
The Annals of Applied Statistics
2020, Vol. 14, No. 3, 1207–1241
https://doi.org/10.1214/20-AOAS1327
© Institute of Mathematical Statistics, 2020

SIZE ESTIMATION OF KEY POPULATIONS IN THE HIV EPIDEMIC IN
ESWATINI USING INCOMPLETE AND MISALIGNED

CAPTURE-RECAPTURE DATA

BY ABHIRUP DATTA1,*, ANDREW PITA1,†, AMRITA RAO2,‡, BHEKIE SITHOLE3,
ZANDILE MNISI4 AND STEFAN BARAL2,§

1Department of Biostatistics, Johns Hopkins University, *abhidatta@jhu.edu; †apita3@jhmi.edu
2Department of Epidemiology, Johns Hopkins University, ‡arao24@jhu.edu; §sbaral@jhu.edu

3FHI360 LINKAGES Program, bhekie.sithole@gmail.com
4Research Department, Ministry of Health, zandimnisi@gmail.com

In 2020, our understanding of the distributions of HIV risks in the most
burdened settings, including eSwatini, remains limited. In part, this is driven
by the limited availability of the size and burden of the populations at the
greatest risk for HIV. Given pervasive social and healthcare stigmas, the size
estimations of these populations often rely on the multiplier method—a vari-
ant of the capture-recapture approach where the first survey is replaced by
an enumeration of population members who used some service or attended
an event. To characterize the distributions of marginalized communities in
eSwatini, multiple data sources are available at each region for the multiplier
method. Current practices in such circumstances produce multiple popula-
tion size estimates at each region ignoring the correlation among these esti-
mates. We recast the multiple multiplier method as a special case of capture-
recapture problem with incomplete data and propose a fully model based
approach for size estimation using multiple capture-recapture data with ar-
bitrary pattern of incompleteness. We use a data augmentation scheme that
allows us to model the correlations in the data and produce a unified estimate
of population size per region. A hierarchical model ties together the models
for multiple regions, allowing us to borrow strength across the regions and en-
abling extrapolation to areas without data. In eSwatini we also encounter data
misalignment where counts from some of the data sources are not available
for each region but as an aggregate over few regions. We propose a solution
to the general misalignment problem which considers data-source-specific
patterns of misalignment. We use simulation studies to demonstrate the accu-
rate inferential capabilities of our Bayesian multiplier method. This approach
is then used to produce uncertainty-quantified population size estimates of
key populations in eSwatini. Lastly, we propose a Bayesian nonparametric
extension for incomplete capture-recapture that allows nonindependent data
sources.

1. Introduction. In the broadly generalized HIV epidemics observed across Southern
Africa, there has often been an assumption of the homogeneity of HIV-related risks giving
rise to the term “general population.” In the last several years there has been a move to better
characterize the distributions of HIV risks in generalized epidemics, including the burdens
among key populations (KP) with well defined risks for the acquisition and transmission
of HIV. Accurately characterizing attributable fractions of HIV among key populations at
higher risk for HIV necessitates estimating both the burden of HIV and key population size.
This manuscript focuses on regional size estimation with proper uncertainty quantification of
MSM (men having sex with men) and FSW (female sex workers) populations in eSwatini.
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In settings where key populations for HIV surveillance like MSM and FSW face stigma,
discrimination and often criminalization, data collection endeavors pose challenges, includ-
ing risks of unintended disclosure of identity, imprisonment and violence. Carefully designed
surveys that take into account safety of the participants and communities and the legal frame-
work and that also incentivize recruitment of participants are often conducted (respondent
driven sampling (RDS), Heckathorn (1997)). Sampling methods also often take advantage of
social networks of participants or the fact that certain populations may congregate at com-
mon meeting places (Priorities for Local AIDS Control Efforts (PLACE), Weir et al. (2005)).
Accounting for sampling design is critical to improve size estimation for key-populations
Edwards et al. (2018).

Population size estimation using survey data is one of the longest studied problems in
statistics and demography. A popular tool for size estimation is the capture-recapture (also
referred to as the mark-and-recapture) method where two surveys are conducted in the same
population. In the context of human populations, the second survey, which is conducted after
the first one is completed, usually asks the participants about their participation in the first
one. Estimates of population size can be derived using the total count of participants in each of
the two surveys and the overlap size between the two surveys (Lincoln et al. (1930), Petersen
(1896)).

Conducting multiple surveys are often not feasible in contexts of key populations given
the budgetary constraints and the aforementioned challenges of surveying such hidden pop-
ulations. Hence, the standard capture-recapture is often replaced by a related method called
multiplier method in budget-constrained and stigmatized settings. The multiplier method re-
sourcefully uses only a single survey and other nonsurvey sources to estimate the population
size (Fearon et al. (2017), WHO (2010)). The multiplier method proceeds by obtaining a
count of the number of KP members who were involved in an activity or used a service.
Examples of such activities include attending a special event for the specific community, en-
rolling with a community-based organization (CBO), visiting a clinic for medical services,
etc. The event attendance logs, organization registers, patient records, etc., provide a count
of the KP members who attended the event or used the service. Subsequently, one survey is
conducted and the KP members participating in the survey are asked about their involvement
in this past activity or service. So, the total number of survey participants, the total number
of KP members who used that service or participated in that activity and the overlap between
the survey and this past source are all known. The data now is exactly similar to the standard
capture-recapture format, and we can obtain the estimator of population size.

Often, some regions have multiple listings (sources) each of which provides a total count
of KP members using the respective services. Subsequently, when the survey is conducted,
there is a separate question about the involvement of the participant in each of these activities
or sources. If there are S total data sources for a region, then S −1 separate multiplier method
estimates are customarily generated by using pairs of data sources—one always being the sur-
vey and the other being any one of the S − 1 nonsurvey source. This practice is flawed. First,
it produces multiple estimates of population size for the same region which is not desirable.
Second, the correlation between the multiple estimates for a region, owing to the reliance on
the common survey, is hard to estimate directly and is ignored in subsequent usage of these
direct estimates. This leads to manifold issues. For example, aggregation of these multiplier
method estimates into a unified estimate is often done by taking a simple mean or median
of these estimates, and the correlation among the estimates are ignored while generating the
confidence bounds of the unified estimate (Holland et al. (2016)). Also, subsequent extrap-
olation exercises, using these multiple direct estimates along with demographic covariates
in a regression setup to predict population sizes in areas with no survey data, ignore this
correlation and treat these estimates as independent data points (Datta et al. (2018)).
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Akin to the equivalence between the multiplier method and capture-recapture with two
sources, multiplier data with S − 1 nonsurvey sources can be recast as a capture-recapture
problem with S sources, for which one can obtain an unified estimate of population size
(Darroch (1958)). However, the sufficient statistics for obtaining this estimator are the
marginal counts for each of the S sources and the total count of participants (r) who were
included in at least one of the sources. In a multiplier method setting, we cannot determine
r as we have no participation history of the KP members who were not in the survey but
were in any of the other S − 1 listings, thereby proscribing direct application of the multiple
capture-recapture approach.

A second problem that we encounter in the KP-related data for eSwatini is the spatial mis-
alignment among the different data sources. To elaborate, some of the listings counts for the
multiplier method were not available for the individual regions where size estimations were
completed but were available for a larger geographical region encapsulating more than one of
these smaller units. In general, this situation can arise if two or more areas are geographically
proximal enough so that many of the KP counts are only available as aggregated over all of
them, but, administratively, these units belong to different regions hence requiring separate
size estimations, as resource allocation for HIV prevention programs is often divided along
administrative lines.

