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Foreign public issuers (FPIs) are required by the Securities and Ex-
changes Commission (SEC) to file Form 20-F as comprehensive annual re-
ports. In an effort to increase the usefulness of 20-Fs, the SEC recently en-
acted a regulation to accelerate the deadline of 20-F filing from six months
to four months after the fiscal year-end. The rationale is that the shortened
reporting lag would improve the informational relevance of 20-Fs. In this
work we propose a jump additive model to evaluate the SEC’s rationale by
investigating the relationship between the timeliness of 20-F filing and its
decision usefulness using the market data. The proposed model extends the
conventional additive models to allow possible discontinuities in the regres-
sion functions. We suggest a two-step jump-preserving estimation procedure
and show that it is statistically consistent. By applying the procedure to the
20-F study, we find a moderate positive association between the magnitude of
the market reaction and the filing timeliness when the acceleration is less than
17 days. We also find that the market considers the filings significantly more
informative when the acceleration is more than 18 days and such reaction
tapers off when the acceleration exceeds 40 days.

1. Introduction. Foreign public issuers (FPIs) are required by the Securities and Ex-
changes Commission (SEC) to file Form 20-F as comprehensive annual reports. Similar to
Form 10-K of U.S. domestic firms, 20-Fs are regarded as the most valuable source of financial
information available to equity investors of foreign firms. Both the 10-K and the 20-F give
a comprehensive summary of a company’s financial performance. Detailed information such
as company cashflow, organizational structure, executive compensation and corporate gover-
nance are included. In the accounting literature there has been extensive evidence that 10-Ks
contain useful information for investors’ investment decision making (e.g., Griffin (2003);
Asthana, Balsam and Sankaraguruswamy (2004); Callen, Livnat and Segal (2006); You and
Zhang (2009); De Franco, Wong and Zhou (2011); Christensen, Heninger and Stice (2013)).
However, the literature on the decision usefulness of 20-Fs provides rather mixed results (e.g.,
Meek (1983); Etter, Rees and Lukawitz (1999); Olibe (2001); Chen and Sami (2008); Chen
and Sami (2013); Kim, Li and Li (2012)), possibly because 20-Fs differ from 10-Ks in several
ways. For instance, the deadline for filing a 20-F is six months after the fiscal year-end, much
longer than the two-month or three-month deadline for filing a 10-K. The delay may cause
investors to search private information before the release of 20-Fs, rendering 20-Fs less in-
formative. In an effort to improve the information environment for FPIs in the U.S., the SEC
recently enacted a regulation to accelerate the deadline of 20-F filing from six months to four
months after the fiscal year-end. Effective for the fiscal year ending on or after December 15,
2011, the SEC requires all the FPIs to comply with the new four-month deadline. The aim
is to increase the usefulness of 20-Fs by providing investors access to financial information
prepared by FPIs in a timelier fashion.
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Motivated by the SEC regulation change, this study examines empirically whether time-
lier filing increases market responses and, more importantly, how much acceleration leads to
the most significantly improved relevance of 20-F filing. To appropriately address this ques-
tion, all the other control variables that might cause a difference in market reaction need to
be properly taken into account by the empirical analysis. Particularly in our 20-F applica-
tion, firm-specific variables (e.g., asset and liability) ought to be carefully controlled. It can
be challenging because the functional relationships between these variables and the market
response are hardly linear. In fact, it is difficult to even specify a parametric form for these
functional relationships. Thus, a flexible nonparametric method would be desirable. In the
statistics literature, nonadditive nonparametric models, such as local regression, are com-
monly used. Despite being flexible enough, these models become less useful in dimensions
higher than two or three. This problem of dimensionality is often referred to as the curse
of dimensionality (Hastie, Tibshirani and Friedman (2009)). Additive models (Breiman and
Friedman (1985)) mitigate this issue by imposing an additive structure and are still flexible
to use without making restrictive parametric assumptions. Thus, we adopt additive models as
the framework for our empirical analysis. As for the relationship between the market response
and the filing timeliness (i.e., the relationship of interest), in cases when a firm accelerates its
20-F filing significantly (e.g., a month), it might cause an abrupt shift in both the magnitude
and the direction of the market response because investors may view such improvement of
filing timeliness as a material change in terms of the information relevance of the 20-F. In
cases when the acceleration is less significant (e.g., only a few days), the increase in market
reaction would be less obvious. By this consideration there may exist jumps in the functional
relationship (Qiu (2005)) between the filing timeliness and the market response. This is es-
pecially true when there is a shift in the direction of the market response. The jump locations
indicate the amount of acceleration with which significant shifts in the market reaction are
associated, and the jump sizes quantify the magnitudes of such shifts. Thus, it is important
for our additive modeling framework to accommodate the existence of possible jumps in the
regression functions.

There has been much discussion in the literature about estimation of jump regression
curves (e.g., Hall and Titterington (1992), Kang (2020a), Kang et al. (2019), Ma and Yang
(2011), Müller (2002), Qiu (2005), Wang (1995), Xia and Qiu (2015)). More recent research
considers a similar problem of detecting structural changes in the context of time series analy-
sis (e.g., Casini (2018), Casini (2019), Casini and Perron (2019), Wu and Zhao (2007)). These
existing methods consider the problem of jump detection in cases where there is only one or
two predictors. It is unclear whether these methods can be directly extended to cases where
there are multiple predictors, such as in our 20-F application. There also has been some recent
research on change point detection in higher dimensions (e.g., Cho and Fryzlewicz (2015),
Avanesov and Buzun (2018)). However, jump regression is different from change point detec-
tion (Xia and Qiu (2015)), in that the mean response could be an arbitrary continuous curve
between two consecutive jump points in the former, but is constant between two consecutive
change points in the latter. Thus, change point detection methods are generally not applicable
to our 20-F problem. In this article we propose a novel jump additive model (JAM) that de-
tects jump locations and preserves jump sizes. We do not impose any parametric assumptions
on the functional relationships besides the additive structure and allow multiple predictors
in the model. We show that the estimated number of jumps, the estimated jump locations,
the estimated jump sizes and the estimated regression functions converge to the truths as the
sample size grows. Applying JAM to our 20-F timeliness study, we find a moderate positive
association between the magnitude of the market reaction and the filing timeliness when the
acceleration is less than 17 days. We also find that the market considers the filings signifi-
cantly more informative when the acceleration is a little more than 18 days and such reaction
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tapers off when the acceleration exceeds 40 days. JAM is implemented in our R-package jam,
which is included in the Supplementary Material (Kang (2020)).

