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Numerical climate models are complex and combine a large number of
physical processes. They are key tools in quantifying the relative contribution
of potential anthropogenic causes (e.g., the current increase in greenhouse
gases) on high-impact atmospheric variables like heavy rainfall. These so-
called climate extreme event attribution problems are particularly challenging
in a multivariate context, that is, when the atmospheric variables are measured
on a possibly high-dimensional grid.

In this paper we leverage two statistical theories to assess causality in the
context of multivariate extreme event attribution. As we consider an event to
be extreme when at least one of the components of the vector of interest is
large, extreme-value theory justifies, in an asymptotical sense, a multivariate
generalized Pareto distribution to model joint extremes. Under this class of
distributions, we derive and study probabilities of necessary and sufficient
causation as defined by the counterfactual theory of Pearl. To increase causal
evidence, we propose a dimension reduction strategy based on the optimal
linear projection that maximizes such causation probabilities. Our approach
is tested on simulated examples and applied to weekly winter maxima pre-
cipitation outputs of the French CNRM from the recent CMIP6 experiment.

1. Introduction. Quantifying human influence on climate change and identifying poten-
tial causes of climate extremes is often referred to as extreme event attribution (EEA) which
falls within the research field of detection and attribution (D&A) (see, e.g., the report of Chen
et al. (2018), National Academies of Sciences, Engineering and Medicine (2016)). In such
studies, the main inferential objective is estimation of extreme quantiles (also called return
levels), well used in finance, hydrology and other fields of risk analysis (e.g., Embrechts,
Klüppelberg and Mikosch (1997)). In EEA, return levels are computed under two scenarios
that differ according to the causal link of interest, often increases in greenhouse gases (GHG)
concentrations (see, e.g., Angélil, Stone and Wehner (2017), Fischer and Knutti (2015), Stott
et al. (2016)). Typically, such an approach compares probabilities under a factual scenario
of conditions that occurred around the time of the event against probabilities under a coun-
terfactual scenario in which anthropogenic emissions never occurred. More specifically, one
compares the probability of an extreme event in the factual world, denoted p1, to the proba-
bility of an extreme event p0 in a counterfactual world, that is, a world that might have been
if no anthropogenic forcing would have been present. The definition of the so-called extreme
event is by itself a nontrivial task and depends on the application at hand. A common choice
is to take some climatological index exceeding a high threshold. In their seminal paper, Stott,
Stone and Allen (2004) studied mean June–August temperatures in Europe in order to quan-
tify by how much human activities may have increased the risk of European heatwaves. In this
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example, a one dimensional sample mean, say X, summarized a complex random field that
varied in time and space. The set {X > v} where v = 1.6 Kelvin was chosen to resemble the
2003 mean European summer anomaly temperatures. The probabilities p0 and p1 were then
inferred from numerical counterfactual and factual runs, respectively, using nonparametric in-
ference techniques (for bootstrap counting methods in EEA, see Paciorek, Stone and Wehner
(2018)) and univariate extreme-value theory (EVT); see, for example, Coles (2001) for an
introduction.

In other environmental research areas, complex multivariate EVT models are commonly
used (see, e.g., Cooley, Hunter and Smith (2019), Davison and Huser (2015), de Fondeville
and Davison (2018), Engelke, de Fondeville and Oesting (2019), Reich, Shaby and Cooley
(2014), Shaby and Reich (2012)). Bayesian hierarchical modeling (see, e.g., Hammerling,
Katzfuss and Smith (2019)) also offers a flexible way to insert different layers of complexity
present in climate D&A problems (internal natural variability, numerical model uncertainty,
observational errors, sampling uncertainty in space and time, etc.). Despite these advances,
the EEA domain remains a fairly untouched territory in terms of multivariate EVT. Even
recent papers like Kew et al. (2019), Luu et al. (2018), Otto et al. (2018) and King (2017) are
based on univariate EVT only.

Still, in climatological studies there is no reason to assume that the dependence structure
remains identical over space. For example, heavy rainfall in convective prone regions will
spatially differ from regions driven by frontal storms. Examples like the one shown in Table 1
below underscore that the practitioner choice of the region under study and the risk measure
used can lead to very different return periods. In addition, the essence of EEA studies is to
detect changes between return periods in factual and counterfactual worlds (see, e.g., Naveau,
Hannart and Ribes (2020) for a recent review on the statistical aspects of this problem). If
the spatial dependence structure differs between the factual and counterfactual worlds (e.g., a
region could be more prone to convective storms in its factual version), it has an influence on
the return level. Hence, past studies based on univariate EVT measures may have overlooked
some causal signals by not taking into account the underlying multivariate structure.

Our first objective is to investigate how multivariate EVT could be used for EEA. As
extreme events in D&A are mostly expressed in terms of threshold exceedances, like {X > v}
in Stott, Stone and Allen (2004), this naturally leads to the question of how to integrate
the multivariate generalized Pareto distribution (GPD) introduced by Tajvidi (1996) into the
EEA framework. This distribution has been tailored to represent extremal behaviors when
at least one of the components of the vector of interest is large. The probabilistic properties
of the multivariate GPD have been well studied by, among others, Beirlant et al. (2004),
Falk and Guillou (2008), Ferreira and de Haan (2014), Rootzén and Tajvidi (2006), Rootzén,
Segers and Wadsworth (2018a) and Rootzén, Segers and Wadsworth (2018b), while statistical
modeling is more recent (Huser, Davison and Genton (2016), Kiriliouk et al. (2019)).

