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One of the major research questions regarding human microbiome stud-
ies is the feasibility of designing interventions that modulate the composition
of the microbiome to promote health and to cure disease. This requires ex-
tensive understanding of the modulating factors of the microbiome, such as
dietary intake, as well as the relation between microbial composition and
phenotypic outcomes, such as body mass index (BMI). Previous efforts have
modeled these data separately, employing two-step approaches that can pro-
duce biased interpretations of the results. Here, we propose a Bayesian joint
model that simultaneously identifies clinical covariates associated with mi-
crobial composition data and predicts a phenotypic response using informa-
tion contained in the compositional data. Using spike-and-slab priors, our
approach can handle high-dimensional compositional as well as clinical data.
Additionally, we accommodate the compositional structure of the data via
balances and overdispersion typically found in microbial samples. We apply
our model to understand the relations between dietary intake, microbial sam-
ples and BMI. In this analysis we find numerous associations between micro-
bial taxa and dietary factors that may lead to a microbiome that is generally
more hospitable to the development of chronic diseases, such as obesity. Ad-
ditionally, we demonstrate on simulated data how our method outperforms
two-step approaches and also present a sensitivity analysis.

1. Introduction. Human microbiome research seeks to better understand the role of our
microbial communities and how they interact with their host, respond to their environment
and influence disease (Xia and Sun (2017)). For example, current findings suggest that the mi-
crobiome is responsive to diet, as well as other factors, and may influence various metabolic
conditions, such as obesity (Maruvada et al. (2017), Sonnenburg and Bäckhed (2016), Dao
et al. (2016)). Insights into the relations between microbial composition and both endoge-
nous and exogenous factors may help researchers design personalized intervention strategies
to modulate and maintain a healthy microbiome community (Knights et al. (2011), Xu and
Knight (2015)). However, complex environmental interactions with the microbiome chal-
lenge our understanding of community function and its impact on health (Shetty et al. (2017)).

Human microbiome studies typically have two main objectives: (1) identifying factors that
characterize the composition of the microbiome and (2) predicting biological, genetic, clin-
ical, or experimental conditions using microbial abundance data (Xia and Sun (2017)). For
both objectives, analysis is challenged for various reasons, including vast amounts of intra-
and intersubject heterogeneity in taxonomic abundance as well as the compositional structure
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and high dimensionality of the data. While each of these objectives have been extensively re-
searched separately, we are unaware of any attempts to jointly model all of the data to achieve
both objectives simultaneously.

For objective (1), there are various methods available to infer relations between covari-
ates and multivariate count data (Zhang et al. (2017)). For microbial count data, researchers
have previously used Dirichlet-multinomial models, since these models can handle overdis-
persed data that arise from within- and between-subject variability in microbial data (La Rosa
et al. (2012), Wadsworth et al. (2017), Chen and Li (2013)). In exploratory research studies
researchers have used penalized likelihood approaches to simultaneously shrink unassoci-
ated covariates’ regression coefficients to zero and estimate the effects of associated covari-
ates (Chen and Li (2013), Wang and Zhao (2017a)). The proven efficiency of these methods
comes at a price, as optimization routines are challenged by complex data structures (Wang
and Zhao (2017a)), and they do not fully capture the uncertainty of model selection. Alterna-
tively, Bayesian methods are available which capture uncertainty in the model by exploring
the model space using Markov chain Monte Carlo (MCMC) algorithms. Wadsworth et al.
(2017) recently developed a Bayesian approach for identifying Kegg orthology pathways that
were associated with microbial abundance data using spike-and-slab priors for the regression
coefficients. In confirmatory settings Mao, Chen and Ma (2017) demonstrate how including
covariates in a Bayesian graphical compositional regression model can improve accuracy in
testing results and reduce false discoveries.

For objective (2), researchers may be interested in using microbial abundances to pre-
dict outcomes of interest, such as body mass index (BMI) (Lin et al. (2014), Wang and Zhao
(2017b)). Microbial abundance data are an example of multivariate compositional data where
the magnitude of a single component depends on the sum of all the components’ counts. This
dependency causes inferential biases and computational challenges if the compositional data
are modeled in their raw form. To properly model compositional data, log-ratio transfor-
mations are used. Various log-ratio transformations have been proposed, including additive,
centered and isometric (Aitchison (1986), Egozcue et al. (2003)). Isometric log-ratio trans-
formations, in particular, allow researchers to properly model compositional data using bal-
ances to make inference on subsets of the taxa, as opposed to individual taxon (Morton et al.
(2017), Pinto et al. (2017)). Balances are defined proportionally to the difference in the mean
of the log-transformed abundances between two groups and are scale invariant. Thus, they can
equivalently be constructed with raw counts or the relative proportion of counts. Additionally,
researchers can use prior knowledge of structure in the data to construct balances (Fišerová
and Hron (2011), Morton et al. (2017)). Once the raw compositional data are appropriately
transformed, they can be used in standard analysis methods, such as linear regression and
principle components analysis (Chen, Zhang and Li (2017), Gloor et al. (2017), Garcia et al.
(2013), Hron, Filzmoser and Thompson (2012), Lin et al. (2014), Mert et al. (2018), Pinto
et al. (2017), Shi, Zhang and Li (2016), Silverman et al. (2017), Bruno, Greco and Ventrucci
(2016)).

In this work we propose a Bayesian joint modeling approach that simultaneously identi-
fies clinical covariates associated with microbial composition data and predicts a phenotypic
response using information contained in the compositional data. We conjecture that sepa-
rate, two-step approaches may underestimate model uncertainty since the microbial compo-
sition data are typically treated as fixed when used to predict phenotypic responses. This
may produce biased interpretation of the model (Chatfield (1995)). On the contrary, our joint
modeling of all the data allows researchers to make inference on the relation between clinical
measures and health outcomes, via their relation to the composition of the microbiome. Addi-
tionally, if there is a true relation between microbial composition and the phenotypic outcome,
properly accommodating microbial heterogeneity based on clinical measures may result in a
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more accurate prediction. Our method is designed to accommodate high-dimensional micro-
bial and clinical measures data, overdispersion in the count data as well as the structure of
the compositional data.

We apply our method to understand the relation between dietary intake and taxonomic
composition of the microbiome and BMI. We have available dietary assessments and oral
and fecal microbiome data from an ancillary study conducted among healthy obese and lean
individuals from the Houston, TX, area (Versace et al. (2015)). The study was designed to
assess eating behavior and the microbiome in selfreported healthy individuals. In our analysis,
we find numerous associations between microbial taxa and dietary factors that may lead to a
microbiome that is generally more hospitable to the development of chronic diseases, such as
obesity. Additionally, we use simulated data to compare selection performance and predictive
ability of our proposed method with respect to various two-step approaches that first select
covariates associated with multivariate count data and then perform variable selection on
balances, constructed using estimated count probabilities for the prediction of a phenotypic
outcome.