In this manuscript we propose a general method for estimating population size based on
incomplete and geographically misaligned multiplier data from numerous sources by recast-
ing the problem in the capture-recapture framework with missing data. We propose a fully
model based solution that:

(a) produces an unified estimate of population size for each region by jointly using all
multiplier sources available for that region, thereby eliminating the quandary of dealing with
multiple size estimates for the same region,

(b) accommodates for arbitrary source-specific geographical misalignment in data collec-
tion to produce size estimates at the desired geographical resolution of administrative units,

(c) can be seamlessly embedded in a hierarchical Bayesian setup that allows proper prop-
agation of uncertainty into the final conclusions, simultaneous size estimation in multiple
regions by borrowing of strength across regions to improve precision and extrapolation of
population size for regions with no survey data.

Our solution involves a data-augmentation approach for the general problem of multiple
capture-recapture with arbitrary patterns of incompleteness. We refer to the special case
where the incompleteness is due to the use of multiple multiplier sources as the Bayesian
multiplier method. We develop a novel Gibbs sampler using multivariate hypergeometric dis-
tributions effectuating fast and easy implementation. We demonstrate how this problem is re-
lated to the problem of sampling from contingency tables (Dobra, Tebaldi and West (2006)).
In particular, our problem is equivalent to sampling 2 × 2 × · · · × 2 contingency tables with
known marginals, and, hence, our approach also offers a Gibbs sampler based solution to that
problem.

We extend our methodology to accommodate spatial misalignment in population size es-
timation problems. We propose a solution for the general problem where the misalignment
pattern is arbitrary and can be specific to the source of the data. We once again leverage the
data-augmentation strategy and formulate the Gibbs sampler using noncentral hypergeomet-
ric distribution. Finally, we extend our methodology to relax the assumption of independence
data sources central to capture-recapture estimates. We accomplish this using a Bayesian
nonparametric latent clustering of the population.

The rest of the manuscript is organized as follows. In Section 2 we present the KP-related
data in eSwatini and discuss the analysis goals. Section 3 is dedicated to methods develop-
ment, beginning with a review of the relevant capture-recapture literature and then describing
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the models. The Gibbs samplers for incompleteness and misalignment are presented in Sec-
tion 4. Section 5 presents the data analysis in detail and presents the population size estimates
of MSM and FSW for eSwatini. Sensitivity analyses using simulated data are conducted in
Section 6. Section 7 presents the extension to nonindependent data sources. Section 8 con-
cludes the manuscript with a discussion of the assumptions used in our analysis and some of
the challenges in this area that will guide future research.

2. Key population size estimation in eSwatini.

2.1. Importance. eSwatini, a landlocked country in southern Africa with a population of
approximately 1.4 million people, has one of the most broadly generalized HIV epidemics in
the world. The most recent estimates suggest that more than one quarter of reproductive aged
adults are living with HIV (The PHIA Project (2017)). Despite significant improvements over
the last decade in testing access and uptake and in the provision of antiretroviral treatment
(ART), an estimated 7000 adults were newly infected with HIV in 2017. While the HIV epi-
demic in eSwatini is broadly generalized, specific key populations have been shown to bear
higher burdens of HIV than other similarly aged reproductive aged adults (The PHIA Project
(2017), Baral et al. (2013, 2014)). Moreover, while data on both FSW and MSM are limited,
studies have also demonstrated limited coverage of HIV prevention, diagnostic and treatment
services (Baral et al. (2013, 2014), Berger et al. (2018), Brown et al. (2016), Fielding-Miller
et al. (2014), Fonner et al. (2014), Grover et al. (2016), Kennedy et al. (2013), Logie et al.
(2018a, 2018b), Risher et al. (2013), Yam et al. (2013)). Both sex work and same-sex prac-
tices are criminalized and, as a result, FSW and MSM commonly report social exclusion,
stigma, discrimination and violence (Kennedy et al. (2013), Logie et al. (2018a, 2018b), Rao
et al. (2017), Risher et al. (2013)). Consequently, there is limited disclosure of status as a
sex worker or MSM in the context of HIV surveillance systems and more broadly health sys-
tems in eSwatini (Sabin et al. (2016)). Taken together, there are limited data highlighting the
HIV prevention and treatment needs of key populations in eSwatini (Kennedy et al. (2013),
Logie et al. (2018a, 2018b), Rao et al. (2017), Risher et al. (2013)). Moreover, size estimates
among both FSW and MSM in eSwatini remain limited, with one size estimation activity be-
ing completed in 2014 among FSW in four locations (Mbabane/Manzini Corridor, Lavumisa,
Piggs Peak, Nhlangano) and one in 2014 among MSM in three locations (Mbabane/Manzini
Corridor, Piggs Peak, Nhlangano) (Rao et al. (2017)). These estimates are in specific urban
areas but say very little about the rest of the country. Better data and methods are needed to
estimate the population size of key populations in order to develop adequate programs that
are responsive to the needs of those they intend to serve (Sabin et al. (2016)).

2.2. Data. eSwatini is divided into four administrative regions—Hhohho, Manzini, Shis-
elweni and Lubombo (Figure 1(a)), and each region is subdivided into several smaller admin-
istrative regions called Tinkhundlas (Figure 1(b)). The goal of the analysis was to estimate,
with proper uncertainty quantification, the number of MSM and FSW in each of these four
regions. Separate surveys were conducted for both of these populations in 2014 using the
PLACE method. A modified version of the PLACE method was used to characterize venues
where MSM and FSW meet new potential sexual partners (Weir et al. (2005)). Details of
study design and recruitment have been described previously in Rao et al. (2017). Briefly,
MSM and FSW were recruited using snowball sampling through outreach at mapped hotspot
venues. Eligibility to participate in the survey for MSM was that the individual had to report
receptive or insertive anal sex with another man in the last 12 months and for FSW was that
the individual had to report more than half of their income in the last 12 months came from
sex work.
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FIG. 1. The left figure shows the four regions (four colors) of eSwatini and the sites of data collection (green
circles). The grey rectangle indicates the Corridor region which encompasses both Mbabane and Manzini. The
right figure shows the Tinkhundlas (smaller administrative divisions) within each region.

The survey participants came primarily from in and around five sites—Piggs Peak, Mba-
bane, Manzini, Nhlangano and Lavumisa. These sites are highlighted in green in Figure 1(a).
Among the sites, Piggs peak and Mbabane belong to the Hhohho region, Manzini is in the
Manzini region, Nhlangano and Lavumisa are in the Shiselweni region. Table 1 provides a
distribution of the surveyed MSM and FSW in these five sites, while Tables 10 and 11 in
the Appendix detail the distribution of exact reported location of the participants which were
then mapped to these five sites.

Overall 532 MSM were surveyed among which only one was from Lavumisa and only
four were from Lubombo. Since these sample sizes were too low and, additionally, there was
no other data in Lubombo, these five cases were excluded from the analysis. In total, 781
FSW were surveyed with only seven from Lubombo. These seven cases were again excluded
because of the low sample size and lack of additional data in that region. For the other sites
the count of survey participants was substantial, and we also had data from additional sources
allowing us to use multiplier method. We describe these sources below:

Unique object identifier (UID): The unique object method is a way to enumerate members
of the population of interest. Unique objects are distributed to members of the community
for a certain period before the survey, serving as tags or marks. Therefore, the total number
of unique objects distributed is known. Subsequently, in the survey participants were asked

TABLE 1
Location distribution of the survey participants

Location Region Count Location Region Count

MSM Piggs Peak Hhohho 57 FSW Piggs Peak Hhohho 127
Mbabane Hhohho 223 Mbabane Hhohho 255
Manzini Manzini 177 Manzini Manzini 257
Nhlangano Shiselweni 70 Nhlangano Shiselweni 47
Lavumisa Shiselweni 1 Lavumisa Shiselweni 88

Lubombo 4 Lubombo 7
Total 532 Total 781
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whether they had received an unique object. This informs about the size of the overlap be-
tween the survey participants and the recipients of a unique object. In this case, the unique
objects were a specially designed deck of cards.