In most univariate EEA studies (see Stott et al. (2016) and references therein), two types of
probability ratios are considered: the Risk Ratio p1

p0
and the so-called Fraction of Attributable

Risk (FAR), defined by

FAR = 1 − p0

p1
,

where p0 = P(X > v) corresponds to the probability of exceeding the threshold v in the
counterfactual world, while p1 represents the same quantity in the factual world. Using the
counterfactual theory of Pearl (2000), the FAR corresponds to the probability of necessary
causation, that is, anthropogenic forcings are necessary for the extreme event to occur but
might not be sufficient. Within the Gaussian set-up, Hannart et al. (2016) and Hannart and
Naveau (2018) highlighted the link between causality theory and event attribution studies.
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The second objective of our work is to explain how Pearl’s counterfactual theory can be
applied within a multivariate GPD framework, and to identify conditions that maximize the
probability of causality, a fundamental feature in any EEA analysis.

The rest of the paper is structured as follows. Section 2 summarizes the relevant back-
ground of EEA and the multivariate GPD. Section 3 discusses the behaviour of univariate
probabilities of causation as a function of the threshold v. In Section 4 we make the link
between multivariate GPDs and causality by maximizing necessary causation for any linear
projection and we discuss the inference strategy. Finally, in Section 5 the proposed methods
are applied to weekly winter maxima of precipitation outputs from the French CNRM model
that are part of the recent CMIP6 experiment. A discussion and outlook is given in Section 6.
Technical details are deferred to the Supplementary Material (Kiriliouk and Naveau (2020)).

2. Background.

2.1. Climate event attribution and counterfactual theory. The question of attribution in
EEA is inherently rooted in causality assessment. Pearl (2000) proposed a framework to
connect the probabilities p0 and p1 to different forms of causality. If E denotes an event
(e.g., the 2003 European heatwave) and C its potential cause (e.g., the increase of GHG
emissions), three distinct forms of causality are of interest:

1. probability of necessary causation (PN): C is required for E but other factors might be
required as well;

2. probability of sufficient causation (PS): C always triggers E but E might occur without
C;

3. probability of necessary and sufficient causation (PNS): both of the above hold.

Hannart et al. (2016) recalled the mathematical definition of these probabilities,

PN = P
[
E | do(C),C,E

]
, PS = P

[
E | do(C),C,E

]
,

PNS = P
[
E | do(C),E | do(C)

]
,

where do(C) means that the cause is interventionally forced to occur. For climate EEA, the
cause C can be defined as the presence of anthropogenic forcings. In this setting Hannart
et al. (2016) exploited that E is monotonous with respect to C (the event is more likely when
C is present) and C is exogenous (i.e., it is not influenced by any other observed variables).
The causation probabilities then simplify to

PN = max
(

1 − p0

p1
,0

)
, PS = max

(
1 − 1 − p1

1 − p0
,0

)
,

PNS = max(p1 − p0,0),

(2.1)

where p0 = P[E | C] corresponds to the probability of E in the counterfactual world and
p1 = P[E | C] to the probability of the same event in the factual world. If p0 < p1, the
PN coincides with the FAR used by Stott, Stone and Allen (2004). In the remainder of this
paper, we will use the notation PN (instead of FAR) to highlight its causal interpretation. By
construction, one has PNS ≤ min(PN,PS), and hence it is worth noticing that a low PNS
does not imply the absence of a causal relationship.

A fundamental step in any causality analysis is the definition of the event E. In EEA, the
event E is classically defined as the occurrence of some climatological index (e.g., a spatial
average over a given region) exceeding a high threshold v,

E = {
wT X > v

}
,
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where X = (X1, . . . ,Xd)T is a random vector defined on d grid points and w = (w1, . . . ,

wd)T are nonnegative weights. Let X(0) and X(1) denote the climatological vector X in the
counterfactual and the factual world, respectively. Hence, the probabilities pi in (2.1) become

pi = P
[
wT X(i) > v

]
, i ∈ {0,1}.

Generally, wT X(i) is modelled as a univariate random variable (see, e.g., Kew et al. (2019),
King (2017), Luu et al. (2018), Otto et al. (2018)), and the dependence among the components
of X(i) is ignored. One objective of this paper is to explore how the multivariate dependence
among the X(i)’s affects the values pi and, consequently, the causal evidence expressed with
PN, PS or PNS, especially if the weights are well chosen. In the next section we present a
simple example to gain some intuition on the difference in return levels between univariate
and multivariate modeling.