In Section 2 we introduce our proposed joint model and describe the posterior inference.
In Section 3 we apply our method to data collected to investigate the relation between diet,
microbial samples and BMI. In Section 4 we perform a simulation study aimed at comparing
performance with alternative approaches and present a sensitivity analysis. In Section 5 we
provide concluding remarks.

2. Methods. Let yi be the observed phenotypic outcome for the ith subject, i =
1, . . . ,N . Also, let z′

i = (zi,1, . . . , zi,J ) represent a J -dimensional vector of microbial taxa
abundance counts and x′

i = (xi,1, . . . , xi,P ) be a vector of P dietary covariates collected on
the ith subject. In the Bayesian paradigm, inference is drawn from the posterior distribution
which is proportional to the likelihood of the observed data times the prior distribution of
the parameters in the model. Here, we jointly model the compositional count and response
data by parameterizing their likelihoods with a shared parameter (i.e., the probability of the
compositional taxa).

In our joint modeling we first assume that taxa counts zi follow a Multinomial distribution

(1) zi ∼ Multinomial(żi |ψi),

with żi = ∑J
j=1 zi,j and ψi defined on the J -dimensional simplex

SJ−1 =
{
(ψi,1, . . . ,ψi,J ) : ψi,j ≥ 0,∀j,

J∑
j=1

ψi,j = 1

}
.

To account for overdispersion in the multivariate count data, we specify a conjugate prior on
the taxa probabilities,

(2) ψi ∼ Dirichlet(γi),

with the J -dimensional vector γi = (γi,j > 0,∀j ∈ J ), similarly to Wadsworth et al. (2017)
and La Rosa et al. (2012). Note that, if we were only interested in identifying dietary covari-
ates associated with the taxa count data, we could integrate out the ψi and model zi with a
Dirichlet-multinomial(γi ), similar to Wadsworth et al. (2017). However, for our joint model
we estimate ψ since it serves as the shared parameter between the likelihood of the pheno-
typic response Y and compositional data Z, as described below. Next, we incorporate dietary
covariate effects into the model by using a log-linear regression framework. Specifically, we
set λi,j = log(γi,j ) and assume

(3) λi,j = αj +
P∑

p=1

ϕjpxi,p,
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where ϕj = (ϕj1, . . . , ϕjP ) represents the covariates’ potential relation with the j th com-
positional taxon and αj is a taxon-specific intercept term. By exponentiating (3) we ensure
positive hyperparameters for the Dirichlet distribution. Note that, while this analysis focuses
on dietary factors, other covariates, for example, age, sex, medication use, could be included
in x as well.

Under this parameterization the number of potential models to choose from when perform-
ing model selection grows quickly, even for small covariate spaces. For example, P = 10
covariates and just J = 2 compositional taxa results in over a million potential models. To
reduce the dimension of the model, we employ multivariate variable selection spike-and-slab
priors (Richardson, Bottolo and Rosenthal (2011), Stingo et al. (2010)) that identify dietary
covariates that are associated with each compositional taxon, as opposed to spike-and-slab
constructions that select variables as relevant to either all or none of the responses (Brown,
Vannucci and Fearn (1998)). Here, we assume the covariates’ inclusion in the model is char-
acterized by a latent, J × P -dimensional inclusion vector ζ . With this formulation, ζjp = 1
indicates that covariate p is associated with compositional taxon j and zero otherwise. The
prior for ϕjp , given ζjp , follows a mixture of a normal distribution and a Dirac-delta function
at zero, δ0, and is commonly referred to as the spike-and-slab prior. Specifically,

(4) ϕjp|ζjp, r2
j ∼ ζjp · N(

0, r2
j

) + (1 − ζjp) · δ0(ϕjp),

where r2
j is set large to impose a vague prior for the regression coefficients in the case of

covariate inclusion. We assume each ζjp follows a Bernoulli prior, p(ζjp) ∼ Bernoulli(ωjp),
where ωjp ∼ Beta(a, b). Integrating out ωjp leads to

(5) p(ζjp) = Beta(ζjp + a,1 − ζjp + b)

Beta(a, b)
.

Hyperparameters a and b can be set to impose various levels of sparsity in the model. Lastly,
we assume the intercept terms αj follow a N(0, σ 2

j ), where σ 2
j are set large to impose vague

priors.
Next, we model the relation between the phenotypic response Y and the compositional

data Z via a multivariable linear regression model. Typically, raw (or relative) compositional
data used to construct balances for regression modeling are treated as fixed. In our joint model
we assume they are random and calculate balances using the compositional taxa probabili-
ties ψ . As such, our model is related to the broad class of methods that make distributional
assumptions for covariates to reduce inferential biases (Carroll et al. (2006), Shi, Zhang and
Li (2016), Tadesse et al. (2005)).

Let the observed outcome yi be related to an M-dimensional set of balances following

(6) yi = α0 +
M∑

m=1

βmB(ψ)i,m + εi,

where α0 is an intercept term, βm is a regression coefficient for its respective balance as a
function of ψ , B(ψ)i,m and εi ∼ N(0, σ 2). Note that this formulation can easily be extended
to include other covariates, in addition to the balances, that may be associated with the phe-
notypic response. To demonstrate how to construct a balance, consider two nonoverlapping
partitions of ψ , ψ+ and ψ−. The balance calculated for this partition is defined as

(7) B(ψ+,ψ−) =
√

|ψ−||ψ+|
|ψ−| + |ψ+| log

[
g(ψ+)

g(ψ−)

]
,

where | · | is the dimension of a given subset and g(·) is the geometric mean defined as
(
∏|ψ |

r=1 ψr)
1/|ψ |. In our approach balances are constructed using sequential binary separa-

tion (Egozcue and Pawlowsky-Glahn (2005)), producing M = J −1 potential balances in the
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model. It is important to note that prediction performance of the model does not depend on the
order in which the partitions are defined (Egozcue and Pawlowsky-Glahn (2005)). Addition-
ally, log-ratio transformations cannot handle observed zero counts and require adjustments
based on assumptions of their occurrence (Martín-Fernández et al. (2015)). To handle zero
values for the ψ , we use a multiplicative replacement strategy in which zero values are re-
placed with relatively small pseudovalues, and the corresponding probability vector is scaled
to sum to one (Martin-Fernandez, Barceló-Vidal and Pawlowsky-Glahn (2000)). Note that
this strategy does not affect the DM portion of the model. There, zero counts are admissible.