Coupons (CPN): HIV service coupons were handed out to community members in some
of the sites. Coupons serve the same purpose as unique objects in terms of obtaining a count
of the coupon recipients, which along with the responses of the survey participants about
them receiving coupons allows population size estimation using the multiplier method.

Rainbow night (RNB): Rainbow night was a social event for MSM. The total number of
MSM attending the event was available from the event registration logs. The survey later
asked the participants if they were attendees in that rainbow night to obtain the overlap size.

FLAS: The Family Life Association of eSwatini is an NGO that offers a variety of clinical
and counseling services geared toward sexual health and HIV prevention. The FSW survey
participants were asked if they had attended a FLAS mobile health clinic in the month of
September.

2.3. Incompleteness and misalignment. Not all of these data sources were available or
usable for each site. Figure 2 uses Venn diagrams to demonstrate the data we have for MSM
at each site. In Piggs Peak, we have total number of survey participants, the total number of
unique object recipients and the overlap between the two. In Nhlangano, we have the total
numbers for each of the survey participants, unique object recipients and rainbow night at-
tendees. Since the survey participants were asked both about receiving the unique objects and
attending the rainbow night, we also know the overlaps between survey and any of these two
sources. However, the overlap between UID and RNB among those who did not participate
in the survey is unknown. We will discuss later in Section 3.1 why this missing piece neces-
sitates new methods development for population size estimation. For Mbabane and Manzini,
we have three data sources—survey, UID and coupons. The marginal counts for survey and
UID are available at both sites. However, Mbabane and Manzini are geographically close and
are part of an area commonly referred to as the Corridor (Figure 1(a)). Due to this prox-
imity, some data collection efforts take place jointly across the two cities and only provide
the total count for the entire corridor instead of separate counts for the two individual cities.
For MSM, this was the case for coupons, as the individual coupon numbers for Mbabane

FIG. 2. MSM counts and overlaps for the various data sources in each site. Note that the marginal total numbers
of coupons distributed in Manzini and Mbabane (y and x) are not known, but the total number of coupons
distributed is known such that y + x = 106.
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FIG. 3. FSW counts and overlaps for the various data sources in each site. We know that the total number of
FLAS attendees in Manzini and Mbabane is 186 and also that at least 70 of these were located in Mbabane.

and Manzini were not known; we only knew that 106 total coupons were distributed in the
Corridor, thereby leading to misalignment. Finally, like in Nhlangano, for both Mbabane and
Manzini all overlap sizes among the survey participants are known, but the overlap between
UID and CPN outside of the survey participants are not known.

Turning now to FSW (Figure 3), we see that in each of Piggs Peak, Nhlangano and
Lavumisa, we have the number of survey participants, the total number of unique object
recipients and the overlap between the two. For Mbabane and Manzini we again have three
data sources—survey, UID and attendance at the FLAS mobile clinic. In both Mbabane and
Manzini, we know the marginal counts of the survey participants and UID recipients. How-
ever, as with the MSM data and coupon counts, we do not know the marginal number of
FLAS attendees separately in Mbabane and Manzini, only that 186 total FSW were served
between both locations. Out of the 186, it was known that the program HC3 served 70 FSW
in Mbabane, and the program PSI served 116 FSW in Mbabane and Manzini combined. This
led to the additional constraint that, among the 186 FSW reached by FLAS, at least 70 of
them were from Mbabane.

3. Model.

3.1. Review of capture-recapture methodology. We first provide a brief overview of the
statistical principles underlying the related approaches of capture-recapture and multiplier
method for estimating population size. Let N denote the unknown size of the target popula-
tion (which is a subset of the total population). Let n1 denote the total number of individuals
of the KP included in the first survey or nonsurvey source (for multiplier method), n2 denote
the number of individuals marked in the second source (a survey) and n12 denote the size
of the overlap between the two surveys. Then, the Lincoln–Petersen estimator (Lincoln et al.
(1930), Petersen (1896)) for the total population size is given by

(1) N̂ = N̂mult = n1n2

n12
.

The MSM data for Piggs peak and the FSW data for Piggs peak, Nhlangano and Lavumisa all
conform to this standard capture-recapture format. The fundamental assumption driving the



1214 A. DATTA ET AL.

derivation of this estimate is that the proportion of individuals in the target population, who
were tagged in the first survey, are assumed to be same as the proportion of individuals in the
second survey who were also tagged in the first survey. This holds if inclusion of an individual
in the two surveys is assumed to be independent of each other. Under this assumption, a
model based alternative to estimate the population size proceeds by denoting pi , i = 1,2, the
homogeneous inclusion probability of any individual in the ith survey. Then, we can perceive
of n1 − n12, n2 − n12 and n12 as a partial realization from Multinomial distribution, that is,

(2)

⎛⎜⎜⎝
n1 − n12
n2 − n12

n12
N − r

⎞⎟⎟⎠ ∣∣∣∣ N,p1,p2 ∼ Multinomial

⎛⎜⎜⎝N,

⎛⎜⎜⎝
p1(1 − p2)

p2(1 − p1)

p1p2
(1 − p1)(1 − p2)

⎞⎟⎟⎠
⎞⎟⎟⎠ ,

where r = n1 + n2 − n12 denote the total number of individuals marked in at least one of
the surveys. Darroch (1958) demonstrated that the MLE estimate of N from this multino-
mial model coincides with the Lincoln–Petersen estimator presented in (1). However, the
model based approach is substantially more versatile, as it allows easy extension to multiple
surveys (Darroch (1958, 1959)) as well as enable Bayesian formulation via specifying pri-
ors (Castledine (1981), George and Robert (1992)). The Bayesian formulation is particularly
useful in applications, such as ours, involving stratified size estimation where hierarchical
modeling enables borrowing of strength across multiple regions or subgroups for parameter
estimation.

Observe that the likelihood for (2) can be expressed as

�(N,p1,p2 | n1, n2, n12) ∝ N !
(N − r)!p

n1
1 (1 − p1)

N−n1p
n2
2 (1 − p2)

N−n2 .

It is easy to conclude from the likelihood above that (n1, n2, r)
′ is sufficient for estimating

N,p1 and p2. This remains true even when we extend to the case where there are S surveys
(Darroch (1958)). To elucidate, let S = {1,2, . . . , S}, pi , i ∈ S denote the survey-specific
inclusion probabilities, ni denote the number of individuals included in the ith survey and
r denote the total number of individuals marked in at least one survey. Also, for any two
disjoint subsets A and B of S , let nA,B denote the number of individuals marked in the
surveys indexed by the members of A and not included in the surveys indexed by B . More
formally, for the j th individual in the population I(j) denote the S × 1 vector of inclusion
history, that is, I(j)i = 1 if the j th individual is included in the ith survey and is 0 otherwise.
Then, for A,B ⊂ S , A ∩ B = {} we have

(3) nA,B =
N∑

j=1

∏
i∈A

I(j)i
∏
i′∈B

(
1 − I(j)i′

)
.

Once again, assuming that all the S data sources are independent, the corresponding inclusion
probability is given by

(4) uA,B = P
(
I(j)i = 1 ∀i ∈ A,I(j)i′ = 0 ∀i′ ∈ B

) = ∏
i∈A

pi

∏
i∈B

(1 − pi).

The distribution for the counts of the finest partitions, specifying the complete inclusion
history for the S listings, are given by

{nA,Ac}A⊂S ∼ Multinomial
(
N, {uA,Ac}A∈S

)
.

The likelihood for this can be simplified to

(5) �
(
N,p1,p2, . . . , pS | {nA,Ac}) ∝ N !

(N − r)!
S∏

i=1

p
ni

i (1 − pi)
N−ni .
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This clearly demonstrates the sufficiency of (r, n1, n2, . . . , nS)′ and that we do not need the
counts nA,Ac for each of the 2S individual partitions A.