2.2. Impact of multivariate extremal modeling on return periods. In this section we illus-
trate how the dependence structure of X impacts the return periods of wT X. For clarity’s sake
we assume that the margins Xi of X follow unit exponential distributions (in line with the
multivariate EVT model of Section 2.3). Hence, the associated return level at each grid point
is simply uT = logT for a given return period T , that is, P(Xi > uT ) = 1/T for i = 1, . . . , d .
If the Xi’s exhibit complete dependence, that is, Xi = Xj with probability 1 for all i, j , the
return time of wT X is identical to that of Xi and is simply equal to T . In the opposite case,
the margins of X are independent, and by construction wT X has unit mean and variance
w2

1 + · · · + w2
d . If wi = 1/d for all i, the return time of wT X associated with uT corresponds

to the quantile of a gamma distribution. The first and third rows in Table 1 show that the
return periods of the event {w1X1 + w2X2 > uT } are much larger than the ones obtained
in the complete dependence case. This effect increases as the time period increases and/or
the dimension d increases (tables available upon request). Hence, given the same univariate
variable wT X and the same return level uT = logT , the degree of dependence in the original
data greatly influences the return period of the same event. As the field of EEA is rooted in the
computation of events like {wT X > uT } for large T , modeling of multivariate extremal de-
pendence becomes paramount. In the last decades Rootzén and his colleagues have proposed
models and inferential schemes for high return levels that take this dependence into account.

TABLE 1
Return periods T in years of the event {w1X1 + w2X2 > uT } with uT = logT for T ∈ {10,50,100} for
w1 = w2 = 0.5 (top) and w1 = 0.2, w2 = 0.8 (bottom). The marginal distributions of X1 and X2 are unit

exponential satisfying P(X1 > uT ) = P(X2 > uT ) = 1/T . The multivariate GPD has tail dependence
coefficient χ = 0.5; see Section 2.3

w1 = w2 = 0.5

T = 10 T = 50 T = 100

Complete dependence 10 50 100
Intermediate dependence (MGPD) 19 96 191
Independence 18 283 979

w1 = 0.2, w2 = 0.8

T = 10 T = 50 T = 100

Complete dependence 10 50 100
Intermediate dependence (MGPD) 18 88 175
Independence 13 100 237
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The row “Intermediate dependence (MGPD)” in Table 1 concerns such a multivariate model
(to be detailed in Section 2.3).

Comparing the upper part of Table 1 with the lower part, we see that the choice of the
weights also plays a nonnegligible role in the return times values. In EEA, one wishes
to contrast the factual and counterfactual worlds. Table 1 shows that differences between
p0 = P[wT X(0) > v] and p1 = P[wT X(1) > v] not only stem from the spatial dependences
structures of X(0) and X(1) but also from the weight selection.

2.3. The multivariate generalized Pareto distribution. When X = X ∈ R, univariate
peaks-over-thresholds approaches (Davison and Smith (1990)) consist of choosing a large
threshold u and fitting [X − u | X > u] to a univariate GPD. Hence, regardless of the un-
derlying distribution of the climatological index X, the GPD can be used to model causation
probabilities of the event {X > v} as long as v > u. Similarly, a multivariate GPD approxi-
mates the tail behavior of [X − u | X � u], where X � u means that at least one component
of X exceeds the corresponding component of the threshold u ∈ Rd . In the following we will
see how it can be used to model causation probabilities of the event {wT X > v} for v > wT u.

From a mathematical point of view, multivariate GPD vectors can be viewed as the limiting
solution of any linearly rescaled multivariate vector given that at least one component is large.
This asymptotic result can be interpreted as a multivariate version of the Pickands–Balkema–
de Haan theorem (Balkema and de Haan (1974), Pickands (1975)). For the sake of clarity
and concision, we will only recall how multivariate GPDs can be simulated and how basic
principles are derived from this stochastic definition. The reader interested by theoretical
aspects of multivariate GPDs is referred to Rootzén and Tajvidi (2006).

The basic building block to construct standardized multivariate GPD vectors (Rootzén,
Segers and Wadsworth (2018a)) is the stochastic representation

(2.2) Z∗ d= E + T − max
1≤j≤d

Tj ,

where E is a unit exponential random variable and T = (T1, . . . , Td)T represents any d-
dimensional random vector independent of E. One can check that each positive conditional
margin has a unit exponential survival function,

P
[
Z∗

j > z | Z∗
j > 0

] = exp(−z) for any z > 0 and j ∈ {1, . . . , d}.
Model (2.2) can be generalized by setting, for σ > 0 and γ ∈ Rd ,

Z
d= σ

γ

(
exp

(
γZ∗) − 1

)
,(2.3)

where operations like σ
γ have to be understood componentwise. We then denote Z ∼

MGPD(T ,σ ,γ ). Equation (2.3) implies

P[Zj > z | Zj > 0] = H(z;σj , γj ) for any z > 0 and j ∈ {1, . . . , d},
where H(z;σ, γ ) = (1 + γ z/σ)

−1/γ
+ denotes the survival function of the univariate GPD

with scale parameter σ > 0 and shape parameter γ ∈ R. Hence, the conditional margins
[Zj | Zj > 0] follow univariate GPDs.1

The random “generator” T in (2.2) drives the extremal dependence of Z, often summarized
by the tail dependence coefficient χ ∈ [0,1] (for d = 2). If F1, F2 denote the unconditional

1Although the random variables Z1, . . . ,Zd may not follow GPDs themselves.
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FIG. 1. Scatterplots and density contours from 500 bivariate GPD random draws using (2.2) and (2.3) with
parameters γ = (0.3,0), σ = (1,1) for the left panel and γ = (0,0), σ = (2,1) for the right panel. The generator
T is zero-mean bivariate Gaussian with unit covariance matrix I2.

marginal distribution functions of Z1, Z2, then χ measures the probability of F1(Z1) being
large, given that F2(Z2) is large as the threshold increases,

χ = lim
q↑1

P
[
F1(Z1) > q | F2(Z2) > q

]
= E

[
min

(
eT1−max(T1,T2)

E[eT1−max(T1,T2)] ,
eT2−max(T1,T2)

E[eT2−max(T1,T2)]
)]

.