In practice, the dimension of the balance space can be large relative to N . To induce spar-
sity on the dimension space of the balances, we take a similar strategy as above and assume
that the prior for βm, conditioned upon a latent indicator ξm and σ 2, follows

(8) βm|ξm,σ 2 ∼ ξm · N(
0, hβσ 2) + (1 − ξm) · δ0(βm),

and, similarly,

(9) p(ξm) = Beta(ξm + am,1 − ξm + bm)

Beta(am, bm)
.

The prior for the intercept term is α0|σ 2 ∼ N(0, hα0σ
2). Large values for the hyperparameters

hα0 and hβ impose vague priors on the intercept term and regression coefficients, respectively.
To complete the prior specification of the model, we set σ 2 ∼ Inverse-gamma(a0, b0), with
a0 > 0 and b0 > 0. A graphical representation of our model is provided in Figure 1.

To summarize, our joint model assumes that the distribution of the phenotypic response
Y and taxa abundance counts Z are conditionally independent given the compositional taxa
probabilities ψ . Specifically, we assume

(10) f (Y |ψ)f (Z|ψ)p(ψ |x),

where f (Y |ψ) models the prediction of the phenotypic response, based on balances cal-
culated using the compositional taxa probabilities ψ and f (Z|ψ)p(ψ |x) characterizes the
associations between taxa abundance counts and clinical covariates. In the Supplementary
Material we provide a simulation study demonstrating the model’s invariance to balance
specification and how balance sparsity can improve prediction performance (Koslovsky et al.
(2020)).

FIG. 1. Graphical representation of the proposed Bayesian joint model for identifying dietary intake covariates
associated with microbial taxa and predicting BMI.
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2.1. Posterior inference. We implement a Metropolis–Hastings algorithm within a Gibbs
sampler. Inspired by techniques used in Bayesian nonparametrics (James, Lijoi and Prünster
(2009), Argiento, Bianchini and Guglielmi (2015)), we adopt a data augmentation approach
for the Dirichlet-multinomial portion of the model, which avoids Metropolis–Hastings up-
dates for the taxa proportion parameters ψ and greatly aids scalability. First, we integrate out
α0,β , and σ 2 in the conditional likelihood for Y to obtain a multivariate t-distribution,

Y ∼ t2a0

(
0N,

b0

a0

(
IN + hα1N1′

N + hβB(ψ)ξB(ψ)′ξ
))

,

with 0N an N -dimensional vector of zeros, IN an N × N identity matrix, 1N an N -
dimensional vector of ones and B(ψ)ξ the matrix of balances included in the model. Next,
we introduce latent variables ci,j such that ψi,j = ci,j /Ti with Ti = ∑J

j=1 ci,j and reparam-
eterize equation (1) as

zi ∼ Multinomial(żi |ci/Ti),

where c′
i = (ci,1, . . . , ci,J ), and ci,j ∼ Gamma(γi,j ,1). Then, we write the joint distribution

of zi and ψi , in terms of ci , as

(11) p(zi, ci |γi) ∝ c
zi,1
i,1 × · · · × c

zi,J

i,J

T
żi

i

J∏
j=1

1

�(γi,j )
c
γi,j−1
i,j exp(−ci,j ).

To avoid the calculation of the T
żi

i terms, we introduce auxiliary parameters u′ = (u1, . . . , uN ),
such that ui |Ti ∼ Gamma(żi , Ti). Using the gamma identity

1

T
żi

i

=
∫ ∞

0

1

�(żi)
u

żi−1
i exp(−Tiui)∂ui,

we can express (11) as

p(zi, ci |γi) ∝
∫ ∞

0

1

�(żi)
u

żi−1
i exp(−Tiui)c

zi,1
i,1 ×· · ·×c

zi,J

i,J

J∏
j=1

1

�(γi,j )
c
γi,j−1
i,j exp(−ci,j )∂ui.

Using (10) and transforming ψi with ci , the joint posterior distribution simplifies as propor-
tional to

f (Y |ξ , c)f (Z|c)p(c|α,ϕ, ζ ,x)p(ξ)p(α)p(ϕ|ζ )p(ζ )p(u|c),
where the integral obtained from the data augmentation technique is naturally estimated as a
part of the full MCMC routine.

The generic iteration of the MCMC comprises of the following updates:

• Update each αj : Propose α′
j ∼ N(αj ,0.5). Accept α′

j with probability

min
{p(c|α′,ϕ, ζ ,x)p(α′

j )

p(c|α,ϕ, ζ ,x)p(αj )
,1

}
.

• Jointly update a ζjp and ϕjp following the two-step approach proposed by Savitsky,
Vannucci and Sha (2011).

Between-model step: Randomly select a ζjp . If ζjp = 1, perform a Delete step, otherwise
perform an Add step.

– Delete—Propose ζ ′
jp = 0 and ϕ′

jp = 0. Accept proposal with probability

min
{ p(c|α,ϕ′, ζ ′,x)p(ζ ′

jp)

p(c|α,ϕ, ζ ,x)p(ϕjp|ζjp)p(ζjp)
,1

}
.
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– Add—Propose ζ ′
jp = 1. Then, sample a ϕ′

jp ∼ N(ϕjp,0.5).
Accept proposal with probability

min
{p(c|α,ϕ′, ζ ′,x)p(ϕ′

jp|ζ ′
jp)p(ζ ′

jp)

p(c|α,ϕ, ζ ,x)p(ζjp)
,1

}
.

Within-model step:

– Propose a ϕ′
jp ∼ N(ϕjp,0.5) for each covariate currently selected in the model

(ζjp = 1). Accept each proposal with probability

min
{p(c|α,ϕ′, ζ ,x)p(ϕ′

jp|ζjp)

p(c|α,ϕ, ζ ,x)p(ϕjp|ζjp)
,1

}
.

• Update each ci,j via a Gibbs step:

– Gamma(ci,j |zi,j + γi,j , ui + 1).

• Update each ui via a Gibbs step:

– Gamma(ui |żi , Ti).

• Update ξm via an Add/Delete step: Select a random ξm. If ξm = 1, perform a Delete step
(ξ ′

m = 0), otherwise perform an Add Step (ξ ′
m = 1). For both Add and Delete steps, accept

proposal with probability

min
{
f (Y |ξ ′, c)p(ξ ′

m)

f (Y |ξ , c)p(ξm)
,1

}
.

For implementation the algorithm is initiated at a set of arbitrary parameter values and
then used to generate samples of the posterior distribution. After burn-in, a procedure which
involves removing a subset of samples that may be influenced by initialization, the remaining
samples are used for inference. To determine inclusion in the model, the marginal posterior
probability of inclusion (MPPI) for each of the covariates and balances is determined by tak-
ing the average of their respective inclusion indicator’s MCMC samples. Note that a covariate
has a unique inclusion indicator for each of the compositional taxon. Commonly, variables
are included in the model if their MPPI ≥ 0.50 (Barbieri and Berger (2004)). Alternatively,
Newton et al. (2004) propose using a threshold based on a Bayesian false discovery rate to
control for multiplicity.