Castledine (1981) explored Bayesian inference for capture-recapture using priors for the
sample size N and inclusion probabilities pi’s. George and Robert (1992) developed a Gibbs
sampler for the model in (5) using conjugate Beta priors for pi and Poisson prior or Jeffrey’s
prior (pr(N) ∝ 1/N ) for N . When N itself is only the size of subpopulation embedded in a
greater population of size P , we can also use a binomial(P,φ) prior for N which also leads
to conjugacy. The binomial prior was used in Bao, Raftery and Reddy (2015), but the method
only considered one capture-recapture or multiplier method estimate along with other data
sources informing about population size. Extensions to more than one multiplier estimates
with incompleteness and misalignment was not considered.

Using Beta(ai, bi) prior for pi and a Jeffrey’s prior for N , the Gibbs sampler steps are
given by

pi | · ∼ Beta(ai + ni, bi + N − ni),

N | · ∼ r + NB

(
r,1 −

S∏
i=1

(1 − pi)

)
,

(6)

where the X | · notation denotes the condition distribution of X, given all the other random
variables, and NB(r,p) denote a negative binomial distribution with pdf

p(k) =
(
r + k − 1

r

)
pr(1 − p)k, k = 0,1, . . . .

In our application, for regions that have only two sources of data, one of which is the survey
which provides the information about the overlap between the survey and the first source, one
can calculate r and, hence, can directly implement this model.

3.2. Multiplier method and incomplete data. Complications arise when r is not observed
or cannot be evaluated from the survey records. This can be due to several reasons, like when
surveys were conducted independent of the knowledge of past surveys. In such cases we only
have the marginal counts ni ’s and cannot recover r . Another possibility is that all but one of
the listings are not surveys but enrollment of participation in some events or services. This
is a common occurrence in estimation of key population using the multiplier method where
the survey participants are asked about their enrollment or participation in all of the S − 1
previous listings. Hence, we obtain the full participation history of every individual in the
survey (assuming complete cases). However, no history is available for the individuals not
surveyed but marked in any of the other S − 1 listings and, consequently, r is not available.

In our application this situation is exemplified for the MSM data in Nhlangano where
we have three sources of information—unique objects that were handed out, participation
in a rainbow night and, finally, the survey where participants were asked whether they had
received an unique object in the past or had attended the rainbow night. As is evident from
Figure 2, this information is insufficient to recover r—the total number of MSM who were
involved in at least one of the three activities. Similar instances are encountered for both MSM
and FSW estimation in Mbabane and Manzini; however, data for those regions, in addition to
being incomplete, are also spatially misaligned, and we will address this in Section 3.3.

Without loss of generality we assume that the survey is the Sth listing. When generating
direct estimates of population size using surveys and S − 1 other sources using the multiplier
method, a common theme is to generating one estimate for a pair of sources: one of which is
the survey, and the second is any of the S − 1 sources. Since the overlap between the survey
and this chosen source is available from the data, one can use the Lincoln–Petersen estimator
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to obtain a direct estimate of the population size. Repeating this for each of the S −1 sources,
one can obtain S − 1 direct estimates for each region. Subsequently, an unified estimate is
obtained by taking an average over the S − 1 estimates. We refer to this estimator as the
average Lincoln–Petersen estimator or average multiplier-method and, using the notation
introduced in (3), it is given by

(7) N̂mult.avg = 1

S − 1

S−1∑
i=1

ni,{}nS,{}
n{i,S},{}

.

While using this estimator is popular, owing to its ease-of-use, it fails to incorporate the
dependence among the estimates stemming from all of them using the survey data as one
of the two sources. To elaborate, in (7) all the S − 1 estimators use the same nS,{}, and the
quantities n{i,S},{} are correlated for different i’s. Circumventing these complex dependencies
among the estimates has repercussions, as we demonstrate in Section 6.2. We here propose
an estimation based on the joint likelihood for such incomplete multiple capture-recapture or
multiplier data. Our approach incorporates these dependencies and produces an unified direct
estimate.

Let S∗ = {1,2, . . . , S − 1}. Using the notation defined in Section 3.1, the observed data D
consists of the marginal counts ni = n{i},{} as well as the counts nA∪{S},B for any A,B ⊂ S∗
and A ∩ B = {}, as we know the complete inclusion history for each survey participant. Let
M denote the set of missing counts {nA,Ac : A ⊂ S∗}. Given D, let � denote the space of pos-
sible choices of M strictly compatible with the marginal counts ni and the counts nA∪{S},Ac .
Formally, the compatibility can be defined as the counts in M satisfying the following equa-
tions:

(8)
∑

{A:i∈A⊂S∗}
nA,Ac = ni − ∑

{A:i∈A⊂S∗}
nA∪{S},S∗\A ∀i ∈ S∗.

Note that in (8), above the left-hand side concerns the missing counts in M, whereas the
constraints defined on the right-hand side are based on the observed counts. Let � = {M :
M satisfies (8)}. The likelihood for the observed data D is then given by

(9) �(N,p1, . . . , pS | D) = N !∏S
i=1 p

ni

i (1 − pi)
N−ni∏

A⊂S∗ nA∪{S},S∗\A!
∑

M∈�

1∏
A⊂S∗ nA,Ac ! .

Clearly, this likelihood is intractable, because of the summation over a complicated parameter
space, which rules out direct optimization to obtain the MLE. A natural solution to this would
be using the joint likelihood for the complete data

(10) �(N,p1, . . . , pS,M | data) = N !∏S
i=1 p

ni

i (1 − pi)
N−ni∏

A⊂S∗ nA∪{S},S∗\A!∏A⊂S∗ nA,Ac !
to impute the missing cell counts M via a MCMC or EM algorithm. In Section 4 we detail
an MCMC solution using Gibbs updates for this model.

3.3. Misalignment. Next, we consider the case of spatially misaligned data, where we
intend to estimate population size for several regions, but some of the marginal counts are not
known for each individual region. Instead, marginal counts for some of the listings are known
for a larger geographical area which includes more than one area. The situation is epitomized
in Mbabane and Manzini (Figures 2 and 3) where we have data from three listings: a survey,
unique identifiers and coupons for MSM or NGO membership for FSW. However, the total
number of coupons distributed or NGO members are not known individually for Mbabane
and Manzini but were known for the Corridor region which encapsulates both of these areas.
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We propose a solution for the misalignment problem in the most general form here, allow-
ing misalignment specific to each data source. Let us consider the problem of size estimation
in regions 1,2, . . . ,K . At each region, like in Section 3.2, there are S data sources (surveys
or listings) for the population of interest. All the variables introduced in Section 3.2 are now
given a region-specific index. For example, N(k) now denotes the total population in region
k, for k = 1, . . . ,K .

In case of no spatial misalignment, the joint likelihood for the complete data from all the
regions would be

�
({

N(k),p
(k)
1 ,p

(k)
2 , . . . , p

(k)
S ,M(k)}

{k=1,...,K} | data})
∝

K∏
k=1

N(k)!∏S
i=1(p

(k)
i )n

(k)
i (1 − p

(k)
i )N

(k)−n
(k)
i∏

A⊂{1,...,S} n
(k)
A,Ac !

.
(11)

This is simply an extension of (10) for K regions. As in Section 3.2, we assume that the survey
is the Sth source due to which all counts of the form n

(k)
A∪{S},Ac , A ∈ S∗ are known for each re-

gion k. Now, to portray the misalignment, for the ith source (i ∈ S∗), let P
(1)
i , P

(2)
i , . . . ,P

(gi)
i

denote a partition of {1,2, . . . ,K} such that, instead of the individual region-specific survey
counts n

(k)
i , we have the total survey counts for each of the larger regions indexed by the

P
(j)
i ’s, which we denote by m

(j)
i = ∑

k∈P
(j)
i

n
(k)
i . Hence, in addition to the counts M(k), we

also have the set of marginal counts H = {n(k)
i : i ∈ S∗, k ∈ 1,2, . . . ,K} as missing. Let �

denote the parameter space for H such that the missing marginal counts n
(k)
i are compatible

with the observed aggregate counts m
(j)
i . H ∈ � implies that the counts n

(k)
i satisfy

n
(k)
i ≥ ∑

{A:i∈A⊂S∗}
n

(k)
A∪{S},S∗\A,

∑
k∈P

(j)
i

n
(k)
i = m

(j)
i .

