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Antineutrophil cytoplasmic antibody associated vasculitis (AAV) is ex-
tremely heterogeneous in clinical presentation and involves multiple organ
systems. While the clinical presentation of AAV is diverse, we hypothe-
sized that all AAV share common pathways and tested the hypothesis based
on three different microarray studies of peripheral leukocytes, sinus and or-
bital inflammation disease. For the hypothesis testing we developed a two-
component semiparametric mixture model to estimate the local false discov-
ery rates from the p-values of three studies. The two pillars of the proposed
approach are Efron’s empirical null principle and log-concave density esti-
mation for the alternative distribution. Our method outperforms other existing
methods, in particular when the proportion of null is not that high. It is ro-
bust against the misspecification of alternative distribution. A unique feature
of our method is that it can be extended to compute the local false discovery
rates by combining multiple lists of p-values.

1. Introduction. Antineutrophil cytoplasmic antibody associated vasculitis (AAV) is ex-
tremely heterogeneous in clinical presentation and involves multiple organ systems, includ-
ing ranges from life threatening pulmonary hemorrhage to limited diseases of skin, nerves,
orbit or eye (Kallenberg (2014), Macfarlane et al. (1983)). While the clinical presentation
of AAV is diverse, all may share common pathways. We wanted to test whether we could
identify common pathways of AAV from three different studies. To test the hypothesis, gene
expression data were collected from three published studies—a study of peripheral leuko-
cytes (Alcorta et al. (2007)), sinus brushings (Grayson et al. (2015)) and orbital inflammatory
disease (Rosenbaum et al. (2015)). While all studies employed microarray technology, they
used Affymetix HU133 A and B, Affymetrix Human Gene 1.0 ST and Affymetrix Human
Genome U133 Plus 2.0, respectively. Therefore, it was not straightforward to analyze the raw
expression data of three studies together due to the different number of probes of each array,
different comparisons and control groups etc. From each study the associated pathways were
identified based on the set of differentially upregulated genes. The aim was to identify com-
mon pathways with the combined local false discovery rate (md-fdr), which will be defined
in Section 2.3, less than 0.1 as shown in Figure 1.

Since the early 21st century, microarray technology and next generation sequencing tech-
nology have revolutionized genomic researches by enabling simultaneous interrogating of
tens of thousands genes. A quick search on PubMed.gov with a keyword microarray re-
turns more than 80,000 items since 2000 (Coordinators (2017)). Many authors have deposited
their microarray data to the gene expression omnibus (GEO) database, and anyone can easily
download gene expression data from multiple studies for a secondary data analysis (Edgar,
Domrachev and Lash (2002)). While one can perform a meta-analysis of raw data from mul-
tiple studies, there will be several major challenges in combining data from different plat-
forms/technologies, such as normalizing or adjusting batch effects. In addition, the full-scale
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FIG. 1. Probit-transformed p-values of common pathways from three AAV microarray studies. Black points
represents md-fdr < 0.1. The red circled points are osteoclast dierentiation (K) and cell surface interactions at
the vascular wall (R). For more details, see Section 4.

analysis can require considerable resources and time. If one only wishes to do a quick screen-
ing analysis from the multiple lists of significantly differentially expressed genes or pathways,
a method to combine the multiple lists of p-values into one can be extremely handy. Figure 1
shows the probit-transformed p-values of common pathways identified from the three studies
in our motivated application; the black points represent the combined local false discovery
rates less than 0.1. In this paper we propose a semiparametric mixture model that provides
a unified way to compute the local false discovery rate for both single list of p-values and
multiple lists of p-values.

Suppose that we observe N cases, each with its own p-value, pi , for i = 1,2, . . . ,N .
Let zi , i = 1,2, . . . ,N , be the probit-transformed p-values. Each case can be considered
as being from either null or alternative, with the prior probability p0 = Pr{null} or p1 =
Pr{alternative} = 1 − p0. Hence, z-values have the following mixture density:

(1.1) f (z) = p0f0 + (1 − p0)f1(z),

where f0(z) and f1(z) are null and alternative densities.
The above mixture model appears in three contexts: (i) in multiple testing problems (fMRI,

microrarray), probit-transformed p-values under H0 follow the standard normal distribution
while the marginal probability density function of the probit-transformed p-values associated
with H1 is unknown (Efron (2008)); (ii) in variable/basis selection, a mixture prior is used to
achieve sparsity (Johnstone and Silverman (2005)); (iii) in prediction, Fisher’s discriminant
function can be regularized using a connection with the local false discovery rate theory
(Efron (2009)).

