, Zerr, �err and
Werr, we always report point estimates for L̂, Ẑ, �̂ and Ŵ conditional on the correct C in the
simulation studies.

For all simulation studies we fit the model with the following hyperparameters. We set
α = 0.8, aπ = C − 1, bπ = 1, aζ = C − 1, bζ = 1, aw = 1, bw = 1, d = 1, d0 = 0.03, aλ = 1,
bλ = 1, bφt = 10, bψt = 10, aγD

= 1, aνd
= 1, aγR

= 1 and aνR
= 1. Following the guidelines

that we have introduced in Section 2.4, we set aφt and aψt such that E(φt ) and E(ψt ) match
the mean DNA and RNA read depths in copy number neutral regions, respectively; we set
bγD

and bνd
equal to 10 times the average DNA read depths and bγD

and bνd
equal to 10 times

the average RNA read depths. We set Cmin = 2 and Cmax = 7 as the range of C. Based on
empirical calibration, we set the power of the likelihood in the power prior τ = 0.99 (equation
(3.1)). We run MCMC simulation for 25,000 burn-in iterations and 5000 transdimensional
transitions.

4.1. Simulation 1. In simulation 1 we assess RNDClone under multiple scenarios with a
range of values for the number of subclones (C), number of samples (T ), average read depth
(E(φt ) and E(ψt )) and maximum copy number (max(lsc)).

Simulation 1(a). First, we validate RNDClone on simulated datasets with a range of values
for the number of subclones (C) and samples (T ). We consider nine scenarios, one for each
combination of C ∈ {3,4,5} and T ∈ {3,4,5}. Suppose there are S = 100 loci. The average
DNA and RNA read depths for sample t in copy number neutral regions are generated from
φt ∼ Ga(200,1) and ψt ∼ Ga(200,1), with E(φt ) = E(ψt ) = 200. For simplicity, we use, in
the simulation truth copy, numbers ranging from 1 to 3, lsc ∈ {1,2,3}. Accordingly, we set
Kmin = 1 and Kmax = 3 as prior bounds for lsc (equation (2.6)). Next, typically, data include
for each gene only one locus that carries a mutation. Mimicking this, we assume that the 100
loci span G = 91 genes, with 84 genes contain one locus, five genes contain two loci and two
genes contain three loci. The RSGEs λgc are randomly generated from a gamma distribution,
λgc ∼ Ga(1,1). Finally, for each scenario, 50 hypothetical datasets D = (N ,n,M,m) are
generated from the assumed sampling models (2.1), (2.2), (2.4) and (2.5). More details on
the simulation parameters are reported in the Supplementary Material, Section S.2.1 (Zhou
et al. (2020)).

Table 1 reports the reconstruction errors under the nine scenarios, averaged over the re-
peatedly simulated datasets. In all nine cases, inference under RNDClone attains low recon-
struction errors. The reconstruction errors on C, Z and W can be directly compared to those
reported in Marass et al. (2016) (e.g., Figure 4). In general, the errors given by RNDClone are
comparable with those in Marass et al. (2016), despite that RNDClone uses a more complex
model which considers copy number aberrations and gene expression levels. We note that
the reconstruction errors depend on the complexity of the subclone structure, for example,
the number of subclones and the similarity among subclones. In general, the simulation truth
is better recovered when the number of subclones C is smaller (relative to the number of
samples T ). It is also easier to distinguish multiple subclones when their genotypes and gene
expression profiles are less similar. Table 1 also reports the computation times for RNDClone
(using an Intel E5-2680 v4 2.40 GHz processor). Running time increases with the number of
samples (T ).
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TABLE 1
Simulation 1(a). Reconstruction errors and computation times (in minutes) of RNDClone under nine scenarios,

one for each combination of C ∈ {3,4,5} and T ∈ {3,4,5}. Values shown are averages over 50 repeat
simulations with numerical Monte Carlo standard errors in subscripts

C T Cerr Lerr Zerr �err Werr Time

3 3 0.000.00 0.0190.001 0.0180.001 0.0980.001 0.0080.000 141
3 4 0.000.00 0.0230.001 0.0230.001 0.0910.001 0.0080.000 171
3 5 0.080.04 0.0250.001 0.0250.001 0.0850.001 0.0070.000 203