To evaluate the prediction accuracy of the model, cross-validation can be performed by
fitting the model on a subset of the data (training set) and evaluating prediction performance
on the remaining data (testing set) by calculating the prediction mean squared error. To obtain
predictions of the testing outcomes, Y , set

(12) Ŷ = α̂0 + 1

S

S∑
s=1

B(ψ̈)β̂ξ s ,

where α̂0 = (n + h−1
α0

)−11′
nY and

(13) β̂ξ s = (
B

(
ψ s)′

ξ sB
(
ψ s)

ξ s + h−1
β I |ξ s |

)−1
B

(
ψ s)′

ξ sY ,

with B(ψ̈) the matrix of balances from the testing set, B(ψ s)ξ s the matrix of balances se-
lected in the sth MCMC iteration of the training model and |ξ s | the number of balances
selected in B(ψ s)ξ s , following Brown, Vannucci and Fearn (1998). Since the ψ̈ used to cal-
culate the balances are not observed for the testing set, we estimate them as

(14) ψ̈i,j = z̈i,j + λ̂i,j∑J
j=1 z̈i,j + λ̂i,j

,
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where

(15) λ̂i,j = exp

(
1

S

S∑
s=1

(
αs

j +
P∑

p=1

ϕs
jpẍi,p

))
,

z̈i and ẍi represent the multivariate counts and covariates observed for the ith testing subject
and αs

j and ϕs
jp are MCMC samples obtained from the training model. When splitting the

data is impractical due to small sample sizes, leave-one-out cross-validation approximation
procedures can be used, for example, following the approach proposed by Vehtari, Gelman
and Gabry (2017). This approach approximates leave-one-out (LOO) cross-validation with
the expected log pointwise predictive density (e.p.l.d.). By using Pareto smoothed importance
sampling (PSIS) for estimation, it provides a more stable estimate compared to the method
of Gelfand (1996).

3. Case study on diet and the microbiome. We applied our joint model to dietary as-
sessment, oral and fecal microbiome data from an ancillary study conducted among healthy
obese and lean individuals from the Houston, TX, area (Versace et al. (2015)). In addition
to dietary intake, physical activity and eating behavior questionnaires, participants provided
stool and oral swab samples for microbiome analysis. Participant height and weight were
also measured. Adults, 21 to 55 years of age were recruited to maximize variability in usual
diet/eating habits and BMI, while minimizing extraneous factors known to influence the oral
and/or fecal microbiome. Individuals who used antibiotics within the past 30 days, were cur-
rent smokers, had any chronic or acute condition that required exclusionary medications or
dietary restrictions, reported substantial weight changes (±5 kg) in the past three months and
women who were recently pregnant/lactating were excluded from the study. Approximately
two-thirds of the sample were female, and 40% were obese. Participants provided fresh stool
samples using an in-home collection kit with sterile swab and no storage media between their
first and second in-person visit. Study staff also collected an oral (buccal) swab sample from
the participant at the in-person visit.

Habitual dietary intake data were collected via the 134-food item National Cancer Institute
Dietary History Questionnaire (DHQ) II, enabling evaluation of food groups, macronutrients,
vitamins, minerals and eight dietary supplements (Millen et al. (2005), Subar et al. (2001)).
DHQ II responses were processed via the National Cancer Institute’s Diet*Calc software and
initially produced 214 variables of estimated daily nutrient and food group intake. Of these,
140 variables were aggregated or excluded due to redundancy and/or low variation. The re-
maining 74 nutrient and food group variables were adjusted for caloric intake prior to analysis
(Willett (1998)). Only participants whose total energy intake was considered plausible (800 <

kcal < 4200 and 600 < kcal < 3500, for men and women, respectively) were included in this
analysis. Two 24-hour dietary recalls were compared to each individual’s DHQ data to assess
accuracy and consistency but not included in the current analysis.

For microbiome assessment, stool and oral swab specimens underwent total genomic DNA
extraction and 16S rDNA sequencing, as described previously (Gopalakrishnan et al. (2018),
Hoffman et al. (2018)). While highly conserved, the 16S rRNA gene is commonly used for
bacterial identification due to regions of high variability (Li (2015)). Sequencing was per-
formed via the Illumina MiSeq platform and targeted the V4 region. Resulting reads were
processed and clustered into operational taxonomic units (OTUs) using UPARSE (Edgar
(2013)) at an identity threshold of 95%. OTUs were mapped using a V4-optimized version
of the SILVA database (v.123). To reduce the number of spurious relationships detected, we
further limited analysis to only those OTUs identified in at least 10% of participants. This
resulted in 245 and 185 taxon for the fecal and oral samples, respectively. For consistency,
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only participants who provided both stool and oral swab specimens were used in this analysis,
resulting in a sample size of N = 56.

The objective of our study was to identify relations between OTUs in microbial samples
and dietary covariates, while simultaneously predicting body mass index (BMI) using our
proposed joint model. In two separate analyses we modeled fecal and oral microbial samples
and compared their predictive performance for BMI, controlling for age and sex by having
them as fixed covariates in the model. Prior to analysis, the dietary data were standardized
to mean zero and variance one. Additionally, the BMI measures were centered at the sample
mean. For inference we set hyperparameters hα0 = hβ = 1, a0 = b0 = 2 and σ 2 = r2 = 10.
Additionally, we set the hyperparameters for the beta-binomial priors to a = am = 1, b = 9
and bm = 4 for both models. This corresponded to a 10% and 20% prior probability of inclu-
sion for dietary factors and balances, respectively. Note, these priors were chosen since they
obtained the best prediction performance in our sensitivity analysis (see end of Section 3.1).
The MCMC algorithm was run for 50,000 iterations, with the first 25,000 treated as burn-in
and thinned every 10th sample. In this analysis runtimes were 16.6 and 15.8 minutes for the
fecal and oral models, respectively, on a 2.5 GHz dual-core Intel Core i5 processor with eight
GB RAM. Trace plots of the log-posterior distribution indicate good convergence and mix-
ing. Covariate and balance inclusion was determined using the median model approach (i.e.,
MPPI ≥ 0.50).