In multiple testing, adjusting for multiplicity is of great interest. To do so, we may consider
controlling for either the local false discovery rate, fdr(z) = Pr(null | Z = z) or the False
Discovery Rate, FDR(z) = Pr(null | Z > z). In this paper we focus on estimating fdr(z) that
can be viewed as the posterior probability of a case being from the null given z. Under the
mixture model (1.1) it is straightforward to show

fdr(z) = p0f0(z)/f (z).
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It is natural to assume that f0 follows the standard normal distribution. However, Efron
(2008) suggested that theoretical null distribution N(0,1) may not be suitable for f0 and
proposed to estimate f0 with the empirical null distribution N(μ,σ 2) where μ and σ 2 are
to be estimated from data. He used the zero assumption to estimate p0 and f0 but estimated
the marginal density f separately with Lindsey’s method. As a result, his estimates may not
follow the original mixture structure since the estimates are given from separate procedures.
In other words, the mixture model only used to define fdr but not for making inference of
fdr. This can sometimes lead to problematic fdr estimates, as shown in our simulations in
Section 3.

In this paper we propose a semiparametric mixture model that estimates p0, f0 and f1
simultaneously with alternative being a log-concave density. The main advantages of this
approach are threefold. First, it is reasonable to assume the alternative distribution belongs to
a log-concave family, as long as probit transformed p-values are considered. We will discuss
the robustness of this assumption in detail. Second, log-concave densities can be estimated
nonparametrically without a smoothing parameter. Finally, our method can compute the local
false discovery rate from multiple lists of p-values while Efron’s method cannot be extended
similarly. For example, we observe 3-tuple of p-values (p1i , p2i , p3i) for i = 1, . . . ,N in the
three AAV microarray studies. Our goal is to estimate

fdr(zi ) = Pr(null | Z = zi),

where zi = (z1i , z2i , z3i) = (�−1(1 −p1i ),�
−1(1 −p2i ),�

−1(1 −p3i )) and � is the cumu-
lative distribution function of N(0,1) so that �−1 defines the probit transform.

Section 2 introduces our semiparametric mixture model. In Section 3 we present numerical
studies to show the robustness and performance of our method. Section 4 presents the anal-
ysis results of three AAV microarray studies. Section 4 shows the robustness of our method.
Section 5 concludes this paper.

2. Semiparametric mixture model.

2.1. The proposed model. In this section we propose a semiparametric mixture model
for f .

(2.1) f (z) = p0φμ,σ 2(z) + (1 − p0)f1(z),

where φμ,σ 2 denotes the density of N(μ,σ 2) and f1 is a log-concave density function for the
alternative distribution.

Let h(t) denote the pdf of the alternative distribution of p-values. Define Z = �−1(1 − p)

to be a probit transformed p-value. We usually assume that the p-values follow a uniform
[0,1] under H0. For the behavior of p-value under H1, see Sellke, Bayarri and Berger (2001)
and Hung et al. (1997). While we do not assume a specific class of family for alternative
distribution of p-values, we claim that it is reasonable to assume the alternative distribution of
Z, probit transformed p-value belongs to a log-concave distribution family. We will discuss
the robustness of our assumption later in Section 3.

Statistical properties of the class of log-concave densities are well studied in Walther
(2002, 2009). Walther (2002) also showed the existence of the nonparametric MLE of a uni-
variate log-concave density that can be computed via an efficient algorithm, such as an active
set algorithm and an iterative convex minorant algorithm (Dümbgen and Rufibach (2011)).

In general, semiparametric mixture models are not identifiable without additional assump-
tions on the alternative density. Assuming that the alternative distribution belongs to the
location-shift family, Bordes, Delmas and Vandekerkhove (2006) showed the identifiabil-
ity of the semiparametric mixture model under mild regularity conditions. Genovese and
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Wasserman (2004) also addressed identifiability of mixture models for p-value distribution
under the assumption that the alternative is pure, that is, ess inft h(t) = 0. The recent work
of Hunter, Wang and Hettmansperger (2007) and Balabdaoui and Doss (2018) address the
identifiability issues in log-concave mixture models. Note that Balabdaoui and Doss (2018)
have an extra assumption about symmetry, but our method assumes the null distribution is a
normal.