4 3 0.000.00 0.0200.001 0.0020.000 0.2710.003 0.0080.000 142
4 4 0.000.00 0.0160.001 0.0010.000 0.2120.002 0.0080.000 174
4 5 0.000.00 0.0120.001 0.0030.001 0.1910.002 0.0070.000 203

5 3 0.000.00 0.0470.002 0.0040.000 0.2950.002 0.0100.000 141
5 4 0.000.00 0.0070.001 0.0010.000 0.2220.002 0.0080.000 171
5 5 0.000.00 0.0050.000 0.0020.000 0.1730.002 0.0070.000 204

Simulation 1(b). Next, we explore how read depth affects the performance of RNDClone.
For each of the three simulation scenarios in Simulation 1(a), with C = 4 and T ∈ {3,4,5},
we generate two more hypothetical scenarios with E(φt ) = E(ψt ) ∈ {100,400}. Table 2 re-
ports the reconstruction errors under the six scenarios and also includes the errors under the
three scenarios in Simulation 1(a) (with E(φt ) = E(ψt ) = 200) for comparison.

Again, in all scenarios RNDClone maintains low reconstruction errors. In general, the sim-
ulation truth is better recovered with higher read depths E(φt ) and E(ψt ) and a larger number
of samples T . This is similar to existing methods and is well understood in the literature.

Simulation 1(c). In Simulations 1(a), (b) we considered simulation truths with copy num-
bers ranging from one to three. However, some cancer cells can undergo more extensive
CNAs. We therefore include an additional simulation scenario with copy numbers ranging
from zero to 10. We consider S = 100 loci, C = 4 subclones, T = 3 samples and average
read depths E(φt ) = E(ψt) = 200. We generate 50 datasets under this scenario and fit the
datasets with RNDClone, setting Kmin = 0 and Kmax = 10, accordingly. The second row of
Table 3 reports the reconstruction errors for this scenario. Again, the truth is recovered with
small errors.

Since Kmin and Kmax are artificial prior bounds, it is possible that they are different from
the true range of copy numbers. To explore how different choices of Kmin and Kmax affect

TABLE 2
Simulation 1(b). Reconstruction errors and computation times (in minutes) of RNDClone under nine scenarios,
one for each combination of T ∈ {3,4,5} and E(φt ) = E(ψt ) ∈ {100,200,400}. Values shown are averages over

50 repeat simulations with numerical Monte Carlo standard errors in subscripts

T E(φt ) Cerr Lerr Zerr �err Werr Time

3 100 0.000.00 0.0660.002 0.0080.001 0.3230.003 0.0130.001 141
3 200 0.000.00 0.0200.001 0.0020.000 0.2710.003 0.0080.000 142
3 400 0.000.00 0.0060.001 0.0030.000 0.2210.003 0.0060.000 142

4 100 0.000.00 0.0630.002 0.0060.001 0.2780.002 0.0100.000 171
4 200 0.000.00 0.0160.001 0.0010.000 0.2120.002 0.0080.000 174
4 400 0.000.00 0.0040.000 0.0030.000 0.1570.002 0.0060.000 174

5 100 0.000.00 0.0450.002 0.0040.001 0.2440.002 0.0100.000 202
5 200 0.000.00 0.0120.001 0.0030.001 0.1910.002 0.0070.000 203
5 400 0.120.05 0.0260.009 0.0250.009 0.1720.014 0.0140.004 206
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TABLE 3
Simulation 1(c). Reconstruction errors and computation times (in minutes) of RNDClone under two scenarios

with different copy number ranges. For each scenario, RNDClone is run with (Kmin,Kmax) = (1,3) and (0,10).
Values shown are averages over 50 repeat simulations with numerical Monte Carlo standard errors in subscripts

min,max(lsc) Kmin,Kmax Cerr Lerr Zerr �err Werr Time

1, 3 1, 3 0.000.00 0.0200.001 0.0020.000 0.2710.003 0.0080.000 142
0, 10 0, 10 0.000.00 0.1050.003 0.0380.002 0.3030.004 0.0120.001 224
1, 3 0, 10 0.000.00 0.0250.002 0.0030.001 0.2720.003 0.0090.000 220
0, 10 1, 3 1.140.05 0.5520.005 0.2310.002 0.5590.003 0.0610.002 142