The remainder of this article is organized as follows. The research design for our 20-F
study is set up in Section 2. The proposed estimation procedure of jump additive models is
described in detail in Section 3. The empirical findings of our 20-F study are presented in
Section 4. Some simulated examples are given in Section 5. Several concluding remarks are
provided in Section 6. Asymptotic properties of the proposed procedure are discussed in the
Appendix. Proofs of the theorems and some technical arguments are given in the Supplemen-
tary Material (Kang (2020)).

2. Research design. Since stock prices can react differently to the release of information
(Beaver (1968); Kim and Verrecchia (1991)), a commonly used measure of market response
is cumulative abnormal return (e.g., Doyle and Magilke (2013)). This measure is also adopted
here. More specifically, let

rtj,t = αj + βj × rtm,t + εj,t ,

where rtj,t is the daily stock return of the j th firm on day t and rtm,t is the return on the
U.S. market index S&P 500 on day t . Let t = 0 denote the 20-F filing date. Estimate αj and
βj using standard linear regression during the period [−260,−11]. Denote the estimates for
αj and βj by α̂j and β̂j , respectively. Since we are concerned with both the direction and
the magnitude of the market reaction, we calculate cumulative abnormal return for each 20-F
filing date over event window [T1, T2] as follows:

yj = ∑
t∈[T1,T2]

(rtj,t − r̂ t j,t ),

where r̂ t j,t = α̂j + β̂j rtm,t . [T1, T2] is chosen to be [−1,4], because it takes into account
potential information leakage and possible delays of 20-F releases. yj is called the cumulative
abnormal return around the j th firm’s 20-F filing.

To investigate the relationship between the market response and the filing timeliness after
controlling other factors, we propose the following empirical model:

yj = φ0 + ϕ1(Timeliness) + φ2(Assets) + φ3(Leverage)

+ φ4(Accruals) + φ5(ROA) + εj ,
(1)

where φ0 is the intercept, εj represents a random error and {ϕ1, φ2, . . . , φ5} are the unknown
regression functions that describe the marginal relationships between the response and the
corresponding explanatory variables (ϕ1 is denoted differently because it might contain jumps
while other φj ’s are assumed to be continuous). Timeliness is calculated as the day difference
between the 20-F filing date of current year and that of the previous year. For instance, sup-
pose that a company filed its 20-F on April 30 this year and its last filing was on May 30
the year before, then the value for Timeliness is −30. Assets, calculated as the logarithm of
the total assets at the fiscal year-end, is a proxy for firm size. There has been evidence in
the literature (e.g., Atiase (1985); Freeman (1987)) that firm size is often associated with the
magnitude of the market reaction. Leverage, the ratio of the total liability to the total assets,
controls for the firm risk and the future growth opportunity. Accruals, calculated as the in-
come minus the operating cash flows scaled by the total assets, is an indicator of financial
performance. ROA, the ratio of the net income to the total assets, is a proxy for profitability.
As discussed in Section 1, a substantial improvement of filing timeliness may cause a signifi-
cant shift in the market response. There could be jumps in ϕ1. Therefore, properly estimating
the jump locations and the unknown regression functions {ϕ1, φ2, . . . , φ5} is the primary task
of our empirical analysis.
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3. Jump additive models. Motivated by our study of timeliness of 20-F filing, we pro-
pose a jump additive model and a two-step estimation methodology. They are described in
the subsequent four subsections. Jump additive models in their own right are of interest in
methodological research. Thus, we use general mathematical terms throughout this section.

3.1. Review of additive models and ACE. First, we give a brief review of additive mod-
els (AM) and alternating conditional expectation (ACE) algorithm proposed in Breiman and
Friedman (1985). Let Y , X1, . . ., Xp be random variables with Y the response and X1, . . .,
Xp the predictors. Assume that

Y = φ0 + φ1(X1) + · · · + φp(Xp) + ε,(2)

where φ1(·), . . ., φp(·) are arbitrary measurable functions of the corresponding random vari-
ables and ε is a mean-zero random error and independent of (X1, . . . ,Xp). Without further
restrictions on (2), the solution is not unique, since we can add any constant to one φj and
subtract the same constant from some other φj . The standard convention is to further assume
that E[φ1(X1)] = · · · = E[φp(Xp)] = 0. Without loss of generality, we can also assume that
φ0 = 0. In practice, this can be achieved by centering the response variable. The AM solves
(2) for φ1, . . ., φp by minimizing

e2(φ1, φ2, . . . , φp) = E

[
Y −

p∑
j=1

φj (Xj )

]2

holding E(φ1) = · · · = E(φp) = 0. The solutions are called optimal transformations. The
ACE algorithm solves the above minimization problem through a series of bivariate condi-
tional expectations.

ACE ALGORITHM.

(i) Set φ1(X1), . . ., φp(Xp) = 0.
(ii) Iterate until e2(φ1, . . . , φp) fails to decrease:

For j = 1, . . ., p, do

φj ← E

[
Y −∑

k �=j

φk(Xk)|Xj

]
.

The following theorem gives a convergence result for the ACE algorithm.

THEOREM 1. Define, for j = 1, . . . , p, φ
(m)
j after m stages of iteration in the ACE

algorithm and φ̃m = ∑p
j=1 φ

(m)
j . If (A1)–(A2) in the Supplementary Material hold, then

φ̃m
L2→ PXY as m → ∞.