Our semiparametric mixture model in (2.1) may also suffer from the nonidentifiability is-
sue. In order to avoid this issue, we assume that the support of alternative distribution for Z is
given by (a,∞) for some a. Note that (p0,μ,σ 2) can be determined by at least three distinct
points arbitrarily chosen from the interval (−∞, a]. In other words, the null components are
estimable using data points in the interval (−∞, a], since the data points are certainly from
the null distribution. Hence, the identifiability of our model is guaranteed as long as we can
choose a such that there exist at least three points in (−∞, a]. This argument is similar to
Efron’s with zero assumption for the support of f1.

Recently, Hu, Wu and Yao (2016) proposed the MLE for log-concave mixture models and
showed the existence and consistency of the MLE under fairly general condition. Since a
normal distribution is also log concave, our semiparametric mixture model can be considered
as a special case of a finite (two) mixture of log-concave distributions.

We closely follow Hu, Wu and Yao (2016) to show the consistency of our estimator. The
key idea is to prevent the likelihood from being unbounded by constraining the parameter
space. Hence, it suffices to check whether our semiparametric mixture model satisfies f ∈Fη

for some η ∈ (0,1], where Fη is defined as follows:

Fη = {
f : f (x) = p exp

(
ϕ1(x)

) + (1 − p) exp
(
ϕ2(x)

)
,p ∈ (0,1),ϕ ∈ �η

}
,

where

ϕ = (
ϕ1(x), ϕ2(x)

) =
(
−(x − μ)2

2σ 2 − 1

2
log

(
2πσ 2)

, logf1(x)

)

and �η is a constrained subspace

�η = {
ϕ = (ϕ1, ϕ2)|ϕj is concave,

∣∣S(ϕ)
∣∣ ≥ η > 0

}
,

with

S(ϕ) = min{maxx ϕ1(x),maxx ϕ2(x)}
max{maxx ϕ1(x),maxx ϕ2(x)}

= min{−1
2 log(2πσ 2),maxx logf1(x)}

max{−1
2 log(2πσ 2),maxx logf1(x)} .

The condition

∣∣S(ϕ)
∣∣ ≥ η > 0

is satisfied as long as the mode of alternative density does not increase to ∞, and it is not
so much a restrictive one for any alternative density. Therefore, the log-likelihood for our
method is bounded, and the estimated mixture density is consistent by Theorems 1 and 2 in
Hu, Wu and Yao (2016). Furthermore, the two estimated components and the null probability
are also consistent since our model is identifiable.
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2.2. EM algorithm. It is natural to consider an EM-type algorithm to fit the proposed
semiparametric model. To do so, we first define the likelihood function

�
(
	,μ,σ 2, f1|z1, . . . , zN

) =
N∑

i=1

{
	i logφμ,σ 2(zi) + (1 − 	i) logf1(zi)

}

+
N∑

i=1

{
	i logp0 + (1 − 	i) log(1 − p0)

}
,

where 	 = (	1, . . . ,	N)T is a latent variable vector indicating the group membership.
Following Chang and Walther (2007), we first run the EM algorithm for a Gaussian mix-

ture to get initial estimates of (p0,μ,σ 2). Then, the EM algorithm for fitting the proposed
semiparametric model is given below:

1. Initialization: Set k = 0 and run the EM algorithm for a Gaussian mixture to get initial
values (p

(0)
0 ,μ(0), σ 2(0)), f

(0)
1 (zi) for i = 1, . . . ,N . Put γ

(0)
i = 0, i = 1, . . . ,N .

2. E-step: Compute the posterior probability: for i = 1, . . . ,N ,

γ
(k+1)
i = E

(
	i |μ(k), σ 2(k), z1, . . . , zN

)

= p
(k)
0 φμ(k),σ 2(k) (zi)

p
(k)
0 φμ(k),σ 2(k) (zi) + (1 − p

(k)
0 )f

(k)
1 (zi)

.