A large value of χ corresponds to strong extremal dependence between Z1 and Z2, whereas
χ = 0 corresponds to tail independence. For more details on χ in the context of multivariate
GPDs, see the Supplementary Material in Kiriliouk et al. (2019). As an example, Figure 1
displays 500 bivariate random draws from a multivariate GPD model where T is zero-mean
bivariate Gaussian with unit covariance matrix I2, corresponding to χ = 0.6.

To make the link with the probabilities p0 and p1 used for EEA, we need a tool to project
the information contained in a possibly complex multivariate GPD structure into a single-
valued summary. The following proposition provides this key tool:

PROPOSITION 2.1 (Linear-projection, Rootzén, Segers and Wadsworth (2018a)). If Z ∼
MGPD(T ,σ ,γ ) with γ = γ 1d , then for any nonnegative weights w = (w1, . . . ,wd)T such
that P[wT Z > 0] > 0, the linear projection of Z, conditioned on being positive, follows a
univariate GPD, that is, [

wT Z | wT Z > 0
] ∼ GPD

(
wT σ , γ

)
.

As explained in Section 2.1, our main inferential objective will be to estimate the proba-
bility P[wT X > v]. A priori, if X represents a climatological index on d grid points, it does
not follow a multivariate GPD, but, since X − u | X � u ≈ Z, we will use Proposition 2.1 to
deduce a suitable model for X in Section 4.

3. Causation probabilities for univariate extremes. To understand first how PN, PS
and PNS behave for univariate extremes, we take p0(v) = P[X(0) > v] and p1(v) = P[X(1) >

v] when X(0) and X(1) are either Gaussian or GPD random variables. The left panel of Fig-
ure 2 shows the case where the counterfactual world corresponds to a standardized Gaussian
variable, X(0) ∼ N(0,1), and the factual world is one Kelvin warmer with a higher variabil-
ity, X(1) ∼ N(1,1.5). This artificial design mimics the typical behaviour of mean temperature
anomalies. Two features can be highlighted from this example: PN goes to one as v increases,
and the maximum of PNS is around 0.35. In other words, the probability of necessary cau-
sation becomes certain for extremes (large v), and the probability of necessary and sufficient
causation can be reasonably high in the Gaussian case.
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FIG. 2. Probabilities of necessary causation (PN, solid line), sufficient causation (PS, dotted line) and neces-
sary and sufficient causation (PNS, dashed line) as functions of v. Left panel: Gaussian set-up, N(0,1) for the
counterfactual world and N(1,1.5) for the factual one. Middle and right panels: GPD set-up, GPD(1,0.2) for the
counterfactual world, GPD(1.5,0.2) for the factual one (middle) and GPD(1,0.1) for the counterfactual world
and GPD(1,0.3) for the factual one (right).

To contrast these remarks with other types of tail behaviors, the middle panel of Figure 2
displays a GPD case with equal shape parameter γ = 0.2 in the counterfactual and factual
worlds but with different scale parameters, σ (0) = 1 and σ (1) = 1.5. One can see that, as v

increases, PN converges to a constant around 0.7 < 1, and PNS remains small for any value
of v. Hence, causal evidencing is much more difficult than in the Gaussian set-up, where a
rare event in the factual world (p1 small) would be nearly impossible in the counterfactual
world (p0 almost zero). In contrast, even a very rare event in the factual world will not be
impossible in a GPD counterfactual world. Concerning PNS, it is small in the second panel,
and this phenomenon is even more pronounced when the shape parameter changes between
the two worlds; see the right panel where γ (0) = 0.1, γ (1) = 0.3, and σ (0) = σ (0) = 1. As
PNS is near zero for all v, there is no reason to maximize it. Instead, maximizing causality
will correspond to maximizing PN in the remainder of this work.

In practice, X(0) and X(1) do not follow GPDs. Using a classical peaks-over-thresholds
approach, we can condition on some high threshold u(i) and approximate the probabilities
pi(v) = P[X(i) > v] for v > u(i) by

(3.1) pi(v) ≈ P
[
X(i) > u(i)]H (

v − u(i);σ (i), γ (i)) for i ∈ {0,1}.
We can now formalize the tail behaviour observed in Figure 2. Whenever the limit of PN(v)
for large v is finite,2 it has to be equal to

(3.2)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
{
γ (0) < γ (1)} if γ (1) �= γ (0),

1 − p0(u
(0))

p1(u(1))

(
σ (0)

σ (1)

)1/γ

if γ (1) = γ (0) =: γ, γ �= 0,

1
{
σ (0) < σ (1)} if γ (1) = γ (0) = 0,

where 1(A) represents the indicator function, equal to one if A is true and zero otherwise.
The left panel of Figure 3 shows how three different GPD shape parameters, γ = −0.4,