A similar result was obtained in Breiman and Friedman (1985) which also involves esti-
mating the optimal transformation of the response. Since transformation of the response is
not needed in our method, we give in the Supplementary Material a proof tailored for our pur-
pose. Theorem 1 states that the ACE algorithm converges to the optimal transformations. The
ACE algorithm is developed in the context of known distributions, that is, it assumes that the
joint distribution of (Y,X1, . . . ,Xp) is known. In practice, population distributions are rarely
known. Instead, one has a data set {(yi, xi1, . . . , xip),1 ≤ i ≤ n} that are realizations from
Y , X1, . . ., Xp . The conditional expectations in the ACE algorithm need to be replaced by
suitable univariate nonparametric estimates. Estimates that are commonly used with the ACE
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algorithm (e.g., Buja, Hastie and Tibshirani (1989); Hastie and Tibshirani (1990); Hastie,
Tibshirani and Friedman (2009)) include kernel smoothing (Cheng and Lin (1981); Gasser
and Müller (1979); Nadaraya (1964); Priestley and Chao (1972); Watson (1964)), local poly-
nomial regression (Fan and Gijbels (1996); Hastie and Loader (1993)) and splines (Anselone
and Laurent (1968); Demmler and Reinsch (1975); Kimeldorf and Wahba (1970); Wahba
(1990)). These estimation methods assume that the regression functions {φj ,1 ≤ j ≤ p} are
smooth and thus can not preserve the jumps well in cases when certain φj is discontinuous.
In the next two subsections, we propose a two-step procedure that is jump-preserving.

3.2. Jump detection. Assume that {(yi, xi1, . . . , xip),1 ≤ i ≤ n} is a random sample from
(2),

yi = ϕ1(xi1) + φ2(xi2) + · · · + φp(xip) + εi,(3)

where ϕ1 has jumps at s1 < · · · < sT , φ2, . . ., φp are continuous and xij ∈ [aj , bj ] for i =
1, . . . , n, j = 1, . . . , p. Both the number of jumps T and the jump locations {st ,1 ≤ t ≤ T }
are unknown. Here, ϕ1 is denoted differently to indicate the different smoothness assumption.

For a given x∗
1 ∈ [a1 + h1, b1 − h1], consider the following locally weighted least square

problems:

min
c0,c1

n∑
i=1

[
yi − c0 − c1

(
xi1 − x∗

1
)]2

K−
(

xi1 − x∗
1

h1

)
,(4)

min
c0,c1

n∑
i=1

[
yi − c0 − c1

(
xi1 − x∗

1
)]2

K+
(

xi1 − x∗
1

h1

)
,(5)

where h1 ∈ (0, (b1 − a1)/2) is a bandwidth parameter and K± are one-sided kernel functions
with the support included in [0,1] and [−1,0], respectively. The bandwidth controls the size
of the local neighborhood. The kernel functions control the weights and are often chosen
such that observations closer to x∗

1 receive more weights. The solutions to c0 in (4) and (5)
are one-sided estimates of the following conditional expectation:

P
(
x∗

1
)= E

[
ϕ1(X1) + φ2(X2) + · · · + φp(Xp)|X1 = x∗

1
]

= ϕ1
(
x∗

1
)+ p∑

j=2

E
[
φj (Xj )|X1 = x∗

1
]
.

By algebraic manipulations the solutions to (4) and (5) are

P̂−
(
x∗

1
)= n∑

i=1

yiW−,i and P̂+
(
x∗

1
)= n∑

i=1

yiW+,i ,

where

W±,i = K±
(

xi1 − x∗
1

h1

)
w±,2 − w±,1(xi1 − x∗

1 )

w±,0w±,2 − w2±,1

,

w±,u =
n∑

i=1

(
xi1 − x∗

1
)u

K±
(

xi1 − x∗
1

h1

)
, u = 0,1,2.

Both P̂−(x∗
1 ) and P̂+(x∗

1 ) should estimate P(x∗
1 ) well if [x∗

1 − h1, x
∗
1 + h1] does not con-

tain any true jump position. On the other hand, if x∗
1 is a true jump position, then P̂−(x∗

1 )

is a good estimator of P−(x∗
1 ) and P̂+(x∗

1 ) is a good estimator of P+(x∗
1 ), where P±(x∗

1 )

denote the one-sided limits of P at point x∗
1 . Thus, P̂+(x∗

1 ) − P̂−(x∗
1 ) should be close to
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d = P+(x∗
1 )−P−(x∗

1 ). Suppose that the joint distribution function of (X1, . . . ,Xp) is smooth.
Then, P+(x∗

1 ) − P−(x∗
1 ) = ϕ1,+(x∗

1 ) − ϕ1,−(x∗
1 ). As a result, P̂+(x∗

1 ) − P̂−(x∗
1 ) is useful for

detecting jump locations and estimating jump sizes.
Next, we identify the jump locations. Define

ξk = a1 + (b1 − a1)
k

m
, k = 1, . . . ,m − 1,

where m = [(b1 − a1)/(2h1)] + 1 and [x] denotes the integer part of x. Then, {ξk,1 ≤ k ≤
m − 1} is sequence of points equally spaced in [a1, b1], and the distance between any two
neighboring points in {ξk,1 ≤ k ≤ m − 1} is (b1 − a1)/m which is slightly smaller than 2h1.
For a given point x∗

1 , there must be at least one and no more than two points in {ξk,1 ≤ k ≤
m − 1} located in (x∗

1 − h1, x
∗
1 + h1). So we suggest detecting jumps at the points {ξk,1 ≤

k ≤ m − 1} only. It saves much computation without missing any jumps. Suppose that ξk1 <

· · · < ξkr are the points in {ξk,1 ≤ k ≤ m − 1} satisfying∣∣∣∣ P̂+(ξkl
) − P̂−(ξkl

)√∑n
i=1 W 2+,i +∑n

i=1 W 2−,i

∣∣∣∣> q, l = 1, . . . , r,(6)

where q is a threshold parameter and
√∑n

i=1 W 2+,i +∑n
i=1 W 2−,i is the normalizing constant.