the performance of RNDClone, we conduct more simulations under two additional scenarios.
First, we consider one scenario in Simulation 1(a) with C = 4, T = 3 and E(φt ) = E(ψt) =
200; we fit the 50 datasets generated under this scenario with Kmin = 0 and Kmax = 10, while
the true copy numbers range from one to three. Next, we consider the previous scenario in
Simulation 1(c) with copy numbers ranging from zero to 10; we fit the 50 datasets generated
under this scenario with Kmin = 1 and Kmax = 3. The reconstruction errors under these two
scenarios are summarized in Table 3 (rows three and four). When the true copy numbers
are within the range of Kmin and Kmax, the truth can still be recovered. On the other hand,
when the true copy numbers exceed the range of Kmin and Kmax, the reconstruction errors
are high. Therefore, we recommend setting Kmin = 0 and choosing a sufficiently large Kmax.
Increasing the range of Kmin and Kmax leads to longer computation time.

Lastly, we note that increasing the number of genomic loci or having more loci on each
gene allows more borrowing of information and thus also improves the accuracy of subclone
reconstruction. Computation time will increase as the number of loci (S) increases.

4.2. Simulation 1: Comparison with alternatives. There are no existing methods that si-
multaneously infer subclonal copy numbers, mutations and gene expressions. For compari-
son, we run SIFA (Zeng, Warren and Zhao (2019)), BayClone2 (Lee et al. (2016)) and Bay-
Count (Xie, Zhou and Xu (2018)) on the same simulated datasets for the inference of DNA
or RNA subclones but not both. SIFA and BayClone2 use only DNA sequencing data to infer
subclonal copy numbers and mutations, while BayCount uses only total RNA counts to infer
subclonal RNA expression profiles.

SIFA and BayClone2 (DNA-based). SIFA is one of the most recently published methods
for DNA-based subclone reconstruction. Both SIFA and BayClone2 characterize subclonal
copy numbers and variant allele numbers by latent feature matrices (same as L and Z) and
model total and variant DNA read counts (N and n) using Poisson and binomial distribu-
tions, respectively. We run SIFA and BayClone2 under the default hyperparameter settings.
The reconstruction errors of SIFA under Simulation 1(a) scenarios are reported in Table 4.
Additional details, including the results of SIFA under Simulation 1(b), (c) scenarios, the re-
sults of BayClone2, and a discussion of the results, are presented in the Supplementary Ma-
terial, Section S.2.2 (Zhou et al. (2020)). In all scenarios, SIFA and BayClone2 have higher
reconstruction errors than RNDClone.

BayCount (RNA-based). BayCount is one of the most recently published methods for RNA-
based subclone inference. BayCount was developed to infer intertumor heterogeneity when
gene expression data from multiple patients are available. Yet, when multiple tissue samples
from the same patient are available, BayCount can also be used to measure the heterogene-
ity in gene expression across these samples. BayCount characterizes subclonal expression
profiles by a latent factor matrix (similar to �) and models total RNA counts (M) using a
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TABLE 4
Reconstruction errors of SIFA and BayCount under the nine scenarios in Simulation 1(a). Values shown are

averages over 50 repeat simulations with numerical Monte Carlo standard errors in subscripts

SIFA BayCount

C T Cerr Lerr Zerr Werr Cerr �err Werr

3 3 0.100.04 0.0700.004 0.0730.009 0.0190.002 0.540.08 0.2090.007 0.0940.003
3 4 0.320.07 0.0660.003 0.0650.003 0.0140.001 0.160.07 0.1770.004 0.0830.002
3 5 0.390.07 0.1020.009 0.1360.020 0.0300.005 0.900.05 0.1500.002 0.0650.001

4 3 1.420.10 0.1260.004 0.1920.008 0.0880.004 0.780.11 0.5160.004 0.0800.001
4 4 2.570.12 0.1250.005 0.1970.010 0.0810.004 0.840.08 0.4770.012 0.0800.003
4 5 1.540.08 0.1080.005 0.2040.011 0.0810.005 1.740.08 0.4250.009 0.0650.002

5 3 0.440.08 0.0730.004 0.0520.010 0.0380.005 1.140.08 0.5380.004 0.1060.001
5 4 0.860.09 0.0570.006 0.0870.012 0.0480.005 1.120.12 0.4530.009 0.0920.003
5 5 0.740.07 0.0680.005 0.1120.010 0.0590.005 1.320.17 0.4720.007 0.1030.003

negative binomial distribution. We run BayCount under its default hyperparameter setting.
We rescale the outcome of BayCount and adjust for copy numbers so that it can be compared
to �. The reconstruction errors of BayCount under Simulation 1(a) scenarios are reported in
Table 4. Additional results are presented in the Supplementary Material, Section S.2.2 (Zhou
et al. (2020)). Overall, BayCount appears to have inflated errors compared with RNDClone.