γ = 0 and γ = 0.4 (dashed, solid and dotted lines, respectively) influence the increase of the
PN with respect to the threshold v. The right panel of Figure 3 points out possible atypical
behaviours of the PN, highlighting that PN(v) is not always increasing as v increases. Here,

2Degenerate cases can occur when p1(v) = 0. For example, if γ (1) < 0, the PN is not defined for v ≥ u(1) −
σ (1)/γ (1) which is visible for the dashed line in the left panel of Figure 3.
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FIG. 3. Probability of necessary causation as a function of v, see (2.1) and (3.1). Left panel: the counterfactual
scale is σ (0) = 1, increasing to σ (1) = 2 in the factual world, while the shape parameter is identical, γ (0) = γ (1),
equal to −0.4, 0, and 0.4 for the dashed, solid and dotted lines, respectively. Right panel: the solid line corre-
sponds to increasing shape and decreasing scale, (γ (0), σ (0)) = (0,2) and (γ (1), σ (1)) = (0.4,1). The dashed
line corresponds to the opposite scenario: (γ (0), σ (0)) = (0.4,1) and (γ (1), σ (1)) = (0,2).

the solid line corresponds to a counterfactual world with (γ (0), σ (0)) = (0,2) compared to
a factual world with (γ (1), σ (1)) = (0.4,1), while the dotted line represents the converse
change: from (γ (0), σ (0)) = (0.4,1) to (γ (1), σ (1)) = (0,2).

4. Necessary causation in a multivariate set-up.

4.1. The multivariate GPD and necessary causation. Let X be any d-dimensional ran-
dom vector such that [X − u | X � u] ≈ Z for some high threshold u ∈ Rd , where Z ∼
MGPD(T ,σ ,γ ). Then, according to Proposition 2.1, the extremal information contained in
any linear projection wT X can be approximated, up to a normalizing constant, by a univariate
GPD survival function. More precisely, for any v > wT u, we can write

P
[
wT X > v

] = P
[
wT X > wT u

]
P

[
wT (X − u) > v − wT u | wT (X − u) > 0

]
≈ P

[
wT X > wT u

]
H

(
v − wT u;wT σ , γ

)
,

(4.1)

for w1 + · · · + wd = 1 and γ = γ 1d . Constraining the weights to sum to a constant is neces-
sary to ensure identification of σ . The condition γ = γ 1d implies that conditional marginal
distributions [Zj | Zj > 0] have equal shape parameters for j = 1, . . . , d . Therefore, homoge-
neous spatial regions (in terms of the shape parameter) have to be identified in practice. This
is closely related to the regional frequency analysis problem treated in hydrology (Carreau,
Naveau and Neppel (2017)). Finally, we note that the dependence structure of X is present in
the term P[wT X > wT u] only.

Any linear projection in the factual and counterfactuals worlds, denoted p1(v;w) =
P[wT X(1) > v] and p0(v;w) = P[wT X(0) > v], respectively, can now be used to compute a
probability of necessary causation that depends on the weight w and the dependence structure
of X(0) and X(1),

(4.2) PN(v,w) = max
(

1 − P[wT X(0) > v]
P[wT X(1) > v] ,0

)
,

where X(i) satisfies approximation (4.1) for i ∈ {0,1}. To understand how dependence
affects the strength of necessary causation, we study the value of PN(v,w) in the bi-

variate case with w = (0.5,0.5), X(0) d= Z(0) ∼ MGPD(T (0),σ (0),0) and X(1) d= Z(1) ∼
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FIG. 4. PN(v,w = (0.5,0.5)) defined by (4.2) between two bivariate GPDs, Z(0) ∼ MGPD(T (0),σ (0),0)

and Z(1) ∼ MGPD(T (1),σ (1),0). The dotted line corresponds to χ(0) = 0.3, χ(1) = 0.5, σ (0) = (1,1) and
σ (1) = (2,2). The dashed line differs from the dotted line by σ (0) = (2,2) and σ (1) = (1,1). The solid line
differs from the dotted line by χ(0) = 0.5 and χ(1) = 0.3.

MGPD(T (1),σ (1),0). In the example displayed in Figure 4, two different dependence struc-
tures are investigated, summarized by the tail dependence coefficient χ . The dotted line cor-
responds to increasing dependence, from χ(0) = 0.3 to χ(1) = 0.5, and an increasing marginal
scale, from σ (0) = (1,1) to σ (1) = (2,2). The dashed line again represents increasing depen-
dence but decreasing marginal scale, from σ (0) = (2,2) to σ (1) = (1,1). Finally, the solid
line shows increasing marginal scale of the same order as the dotted line and decreasing de-
pendence, from χ(0) = 0.5 to χ(1) = 0.3. Figure 4 shows that the dependence structure can
have an impact on the PN for any finite value of v. In other words, EEA based on a hypothesis
of independence (e.g., in space) will lead to incomplete statements concerning the strength
of PN whenever the multivariate extremes are dependent. Figure 4 also suggests that, as v

increases, the impact of an increasing dependence in the factual world becomes negligible.
However, it is important to keep in mind that, in applications, the marginal scale might be
constant between the two worlds. In that case we will see the impact of increasing depen-
dence in Figure 6 below.