Then, the points {ξkl
,1 ≤ l ≤ r} are flagged as jump candidates. But if ξkl

is flagged, some of
its neighboring points in {ξk,1 ≤ k ≤ m − 1} are likely to be flagged as well, even if they are
actually continuity points. Thus, we suggest the following modification procedure to cancel
some of the jump candidates. If there are two integers r1 < r2 such that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ξkl+1 − ξkl
= 1

m
l = r1, r1 + 1, . . . , r2 − 1,

ξkr1
− ξkr1−1 >

1

m
,

ξkr2+1 − ξkr2
>

1

m
,

then we say that all candidates {ξkl
, r1 ≤ l ≤ r2} form a tie. For the jump candidates in a tie,

we replace all of them by a new candidate defined as (ξr1 + ξr2)/2. After this modification
the current candidates consist of two types of points: those in {ξkl

,1 ≤ l ≤ r}, which do not
belong to any tie, and the middle points of all ties. Denote the current jump candidates by
η1 < η2 < · · · < ητ . We define τ , {ηt ,1 ≤ t ≤ τ } and {d̂t = P̂+(ηt ) − P̂−(ηt ),1 ≤ t ≤ τ } as
the estimator of the number of jumps T , the jump locations {st ,1 ≤ t ≤ T } and the jump sizes
{dt ,1 ≤ t ≤ T }, respectively.

3.3. Jump-preserving backfitting. Write

ϕ1(x1) = φ1(x1) +
T∑

t=1

dt1(x1 > st), x1 ∈ [a1, b1],

where φ1 is a continuous function in [a1, b1] and 1(·) is the indicator function which takes
value of 1 if the argument in the parenthesis is true and takes value of 0 otherwise. The
function φ1 is called the continuity part of ϕ1, and the summation J (x1) =∑T

t=1 dt1(x1 > st)

is called the jump part of ϕ1. The jump part has been estimated in Section 3.2. We now
estimate the continuous functions {φ1, φ2, . . . , φp} from the new data{(

yi −
τ∑

t=1

d̂t1(xi1 > ηt), xi1, . . . , xip

)
,1 ≤ i ≤ n

}
.
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Since the discontinuities are largely removed in the new data, the backfitting algorithm
(Friedman and Stuetzle (1981)) for fitting the conventional additive models can be applied
here. It consists of estimating each continuous function holding all the others fixed, then cy-
cling through this process. More specifically, if the current estimates are φ̂1, . . . , φ̂p , then each
is updated by smoothing the partial residuals νij = ŷ∗

i −∑
j ′ �=j φ̂j ′(xij ′) against xij , where

ŷ∗
i = yi − Ĵ (xi1) with Ĵ (xi1) =∑τ

t=1 d̂t1(xi1 > ηt). The backfitting procedure is summarized
below.

BACKFITTING ALGORITHM.

(i) Initialize: φ̂1 ≡ − 1
n

∑n
i=1 Ĵ (xi1), φ̂j ≡ 0 for j = 2, . . ., p.

(ii) Iterate until the functions φ̂j change less than a prespecified threshold.
For j = 1, . . ., p do:

φ̂j ←Sj

[{
ŷ∗
i − ∑

j ′ �=j

φ̂j ′(xij ′)
}n

1

]
,

φ̂j ←

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
φ̂j − 1

n

n∑
i=1

(
φ̂j (xij ) + Ĵ (xi1)

)
if j = 1,

φ̂j − 1

n

n∑
i=1

φ̂j (xij ) otherwise;

End For Loop;
End Iteration Loop.

The second step of the above For Loop in (ii) of the backfitting algorithm is to en-
sure that 1/n

∑n
i=1 ϕ̂1(xi1) = 1/n

∑n
i=1 φ̂2(xi2) = · · · = 1/n

∑n
i=1 φ̂p(xip) = 0, since it is

assumed in (3) that E[ϕ1(X1)] = E[φ2(X2)] = · · · = E[φp(Xp)] = 0. Above, Sj in the
backfitting algorithm can be any appropriate univariate smoother; here, we consider local
polynomial regression (Fan and Gijbels (1996)). Specifically, for a given j and any given
x∗
j ∈ [aj + h2, bj − h2], solve the following minimization problems:

min
g0,g1

n∑
i=1

[
νij − g0 − g1

(
xij − x∗

j

)− · · · − gκ

(
xij − x∗

j

)κ]2
K

(xij − x∗
j

h2

)
,(7)

where κ is the order of the local polynomial regression, h2 ∈ (0,minj (bj − aj )/2) is the
bandwidth parameter and K is the kernel function with the support in [−1,1]. The solution
to g0 in (7) is defined to be the κ th order local polynomial estimate at x∗

j . In particular,
procedure (7) is often called local constant kernel (LCK) smoothing and local linear kernel
(LLK) smoothing, when κ = 0 and κ = 1, respectively.

After the estimates φ̂1, . . ., φ̂p are obtained by the backfitting algorithm, the estimated
regression function ϕ1 is defined by

ϕ̂1(x1) = φ̂1(x1) +
τ∑

t=1

d̂t1(x1 > ηt), x1 ∈ (a1, b1).(8)

3.4. Data-driven parameter selection. There are three parameters to choose in our pro-
posed procedure: h1, q and h2. We select them sequentially. Let us first consider the choice
for h2, assuming that the jump locations and jump sizes have been properly estimated. The
purpose of h2 is for estimating the continuous functions {φ1, . . . , φp} from data where discon-
tinuities have been largely removed. Hence, h2 plays the same role as a bandwidth parameter
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does in fitting continuous additive models. In the literature on bandwidth selection in non-
parametric regression, plug-in procedures (e.g., Gasser, Kneip and Köhler (1991); Loader
(1999); Ruppert, Sheather and Wand (1995)) are easy to compute and often enjoy nice theo-
retical properties. Particularly for fitting conventional additive models using local polynomial
smoothing, Opsomer and Ruppert (1998) proposed a direct plug-in (DPI) bandwidth selection
method with the following formula:

h2,DPI =
( (κ + 1)(κ!)2R(K(κ))σ

2∑p
j=1(bj − aj )