(12)

Like in (8), the missing counts in the left-hand side of (12) need to satisfy the constraints
specified by the observed counts on the right-hand side. If �(k) = {M(k) satisfies (8)}, then
the likelihood for the misaligned observed data is given by

�
({

N(k),p
(k)
1 ,p

(k)
2 , . . . , p

(k)
S

}
{k=1,...,K} | data})

∝ ∑
H∈�

K∑
k=1

∑
M(k)∈�(k)

K∏
k=1

N(k)!∏S
i=1(p

(k)
i )n

(k)
i (1 − p

(k)
i )N

(k)−n
(k)
i∏

A⊂S n
(k)
A,Ac !

.
(13)

This is again computationally intractable, and we will use the tractable complete multino-
mial likelihood in (11) and augment the data by imputing the missing n

(k)
i ’s and M(k)’s to

implement the Gibbs sampler.

4. Computation. In this section we provide the Gibbs steps to sample all the parameters
in the completed likelihoods (10) and (11), respectively.

4.1. Incompleteness. Conditional on everything else, sampling for N and pi’s in (10) can
be easily achieved using the Gibbs sampler in (6). Hence, our problem reduces to imputing
the missing cell counts given N and p1, . . . , pS .

The likelihood in (10) is the same as that for a 2×2×· · ·×2 contingency table (S-way con-
tingency table with binary factors) with known marginals (ni). The counts {nA,Ac | A ⊂ S}
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correspond to the finest partitions which we also refer to as the atomic cells. There is sub-
stantial literature on sampling contingency tables with fully or partially known marginals and
other constraints. A fundamental solution to this was proposed by Diaconis and Sturmfels
(1998) where Metropolis-random walk on the space of contingency tables compatible with
the data was constructed using Markov bases—set of moves which can explore the space of
all compatible tables. The problem of finding the Markov bases for a given contingency ta-
ble is generally difficult and computationally prohibitive; Dobra (2012) has considered local
bases for Monte Carlo sampling of contingency tables. Dobra, Tebaldi and West (2006) pro-
vides a nice overview of hierarchical Bayesian sampling of contingency tables using Markov
bases and other techniques like compositional sampling. Other solutions to this problem in-
clude the sequential Monte Carlo solution (Chen et al. (2005)) and a Gibbs sampling (Smith,
Forster and McDonald (1996)), both of which were concerned only with two-way tables.
The latter solution, that is, Gibbs sampling, is particularly attractive as, unlike the other ap-
proaches based on acceptance-rejection, it relieves the user of the task of carefully choosing
Markov bases or proposal distributions.

Here, we construct a Gibbs sampler for drawing samples from the posterior distribution
of 2 × 2 × · · · × 2 contingency tables based on (10). We first illustrate the approach with
S = 3 using Venn diagrams in Figure 4. Let AB denote cardinality of the set A ∩ Bc, ABC

denote that of Ac ∩ B ∩ Cc and so on. For S = 3, we know the marginal counts A = n1,
AB + AB = n2, ABC + ABC + ABC + ABC = n3. If the set of atomic (finest) partitions
were known, the joint posterior from could be simplified as

p(N,p1,p2,p3 | data)

= N !∏3
i=1 p

ni

i (1 − pi)
N−ni

ABC!ABC!ABC!ABC!ABC!ABC!ABC!ABC!p(N)p(p1,p2,p3).

Instead of directly sampling the counts for the atomic (finest) partitions, we adopt a strategy
illustrated in Figure 4 using Venn diagrams. We introduce, from left to right, the three sets
(blue, red and green circles, resp.) one by one. Each set (circle) corresponds to inclusion in
one of the surveys. At each step, we consider the counts of all the partitions within the circle
that was newly added to the Venn diagram at that step. So step 0 gives N (when there is no
partition), step 1 (left) gives A, step 2 (middle) gives AB and AB and step 3 (right) gives
ABC, ABC, ABC and ABC. It is now easy to see that, based on these set of counts, one
can recover all the atomic partition counts and vice versa. So sampling these set of sequential
counts is equivalent to sampling the atomic counts and, hence, the contingency table.

Let MVHGS(n, (N1,N2, . . . ,NS)′) denote the S-dimensional multivariate hypergeometric
distribution with pmf

p
(
(x1, x2, . . . , xS)′

) =
S∏

i=1

(
Ni

xi

)/⎛⎜⎜⎝
S∑

i=1

Ni

n

⎞⎟⎟⎠ .

FIG. 4. Venn diagram illustrating the Gibbs sampler for incomplete multiple capture-recapture data.
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From Figure 4 (right), we observe that the partitions within the green circles ABC, ABC,
ABC and ABC, can be thought of as the color distributions of n3 balls picked up from an urn
which contains balls of four colors with counts AB , AB , AB and AB , respectively. Hence,
we have

(ABC,ABC,ABC,ABC)′ | · ∼ MVHG4
(
n3, (AB,AB,AB,AB)′

)
.

On the other hand, conditional on everything else, the step 2 (middle figure) partition counts
AB , AB , AB , AB have well-defined upper and lower bounds. For example, AB is bounded
below by ABC and above by A − ABC. Similarly, AB is bounded below by ABC and
above by A − ABC. Hence, the only random components are the residuals AB − ABC and
AB − ABC which needs to be picked from A − ABC − ABC and A − ABC − ABC,
respectively. The problem is equivalent to choosing n2 − (ABC + ABC) balls from an urn
containing A−ABC −ABC balls of one color and A−ABC −ABC balls of another color.
Since the quantities n2, A, A = N −A, ABC, ABC, ABC and ABC are known for this step
of the Gibbs sampler, we have(

AB

AB

) ∣∣∣ · ∼
(
ABC

ABC

)
+ MVHG2

(
n2 − (ABC + ABC),

(
A − ABC − ABC

A − ABC − ABC

))
.

This shows how we can leverage the multivariate hypergeometric distribution to specify the
Gibbs sampling steps. We now formalize the algorithm for general S.

Using the notation introduced in Section 3.1, instead of directly sampling the finest par-
tition counts, we intend to sample the counts n{12},{}, n{2},{1}, n{123},{}, n{23},{1}, n{13},{2},
n{3},{12} and so on. We introduce some additional notation. Let Ui = {nA,B | A ∪ B =
{1,2, . . . , i},A ∩ B = {}} and Vi = {nA∪{i},B | A ∪ B = {1,2, . . . , i − 1},A ∩ B = {}}. Given
N and ni’s, we will sample the cell counts in the sets V2, V3, . . . , VS . We will also view the
count sets Ui ’s and Vi’s as vectors of lexicographically ordered counts. Note that there is a
bijection between Ui−1 and Vi , as each member nA∪{i},B of Vi is a subset of its image nA,B

in Ui−1. Consequently, Vi ≤ Ui−1. Also, Ui = (V ′
i ,U

′
i−1 − V ′

i )
′ for any i. Combining these

results, we have Ui ! = Vi !(Ui−1 −Vi)! and Ui−1! = (Vi + (Ui−1 −Vi))! where for any vector
x = (x1, . . . , xk)

′ let x! = ∏
i xi !. The likelihood (10) can be expressed as

N !∏S
i=1 p

ni

i (1 − pi)
N−ni

VS !(US−1 − VS)! =
S∏

i=1

p
ni

i (1 − pi)
N−ni

(
Ui−1
Vi

)
where U0 = N.