3. M-step: Compute the log-concave estimates f
(k+1)
1 (zi) based on zi with weights 1 −

γ
(k+1)
i for i = 1, . . . ,N . And put

μ(k+1) =
∑N

i=1 γ
(k+1)
i zi∑N

i=1 γ
(k+1)
i

,

σ 2(k+1) =
∑N

i=1 γ
(k+1)
i (zi − μ(k+1))2∑N

i=1 γ
(k+1)
i

,

p
(k+1)
0 = 1

N

N∑
i=1

γ
(k+1)
i .

4. Replication: If maxi=1,...,N |γ (k+1)
i − γ

(k)
i | < TOL, then output p

(k+1)
0 , μ(k+1), σ 2(k+1),

f
(k+1)
1 (zi)’s, γ

(k+1)
i ’s and STOP. Otherwise, set k = k + 1 and go to the E-step.

In practice, we used TOL = 5 × 10−6.

2.3. Extension to multiple studies. Suppose that one forms multivariate statistics Z =
(Z1, . . . ,Zd) where each component is collected from a different study and provides unique
information for common scientific hypotheses. For example, from each study of three AAV
studies the lists of test statistics and corresponding p-values are available. To the best of our
knowledge, there is no method available to combine such information. It is straightforward
to extend the concept of fdr to such multivariate cases using the proposed method

fdr(Z) = p0
f0(Z)

f (Z)
,

which we call hereafter as md-fdr. However, applying Efron’s method to multivariate is
not straightforward. For example, it is not easy to extend Lindsey’s method to estimate the
marginal distribution even for two-dimension.
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Up to our knowledge, Ploner et al. (2006) was the first attempt of md-fdr modeling. They
proposed a method to combining a common test statistic, say t-statistic, for assessing differ-
ential expression in microarray studies with its standard error information. They estimated
f0 with discrete smoothing of binomial data after binning the data. However, their method
still requires a smoothing parameter and has an issue with boundary bias. Furthermore, their
method is only applicable to combining t-test statistics with standard error estimates for each
gene. On the other hand, our method is straightforward to extend to multivariate cases and is
not involved in choosing a smoothing parameter.

Cule, Samworth and Stewart (2010) extended Dümbgen and Rufibach (2009) to multi-
variate settings and implemented multivariate log-concave estimation in R package LogCon-
cDEAD (Cule, Gramacy and Samworth (2009)). We use LogConcDEAD to implement our
semiparametric mixture model in both single study and multiple studies. The R function and
examples are available in the Supplemental Material (Jeong, Choi and Jang (2020)).

3. Simulation studies. In this section we investigated the performance of our semipara-
metric approach with some simulation studies where we can compare the results with Efron’s
method. We conducted M = 500 Monte Carlo experiments with N = 1000 and considered
performance measures used for classifiers in machine learning applications: false positive
rate (FPR) and sensitivity with the threshold set to be fdr ≤ 0.2 which is equivalent to the
Bayes factor f1(z)/f0(z) ≥ 4p0/(1 − p0). This is a very strict level compared with classical
testing practice. Note that the multiple testing can be thought as an unsupervised learning
where the nullity of each observation is not known. Since the true nullity of each data point is
known during the simulation studies, it is appropriate to use performance measures for clas-
sifiers with two classes to investigate the performance of a multiple testing procedure. Also,
in order to evaluate the accuracy of the estimated fdr, we computed the root-mean-squared
error (RMSE) which is given by

RMSE = 1

M

M∑
r=1

√√√√√ ∑
i:fdr(z(r)

i )≤0.5

{
f̂dr

(
z
(r)
i

) − fdr
(
z
(r)
i

)}2
/ N∑

i=1

I
(
fdr

(
z
(r)
i

) ≤ 0.5
)
,

where z
(r)
1 , z

(r)
2 , . . . , z

(r)
N is the r th random sample generated during the Monte Carlo sim-

ulation. Note that we only took account of zi ’s with fdr(z(r)
i ) ≤ 0.5 in the definition of the

RMSE, because the accuracy of fdr estimation is required mainly for the region where the
fdr(z) is small. For example, the behavior of fdr estimates for z-values with fdr(z) ≈ 0.2 is of
concern as is in our study.