2nμκ+1(K(κ))2∑p
j=1 θjj (κ + 1, κ + 1)

)1/(2κ+3)

,(9)

where

θjj (κ1, κ2) = 1

n

n∑
i=1

(
φ

(κ1)
j (xij ) − φ̄

(κ1)
j

)× (φ(κ2)
j (xij ) − φ̄

(κ2)
j

)
with φ̄

(κr )
j = (1/n)

∑n
i=1 φ

(κr )
j (xij ) for any positive integer κr , r = 1,2 and j = 1, . . . , p,

and R(K(κ)) and μκ+1(K(κ)) are quantities involving the kernel function K only. Their ex-
act expressions are provided in the Supplementary Material. Opsomer and Ruppert (1998)
showed that h2,DPI achieves the optimal rate of convergence in the mean average squared
error (MASE), defined by

MASE = 1

n

n∑
i=1

E

[( p∑
j=1

φ̂j (xij ) −
p∑

j=1

φj (xij )

)2]
.

Because of this optimality, we adopt the DPI method for selecting h2. For simplicity, we
focus on the special case of (9) when LLK smoothing is used (i.e., κ = 1). The expression
for h2,DPI simplifies to

h2,DPI =
(σ 2R(K)

∑p
j=1(bj − aj )

nμ2(K)2∑p
j=1 θjj (2,2)

)1/5
,(10)

where R(K) = ∫
K(u)2 du and μ2(K) = ∫

u2K(u)du. There are several unknown quantities
(i.e., θjj (2,2) and σ 2) in (10) to be estimated before it can be used directly in practice.
θjj (2,2) involves the second order derivatives of φj . Following Opsomer and Ruppert (1998),

we obtain pilot estimates {φ̂(2)
j (xij )} by applying the backfitting algorithm with local cubic

smoothing to data {(ŷ∗
i , xi1, . . . , xip), i = 1, . . . , n}, in which an initial bandwidth h2,0 is

used. The performance of the DPI method is relatively insensitive to the choice of h2,0. Our
numerical experience suggests that h2,0 = 0.75 maxj (bj − aj ) works reasonably well. As a
byproduct of fitting the backfitting algorithm to {(ŷ∗

i , xi1, . . . , xip), i = 1, . . . , n} with local
cubic smoothing, we can estimate σ 2 by

σ̂ 2 = 1

n

n∑
i=1

[
ŷ∗
i −

p∑
j=1

φ̂j (xij )

]2

.

Next, we consider the choice for q . Let φj |1(xi1) = E[φj (Xj )|X1 = xi1] and δij =
φj (xij ) − φj |1(xi1) for j = 2, . . . , p. Consequently, δij and φj (Xj ) − E[φj (Xj )|X1] have
the same distribution and {δij , i = 1, . . . , n} are i.i.d. with mean 0. Denote the variance of δij
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by τ 2
j . Now, write

P̂+
(
x∗

1
)= n∑

i=1

ϕ1(xi1)W+,i +
p∑

j=2

n∑
i=1

φj |1(xi1)W+,i

+
p∑

j=2

n∑
i=1

δijW+,i +
n∑

i=1

εiW+,i .

= P+
(
x∗

1
)+ O

(
h2

1
)+ 1′

n∑
i=1

W+i

(
εi

δi

)
,

(11)

where 1 is a vector of length p with all elements equal to 1 and δi = (δi2, . . . , δip)′. Under
the null hypothesis that x∗

1 is not a jump point, we have

P̂+(x∗
1 ) − P̂−(x∗

1 )√∑n
i=1(W

2+i + W 2−i )

d−→ N
(
0,1′�1

)
,(12)

where
d−→ denotes convergence in distribution and � is the covariance matrix of (εi, δ

′
i )

′.
The technical arguments for deriving (11) – (12) are provided in the Supplementary Material.
Since εi is independent with (Xi1, . . . ,Xip), � has the following form:

� =

⎛⎜⎜⎜⎜⎝
σ 2 0 0 · · · 0
0 τ 2

2 τ23 · · · τ2p

...
...

...
...

...

0 τ2p τ3p · · · τ 2
p

⎞⎟⎟⎟⎟⎠ ,

where τj1j2 = E[δij1δij2] for j1, j2 = 2, . . . , p. Based on (12), q can be chosen to be

z1−α/2

√
1′�̂1, where �̂ is an estimate for �, α is the significance level and z1−α/2 denotes

the 100(1 − α/2) percentile of N(0,1). Commonly used α values include 0.05, 0.01, 0.001,
etc. In our theoretical justifications in the Supplementary Material, the asymptotic condition
(B5) is stated in terms of q for convenience. It can be equivalently stated in terms of α. That
is, (B5) quantifies the rate of the type I error (i.e., α) approaching to zero as the sample size
grows.

To obtain an estimate �̂, we suggest the following two-step procedure. First, obtain pi-
lot estimates {ϕ̃1, φ̃j , j = 2, . . . , p} by applying the backfitting algorithm with local cubic
smoothing to the original data {(yi, xi1, . . . , xip), i = 1, . . . , n}, where an initial bandwidth
h1,0 is used. Similar to h2,0, the choice of h1,0 is not critical, and we find that an initial
bandwidth that covers about 75% data points works well. To mitigate the effect of possible
jumps in ϕ1, we suggest estimating σ 2 using a robust statistic, such as median absolute devi-
ation (MAD). We adopt the MAD estimator σ̃ = 1.4826 · medi{|ε̃i − medk{ε̃k}|} (Rousseeuw
and Croux (1993)), where med denotes the sample median and {ε̃i} are the residuals from
the pilot estimates, that is, ε̃i = yi − ϕ̃1(xi1) −∑p

j=2 φ̃j (xij ). Second, obtain residuals {̂δij }
by applying LLK smoothing to {(xi1, φ̃j (xij )), i = 1, . . . , n} for each j = 2, . . . , p, and then
estimate