Selfcomparison. We present a selfcomparison of our own modeling approach applied sep-
arately to DNA and RNA data. As described in Section 2.5, when only DNA data (or RNA
data) are available, RNDClone reduces to DClone (or RClone) and can still infer DNA-related
(or RNA-related) parameters, such as L, Z, W and C (or �, W and C). The goal of this com-
parison is to better understand the advantage of jointly modeling DNA and RNA data.

The reconstruction errors of DClone and RClone under the nine scenarios in Simulation
1(a) are reported in Table 5. Additional results are presented in the Supplementary Mate-
rial, Section S.2.2 (Zhou et al. (2020)). The reconstruction errors of RClone are generally
higher than those of RNDClone. Although the reconstruction errors of DClone are compara-
ble to those of RNDClone, using only DNA data, DClone does not provide estimations of the
subclonal RNA expression profiles. One might think of combining the results from separate
analyses post hoc to obtain a complete picture of the subclonal genotypes and gene expres-
sion profiles. However, such combination might not be straightforward, as DNA analysis and
RNA analysis might yield different numbers of subclones and different subclone proportions,
and the relationship between DNA and RNA subclones is also unknown. In contrast, infer-
ence under a joint model for DNA and RNA data provides coherent inference and easily
interpretable results.

4.3. Simulation 2: Frequentist coverage. In simulation 2 we generate simulated data by
mimicking the actual TCGA lung cancer dataset in Section 5. Same as the lung cancer dataset,
we consider S = 66 loci and T = 3 samples. These loci reside on G = 61 genes. The num-
ber, genotypes and gene expression profiles of the subclones as well as the expected read
depths and overdispersion parameters are generated by fitting the lung cancer dataset under
RNDClone; see Section 5 for more detail of the lung cancer dataset. In particular, the number
of subclones is C = 3, and the copy numbers are lsc ∈ {0,1, . . . ,13}. Under this simulation
truth, we repeatedly generate 50 datasets with the assumed sampling model to investigate the
frequentist coverage properties of the Bayesian credible intervals given by RNDClone. This
exercise gives us an assessment of the potential performance of RNDClone for the real data
in Section 5.
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TABLE 5
Reconstruction errors of DClone and RClone under the nine scenarios in Simulation 1(a). Values shown are

averages over 50 repeat simulations with numerical Monte Carlo standard errors in subscripts

DClone RClone

C T Cerr Lerr Zerr Werr Cerr �err Werr

3 3 0.000.00 0.0180.001 0.0170.001 0.0140.000 0.000.00 0.0960.001 0.0210.001
3 4 0.000.00 0.0220.001 0.0210.001 0.0140.000 0.000.00 0.0930.001 0.0230.001
3 5 0.040.03 0.0270.001 0.0270.001 0.0140.000 0.000.00 0.0830.001 0.0210.001

4 3 0.000.00 0.0240.002 0.0020.000 0.0100.000 1.000.00 0.4220.004 0.0450.002
4 4 0.000.00 0.0190.001 0.0010.000 0.0110.000 1.000.00 0.2950.004 0.0370.002
4 5 0.020.02 0.0150.001 0.0020.001 0.0110.000 1.000.00 0.2660.002 0.0330.002

5 3 0.000.00 0.0640.003 0.0210.004 0.0280.002 2.000.00 0.4810.003 0.0530.002
5 4 0.000.00 0.0080.001 0.0010.000 0.0180.000 1.000.00 0.3050.003 0.0350.002
5 5 0.000.00 0.0070.001 0.0030.000 0.0190.000 1.000.00 0.2310.002 0.0260.001