3.1. Results. Figures 2 and 3 show the marginal posterior probabilities of inclusion
(MPPI) for dietary covariates, indexed across compositional taxa, for the model fit to the oral
and fecal microbial data. Figures 4 and 5 present heatmaps of the associations between dietary
covariates and microbial abundances identified in the oral and fecal models, respectively. For
interpretability, taxa are assigned to their likely representative bacterial genera using Basic
Local Alignment Search Tool (BLAST) (Zhang et al. (2000)). Further details of the relations
between selected pairs of taxa and dietary covariates are found in the Supplementary Mate-
rial (Koslovsky et al. (2020)). Six balances calculated from the oral microbial sample were
identified as associated with BMI, compared to seven balances from the fecal sample. As
for prediction, due to the study’s relatively small sample size, we chose to compare accuracy

FIG. 2. Marginal posterior probabilities of inclusion for dietary covariates indexed across compositional taxa
using the oral microbial data. Dashed line represents the median model threshold (0.50).
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FIG. 3. Marginal posterior probabilities of inclusion for dietary covariates indexed across compositional taxa
using the fecal microbial data. Dashed line represents the median model threshold (0.50).

of the results using the approach proposed by Vehtari, Gelman and Gabry (2017). We used
the R package loo (Vehtari, Gelman and Gabry (2016)), which requires the pointwise log-
likelihood, f (yi |ξ s,ψs

i ), for each subject i = 1, . . . ,N calculated at each MCMC iteration

s = 1, . . . , S and produces an estimated ̂e.p.l.d. value, with larger values implying a superior
model. In our analysis the models fit with the oral and fecal data provided similar results
( ̂e.p.l.d.ORAL = −200.2 versus ̂e.p.l.d.FECAL = −201.6, respectively).

Causal links between diet, the gut microbiome and BMI/obesity are becoming clearer
(Maruvada et al. (2017), Ridaura et al. (2013), Turnbaugh (2017)). Microbiota play a key
role in the extraction, absorption and storage of energy from dietary intake. Some of the most
compelling findings are for “Western-style” dietary patterns which are typically characterized
by low intake of fiber-rich plant foods and high intake of meat and added sugars, leading to
a microbiome that is generally more hospitable and supportive of the development of obe-
sity and other chronic diseases (Turnbaugh (2017), Valdes et al. (2018)). Interestingly, across
both the oral and fecal microbiome, we observed several associations with “Western-style”
dietary factors and their counterparts, for example, different nutrient rich and prebiotic veg-
etable food groups as well as various B vitamins (those largely found in animal sources) and
antioxidant nutrients derived from both dietary intake and supplement use.

Looking at the results on the fecal microbiome, we observe several dietary relationships
with Bacteroides, including lactose and consumption of dark green vegetables. Several Bac-
teroides species (a common and abundant genus within Bacteroidetes phylum) and their inter-
actions with diet have been implicated in obesity (David et al. (2014), Kovatcheva-Datchary
et al. (2015), Wu et al. (2011)). Bacteroides have a broad capacity to use diverse types of
carbohydrates or dietary polysaccharides which include glucose, sucrose and starch for en-
ergy and can “step up” when dietary fiber intake is low, tapping into other sources of energy
for the gut (Gurry et al. (2018), Marcobal et al. (2011), Sonnenburg et al. (2010)). In a re-
cent and similarly conducted epidemiologic study of healthy adults, low fiber intake was
associated with higher Bacteroides uniformis (Lin et al. (2018)). As with Bacteroides, Es-
cherichia also metabolizes carbohydrates for energy and has been associated with intestinal
inflammation in animal models fed a Western (high-fat/high-sugar) diet (Agus et al. (2016),
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FIG. 4. Estimated regression coefficients for corresponding dietary factors and oral microbial abundance asso-
ciations, grouped by BLAST assignment and identified using the proposed joint model.

Martinez-Medina et al. (2014)), consistent with the Escherichia-sucrose association observed
in this analysis. We additionally found a number of associations linked to Prevotella, in-
cluding maltose, galactose and sugar substitutes and alcohols—commonly found in snack
foods. Greater levels of Prevotellaceae have been observed in obese individuals (Zhang et al.
(2009)), and Prevotella copri specifically has been found in higher abundance among over-
weight and obese type 2 diabetics (Leite et al. (2017)).

Similar to the gut microbiome, the oral microbiome may also be shaped by dietary habits
(Fan et al. (2018), Hansen et al. (2018), Ercolini et al. (2015), Kato et al. (2017), Peters
et al. (2018)). Differences in the diversity and abundance of oral bacteria between over-
weight/obese and healthy weight individuals have now been documented in several studies

FIG. 5. Estimated regression coefficients for corresponding dietary factors and fecal microbial abundance as-
sociations, grouped by BLAST assignment and identified using the proposed joint model.
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(Goodson et al. (2009), Haffajee and Socransky (2009), Zeigler et al. (2012)). In particular,
Yang et al. (2019) found increased oral Gemella and Streptococcus oligofermentans among
obese persons in a large (n > 1,500) cohort study. Gemellaceae and Streptococcaceae were
also more abundant in obese subjects whose saliva suppressed aromatic compounds from
wine, and the authors note that altered sensory responses may result in greater food intake
(Piombino et al. (2014)). While Gemella was linked to both sucrose and cholesterol intake
in our study, Streptococcus was negatively associated with key Western-diet components,
namely, starch, animal protein and total saturated fat. This is likely explained by species-level
variation which cannot be definitely determined by 16S sequencing, but it is important to note
that Streptococcus members are the most abundant bacteria of the mouth (Huttenhower et al.
(2012)). Taken overall, the current evidence suggests that the microbiome may be a reflec-
tion of obesity (or leanness) as well as a cause of it, largely, via diet-microbiome interactions
(Komaroff (2017), Ridaura et al. (2013)).

While there are no methods available for direct comparison to our joint model, we com-
pared the results of our analysis to two, two-step approaches that first select dietary covari-
ates associated with fecal and oral multivariate count data and then perform variable selec-
tion on balances, constructed using estimated count probabilities for prediction of BMI. In
the first step we used a recently proposed Bayesian variable selection method for Dirichlet-
multinomial regression models (DM-BVS) (Wadsworth et al. (2017)) and a penalized ap-
proach introduced by Chen and Li (2013) (CL). For the CL approach the group penalty was
set to 20%, and the model with the lowest Bayesian information criterion was used for in-
ference (Schwarz (1978)). In the second step we fit a multiple linear regression model and
performed variable selection on the balances calculated using the estimated ψ obtained in
step one. The method for obtaining estimates of ψ differed across models, as explained in
Section 4. We applied Bayesian variable selection for the DM-BVS approach and the lasso
for the CL approach (George and McCulloch (1997), Tibshirani (1996)). We refer to the
Bayesian and penalized two-step approaches as DMLM-Bayes and DMLM-Pen, respectively.
Both methods were compared in regards to their selection of covariates as well as their model
fit.