τ̂j1j2 = 1

n

n∑
i=1

(̂δij1 − δ̂·j1)(̂δij2 − δ̂·j2),

where δ̂·jr = (1/n)
∑n

i=1 δ̂ijr for r = 1,2.
Next, we consider the choice of h1 which is used for jump detection. Let S = {st , t =

1, . . . , T } denote the set of the true jump locations. Recall that, for a given h1, we only
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examine (6) at locations {ξk = a1 + (b1 − a1)k/m : k = 1, . . . ,m − 1}. Let S̃ = {ξk : ξk =
argminl=1,...,m−1|st −ξl|, t = 1, . . . , T }. Using the method described in Section 3.2, we obtain
an estimate Ŝ. The Hausdorff distance between S̃ and Ŝ, dH (S̃, Ŝ) (see the Appendix for
the formal definition) takes discrete values in {(b1 − a1)k/m : k = 0,±1,±2, . . . }. Ideally,
dH (S̃, Ŝ) = 0 with high probability. In the literature, Gijbels and Goderniaux (2004) proposes
a bootstrap procedure to estimate P(dH (S̃, Ŝ) = 0) and to select the bandwidth for which this
estimated probability is maximal. Following Gijbels and Goderniaux (2004), we select h1 as
follows:

• Step 1: Computation of residuals. For a given h1, with q and h2 calculated by the
aforementioned procedures, construct the estimates Ŝ and {ϕ̂1, φ̂2, . . . , φ̂p}. Define ε̂i =
yi − ϕ̂1(xi1) −∑p

j=2 φ̂j (xij ).

• Step 2: Bootstrap simulation. Let ε
(1)
1 , . . ., ε

(1)
n be a resample randomly drawn with re-

placement from the set ε̂1, . . ., ε̂n. Define

y
(1)
i = ϕ̂1(xi1) +

p∑
j=2

φ̂j (xij ) + ε
(1)
i .

Then, {(y(1)
i , xi1, . . . , xip), i = 1, . . . , n} is the first bootstrap sample.

• Step 3: Determination of the bootstrap probability. Compute the analog Ŝ(1) for the first
bootstrap sample. From B bootstrap replications, obtain B values of {Ŝ(b) : 1 ≤ b ≤ B},
and estimate the discrete probability P(dH (S̃, Ŝ) = 0) via

P̂
(
dH (S̃, Ŝ) = 0

)= 1

B

B∑
b=1

1
{
dH

(
Ŝ, Ŝ(b))= 0

}
.

• Step 4: Determination of h1. For a grid of potential values for h1, choose the value for
which P̂ (dH (S̃, Ŝ) = 0) is maximum.

The theoretical underpinning for the bootstrap procedure is established in Gijbels, Hall
and Kneip (2004). More specifically, by the same arguments in Theorem 2 in Gijbels,
Hall and Kneip (2004), for all the discrete probabilities P̂ (dH (S̃, Ŝ) = (b1 − a1)k/m),
k = 0,±1,±2, . . . , we have

sup
k=0,±1,...

∣∣∣∣P̂(dH (S̃, Ŝ) = (b1 − a1)k

m

)
− P

(
dH (S̃, Ŝ) = (b1 − a1)k

m

)∣∣∣∣→ 0

in probability.
The bootstrap procedure is computationally intensive since it requires repeating our pro-

posed procedure many times. To reduce running time, we employ parallel computing in the
implementation of the companion R package jam which is included in the Supplementary
Material (Kang (2020)).

4. Empirical analysis. In this section we apply our proposed procedure to analyzing
timeliness of the 20-F filings.

4.1. Data. Our sample period covers 2008–2011 because the SEC required all the FPIs
to follow the new four-month filing deadline starting from the fiscal year ending on or after
December 15, 2008. The SEC also provided a transition period of three years which allowed
FPIs to comply with this new rule effective for the fiscal year ending on or after December 15,
2011. Following the data selection method in Doyle and Magilke (2013) and Liu (2016), we
obtained 20-Fs and 20-F filing dates from the SEC EDGAR system, daily stock returns and
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index data from the CRSP U.S. stock database, firm financial data from the COMPUSTAT
database and firm major operation country, filer status and accounting standard from the
Audit Analytics database. Sample firms were initially obtained from the SEC’s official annual
summary of “International Registered and Reporting Companies.” Then, we deleted the firms
not listed on either the NASDAQ or the NYSE, the Canadian firms (because of the special
filing requirements for Canadian firms), over-the-counter firms, debt issuing firms and the
firms that lack complete data during the test period. We identified 272 filings in the final
sample.

4.2. Parameter values. Since the predictors are of different units (e.g., Assets are de-
nominated in U.S. dollars and Leverage ratio is a fraction), each predictor is centered and
standardized before our procedure is applied. Using the method described in Section 3.4, the
following grid of values is specified for selecting h1, : {k/SE1 : k = 2,3, . . . ,12}, where SE1
denotes the sample standard deviation of Timeliness. h1 is chosen to be 6/SE1 = 0.22 by our
bootstrap procedure, where B = 1000. The asymptotic variance in (12) is estimated to be
1′�̂1 = 0.0035, and the plug-in h2,DPI is calculated to be 0.81.