Given N , the Vi ’s are a one-to-one function of the set of finest partition counts {nA,Ac}. Also,
Vi ⊂ Ui , and Ui can be recovered deterministically given N , V1, V2, . . . , Vi . Hence, US−1 is
determined by N , V1, . . . , VS−1 and we immediately then have the following update:

(14) VS | · ∼ MVHG2S−1(nS,US−1).

Next, we sample from the full conditional of Vi , given N,V1, . . . , Vi−1,Vi+1, . . . , VS . Note
that, as VS is known, all counts of the form nA,Ac where S ∈ A are known. Similarly,
when VS−1 and VS are known, counts of the form nA,Ac where S − 1 ∈ A are also known.
To elucidate this with an example, let A = S∗. Then, nA,Ac = nA,{} − nA∪{S},{}. Since
nA,{} ∈ VS−1 and nA∪{S},{} ∈ VS , nA,Ac is known. Proceeding like this, it can be proved that,
when VS, . . . , Vi+1 is known, all the atomic counts of the form nA,Ac are known when A

contains at least one of i + 1, . . . , S. Hence, the only unknown atomic counts are the sets
Wi = {nA∪{i},B∪{i+1,...,S} | A ∪ B = {1, . . . , i − 1},A ∩ B = {}} and Wi = {nA,B∪{i,i+1,...,S} |
A ∪ B = {1, . . . , i − 1},A ∩ B = {}}. For j > i, let Vij = {nA∪{i,j},B∪{i+1,...,i+j−1} | A ∪ B =
{1,2, . . . , i−1},A∩B = {}}, V ij = {nA∪{j},B∪{i,i+1,...,i+j−1} | A∪B = {1,2, . . . , i−1},A∩
B = {}}. Note that Vij ∩ Vij ′ = {} and V ij ∩ V ij ′ = {}. Also, both Vij and V ij are subsets of
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Vj and are known for this step, and we have Vi = Wi +∑S
j=i+1 Vij . Hence, the knowledge of

Vi+1, . . . , VS helps determine the lower bound
∑S

j=i+1 Vij for Vi . On the other hand, knowl-
edge of N , V1, . . . , Vi−1 determines Ui−1, an upper bound for Vi . A sharper upper bound is
given by Ui−1 − ∑S

j=i+1 V ij which is also known. Combining all this, we have

p(Vi | ·) ∝ 1

Wi !Wi ! , for
S∑

j=i+1

Vij ≤ Vi ≤ Ui−1 −
S∑

j=i+1

V ij .

Since Wi + Wi = Ui−1 − ∑S
j=i+1(Vij + V ij ), we immediately have the Gibbs update

(15) Vi | · ∼
S∑

j=i+1

Vij + MVHG2i−1

(
ni −

S∑
j=i+1

1′Vij ,Ui−1 −
S∑

j=i+1

(Vij + V ij )

)
.

Repeating (15) for 2 ≤ i ≤ S − 1 completes the specification of the Gibbs sampler for a
2 × 2 × · · · × 2 (2S ) contingency table with known marginals (ni) and the grand total (N ).
In our application of size estimation using multiple multiplier method, VS is known, as the
complete inclusion histories of individuals participating in the survey (Sth listing) are known.
Hence, the VS -update in equation (14) is skipped, and our Bayesian multiplier method only
performs the updates in (15) and, additionally, updates N and pi’s using (6).

4.2. Misalignment. We define few additional notations. Let a
(k)
i = n

(k)
{i},{1,...,S}\{i} and

b
(k)
i = n

(k)
{},{1,...,S}. Note that n

(k)
i = a

(k)
i + q

(k)
i and a

(k)
i + b

(k)
i = N(k) − t

(k)
i , where

q
(k)
i = ∑

A⊂{1,...,S}\{i},A={}
nA∪{i},Ac\{i} and

t
(k)
i = ∑

A⊂{1,...,S}\{i},A={}
nA,Ac\{i}.

We first sample the n
(k)
1 ’s in the Gibbs sampler. Given all the N(k)’s and the V

(k)
i ’s (region-

specific analogs of the Vi ’s defined in Section 3.1) for i ≥ 2, the q
(k)
1 ’s and t

(k)
1 ’s are known.

The only unknown counts in the denominator of (11) are the a
(k)
1 and b

(k)
1 ’s, implying

(16) p
({

n
(k)
1

} | ·) ∝
K∏

k=1

1

a
(k)
1 !(N(k) − t

(k)
1 − a

(k)
1 )!

(
p

(k)
1

1 − p
(k)
1

)a
(k)
1

.

Since {P (J )
i }1≤j≤gi

is a partition of {1,2, . . . ,K}, for any set or vector R of K numbers,

indexed by the K regions, let P
(j)
i (R) denote the subvector of R corresponding to the indices

in P
(j)
i . For example, if R = {r1, . . . , rK}, and P

(j)
i = {1,3,5}, then P

(j)
i (R) = {r1, r3, r5}.

We denote by FNCMVHGk(n, (N1, . . . ,Nk)
′, (o1, . . . , ok))

′ the k-dimensional Fisher’s non-
central multivariate Hyper-geometric distribution with pmf

p
(
(x1, . . . , xk)

′) ∝
K∏

k=1

(
Nk

xk

)
o

xk

k

/⎛⎜⎜⎝
K∑

k=1

Nk

n

⎞⎟⎟⎠ .

Noncentral hypergeometric distributions arise when drawing n = ∑
xk balls from a biased

urn containing balls of K colors with odds ok of picking a ball of the kth color. The R-package
BiasedUrn (Fog (2015)) allows drawing random samples from FNCMVHG distributions.

Sampling from the full conditional for n
(k)
i ’s are equivalent to sampling from that of

the a
(k)
i ’s, and we know that sum of the a

(k)
i ’s for all i in a given partition P

(j)
i is



INCOMPLETE AND MISALIGNED CAPTURE-RECAPTURE DATA 1221

m
(j)
i − ∑

k∈P
(j)
i

q
(k)
i which is known. It is now clear from (16) that the full conditional for

P
(j)
i (a

(k)
i ) follows a noncentral multivariate hypergeometric distribution, and we have the

following update for n
(k)
1 within each partition:

P
(j)
1

({
n

(k)
1

}) | ·
∼ P

(j)
1

({
q

(k)
1

})
(17)

+ FNCMVHG|P (j)
1 |

(
m

(j)
1 − ∑

k∈P
(j)
1

q
(k)
1 ,P

(j)
1

({
N(k) − t

(k)
1

})
,P

(j)
1

({
p

(k)
1

1 − p
(k)
1

}))
.

Once, all the n
(k)
1 ’s are updated, we update the q

(k)
2 ’s and t

(k)
2 and sample the n

(k)
2 ’s using

the analog of (17) where all the subscripts are 2 instead of 1, and proceed like this to update
all the n

(k)
i ’s.

5. Size estimation in eSwatini.

5.1. MSM. Throughout the analysis we use the following conventions. The names of
cities and areas are abbreviated to two letters. PP,Nh,Me,Mn,Lv and Co refers to Piggs
Peak, Nhlangano, Mbabane, Manzini, Lavumisa and the Corridor, respectively. For any site
or area s ∈ L = {PP,Me,Mn,Nh}, let D(s) denote the set of data sources available for that
site, that is, for MSM, D(PP) = {UID,SRV}, D(Nh) = {UID,SRV,RNB}, etc. Also, let N(s)

denote the total MSM population in that area in the age group of 18–32 years. This age group
accounts for 90% of the MSM survey participants. We follow the notation introduced in
Sections 3.2 and 3.3. For example, n

(s)
{UID} denotes the total number of MSM in site s who

received an unique object, n
(s)
{UID,SRV},{CPN} denotes the total number of MSM in site s who

received an unique object, participated in the survey but did not receive a coupon, and so on.
Similarly, p

(s)
UID denotes the inclusion probability of receiving an unique object in site s, etc.