3.1. Simulations of single study. We considered six scenarios for simulations; see Ta-
ble 1. For the first three scenarios we assumed normal distributions for both null and alter-
native distributions with different p0. It does not conform the assumption on the support of
the alternative density when considering a normal distribution for the alternative component.
However, the normal distributions are extremely thin tailed, and we may practically reckon
that they are supported on a bounded interval given by the range of ±3 standard deviation
around its mean; we consider that the support assumption is valid. The next three scenarios
are the same as the first three, except using gamma distributions as an alternative. Gamma
distributions are log concave and are supported on (0,∞), so that there is no issue on the
identifiability.

Figures 2 and 3 show that our proposed approach stably yields reasonable results for a
wide range of p0 while Efron’s method tends to collapse when p0 is relatively small. During
our simulation study, R package locfdr was used for implementing Efron’s method (Efron,
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TABLE 1
Simulation scenarios for single study

Scenario p0 f0 f1 Scenario p0 f0 f1

1 0.95 N(0,1) N(3.5,0.52) 4 0.95 N(0,1) gamma(12,0.25)

2 0.90 N(0,1) N(3.5,0.52) 5 0.90 N(0,1) gamma(12,0.25)

3 0.80 N(0,1) N(3.5,0.52) 6 0.80 N(0,1) gamma(12,0.25)

Turnbull and Narasimhan (2015)). Note that one of the key assumptions of Efron’s method
is the null probability is large, say p0 ≥ 0.90; see (6.11) in Efron (2010). In the case that
p0 is not large enough, Efron’s method for estimating p0 and the null distribution tends to
break down and give an unreasonable estimate for p0, for example, an estimate greater than
one, by the naive (with no constraint on the range of p0 estimate) default fit to logf over
the central portion of the z-values. Figure 2(a)–(d) summarize the results from the simulation
setting with p0 = 0.95 while (e)–(h) are from the setting with p0 = 0.90; and (i)–(l) are
from the setting with p0 = 0.80. In the settings with p0 = 0.95 and p0 = 0.90, both Efron’s
and our method worked reasonably well. However, when p0 = 0.80, Efron’s method tends
to overestimate p0 and RMSE becomes substantially large. Furthermore, their sensitivity is
closer to 0 in most cases while our method still works well. Figure 3 shows similar patterns
for gamma alternative distributions.

Our log-concavity assumption is indeed robust in testing problems. To check this, we sim-
ulated p-values from Beta(0.3,1) following Sellke, Bayarri and Berger (2001). Note that
this distribution does not satisfy log-concavity. But we verified that the distribution of probit
transformed p-values gets quite close to a log-concave one. Figure 4 shows comparisons be-
tween the empirical distributions of the simulated p-values pi ’s from Beta(0.3,1) and that
of random numbers generated from the log-concave fit of pi ’s. Clearly, Figure 4(a) presents
a distributional discrepancy between the simulated p-values and a random sample generated
from the fitted log-concave density, and the Kolmogorov–Smirnov (KS) test confirmed the
discrepancy with p-value < 10−4. However, after probit transformation, one can barely see
the difference between the two empirical distributions in Figure 4(b) with KS statistics p-
value = 0.8693. We repeated the above procedure 500 times, and Figure 5 summarizes the
results. While most of the KS test p-values before the probit transformation are small, after
the probit transformation only 0.2% of the KS tests have p-values less than or equal to 0.05.

We conducted the similar numerical studies using noncentral t , noncentral χ2 and non-
central F as alternative distribution of test statistics. We found the results were similar to the
beta distribution case; see the Supplementary Material (Jeong, Choi and Jang (2020)).

It is possible that the distribution of probit-transformed p-values from the alternative com-
ponent may not be unimodal. Suppose the alternative is a two-component mixture distribution
normal distribution given by

f1 = 0.6 · N(
2.5,0.252) + 0.4 · N(

3.5,0.52)
,

which clearly does not belong to a log-concave family. Figure 6 demonstrates that our method
performed reasonably well with a two-component alternative density in a simulation. Our
method overestimates the alternative density (underestimating fdr) and provides deflated fdr
estimates around the valley between the two components in the alternative distribution. How-
ever, this area should be declared as alternative, so underestimating fdr should not be an issue.
Indeed, the monotonicity of fdr estimator can be considered as a desirable property in a two-
component model from the classification point of view, and using the log-concave estimators
enforces the monotonicity into fdr estimator. See Figure 6.
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FIG. 2. Comparison of the performances of the proposed method and Efron’s method for Scenarios 1–3 with
the normal alternative distribution in Table 1. Boxplots are drawn with the results from M = 500 Monte Carlo
experiments. Panels (a)–(d) summarize the results from the simulation setting with p0 = 0.95; (e)–(h) are from
the setting with p0 = 0.90, and (i)–(l) are from the setting with p0 = 0.80.