We fit each simulated dataset with RNDClone using the same hyperparameter and MCMC
setting described in the beginning of Section 4. Moreover, we set Kmin = 0 and Kmax = 15.
The results are summarized in Table 6. The coverage probabilities are calculated as the pro-
portion of the time that the 95% credible interval of the corresponding parameter contains
the truth. For the multidimensional parameters L, Z, � and W , the reported coverage prob-
abilities are averages over all of their entries. The frequentist coverage does not give rise to
concerns. An exact match is not expected due to a relatively small sample size (T = 3) and a
large parameter space. In addition, we report the reconstruction errors and root mean squared
errors (RMSEs) averaged over the repeated datasets. Again, for L, Z, � and W , the RMSEs
are averages over all of their entries. For example,

LRMSE = 1

S(C − 1)

∑
s,c

√√√√ 1

J

∑
j

(
l
(j)
sσ (c) − lsc

)2
.

The reconstruction errors and RMSEs are small, indicating good recovery of the truth.

5. TCGA data analysis. We apply RNDClone to the analysis of a TCGA (The Cancer
Genome Atlas) lung adenocarcinoma (LUAD) dataset. We have T = 3 tumor samples from a
stage 1B T2 patient with lung adenocarcinoma (sample ID: TCGA-44-2668) who has passed
away two years after diagnosis. In particular, all of the three samples are obtained from the
primary tumor tissue and are sequenced using whole exome sequencing (WES) technology.
We first retrieve the DNA sequence data by downloading the VCF (variant call format) files
from the TCGA website. In particular, we choose the somatic variant callset generated by

TABLE 6
Simulation 2. Frequentist coverage probabilities, reconstruction errors and root mean squared errors (RMSEs)

for C, L, Z, �, W and the log-likelihood. For the multidimensional parameters the values are averages over all
entries

C L Z � W log-likelihood

Coverage 100% 95.7% 98.0% 85.4% 76.2% 92%
Rec. error 0 0.292 0.065 0.261 0.023 –
RMSE 0.714 0.682 0.133 0.319 0.024 –
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FIG. 3. Some summary plots of the TCGA LUAD dataset. Histogram of DNA read depths (a), DNA variant allele
fractions (b), RNA read depths (c) and RNA variant allele fractions (d).

MuTect2 (Cibulskis et al. (2013)). The average sequencing depth is around 100×. Next, to
obtain the RNA sequence data, we download the corresponding RNA BAM (binary alignment
map) files which contain sorted and indexed RNA reads. Finally, we find the loci for which
both DNA and RNA read data are available for the three samples. For each locus we record
the total numbers of mapped DNA and RNA reads as well as numbers of mapped DNA and
RNA reads that bear a variant sequence. We obtain a total of S = 66 loci across G = 61 genes.
Figure 3 shows the histograms of DNA and RNA read depths and variant allele fractions. The
average DNA read depths for the three samples are 141, 210 and 122, respectively. As shown
in the simulation studies, RNDClone should provide useful inference with T = 3 samples
and 100×–200× read depth.

We fit the dataset with the same hyperparameters described in the beginning of Section 4.
To calibrate an informative prior for φt , for each sample we retrieve copy number estimates of
specific DNA segments obtained from single nucleotide polymorphism (SNP) array analysis,
using the TCGA SNP array data for the three samples. We then run a regression between the
copy number estimates and the average read depths for the DNA segments. Lastly, we match
the prior mean and variance of the average read depth in copy number neutral regions (i.e.,
copy number = 2) with the values estimated from the regression analysis. We run MCMC
simulation with 25,000 burn-in iterations and 5000 transdimensional transitions. The compu-
tation takes around 150 minutes using a single core on an Intel Xeon (E5-2650 v4, 2.20 GHz)
computing node.

Results. The posterior mode of C is Ĉ = 3 (posterior distribution of C is shown in the
Supplementary Material, Figure S.3, Zhou et al. (2020)). That is, we infer that the tumor
samples have three subclones (including one normal subclone). The estimated population
frequencies of the three subclones across the three samples are shown in Figure 4(d). For the
upcoming biological interpretation we focus on 15 genes that have high expression levels in
at least one subclone. Figures 4(a), (b) show the estimated copy numbers and variant allele
numbers for the loci that reside on the 15 genes, and Figure 4(c) shows the estimated RSGEs
for the 15 genes. The complete estimates are reported in the Supplementary Material, Figure
S.4 (Zhou et al. (2020)). A convergence diagnostic for the MCMC simulation and a check of
model fit are reported later.