For the oral microbial data the DMLM-Pen and DMLM-Bayes approaches selected 61
and 45 covariate-taxon relations, respectively (see Supplementary Material Tables S3 and S4
(Koslovsky et al. (2020))). Using the DMLM-Pen approach, only two relations were also
found using our joint model. However, using the DMLM-Bayes approach, seven relations
were also found using our method. For the fecal microbial data, the DMLM-Pen and DMLM-
Bayes approaches selected 15 and 23 covariate-taxon relations, respectively (see Supplemen-
tary Tables S5 and S6 (Koslovsky et al. (2020))). Similarly, using the DMLM-Pen approach,
only three relations were also found using our joint model. However, using the DMLM-Bayes
approach, 11 relations were also found using our method. Additionally, to assess model fit
the mean squared error (MSE) for the joint model applied to the fecal data was 11.45, com-
pared to 2874.34 and 27.98 for the DMLM-Pen and DMLM-Bayes approaches, respectively.
Similarly, the MSE for the oral data was 90.94 with the joint model and 2993.28 and 126.16
with the DMLM-Pen and DMLM-Bayes approaches, respectively. While all models fit the
fecal data better, our joint model demonstrated superior model fit for both the fecal and oral
data.

We performed a sensitivity analysis to assess the sensitivity of the results produced by
the joint model to prior specification. Specifically, we investigated differences in the selec-
tion and prediction results with a = am = 1 and b = bm = {1,4,9} as well as a0 = 2 and
b0 = {2,4,16,256} for both the fecal and oral models separately. As expected, the number
of covariates and balances selected in the model increased as the prior probability of inclu-
sion increased. Similar to the sensitivity analysis on simulated data (Section 4), prediction
performance diminished as b0 increased.
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4. Simulation study. In this section we evaluate the selection performance and predic-
tive ability of our proposed joint model using simulated data. Performance is compared to the
two two-step approaches presented in the case study. The method for obtaining estimates of
ψ differs across models, as explained below.

We simulated N = 50 subjects with P = 50 covariates and J = 150 compositional taxa.
Covariates x were simulated from a NP (0,�), where �i,j = ω|i−j | and ω = 0.4. In each
of the replicate datasets, we randomly selected 10 of the 7500 covariate-taxon combina-
tions to be associated with the compositional data. Corresponding regression coefficients
ϕ were randomly sampled from ±[0.75,1.25]. Intercept terms α were simulated from a
uniform[−2.3,2.3]. The multivariate count data Z were sampled from a Multinomial(żi ,ψ

∗
i ),

where żi ∼ uniform[2500, 7500] and ψ∗
i ∼ Dirichlet(γ ∗

i ), where γ ∗
i = (γ ∗

i,1, γ
∗
i,2, . . . , γ

∗
i,J ).

Each γ ∗
i,j = γi,j∑J

j=1 γi,j

1−d
d

, j = 1, . . . , J , where γi,j was determined using equation (3) and d

serves as an overdispersion parameter which was set at 0.01, similar to Chen and Li (2013),
Wadsworth et al. (2017). Thus, the data generating model differs from our model assump-
tions. We used a pseudovalue of 6.67 × 10−5 to replace zero values of ψi,j , which corre-
sponds to the maximum roundoff error, 0.5, divided by the maximum possible value of żi ,
7500. This is done to prevent taking the log of zero when calculating balances. We then gen-
erated the response data as yi = α0 +B∗(ψ∗

i )′β + εi , where α0 = 0, β is a J −1-dimensional
vector of regression coefficients, B∗(ψ∗

i ) are the balances calculated using sequential binary
separation and εi ∼ N(0,1). Of the J −1 regression coefficients, five were randomly sampled
from ±[1.25,1.75] and the rest were set equal to zero.

When running the MCMC, we set hyperparameters hα0 = hβ = 1 as well as a = 1, and
b = {9,99,999}, representing a prior expectation of 10%, 1% and 0.1% of the total number of
covariates included in the model. For balance selection, am and bm were set similarly. Before
analysis, y was mean-centered, and covariates and balances were standardized to mean zero
and variance one. Note that, in our joint model, balances are standardized at each MCMC
iteration since they are recalculated using the current iteration’s ψ i . Simulations were run for
20,000 iterations and thinned to every 10th iteration. This resulted in 2000 iterations, of which
the first 1000 iterations were treated as burn-in and the remaining 1000 used for inference.
Each run was initiated with a random 1% of the 7500 covariate-taxon combinations’ and 5%
of the 149 balances’ inclusion indicators active. Covariates and balances were determined to
be associated with the compositional and response data, respectively, if their MPPI ≥ 0.50
(Barbieri and Berger (2004)). Results we report below were obtained by averaging over 30
replicated datasets.

For variable selection, all methods were assessed on the basis of sensitivity (1-false neg-
ative rate), specificity (1-false positive rate) and Matthew’s correlation coefficient (MCC)
(a measure of overall selection accuracy). These are defined as:

Sensitivity = TP

FN + TP
,

Specificity = TN

FP + TN
,

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

,

where TN, TP, FN and FP represent the true negatives, true positives, false negatives and
false positives, respectively. To assess prediction performance, we trained the models on the
50 samples used for variable selection and tested the models on an additional 50 samples
generated similarly. Prediction accuracy was assessed with the predicted mean squared error
(PMSE), defined as

∑50
i=1(Yi − Ŷi )

2, where Yi is from the testing set and Ŷi is its predicted
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value. To obtain predictions of the outcomes with our joint model, we followed equation (12).
Model fit was assessed with mean squared error (MSE), defined as

∑50
i=1(Yi − Ŷi)

2, where Yi

is from the training set. To obtain an estimate of the outcomes, Ŷi , we followed the approach
used to calculate the PMSE, replacing Y and B(ψ̈), with Y and B(ψ s)ξ s , respectively. Es-
timates for the DMLM-Bayes approach were obtained similarly, with the exception that the
average of the S MCMC samples of ψ from the first step were used to construct B(ψ) in
the second. For the DMLM-Pen approach, the testing balances are estimated using a similar
approach as above, replacing the average of the MCMC samples in equations (14) and (15)
with the CL model estimates.