The further simulation results presented in Figure 7 suggest that the proposed method is
robust even if the alternative distribution violates the log-concavity assumption. It still out-
performs Efron’s again, although his method does not need assumptions on the shape of
alternative distribution. As long as p0 is moderately large, the potential risk of misspecifica-
tion for alternative distribution is likely to be forgiven, since it affects little to the accuracy of
f estimates and, consequently, to that of fdr estimates.

In general, we are more sensitive to fdr estimation results around the decision boundary.
In other words, we are more interested in whether our estimate for alternative fits reasonably
well around the decision boundary area. We want to put an emphasis on that the key is to
estimate the fdr around the boundary between null and alternative distributions, and our fdr
estimator around this area is robust even when log-concavity assumption is violated. The risk
of misspecification for the alternative distribution can be forgiven, since it affects little to the
fdr estimates as long as p0 is close to 1 in testing problems. Note that the proposed method
captures and utilizes the “local” feature of data distribution only because it is affected little
by the global shape of data distribution. Indeed, the fdr estimate is not required to fit well all
over the support of the marginal distribution and has only to be accurate on a neighborhood
near the threshold.
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FIG. 3. Comparison of the performances of the proposed method and Efron’s method for Scenarios 4–6 with
gamma alternative distribution in Table 1. The boxplots are drawn with the results from M = 500 Monte Carlo
experiments. Panels (a)–(d) summarize the results from the simulation setting with p0 = 0.95; (e)–(h) are from
the setting with p0 = 0.90, and (i)–(l) are from the setting with p0 = 0.80.

3.2. Simulations of multiple studies. The simulation scenarios are similar to those in the
previous subsection. In each scenario the distributions of null and alternative are the same
as the null and alternative distributions of the corresponding scenario in the single study
setup. For the dependency of z’s, we postulated two copula structures: the Gaussian copula
for simulations with normal marginal distributions and Frank copula for simulations with
gamma marginals; see Yan (2007) for a detailed explanation on implementing copula models
with R. By doing so, we want to find whether there is an advantage of md-fdr compared to fdr
from a single study (1d-fdr).

Figure 8 illustrates the empirical distributions of sensitivities from 500 Monte Carole ex-
periments for each scenario. All the figures commonly show that md-fdr outperforms 1d-fdr.
Comparing the boxplots for md-fdr with those from separate 1d-fdr, we confirm that the em-
pirical distributions of sensitivities with md-fdr are much preferable to those in the corre-
sponding 1d-fdr. Combining information with md-fdr could be better since it endows the test
procedure with an extra flexibility in deciding the boundary of the rejection region. This is
also explained by a similar phenomenon to the classification problem where the error rate
may decrease when more variables are used.
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FIG. 4. A simulation result for Beta(0.3,1) which violates the log-concavity. Panel (a) is for comparing the
empirical distribution of 50 simulated pi from Beta(0.3,1) and that of p̃i , i = 1,2, . . . ,50 randomly drawn from
the log-concave fit of pi ’s. The Kolmogorov–Smirnov test statistic for comparing these two empirical distributions
was 0.46 with p-value < 10−4. Panel (b) is for comparing the empirical distribution of the probit-transformed
p-values zi = �−1(1 − pi) and that of z̃i ’s drawn from the log-concave fit of zi ’s. The KS statistic was 0.12 with
p-value = 0.8693.

FIG. 5. From 500 Monte Carlo experiments with the same setup as in Figure 1, 500 p-values of
Kolmogorov–Smirnov test were computed for pi ’s and zi ’s. Panel (a) is the histogram for the p-values of Kol-
mogorov–Smirnov test which compares the empirical distribution of pi ’s and that of p̃i ’s randomly drawn from
the log-concave fit of pi ’s. Among 500 p-values for KS test, 57.2% were less than or equal to 0.05. Panel (b) is
the histogram for the p-values of KS test for zi = �−1(1 − pi)’s and z̃i ’s drawn from the log-concave fit of zi ’s.
Only 0.2% (one case out of 500 experiments) of p-values were less than or equal to 0.05.
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FIG. 6. A simulation result with a bimodal alternative distribution: f1 = 0.6 ·N(2.5,0.252)+0.4 ·N(3.5,0.52).
The dotted lines in the upper panel is the true density functions used for simulating data. The black solid curve in
the lower panel is the true fdr, and the gray curve is the fdr estimate.