4.2. Maximizing necessary causation. In a multivariate Gaussian set-up, Hannart and
Naveau (2018) proposed to maximize causation probabilities by using the linear projection
that will contrast the factual and counterfactual worlds the most. Their solution was similar
to linear discriminant analysis. This leads to the question of how to reduce the dimension of a
multivariate GPD vector while ensuring that the projected data contains the most information
in terms of causality for extremes.

More specifically, the choice of w plays an essential role in the maximization of necessary
causation for multivariate GPD random variables. To address this point in the bivariate case,
we need the following result:

PROPOSITION 4.1. Let γ ∈ R, and consider two positive bivariate scale parameters:
σ (0) = (σ

(0)
1 , σ

(0)
2 )T and σ (1) = (σ

(1)
1 , σ

(1)
2 )T . Denote

R = (σ
(0)
1 σ

(1)
2 − σ

(0)
2 σ

(1)
1 )(σ

(0)
1 σ

(1)
2 − σ

(0)
2 σ

(1)
1 + γ v{(σ (1)

2 − σ
(1)
1 ) − (σ

(0)
2 − σ

(0)
1 )})

(σ
(1)
2 − σ

(1)
1 )(σ

(0)
2 − σ

(0)
1 ){(σ (1)

2 − σ
(1)
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(0)
2 − σ

(0)
1 )}2

,

and if R > 0, define the weights

w±(v) = σ
(1)
2 − σ

(0)
2

(σ
(1)
2 − σ

(1)
1 ) − (σ

(0)
2 − σ

(0)
1 )

± √
R.
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If R ≥ 0 and if one of the two weights w±(v) belongs to (0,1), then this weight, denoted wopt,
maximizes

(4.3)
{

1 − H(v;wσ
(0)
1 + (1 − w)σ

(0)
2 , γ )

H(v;wσ
(1)
1 + (1 − w)σ

(1)
2 , γ )

}
.

In all other cases, only zero or unit weights maximize this ratio.

When γ = 0, w±(v) is simpler because it does not depend on v. Expression (4.3) is an ap-
proximation of the PN defined in (4.2); it is equal to the PN when X(0), X(0) are multivariate
GPDs and when P[wT Z(0) > 0] = P[wT Z(1) > 0], that is, when the dependence structure re-
mains constant between the two worlds. Proposition 4.1 allows us to study the gain in terms
of PN with respect to the weight w. When unit or zero weights are chosen as the optimal
solution in Proposition 4.1, only one coordinate is considered and no linear projection is nec-
essary. This happens when the contrast in one of the margins between the factual and coun-
terfactual world is already sufficient to optimize PN. However, Proposition 4.1 shows that, to
maximize necessary causality, one needs to consider only those components that (individu-

ally) give the largest PN. As an example, take X(0) d= Z(0) ∼ MGPD(T (0), (1,2)T , γ 1d) and

X(1) d= Z(1) ∼ MGPD(T (1), (1.5,2)T , γ 1d). The dependence structures of T (1) and T (0) are
chosen such that χ(0) = χ(1) = 0.5. Hence, the difference between the two worlds is only
due to the scale change in one of the components. Figure 5 shows the PN gain as a func-
tion of v, that is, the ratio between PN(v, (0.5,0.5)T ) and PN(v, (wopt,1 − wopt)

T ) where
wopt = 1 based on Proposition 4.1. Each curve corresponds to a different shape parameter
(with constraint γ (0) = γ (1)), equal to −0.4 (dashed line), 0 (solid line) and 0.4 (dotted line),
respectively. We see that the optimal weight can lead to a large increase in necessary causality,
particularly when the shape parameter is positive (dotted line).

Explicit optimal weights like in Proposition 4.1 can only be obtained in very specific cases.
For example, for the bivariate Gaussian GPD with γ = 1, the probability P[wT Z(i) > 0] does
not depend on w (see Proposition A.1 in the Supplementary Material, Kiriliouk and Naveau
(2020)). For most other cases, numerical optimization schemes have to be used, especially
beyond the bivariate set-up. In order to move closer to practical applications, we need to
couple this optimization procedure with inference in a multivariate context.

FIG. 5. Necessary causation gain for X(0) d= Z(0) ∼ MGPD(T (0), (1,2)T , γ 1d) and X(1) d= Z(1) ∼
MGPD(T (1), (1.5,2)T , γ 1d), where T (1), T (0) are Gaussian random vectors such that χ(0) = χ(1) = 0.5. The
ratio of PN(v, (wopt,1 − wopt)

T ) to PN(v, (0.5,0.5)T ) is shown as a function of v, where wopt = 1 based on

Proposition 4.1. The dashed, solid and dotted lines correspond to a shape parameter (with constraint γ (0) = γ (1))
of −0.4, 0 and 0.4, respectively.
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4.3. Inference. Let X
(0)
1 , . . . ,X(0)

n and X
(1)
1 , . . . ,X(1)

n denote two independent samples
of size n, representing climate model output in the counterfactual and the factual world, re-
spectively, and let u(0), u(1) denote two high thresholds. For i ∈ {0,1}, let Ni denote the
number of observations among X

(i)
1 , . . . ,X(i)

n that have at least one component exceeding
u(i). Extracting these observations and subtracting u(i), we obtain the multivariate GPD sam-
ples Z

(i)
1 , . . . ,Z

(i)
Ni

. For v > wT u(i), an estimator of pi(v;w) = P[wT X(i) > v] and, hence,

of the PN follows from approximation (4.1). The first term, P[wT X(i) > wT u(i)], can be
estimated nonparametrically by

p̂
(emp)
i (v;w) = 1

n

n∑
t=1

1
{
wT X

(i)
t > v

}
.