From Figure 4, we can see that RNDClone identifies two tumor subclones (subclones 2
and 3), aside from the normal cells (subclone 1). Subclone 3 exhibits copy number losses
(Figure 4(a)) in many genes but no point mutations (Figure 4(b)). It has the largest popula-
tion frequencies (Figure 4(d)) in all three samples. However, subclone 2 shows mostly copy
number gains (Figure 4(a)) and extensive mutations in almost all the genes (Figure 4(b)).
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FIG. 4. Posterior inference for the TCGA LUAD dataset using RNDClone. Estimated copy numbers: (a) and
variant allele numbers, (b) for the loci that reside on the 15 selected genes and estimated RSGEs (c) for the
15 selected genes in the form of heatmaps. The color keys for the corresponding heatmaps are included in the
bottom of each figure. Panel (d) shows the estimated population frequencies of the three subclones across the
three samples.

Its population frequencies are quite small as shown in Figure 4(d), indicating that this is a
hypermutated small subclone.

The lung cancer patient was initially diagnosed with stage 1 disease and was declared a
complete response, that is, no detectable tumor after a surgery. However, merely one year
after the surgery, the patient relapsed with new tumor and died quickly after failing con-
ventional treatment. This is unusual for a stage 1B patient. A possible explanation is that
subclone 2 might have been harboring the fatal tumor cells that caused the disease relapse
and death. The subclone-2 tumor could be highly malignant since most genes that we ana-
lyzed were mutated (Supplementary Material, Figure S.4, Zhou et al. (2020)), including the
well-known oncogene KRAS that usually leads to poor prognosis. In addition, Figure 4(c)
shows that the RSGEs of subclone 2 are distinct from those of subclones 1 and 3, indicating
that the hypermutated subclone 2 also alters the transcription profile of the cells. We specu-
late that subclone analysis (such as using RNDClone) could have been helpful for this patient
if the analysis had been performed and subclone 2 had been identified. Perhaps additional
chemotherapy would have been ordered by the treating clinicians after the surgery, or the pa-
tient might have been followed more frequently for potential relapse. Sadly, without knowing
the malignant subclone 2, the stage 1B tumor, considered as early stage, could still be lethal.

Convergence diagnostic and test of fit. To assess the convergence of the MCMC simulation,
we run RNDClone with three different starting values (random variate seeds). As a con-
venient scalar summary to track for the convergence assessment, we use the log-likelihood
values. Figure 5(a) shows the traceplot of the posterior samples of the log-likelihood from the
three runs. To avoid complications related to the transdimensional nature of the MCMC im-
plementation, we first select from each of the three runs 1000 iterations when the chain was
imputing C = 3 subclones. We then evaluated diagnostics with these subchains. We evaluate
the potential scale reduction factor (Gelman and Rubin (1992)) across the three chains. We
find a factor of 1.01, with an upper confidence bound 1.05, indicating no evidence for lack of
convergence.

Next, as an informal check of model fit, we inspect the histograms of standardized residu-
als, defined as [a − E(a)]/√Var(a), where a is Nst , nst , Mst or mst and E(a) and Var(a) are
functions of the parameters. The residuals are then calculated and averaged over all poste-
rior draws of the parameters. Figure 5(b) shows the histogram of the standardized residuals.
The residuals are centered around zero with little mass beyond ±2, indicating a good model
fit. We also use posterior predictive checking to examine the goodness-of-fit of the model;
see, for example, Gelman et al. (2014) (Section 6.3) for a review. Using the J posterior
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FIG. 5. Panel (a) shows the traceplot of the log-likelihood from three independent Markov chains from fitting
the TCGA LUAD dataset with RNDClone using different random seeds. Panel (b) is a histogram of standardized
residuals. Panel (c) is a histogram of posterior predictive p-values for the multidimensional data.

draws of the parameters, we generate replicated data {Drep(j) = (N rep(j), nrep(j), M rep(j),
mrep(j)), j = 1, . . . , J } from the RNDClone model. Since the data are multidimensional, for
each entry a (a can be Nst , nst , Mst or mst ) we calculate the posterior predictive p-value
by ppp = 1

J

∑
j I (arep(j) > a). Figure 5(c) shows the histogram of the posterior predictive

p-values for all entries of the data. In particular, 3.66% of the p-values are less than 0.05,
and 2.40% of the p-values are greater than 0.95 which does not give rise to concerns about
model fit.