4. Common pathways across multiple studies. We wanted to test the hypothesis that
common pathways exist in various AAV. Three published studies provided the list of sig-
nificantly upregulated genes in: (1) peripheral leukocytes (Alcorta et al. (2007)), (2) sinus
brushings (Grayson et al. (2015)) and (3) orbital inflammatory disease (Rosenbaum et al.
(2015)) compared to healthy controls. Reactome pathway database was used to get the rel-
evant pathways for upregulated genes from each study (Fabregat et al. (2016)) with their
associated p-values. By applying our model to each list of p-values separately, there were
26, 32 and 26 pathways with 1d-fdr < 0.1 for study (1), (2) and (3), respectively. When we
fitted our model to estimate md-fdr of three lists of p-values, there were 23 pathways with
md-fdr < 0.1. Figure 1 shows the probit-transformed p-values of common pathways from the
three studies, where black points represent md-fdr < 0.1. Table 2 presents the pathways with
md-fdr < 0.1.

Many of the pathways in Table 2 support current knowledge and theories about AAV.
For example, neutrophil degranulation pathway was the most significant pathway with 1d-fdr
of each study and md-fdr. The involvement of neutrophil in these diseases was previously
reported (Soderberg and Segelmark (2016)). Toll-like receptors cascades pathway had also
small 1d-fdr in all three studies as well as md-fdr. This pathway supports the hypothesis
that the pathogenesis of these diseases involves infections and innate immunity. In addition,



SEMIPARAMETRIC METHOD FOR LOCAL FDR 1253

FIG. 7. Comparison of the performances of the proposed method and Efron’s method for the scenarios with a
bimodal alternative distribution which violates the log-concavity assumption for alternative distributions. Box-
plots are drawn with the results from M = 500 Monte Carlo experiments. Panels (a)–(d) summarize the results
from the simulation setting with p0 = 0.95; (e)–(h) are from the setting with p0 = 0.90, and (i)–(l) are from the
setting with p0 = 0.80.

our methods could identify more pathways with md-fdr< 0.1, but not necessarily all the 1d-
fdr< 0.1. For examples, osteoclast differential pathway had the 1d-fdr< 0.1 in the sinus-
brushings study only, while cell-surface interactions at the vascular wall pathway had the
1d-fdr< 0.1 in the sinus-brushings and the orbital-tissue studies. The former is known to be
important in the pathogenesis of AAV, and the latter is highly relevant in vasculitis. Two large
points in Figure 1 represent these two pathways.

Finally, potential novel common pathways were identified such as cell surface interac-
tions at the vascular wall, amb2 integrin signaling, platelet pathways, etc., which should be
investigated in future studies. The more comprehensive clinical interpretation can be found
elsewhere (Friedman et al. (2019)).

5. Discussion. In this paper we were able to combine three lists of p-values of pathways
from three different studies about AAVs by using the proposed semiparametric mixture model
of normal and log-concave densities. Our method identified more pathways with md-fdr < 0.1
but not necessarily all the 1d-fdr < 0.1. For example, the osteoclast differential pathway had
the 1d-fdr < 0.1 in only one study, but the md-fdr is significantly small. The pathogenesis
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FIG. 8. Simulation results from bivariate (two studies) setups. Boxplots are drawn with the results from M = 500
Monte Carlo experiments. Panels (a)–(c) summarize the simulation results from the setting with the normal +
normal mixture marginals coupled with elliptical copula; (d)–(f) are from the setting with the normal + gamma
mixture coupled with Frank copula. In each panel the first two boxplots are drawn with the results from fitting
one-dimensional models separately for two components, and the last boxplot is from fitting bivariate model.

of AAV agrees with our findings. To the best of our knowledge, there is no existing method
that can compute combined FDR or fdr for multiple lists of p-values from several microarray
studies.