4.3. Results. The jump additive model (1), estimated by the proposed procedure, is
shown in Figure 1. Jump detection criterion (6) is plotted in Figure 1(a) which suggests a
possible jump location around where Timeliness is −18. From Figure 1(b) it can be seen
that the magnitude of market reaction (i.e., the absolute value of cumulative abnormal re-
turn) increases moderately as firms improve their filing timeliness by less than 17 days (the
more negative the Timeliness value, the timelier the filing). When firms accelerate their fil-
ing by 18 days, there is an abrupt shift in the direction of market response, indicating that
the market changes its directional view. This is possibly because market investors consider
such filings significantly more relevant and the financial information disclosed in these 20-Fs
is then quickly priced in by the market, triggering the change of view. Nonetheless, when
firms further accelerate their filings by more than 40 days, we find little market reaction. One
explanation is that timelier filing reduces the preparation time and results in more errors in
financial information. The market may view filings with too much acceleration not as reli-
able. Hence, there is a trade-off between timeliness and reliability. Taken together, the market
reaction is the most significant when the filing is accelerated by a little more than 18 days.
As for the control variables, it can be seen from Figure 1(c)–(f) that firms with more assets
(larger firms), healthy leverage ratio (good growth potential but not deeply in debt) and higher
ROA (more profitable) tend to associate with more positive market reaction. This is consis-
tent with our intuition. Confidence bands have also been added to Figure 1(b)–(f). There are
several ways to obtain confidence bands after the jump part has been removed. One way is to
follow the F-distribution approximation approach suggested by Hastie and Tibshirani (1990).
It needs to assume that the errors follow a normal distribution. An alternative approach is to
create bootstrap residuals as in Section 3.4 and compute the backfitting estimates of the boot-
strap response on the predictors. The bootstrap approach is adopted here for producing the
confidence bands in Figure 1, where the number of bootstrap samples is chosen to be 1000.

5. Simulation study. We present some simulation results regarding the numerical per-
formance of the jump detection procedure, the backfitting procedure and the parameter se-
lection procedure. Throughout this section the kernel function K in (7) is chosen to be the
Epanechnikov kernel K(x) = 0.75(1 − x2)1(|x| < 1). The one-sided kernels K± in (4)–(5)
are chosen to be K−(x) = 2K(x)1(x < 0) and K+(x) = 2K(x)1(x > 0). In the local kernel
smoothing literature the Epanechnikov kernel is often used because of its good theoretical
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FIG. 1. The jump additive model (1) estimated by the proposed procedure. (a): Plot of the jump detection
criterion. (b)–(f): The estimated regression function (dashed line) and 99% confidence bands (dotted line) of
ϕ1, φ2, . . . , φ5, respectively.

properties (Fan and Gijbels (1996)). In our simulation the data is generated from the follow-
ing model:

Y = 0.2 + ϕ1(X1) + φ2(X2) + φ3(X3) + ε,

ϕ1(x1) = e−x1 − 0.2 × 1(x1 > 0.5) − c1,

φ2(x2) = 0.5x3
2 − c2, φ3(x3) = 0.5x3

3 − c3,

X1
d= U, X2

d= ρU + (1 − ρ)V2, X3
d= ρU + (1 − ρ)V3,

where d= denotes equality in distribution, U , V2 and V3 are independent random variable
with identical distribution uniform[0,1], c1, c2 and c3 are constants such that E[ϕ1(X1)] =
E[φ2(X2)] = E[φ2(X2)] = 0, ρ = 0.3 (it implies that corr(X1,X2) = corr(X1,X3) ≈ 0.4)
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FIG. 2. (a)–(c): Scatterplot of Y vs. X1, X2 and X3, respectively. (d)–(f): Plot of ϕ1 and ϕ̂1, φ2 and φ̂2 and φ3
and φ̂3, respectively.

and the random noise ε are generated from normal distribution N(0, σ 2). We consider the
cases when the sample size n = 200, 500 and the noise level σ = 0.1, 0.15, 0.2. Throughout
this section the grid of values for h1 is specified to be {0.1 + 0.01 · k : k = 1, . . . ,49}. We find
the grid with step size of 0.01 fine enough for our example, and the largest permitted should
not exceed 0.5 which is half the length of the design interval for X1. In addition, the number
of bootstrap samples B = 100, and the significance level α = 0.05. Let

h1,opt = argmaxP
(
dH (S̃, Ŝ) = 0

)
,

where the probability is evaluated based on 100 replicated simulations. Similarly, let h2,opt

denote the optimal h2 for which the MASE is minimized. Furthermore, let h1,bt and h2,DPI

denote the bandwidths selected by the bootstrap procedure and the plug-in procedure, re-
spectively. The realizations of {(Y,X1,X2,X3)} when n = 200 and σ = 0.15 are shown in
Figure 2(a)–(c). Plots of ϕ1, φ2 and φ3 along with their estimates are shown, respectively, in
Figure 2(d)–(f), where h1,opt and h2,DPI were used. It can be seen that: (i) the data is quite
noisy that the jump structure can hardly been visually detected in the scatterplots, and (ii)
the proposed procedure is able to preserve the jump well and largely eliminate the noise. It
should also be pointed out that the nominal noise level σ is not the effective noise level for
our jump detector (6). As shown in (12), the effective noise level is

√
1′�1 which is greater

than σ . It explains why the jump structure can hardly be seen in Figure 2(a), where the jump
size is 1.33 times the magnitude of the nominal noise level.

Next, we evaluate the numerical performance of the proposed procedure quantitatively.
Table 1 summarizes the simulation results of the estimation procedure and the parameter
selection. The columns denoted by optimal are associated with the cases when the optimal
parameters are used (i.e., h1,opt and h2,opt). The columns denoted by data-driven are as-
sociated with the cases when the parameters are chosen by the data-driven procedure (i.e.,
h1,bt and h2,DPI). Pr denotes P(dH (S̃, Ŝ) = 0), and sePr denotes the standard error of
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TABLE 1
Numerical performance of the proposed procedure and the parameter selection. The columns denoted by
optimal are associated with the cases when the optimal parameters are used. The columns denoted by

data-driven are associated with the cases when the parameters are chosen by the data-driven procedure. Pr
denotes P(dH (S̃, Ŝ) = 0) and sePr denotes the standard error of P(dH (S̃, Ŝ) = 0). seMASE denotes the

standard error of the MASE. The numbers in rows of MASE and seMASE are in the unit of 10−4. The results are
based on 100 replicated simulations

n σ = 0.1 σ = 0.15 σ = 0.2

optimal data-driven optimal data-driven optimal data-driven

200 h1 0.48 0.43 0.46 0.44 0.50 0.45
Pr 0.93 0.90 0.79 0.77 0.68 0.67
sePr 0.026 0.030 0.041 0.042 0.047 0.047
h2 0.40 0.23 0.44 0.23 0.47 0.23
MASE 14.43 15.44 25.29 28.01 39.02 44.05
seMASE 4.23 4.49 5.49 5.91 7.55 8.21