4.1. Results. Tables 1 and 2 report results for the proposed joint model (JM), the two-
step Bayesian approach (DMLM-Bayes) and the two-step penalized approach (DMLM-Pen)
in terms of sensitivity, specificity, MCC, MSE and PMSE averaged over 30 simulations with
standard errors in parentheses. For the Bayesian models, results are assessed over various
beta-binomial priors for a covariate’s probability of inclusion. Note that JM and DMLM-
Bayes have similar performance for covariate selection since the underlying models are the
same. Thus, we only compare to the DMLM-Pen approach in Table 1. For the selection of
covariates associated with the multivariate count data, both of the models showed high speci-
ficity (Table 1). Note that models may have selected unassociated terms and still obtained a
specificity of 1.00 due to rounding. However, the JM outperformed the DMLM-Pen approach
in terms of sensitivity and MCC. The JM with hyperparameters a = 1 and b = 99 performed
the best overall. As expected, the number of covariates selected was reduced as the mean of
the inclusion prior decreased for the Bayesian approach. The DMLM-Pen approach selected
the most covariates on average, leading it to have the lowest MCC overall. For the selection
of balances associated with the continuous response, we found similar results for all of the
models in terms of specificity (Table 2). For the Bayesian methods the number of selected
balances, as well as the sensitivity and MCC, went down as the prior probability of inclu-
sion decreased. Overall, the DMLM-Bayes model with hyperparameters a = 1 and b = 9
performed the best, with a similar performance achieved by the JM. We observed the worst
performance in terms of sensitivity, specificity and MCC for the DMLM-Pen approach, as a
result of the poor estimation of ψ from the DM portion of the model. Trace plots of the log
posterior showed good mixing, and no observed trends in the plots after burn-in suggested
model convergence across the simulations. In simulation results not shown, all of the methods
maintained extremely high specificity for the null model which contained no true relations
between covariates and the compositional data. Also, we found that selection performance
was not sensitive to replacement pseudovalues for ψi,j = 0 during sampling.

TABLE 1
Covariate selection simulation results for the proposed joint model (JM) and two-step penalized DMLM-Pen

approach in terms of sensitivity (Sens.), specificity (Spec.) and Matthew’s correlation coefficient (MCC) averaged
over 30 simulations with standard deviations in parentheses. For Bayesian models, results are assessed over

various beta-binomial priors for covariates’ probability of inclusion, ζ

Covariates

Selection prior Selected Sens. Spec. MCC

JM a = 1, b = 9 12.93 (4.15) 0.83 (0.16) 1.00 (0.00) 0.74 (0.13)
a = 1, b = 99 7.47 (2.01) 0.71 (0.18) 1.00 (0.00) 0.82 (0.12)
a = 1, b = 999 6.20 (2.34) 0.61 (0.24) 1.00 (0.00) 0.78 (0.16)

DMLM-Pen – 25.00 (21.67) 0.30 (0.19) 1.00 (0.00) 0.20 (0.06)
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TABLE 2
Balance selection simulation results for the proposed joint model (JM), the two-step Bayesian approach

(DMLM-Bayes) and the two-step penalized approach (DMLM-Pen) in terms of sensitivity (Sens.), specificity
(Spec.) and Matthew’s correlation coefficient (MCC) averaged over 30 simulations with standard deviations in

parentheses. For Bayesian models, results are assessed over various beta-binomial priors for balances’
probability of inclusion, ξ

Balances

Selection prior Selected Sens. Spec. MCC

JM a = 1, b = 9 9.30 (0.99) 0.92 (0.09) 1.00 (0.00) 0.94 (0.06)
a = 1, b = 99 3.87 (2.61) 0.38 (0.27) 1.00 (0.00) 0.55 (0.23)
a = 1, b = 999 0.80 (1.10) 0.08 (0.11) 1.00 (0.00) 0.38 (0.11)
a = 1, b = 9 10.33 (0.76) 0.97 (0.06) 1.00 (0.01) 0.95 (0.07)

DMLM-Bayes a = 1, b = 99 6.87 (3.22) 0.87 (0.34) 1.00 (0.00) 0.79 (0.25)
a = 1, b = 999 1.23 (1.52) 0.12 (0.15) 1.00 (0.00) 0.42 (0.15)

DMLM-Pen – 1.17 (1.46) 0.04 (0.09) 0.99 (0.01) 0.11 (0.19)

In terms of model fit, the DMLM-Bayes two-step approach with hyperparameters a = 1
and b = 9 had the smallest MSE on average, as expected given its balance selection per-
formance (Table 3). For both Bayesian approaches the average MSE increased with more
informative priors. This is mainly due to diminished sensitivity for both covariates and bal-
ances. Our joint model with weakly-informative priors had the lowest PMSE on average,
closely followed by the DMLM-Bayes approach with similar prior specification. Despite its
improved prediction performance, the JM had relatively higher PMSE standard deviations
compared to the DMLM-Bayes approach, as hypothesized. The DMLM-Pen approach had
the largest MSE and PMSE overall, reflecting its relatively poor selection performance for
both covariates and balances.

4.2. Sensitivity analysis. We investigated the model sensitivity to specification of hyper-
parameters b0, a, and b. In each of the sensitivity analyses, replicate data generated from the
model defined in the simulation section were used. We evaluated the number of covariates
selected, sensitivity, specificity, MCC, MSE and PMSE for the scale parameter in the Inverse-
gamma prior for the error variance, b0, at values in the set {1,2,4,8} (on log2 scale), holding
a0 = 2. With this parameterization, b0 can interpreted as the expectation of σ 2. Additionally,

TABLE 3
Simulation results for the proposed joint model (JM), the two-step Bayesian approach (DMLM-Bayes) and the

two-step penalized approach (DMLM-Pen) in terms of mean squared error (MSE) and prediction mean squared
error (PMSE) averaged over 30 simulations with standard deviation in parentheses. For Bayesian models, results

are assessed over various beta-binomial priors for a covariate’s probability of inclusion

Selection prior MSE PMSE

JM a = 1, b = 9 101.28 (31.74) 563.54 (226.62)
a = 1, b = 99 1250.13 (734.24) 1953.09 (1019.78)
a = 1, b = 999 3214.91 (974.96) 3494.93 (913.75)
a = 1, b = 9 67.22 (16.93) 785.63 (327.73)

DMLM-Bayes a = 1, b = 99 509.03 (580.00) 2527.30 (1220.18)
a = 1, b = 999 2710.42 (1134.56) 3562.42 (819.85)

DMLM-Pen – 3521.97 (863.37) 4267.24 (1206.15)
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TABLE 4
Results of sensitivity analysis for hyperparameter b0 in Inverse-gamma prior for total number of selected

covariates across taxa and balances (#), sensitivity (Sens.), specificity (Spec.), Matthew’s correlation coefficient
(MCC) and mean squared error (MSE)

Covariates Balances

b b0 # Sens. Spec. MCC # Sens. Spec. MCC MSE PMSE

9 1 10 0.90 1.00 0.90 8 0.80 1.00 0.89 112.76 619.39
2 10 0.90 1.00 0.90 8 0.80 1.00 0.89 111.84 616.63
4 10 0.90 1.00 0.90 9 0.80 0.99 0.83 117.54 680.12
8 10 0.90 1.00 0.90 5 0.50 1.00 0.69 510.74 1063.09