We presented an EM-type algorithm to implement the proposed estimators for both sin-
gle high-dimensional and multiple high-dimensional testing results. Our method can estimate
fdr and the proportion of the null simultaneously and fit the alternative when necessary. Our
method is easy to use because it does not require smoothing parameter selection. Our sim-
ulation studies showed that the proposed method outperforms other existing method in both
single study and multiple studies. We presented an application which demonstrates the unique
feature of the proposed semiparametric mixture model and, especially, the advantage of using
md-fdr over 1d-fdr.

Recently, Wilson (2019) proposed the harmonic mean p-value (HMP) to combine depen-
dent tests. HMP also has the Bayesian properties (Held (2019)). HMP appears to outperform
other procedures that control the false discovery. It would be interesting if one extends the
HMP to multiple studies with our method.
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TABLE 2
Raw p values and estimated fdrs for pathways with the md-fdr < 0.10

Peripheral Sinus Orbital
Pathway Leukocytes brushings tissue md-fdr

Neutrophil degranulation 3.14 · 10−13 1.11 · 10−16 3.28 · 10−9 1.05 · 10−12

Osteoclast differentiation 1.26 · 10−2 6.19 · 10−12 3.91 · 10−1 3.75 · 10−5

Cell surface interactions at the vascular wall 8.87 · 10−1 4.49 · 10−4 5.86 · 10−5 4.19 · 10−4

Signaling by Interleukins 8.91 · 10−5 8.24 · 10−8 1.88 · 10−5 6.13 · 10−4

Phagosome 4.77 · 10−1 2.88 · 10−8 2.13 · 10−2 3.17 · 10−3

Leishmaniasis 4.12 · 10−2 1.22 · 10−9 1.72 · 10−1 3.54 · 10−3

Urokinase-type plasminogen activator 3.54 · 10−1 9.81 · 10−8 9.39 · 10−3 7.77 · 10−3

and uPAR-mediated signaling
Antimicrobial peptides 7.69 · 10−6 1.31 · 10−3 1.14 · 10−3 8.23 · 10−3

Malaria 4.00 · 10−1 3.77 · 10−6 1.69 · 10−3 1.16 · 10−2

Tuberculosis 3.96 · 10−2 3.79 · 10−8 2.52 · 10−3 1.91 · 10−2

IL4-mediated signaling events 5.47 · 10−4 1.07 · 10−1 5.04 · 10−4 2.07 · 10−2

Signaling by the B Cell Receptor 7.74 · 10−1 8.67 · 10−1 6.68 · 10−3 2.18 · 10−2

Extracellular matrix organization 4.96 · 10−1 2.51 · 10−4 1.27 · 10−3 2.40 · 10−2

Toll-like receptors cascades 1.85 · 10−5 2.78 · 10−4 3.39 · 10−3 2.55 · 10−2

Measles 7.59 · 10−1 1.23 · 10−2 2.84 · 10−3 3.48 · 10−2

Cytokine-cytokine receptor interaction 6.66 · 10−3 7.78 · 10−6 4.08 · 10−4 3.55 · 10−2

Response to elevated platelet cytosolic Ca2+ 6.70 · 10−1 4.50 · 10−6 9.52 · 10−2 3.82 · 10−2

Chemokine signaling pathway 3.08 · 10−1 1.97 · 10−6 1.27 · 10−2 4.12 · 10−2

Complement and coagulation cascades 1.99 · 10−1 2.70 · 10−7 4.78 · 10−2 4.44 · 10−2

GPVI-mediated activation cascade 4.00 · 10−1 2.10 · 10−3 1.69 · 10−3 7.85 · 10−2

amb2 Integrin signaling 2.76 · 10−1 1.90 · 10−6 4.05 · 10−2 8.57 · 10−2

Platelet homeostasis 2.41 · 10−2 6.56 · 10−1 3.28 · 10−3 9.14 · 10−2

Inflammatory bowel disease 4.91 · 10−3 3.10 · 10−2 5.80 · 10−4 9.30 · 10−2
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SUPPLEMENTARY MATERIAL

A semiparametric mixture method for local false discovery rate estimation from mul-
tiple studies (DOI: 10.1214/20-AOAS1341SUPP; .pdf). We provide additional simulation
results, including R codes, that support our claims on the robustness of the proposed method.
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