To estimate the second term, H(v − wT u(i);wT σ (i), γ (i)), we first compute estimators σ̂ (i)

and γ̂ (i) by applying the method of probability weighted moments to (Z
(i)
tj | Z(i)

tj > 0)t=1,...,Ni

for j ∈ {1, . . . , d} (see Section C in the Supplementary Material, Kiriliouk and Naveau
(2020)). Next, we set γ̂ (i) = d−1 ∑d

j=1 γ̂
(i)
j .3 Finally, we estimate pi(v;w) by

(4.4)

p̂i(v;w)

=
{
p̂

(emp)
i (v;w) if v ≤ wT u(i),

p̂
(emp)
i

(
wT u(i);w)

H
(
v − wT u(i);wT σ̂ (i), γ̂ (i)) if v ≤ wT u(i).

Alternatively, we could directly estimate γ (i) and wT σ (i) by applying the method of prob-
ability weighted moments to (wT Z

(i)
t | wT Z

(i)
t > 0)t=1,...,Ni

, which reduces uncertainty and
enforces the constraint of equal shape parameters but requires the weights w to be chosen
upfront. Section D in the Supplementary Material (Kiriliouk and Naveau (2020)) shows a
small simulation experiment, confirming the good performance of P̂N = 1 − p̂0/p̂1.

In the previous sections we studied the increase in PN for changing dependence structures
and marginal parameters. Another important question is what happens when marginal param-
eters do not change (σ (0) = σ (1) and γ (0) = γ (1)), while dependence increases (χ(1) > χ(0)).
Under a hypothesis of independence in space, one would aggregate the observations from all
grid points (i.e., calculate wT X(i)) and estimate the univariate PN, thus possibly underesti-
mating the true PN. To see by how much and how the result varies with the dimension, we
conduct the following experiment. Consider d = 9 points on a regular 3 × 3 unit distance
grid. For distances from 1 to

√
8, pairwise tail dependence coefficients ranging from 0.4 to

0.3 for the counterfactual world and from 0.55 to 0.4 for the factual world were obtained
using a Whittle–Matérn correlation function.4 We evaluate the PN in the 99% quantile of
wT Z(0) using equal weights, calculated based on a presimulation run of sample size 106 and
held fixed. Figure 6 shows boxplots of the multivariate estimates P̂N minus the univariate
estimates, based on 1000 samples of size n = 2000. The black line corresponds to the true
values, calculated using the formulas in Sections A and B in the Supplementary Material
(Kiriliouk and Naveau (2020)). We see that, as the dimension increases, taking dependence
into account increases necessary causation.

3An alternative method to enforce equal shape parameters is described in Carreau, Naveau and Neppel (2017).
4The covariance matrices �(0) and �(1) are generated using a Whittle–Matérn correlation function with fixed

shape κ(0) = κ(1) = 1 and varying scales φ(0) = 1, φ(1) = 2.5. The correlation matrices are then multiplied by 10
to obtain �(0) and �(1).
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FIG. 6. Boxplots of the multivariate estimates P̂N = 1− p̂0/p̂1 minus the univariate PN estimates of aggregated
data, where p̂i is defined in (4.4), and d ∈ {2, . . . ,9}. 1000 samples of size n = 2000 were simulated from a multi-
variate Gaussian GPD model with σ (0) = σ (1) = 1 and γ (0) = γ (1) = 0, χ(0) ∈ [0.3,0.4] and χ(1) ∈ [0.4,0.55]
(pairwise). The black line corresponds to the true values.

5. Analysis of heavy precipitation from the CNRM model. Evidencing causality is
more difficult for heavy rainfall than for extreme temperatures, because precipitation vari-
ability is greater in space and time and because extreme rainfall has heavier tails than tem-
peratures (extreme rainfall often has γ ≈ 0.2; see, e.g., Katz, Parlange and Naveau (2002)).
We work with simulated rainfall time series from the French global climate model of Météo-
France (CNRM) that belongs to the latest Coupled Model Intercomparison Project (CMIP6).
We consider the winter months between the 1st of January 1985 until the 31st of August
2014 over the region defined by −10 to 40 in longitude and 35 to 60 in latitude (correspond-
ing to central Europe). Our factual and counterfactual worlds correspond to two historical
runs, the second one of which has only natural forcings. We take the weekly maxima of win-
ter precipitation. As the number of years covers only three decades, the rainfall series can
be considered stationary in time within each world. Concerning their spatial structure, we
apply the partitioning around medoids (PAM) algorithm (Kaufman and Rousseeuw (1990))
to the counterfactual rainfall run. The difference with the original PAM version is that our
“distance” between two locations, s and t , is tailored to threshold exceedances via

d̂st = 1 − χ̂st

2(3 − χ̂st )
,

where χ̂st denotes the standard empirical estimator of the pairwise tail dependence coeffi-
cient (see, e.g., Kiriliouk, Segers and Warchoł (2016) and references therein). Our approach
is close to the one of Bernard et al. (2013), who focused on maxima instead of threshold ex-
ceedances. Figure 7 displays the spatial structure for K = 40 clusters.5 Although no spatial
coordinates were given to the algorithm, the clusters appear to be spatially homogeneous and
climatologically coherent. As the multivariate GPD is tailored for asymptotic dependence,
identifying dependent regions helps to improve its fit. In addition, such a spatial clustering
makes the assumption of a constant shape parameter within a region more reasonable. Hence
we model each cluster independently, calculating the estimated multivariate PN based on p̂0,
p̂1 defined in (4.4).