Comparison with alternatives. For comparison, we run SIFA and BayCount on the same
dataset. The results under SIFA and BayCount as well as a discussion of the results are
presented in the Supplementary Material, Section S.3.2 (Zhou et al. (2020)).

6. Discussion. We have developed novel generalized latent factor models to reconstruct
tumor subclones based on integrative analyses of both DNA and RNA sequence data. This is
the first attempt to bridge existing DNA-based and RNA-based methods. We simultaneously
infer subclonal genotype and gene expression profile. Such inference provides important clin-
ical information about personalized treatment strategies.

Our modeling approach can be considered as a finite truncation (in C) of related Bayesian
nonparametric models (Müeller, Quintana and Page (2018)). The truncation is used to facil-
itate posterior simulation, following, for example, the idea of truncated stick-breaking pri-
ors in Ishwaran and James (2001). Alternative split-merge proposals (Jain and Neal (2004),
Griffiths and Ghahramani (2011)) in our application would be adding or deleting columns
in L, Z, � and W . We found that such proposals lead to very low acceptance probabilities
in our application due to the highly peaked and multimodal posterior landscape. We there-
fore developed the transdimensional and parallel-tempering MCMC algorithm to efficiently
sample from the posterior space.

We have demonstrated the practical application of RNDClone on one real-world dataset
and found some interesting results. Currently, publicly available synthetic or real-world
datasets with both DNA and RNA sequencing counts are still rare. When more of such
datasets become available, we plan to apply RNDClone to these datasets to further evalu-
ate the validity of RNDClone.

It is generally assumed that tumor cells evolve along a phylogenetic tree. Each cell inherits
the mutations of its parent and, possibly, also gains more mutations. An important extension
of the current model is to explicitly model the potential phylogenetic relationship among the
subclones, such as in Deshwar et al. (2015), Marass et al. (2016), Zeng, Warren and Zhao
(2019) and Zhou et al. (2019b). However, modeling tumor phylogeny is very challenging
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when CNA data are included. Existing methods either assume copy number neutrality, re-
quire copy number estimates from another software, or make strong assumptions about the
occurrence of CNAs. Therefore, like many existing methods (Roth et al. (2014), Zare et al.
(2014), Lee et al. (2016)), we chose not to explicitly model phylogeny. In simulation studies
we find that RNDClone is able to recover an assumed true phylogenetic structure when it is
included in the simulation scenario.

Currently, RNDClone characterizes tumor heterogeneity by point mutations, copy number
aberrations and gene expression levels. A future direction is to incorporate data from other
types of structural variations (Fan et al. (2014)) as well as DNA methylation data (Rhee et al.
(2013)) in the analysis. It is also of interest to integrate further downstream gene expression
data such as proteomics data into the current scheme. The focus of RNDClone is inference on
intra-tumor heterogeneity. Nevertheless, the proposed methodology can be easily extended to
infer intertumor heterogeneity across different patients. Lastly, RNDClone utilizes NGS data
from bulk sequencing experiments. Alternatively, single-cell sequencing data (Schmidt and
Efferth (2016), Kuipers, Jahn and Beerenwinkel (2017)) provide genomic and transcriptomic
information at the cellular level. It is of interest to develop similar methodologies for single-
cell data, and there is some very recent progress (Campbell et al. (2019)).
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SUPPLEMENTARY MATERIAL

Supplement to “RNDClone: Tumor subclone reconstruction based on integrating
DNA and RNA sequence data” (DOI: 10.1214/20-AOAS1368SUPPA; .pdf). Supplemen-
tary details referenced in the main text, including details of the MCMC implementation,
simulation, and TCGA data analysis.

Source code for “RNDClone: Tumor subclone reconstruction based on integrating
DNA and RNA sequence data” (DOI: 10.1214/20-AOAS1368SUPPB; .zip). Source code
for the R package RNDClone, and data files for the simulation studies and TCGA data
analysis.
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