We use the data augmentation strategies developed in Sections 3.2 and 3.3 to augment and
sample the missing finest partition counts for each site. The data-augmented likelihood is
given by

(18)
∏
s∈L

N(s)!∏
A⊂D(s) n

(s)
A,Ac !

∏
x∈D(s)

(
p(s)

x

)N(s)
x

(
1 − p(s)

x

)N(s)−N
(s)
x .

We use independent conjugate Beta(a, b) priors for all the inclusion probabilities p
(s)
x with

a = b = 1 (i.e., uniform distribution). Analysis assessing sensitivity to the choice of these
hyperparameter values is conducted in Section S4.3 of the Supplement Material (Datta et al.
(2020)) and confirms robust results. For the site-specific total MSM counts N(s), which are
our main quantities of interest, we considered two prior choices—a Jeffrey’s prior p(N(s)) ∝
1/N(s) as well as a Binomial prior N(s) | φ(s) ∼ Binomial(P (s), φ(s)) where P (s) is the total
male population in the age group of 18–32 years at site s. The Appendix provides the details
on how the total male population numbers P (s) were derived. Both prior choices lead to
conjugacy for N(s) in the Gibbs sampler; however, the Binomial prior offers the possibility of
borrowing strength across sites in modeling the φ(s)’s which represent the proportion of total
male population who are MSM at site s and are critical quantities of interest. For example,
if we had data for many sites, we could model φ(s) using demographic covariates. Since our
application only involves four to five sites, we use a simpler exchangeable model for φ(s),
under the assumption that the proportion of total male population who are MSM are roughly
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similar across the sites. We model φ(s) | aφ, bφ
ind∼ Beta(aφ, bφ) where (aφ, bφ) is given the

vague prior p(aφ, bφ) ∝ 1/(aφ + bφ)2I (aφ > 1, bφ > 1) (Bao, Raftery and Reddy (2015)).
The exchangeable model is also critical for predicting MSM population size in Lubombo
(Lu) where there is no data. The expected proportion in Lubombo will be given by E(φ(Lu) |
data) = E(aφ/(aφ + bφ) | data) which is easily obtained using the postconvergence MCMC
samples. Hence, we only present the results for the Binomial hierarchical prior for N(s)’s
in the main manuscript. The analogous numbers using the Jeffrey’s prior are presented in
Section S4.2 of the Supplementary Material (Datta et al. (2020)) which, in general, are in
close agreement with the results in this Section. Letting

(19) p
(s)
A,Ac = ∏

x∈A

p(s)
x

∏
x∈D(s)\A

(
1 − p(s)

x

)
,

the full hierarchical model for the Binomial prior is given by∏
s∈L

(
Binomial

(
N(s) | P (s), φ(s))

× Multinomial
({

n
(s)
A,Ac

}
A⊂D(s) | N(s),

{
p

(s)
A,Ac

}
A⊂D(s)

)
× ∏

x∈D(s)

Beta
(
p(s)

x | a, b
) × Beta

(
φ(s) | aφ, bφ

)) × p(aφ, bφ).

(20)

In the Gibbs sampler, full conditionals for all inclusion probabilities p
(s)
x as well as the

MSM proportions φ(s) follow conjugate Beta distributions, while the MSM population sizes
N(s) were sampled as

N(s) | · ∼ r(s) + Bin
(
P (s) − r(s), x(s)/

(
1 − φ(s) + x(s))), where x(s) = φ(s)

∏
x∈D(s)

(
1 − p(s)

x

)
and r(s), as defined earlier, is the total number of MSM included in at least one of the data
sources in region s. Note that the full conditional distribution for N(s) is Binomial here,
instead of being negative-Binomial in (6), because of the switch from a Jeffrey’s prior to a
Binomial prior for N(s) in order to exploit the fact that N(s) is the size of a subpopulation
(MSM or FSW) within a larger general population (all adult males or females) of size P (s).
The hyperparameters aφ and bφ were updated using a Metropolis random walk step within the
Gibbs sampler. Turning to the data augmentation part, Piggs Peak is the simplest case where
there are only two sources, UID and SRV, and the overlap between them is known. Hence, all
the finest partitions are known (Figure 2), and no data augmentation is needed. However, for
the other three sites (Nhlangano, Mbabane and Manzini) we sample the finest partition counts
for those who did not participate in the survey. These are sampled in the Gibbs sampler using
the multivariate hypergeometric distribution (equation (15)). Additionally, since the data is
misaligned and we only know the total number of coupons distributed for the Corridor (which
includes both Mbabane and Manzini) and not for these individual sites, we need to sample
n

(Mb)
CPN and n

(Mn)
CPN from the noncentral hypergeometric distribution using equation (17). We

used multiple parallel MCMC chains each of length 10,000 to ascertain convergence using
the Gelman–Rubin diagnostic. We removed the first 5000 iterations as burn-in and used the
latter 5000 iterations as draws from the posterior distribution for each parameter. Table 2
presents the posterior summaries of each parameter.

We first reemphasize that the size estimates N(s) in Table 2 are only the estimates of
MSM population of age 18–32 years who are represented in the survey at that site. These
denominators (total male population of the same age group) represented at each of these
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TABLE 2
Posterior estimates of parameters in (20) for MSM population size estimation

Region Parameter Mean 95% CI

MSM (18–32 years) size Piggs Peak N(PP) 102 83–130
estimates for each site Nhlangano N(Nh) 169 151–192

Mbabane N(Me) 463 423–513
Manzini N(Mn) 447 399–504

MSM percentages Piggs Peak φ(PP) 3.5% 2.7%–4.6%
Nhlangano φ(Nh) 4.1% 3.4%–4.9%
Mbabane φ(Me) 4.5% 3.9%–5.1%
Manzini φ(Mn) 2.8% 2.4%–3.2%
Lubombo aφ/(aφ + bφ) 3.8% 2.8%–5.3%

Inclusion probabilities Piggs Peak p
(PP)
SRV 57% 42%–72%

Piggs Peak p
(PP)
UID 30% 20%–42%

Nhlangano p
(Nh)
SRV 42% 33%–51%

Nhlangano p
(Nh)
UID 63% 53%–73%

Nhlangano p
(Nh)
RNB 7.6% 4%–12%

Mbabane p
(Me)
SRV 48% 42%–55%

Mbabane p
(Me)
UID 47% 41%–54%

Mbabane p
(Me)
CPN 12% 8.2%–16%

Manzini p
(Mn)
SRV 40% 33%–46%

Manzini p
(Mn)
UID 44% 37%–50%

Manzini p
(Mn)
CPN 12% 8.1%–16%

sites are derived in the Appendix and are summarized in Table 12. The region-specific size
estimates for MSM in the broader age group of 15–49 years are provided later in Table 3.
We also see from Table 2 that the MSM percentages varies from around 2.8% in Manzini to
4.5% in Mbabane. The different site and data source specific inclusion probabilities varied
from around 7.6% to 63%. By virtue of using the exchangeable model, we could extrapolate
these results to obtain the expected MSM percentage in Lubombo which was 3.8%.

5.2. Extrapolation to regional estimates. We use the MCMC samples from the poste-
rior distribution of the parameters in (20) to extrapolate to MSM population size estimates
for the age group of 15–49 years for each of the four regions of eSwatini for the year of
2014 (when the survey was conducted). Size estimation for this broader age group assumes
that the MSM percentage in the age group of 18–32 is same as the MSM percentage in the
larger age group of 15–49 years. Since we do not have much data outside the age group of

TABLE 3
Region specific size estimates of MSM in the age group of 15–49 years for 2014

Region Male 15–49 population MSM size estimate MSM Proportion

Hhohho 85,918 3508 (2913–4208) 4.1% (3.4–4.9%)
Manzini 95,721 2650 (2154–3194) 2.8% (2.3–3.3%)
Shiselweni 45,216 1868 (1440–2348) 4.1% (3.2–5.2%)
Lubombo 52,519 2016 (1408–2833) 3.8% (2.7–5.4%)
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18–32 years, who constituted more than 90% of the survey participants, this assumption is
indispensable.