99 1 10 1.00 1.00 1.00 7 0.70 1.00 0.83 340.21 691.27
2 10 1.00 1.00 1.00 7 0.70 1.00 0.83 340.25 694.94
4 10 1.00 1.00 1.00 6 0.60 1.00 0.76 428.12 768.15
8 10 1.00 1.00 1.00 1 0.10 1.00 0.31 2073.22 2125.34

999 1 9 0.80 1.00 0.84 1 0.10 1.00 0.31 2646.49 2427.75
2 9 0.80 1.00 0.84 1 0.10 1.00 0.31 2646.49 2427.75
4 9 0.80 1.00 0.84 1 0.10 1.00 0.31 2882.92 2568.60
8 9 0.80 1.00 0.84 1 0.10 1.00 0.31 3156.92 2735.28

we assessed the model’s sensitivity to different beta-binomial priors for the inclusion indica-
tors. Specifically, we used a weakly (a = 1, b = 9), moderately (a = 1, b = 99) and highly
(a = 1, b = 999) informative prior, with E[ζjp] = 0.1,0.01 and 0.001, respectively.

To assess the sensitivity of the model to the specification of the Inverse-gamma prior for
the random error σ 2, we set a0 = 2 and fit the model across a range of b0. The results of
our sensitivity analysis are presented in Table 4. As expected, selection performance for the
covariates associated with taxa probabilities were unaffected by b0. However, we observed
a negative relation between b0 and the number of balances selected as well as balance sen-
sitivity, specificity and MCC. As a result, we observed a positive relation between b0 and
MSE/PMSE. Additionally, the number of selected covariates and balances decreased with
the expected prior probability of inclusion.

5. Discussion. In this work we have presented a Bayesian model for jointly identifying
dietary covariates that are associated with microbial data and predicting a continuous, phe-
notypic response using a set of balances constructed from the estimated compositional taxa
probabilities. Our approach induces sparsity on both balances and covariates while incor-
porating the structure of the multivariate count data. In our application we found numerous
associations between microbial taxa and dietary factors that may lead to a microbiome that
is generally more hospitable to the development of chronic diseases, such as obesity. Addi-
tionally, we observed similar prediction performance of BMI for fecal and oral microbiome
data. Through simulation we have demonstrated the benefits of jointly modeling these data
in terms of covariate selection performance and prediction accuracy. Additionally, we show
how the Bayesian two-step approach had lower prediction accuracy and may underestimate
prediction uncertainty by treating the compositional count data as fixed. In clinical applica-
tions this may result in overconfident prediction estimates of the phenotypic response which
may promote the implementation of ineffective treatments or intervention strategies. While
designed to study microbial abundance data, our method can handle any research setting in
which multivariate count data may mediate the relation between a set of risk factors and a
continuous response. Thus, our proposed model is agnostic to the sequencing approach used
to quantify microbial samples.
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Our model provides an integrated analysis of the relations between behavioral, microbial
and phenotypic measures collected on a cohort of healthy obese and lean individuals. Given
the complexity of the model, full validation of clinical results requires the availability of data
collected on dietary covariates, fecal and/or oral microbiome samples, BMI as well as poten-
tial confounders (i.e., age and sex). However, the conditional independence structure implied
by the joint model allows researchers to validate key aspects separately. For example, the
selected associations between individual dietary factors and microbial counts can be directly
compared to other studies investigating these relations. In these settings reproducibility is
primarily challenged by vast heterogeneity in microbial abundances found across individuals
and populations (Falony et al. (2016), Huttenhower et al. (2012), Li et al. (2014), Takeshita
et al. (2014)) as well as study design issues, including differences in food frequency question-
naires (Bowyer et al. (2018)). Another key aspect of our model is its ability to accommodate
taxa heterogeneity when predicting phenotypic responses. While our case study was not large
enough to justify out-of-sample validation, larger follow-up studies could assess predictive
performance using the cross-validation approach described at the end of Section 2.1.

While our approach provides unique insights into the relation between modulating fac-
tors and phenotypic outcomes via microbial composition samples, it currently lacks the abil-
ity to accommodate repeated measures data collected in longitudinal studies. The ability to
model both fixed and random effects would allow researchers to investigate how the rela-
tions between diet, microbiome and BMI vary over time and across subjects. Additionally,
structural information on phylogenetic trees could be incorporated into the multinomial dis-
tribution used to model the relation between covariates and the multivariate count data us-
ing a Dirichlet-tree multinomial model which permits both positive and negative correlation
structures among the count data (Tang, Ma and Nicolae (2018), Wang and Zhao (2017a)).
Also, our approach is developed for exploratory data analysis settings designed to gener-
ate hypotheses regarding the relations among covariates, compositional data and a response.
In more confirmatory settings researchers may aim to assess treatment effects on microbial
composition as well as the phenotypic response, while controlling for a set of possible con-
founders. Oftentimes, the appropriate subset of confounders to control for may be unknown,
and the space to search through is large compared to the number of observations. In this set-
ting our approach could be extended to search the pool of potential confounders in human
microbiome studies following the methods proposed in Antonelli, Parmigiani and Dominici
(2019). In this analysis we construct balances using binary sequential separation and fo-
cus our inference on prediction, not explanation. Future studies could incorporate biological
information when constructing balances, similar to Morton et al. (2017), Silverman et al.
(2017), Washburne et al. (2017), and, additionally, investigate the relations between balances
and phenotypic responses. Lastly, our approach is presented for continuous outcomes, but
discrete as well as survival outcomes are often encountered in biomedical settings. To han-
dle discrete phenotypic outcomes, such as disease onset, the joint model could easily be
adjusted using data augmentation approaches (Albert and Chib (1993), Polson, Scott and
Windle (2013)).
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SUPPLEMENTARY MATERIAL

Supplemental code and tutorial (DOI: 10.1214/20-AOAS1354SUPPA; .zip). To help
researchers use our approach, we provide R code and an accompanying tutorial applying
our approach to simulated data. To enhance the performance of our approach, we integrated
C++ into our source code using Rcpp and RcppArmadillo (Eddelbuettel and Sanderson
(2014), Eddelbuettel et al. (2011)). The code developed for this manuscript, simulated data,
and a worked example are publicly available on GitHub: https://github.com/mkoslovsky/
DMLMbvs

Supplemental simulations and results (DOI: 10.1214/20-AOAS1354SUPPB; .pdf). In
this document, we provide an additional simulation study demonstrating the model’s invari-
ance to balance specification and how balance sparsity can improve prediction performance,
as well as additional tables and figures containing results of our case study analysis.
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