Figures 8 and 9 show necessity causation probabilities for the five-year and 50-year return
level, respectively. The return levels were calculated based on quantiles of wT X(0) for each
cluster with equal weights. Both figures show the PN per cluster, calculated using equal
weights (top) and optimal weights (bottom). The diameters of the black circles around the
PN estimates are proportional to the length of bootstrap-based 95% confidence intervals.

5Other values of K were tested and provided similar patterns.
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FIG. 7. Clustering of weekly maximum winter precipitation in central Europe between January 1985 and August
2014, using the PAM algorithm with distance based on pairwise tail dependence coefficients.

FIG. 8. Necessary causation probabilities for a five-year return level of weighted maximal weekly winter pre-
cipitation in the counterfactual world for each cluster, calculated using equal weights (top) and optimal weights
(bottom). The diameters of the black circles around the estimates are proportional to the length of bootstrap-based
95% confidence intervals.
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FIG. 9. Necessary causation probabilities for a 50-year return level of weighted maximal weekly winter pre-
cipitation in the counterfactual world for each cluster, calculated using equal weights (top) and optimal weights
(bottom). The diameters of the black circles around the estimates are proportional to the length of bootstrap-based
95% confidence intervals.

Higher PN does not necessarily comes with higher uncertainty; see, for instance, the cluster
around northern Italy, whose confidence interval is narrow for the five-year return level and
even more so for the 50-year return level. Comparing the two panels of Figure 8 shows that the
differences between the factual and the counterfactual world are higher when using optimal
weights. This feature is even more striking for the 50-year return levels; see Figure 9. Except
for locations near the English Channel, most points have a probability of necessary causation
that is greater than 0.5. In particular, a few points like northern Italy shows a probability near
one.

In Section E of the Supplementary Material (Kiriliouk and Naveau (2020)), the above ap-
proach is compared to several univariate approaches for the five-year return level. We found
that, even though patterns are similar (i.e., high PN around northern Italy), a univariate analy-
sis leads to lower PN on average and to wider confidence intervals when PN is relatively high
(> 0.5). Hence, a multivariate GPD approach enhances the causality message of a univariate
analysis and aids in decreasing the uncertainty of the estimates.

Finally, our analysis is not sufficient to conclude general climatological results about heavy
rainfall. The patterns found here may be due to this specific climate model, internal climate
variability or other sources of variability. An exhaustive analysis of all the CMIP6 models, in
terms of computer resources and climatological expertise, is beyond the scope of this work.

6. Discussion. This paper illustrates that methods combining multivariate extreme-value
theory and counterfactual theory could help climatologists working on causality and multi-



1356 A. KIRILIOUK AND P. NAVEAU

variate extremes (see, e.g., Kim et al. (2016), Zscheischler et al. (2018)). An advantage of
our approach is its simplicity: we consider an event to be extreme if the weighted average
of a climatological random vector exceeds a high threshold, and EVT naturally suggests the
multivariate GPD to model such multivariate threshold exceedances. While multivariate EVT
models can take on complex parametric forms, the model we propose is easily estimated since
linear projections of multivariate GPD vectors behave like a univariate GPD. When spatial
dependence changes between the factual and the counterfactual world, a univariate analysis
might under- or overestimate the causation probabilities, while the proposed approach will
take these changes into account. In addition, the application on heavy precipitation suggests
that the multivariate approach can help in reducing the uncertainty of the estimates. Finally,
the multivariate approach can highlight those grid points that maximise the probability of
necessary causation through an adequate choice of the weights w.

Some care is needed when applying the multivariate methodology. First of all, since it
assumes an equal shape parameter, the model is restricted to homogeneous regions. This is
a common assumption in multivariate EVT models. Moreover, the multivariate GPD is tai-
lored for data that exhibit asymptotic dependence, that is, the extremes in each grid point are
expected to occur together. Finally, the dataset under study needs to be reasonably stationary
in time. In future work, a nonstationary extension of the multivariate GPD could be proposed
that would be highly relevant for longer periods of data from the factual world.

Another interesting research direction will be to extend the coupling between EVT and
counterfactual theory to other types of extremes modeling in geosciences; see, for example,
Hammerling, Katzfuss and Smith (2019) or Reich, Shaby and Cooley (2014) for a Bayesian
hierarchical point of view, Shooter et al. (2019) for asymptotic independence models and
Ragone, Wouters and Bouchet (2018) for rare event algorithms.
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SUPPLEMENTARY MATERIAL

Supplement to “Climate extreme event attribution using multivariate peaks-over-
thresholds modeling and counterfactual theory” (DOI: 10.1214/20-AOAS1355SUPP;
.pdf). The supplement includes results on the Gaussian MGPD model, probability weighted
moment inference, a simulation study and further analysis for the precipitation data.
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