500 h1 0.29 0.34 0.41 0.40 0.40 0.37
Pr 1.00 1.00 0.98 0.97 0.95 0.92
sePr 0.00 0.00 0.014 0.017 0.022 0.027
h2 0.30 0.22 0.34 0.23 0.37 0.24
MASE 3.70 3.92 6.70 7.08 10.09 10.99
seMASE 0.43 0.46 1.99 2.05 2.45 2.56

P(dH (S̃, Ŝ) = 0). seMASE denotes the standard error of the MASE. The numbers in rows
of MASE and seMASE are in the unit of 10−4. The results are based on 100 replicated sim-
ulations. It can be seen from Table 1 that both MASE and seMASE decrease as n increases
and as σ decreases. Similarly, P(dH (S̃, Ŝ) = 0), which measures the accuracy of our jump
detection procedure, increases as n increases and as σ decreases. This is intuitively reason-
able and consistent with our theoretical results included in the Appendix. In addition, across
various cases of sample size and noise level, our data-driven parameter selection works well
in the sense that both P(dH (S̃, Ŝ) = 0) and MASE, calculated using h1,bt and h2,DPI, are
not significantly different from those calculated using the optimal parameters. However, it is
worth noting that, in cases when the sample size is moderate (i.e., n = 200), our procedure
performs reasonably well when the nominal noise level σ is half the jump size, but its perfor-
mance starts to deteriorate as σ is of the same magnitude as the jump size. Thus, we consider
our procedure better at detecting large jumps.

6. Conclusions. In this study we investigate the relationship between the filing timeli-
ness of 20-F forms and the market reaction. We propose a novel jump additive model that ac-
counts for possible discontinuities in the relationship which includes jumps in the magnitude
and shifts in the direction of market reaction. We also propose a two-step jump-preserving
estimation procedure and show that it consistently estimates the number of jump positions,
the jump locations, the jump sizes and the regression functions. A major feature of our pro-
posed procedure is that it does not impose restrictive parametric assumptions, so it is flexible
to use. A data-driven parameter selection procedure is suggested as well. Therefore, the pro-
posed procedure can be fully automated. By applying the jump additive model to our 20-F
study, we find that the magnitude of the market reaction increases moderately when the filing
timeliness is improved by less than 17 days. Market investors consider the 20-Fs significantly
more relevant when the filings are accelerated by a little more than 18 days. However, as firms
further accelerate their filings by more than 40 days, the market reaction tapers of,f possibly
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because of concerns that filings with too much acceleration are prone to errors and thus less
reliable.

There is still room for further improvement. Methodologically, our estimation procedure
assumes that there is only one regression function in the model with possible discontinuities.
Removing such restriction is certainly an interesting direction to pursue. In addition, we have
assumed that random errors εi are i.i.d. Modifying our method to accommodate heteroscedas-
ticity in errors is a useful extension. To further investigate the costs and benefits of shortened
20-F filing, it requires to examine the relationship between the filing timeliness and the re-
porting reliability and to determine whether such a relationship plays a role in diminishing
market reactions to filings with large accelerations.

APPENDIX: ASYMPTOTIC PROPERTIES

We first establish the almost sure consistency of the jump detection procedure. Define D

to be a set {x1, . . . ,xn} of n points in p-dimensional space, that is, xk = (xk1, . . . , xkp). Let
Dn be the collection of all such D. We have the following theorem.

THEOREM 2. Assume that (B1)–(B6) in the Supplementary Material (Kang (2020))
hold. Then, for any given D ∈ Dn:

1. dH (S, Ŝ) = O(h1) a.s., where dH (A,B) denotes the Hausdorff distance between two
point sets A and B , as defined by

dH (A,B) = max
{

sup
a∈A

inf
b∈B

dE(a, b), sup
b∈B

inf
a∈A

dE(b, a)
}
,

with dE(·, ·) being the Euclidean distance. Furthermore, when n is sufficiently large, there
is exactly one detected jump in each (st − h1, st + h1), t = 1, . . . , T .

2. |d̂t − dt | = o(1) a.s. for t = 1, . . . , T .

Theorem 2 states that τ is an almost surely consistent estimator of T . Additionally, the
estimators of jump locations and jump magnitudes are all almost surely consistent. Next, we
give the consistency result for the backfitting algorithm.

THEOREM 3. Let φ̂j (·;m), j = 1 . . . , p denote the functions after repeating the backfit-
ting loops m times with the LCK smoother. Repeat the ACE loop m times, getting functions
denoted by φj (·;m), j = 1, . . . , p. Under the same conditions as those in Theorem 2, for any
small number ε > 0, as n → ∞,

E
[∥∥φ̂j (·;m) − φj (·;m)

∥∥2
[aj ,bj ],n|X1 /∈ Sε,D

]→ 0, j = 1, . . . , p,

where Sε =⋃T
t=1[st − ε, st + ε], and ‖φ̂j (·;m) − φj (·;m)‖2

I,n = 1/n
∑

xi,j∈I |φ̂j (xi,j ;m) −
φj (xi,j ;m)|2 for j = 1, . . . , p with I being an interval.

The proofs of Theorem 2 and Theorem 3 are given in the Supplementary Material (Kang
(2020)).
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SUPPLEMENTARY MATERIAL

Proofs of the theoretical results (DOI: 10.1214/20-AOAS1365SUPPA; .pdf). This sup-
plement includes proofs of the theoretical results.

The companion R package jam (DOI: 10.1214/20-AOAS1365SUPPB; .zip). The R pack-
age implements the jump additive models proposed in this article. More specifically, the func-
tion jam.fit() estimates the regression functions and the function jam.par() selects the model
parameters by the data-driven approach. It also includes the data set used in the simulation
study in Section 5.
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