We will obtain the posterior distribution of size estimate in each Tinkhundla which we
then aggregate to get the regional size estimates. From Table 10, the following Tinkhundlas
were well represented in the data: Manzini North, Manzini South and Kwaluseni for Manzini
site, Piggs Peak for the Piggs Peak site, Mbangweni for the Nhlangano site and Motjane,
Mbabane East, Mbabane West and Lobamba for the Mbabane site. For these Tinkhundlas
the posterior distribution of the size estimate N(t) is given by {P (t)φ(t)(x)|x = 1, . . . ,5000}
where φ(t)(x) denotes the site specific MSM percentage for the xth post burn-in MCMC
iteration.

To extrapolate to Tinkhundlas that were not well represented in the data, posterior pre-
dictive size estimate samples N(t)(x) were generated as Binomial(P (t), φ(t)(x)) for x in
1, . . . ,5000 and a suitably chosen φ(t) (which we discuss below). The Binomial model for
the extrapolation adds uncertainty to the posterior distribution of the size estimates to reflect
the fact that there was no data for these Tinkhundlas.

In Manzini region for MSM, there is only one data collection site producing the estimate
φ(MM). Hence, for all Tinkhundlas in Manzini we use φ(t) = φ(Mn) for generating Binomial
samples. Similarly, for Tinkhundlas in Shiselweni we use φ(t) = φ(Nh). For Tinkhundlas in
Lubombo, we use the φ(t) as the expected MSM percentage aφ/(aφ + bφ).

The extrapolation for Tinkhundlas in Hhohho is a little more complicated, as there are
two estimates of MSM percentages: φ(Me) for the Mbabane region Tinkhundlas Motjane,
Mbabane East, Mbabane West and Lobamba, and φ(PP) for the Piggs Peak Tinkhundla.
For Tinkhundlas other than these five, we first interpolate the MSM percentage based on
their proximity to Mbabane or Piggs Peak. We do this using a spatial autoregression. Let
H = {H(1),H(2), . . .} denote an ordering of the Tinkhundlas in Hhohho such that H(a)

for a ∈ {1, . . . ,5} corresponds to the five Tinkhundlas in Hhohho with data. Subsequently,
we use a directed acyclic graph autoregressive model (Datta et al. (2019), DAGAR)—a spa-
tial autoregression that allows directly modeling conditional means of areal units given the
means for some of the units. Let for two Tinkhundlas t and t ′ in Hhohho, t ∼ t ′ mean that
they share a geographical border. Then, DAGAR specifies the φ(t)’s for the Tinkhundlas in
Hhohho without data recursively as

φ(H(a)) =
∑a−1

x=1 φ(H(x))I (H(x) ∼ H(a))∑a−1
x=1 I (H(x) ∼ H(a))

, a > 5.

The above expression implies that φ(t) for a Tinkhundla is simply the average of the neigh-
boring Tinkhundlas listed before it in H . This, in turn, ensures that φ(t) is a weighted average
of φ(Me) and φ(PP) with the weights being based on the graphical distance between the Tin-
khundla t and the five Tinkhundlas of Hhohho with data.

The regional estimates are given in Table 3. The mean estimate for the MSM percent-
age varied from 2.8% in Manzini to 4.1.% in Hhohho. The credible interval for the MSM
percentage was widest for Lubombo which had no direct data.

5.3. FSW. The analysis for FSW broadly follows similar trajectory. The model is same as
in (18) with L = {PP,Me,Mn,Nh,Lv}. There is no data augmentation involved in either of
Piggs Peak, Nhlangano or Lavumisa as each of them only has two data sources with known
overlap. For Mbabane and Manzini, as shown in Figure 3, we know the marginal total for
the survey and uid as well as the overlap between those two listings. We do not know the
marginal totals for those who visited a FLAS clinic in Mbabane and Manzini but know the
total number of FLAS members in the Corridor to be 186. This is similar to the misalignment
in the MSM data but has the additional constraint imposed by the knowledge that at least 70 of
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TABLE 4
Posterior estimates of parameters for FSW population size estimation

Region Parameter Mean 95% CI

FSW (18–35 years) size Piggs Peak N(PP) 348 306–400
estimates for each site Nhlangano N(Nh) 119 88–174

Mbabane N(Me) 747 663–841
Lavumisa N(Lv) 141 131–156
Manzini N(Mn) 427 397–462

FSW percentages Piggs Peak φ(PP) 12% 10–14%
Nhlangano φ(Nh) 2.4% 1.7–3.6%
Mbabane φ(Me) 4.5% 3.9–5.1%
Lavumisa φ(Lv) 10% 8.4–12%
Manzini φ(Mn) 2.1% 1.9–2.4%
Lubombo aφ/(aφ + bφ) 7.7% 3.9–16%

Inclusion probabilities Piggs Peak p
(PP)
SRV 37% 30–44%

Piggs Peak p
(PP)
UID 51% 43–60%

Nhlangano p
(Nh)
SRV 41% 26–58%

Nhlangano p
(Nh)
UID 30% 18–43%

Mbabane p
(Me)
SRV 34% 29–40%

Mbabane p
(Me)
UID 35% 30–41%

Mbabane p
(Me)
FLAS 9.7% 7.4–12%

Lavumisa p
(Lv)
SRV 62% 52–71%

Lavumisa p
(Lv)
UID 68% 58–77%

Manzini p
(Mn)
SRV 60% 54–66%

Manzini p
(Mn)
UID 36% 31–41%

Manzini p
(Mn)
FLAS 27% 22–32%

this 186 FSW visited the FLAS clinic in Mbabane. Thus, the sampler in Section 3.3 is slightly
modified to accommodate this constraint by using a truncated noncentral hypergeometric
distribution in equation (17) with cut-off of 70.

Table 4 presents the posterior summaries of each parameter. Again, note that the size esti-
mates N(s) in Table 4 are estimates of the size of the FSW population (18–35) at that location
which represent 90% of the survey participants. We see that for FSW the absolute numbers
are higher in Mbabane and Manzini, but the percentages are higher for Piggs Peak and Lavu-
misa. Region-specific size estimates for FSW in the age group of 15–49 years are given in
Table 5.

TABLE 5
Region specific size estimates of FSW in the age group of 15–49 years

Region Female 15–49 population FSW size estimate FSW Proportion

Hhohho 84,784 6085 (5170–7106) 7.2% (6.1–8.4%)
Manzini 10,0361 2113 (1741–2514) 2.1% (1.7–2.5%)
Shiselweni 50,488 3272 (2613–4041) 6.5% (5.2–8%)
Lubombo 52,762 4059 (1998–8454) 7.7% (3.8–16%)
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TABLE 6
Posterior predictive p-values for assessing the independence assumption in the data analysis

Piggs Peak Nhlangano Lavumisa Mbabane Manzini

MSM 0.54 0.53 NA 0.48 0.48
FSW 0.5 0.5 0.51 0.45 0.22

The extrapolation strategy mimicked that for MSM for Hhohho, Manzini and Lubombo.
For Shiselweni, however, it was different, as (unlike for MSM) we had now two sites with
data leading to two FSW percentages—φ(Nh) for Nhalangano and φ(Lv) for Lavumisa. So,
akin to our strategy for Hhohho, we used a spatial autoregression using the DAGAR model
to interpolate the φ(t)’s for the remaining Tinkhundlas of Shiselweni and generated the size

estimates using N(t) | φ(Nh), φ(Lv) iid∼ Binomial(P (t), φ(t)).
The regional FSW estimates are provided in Table 5. We see that the regional FSW

percentage varies is once again lowest in Manzini (2.1%), whereas it is around 7.5%
in Hhohho and Lubombo. Once again, the estimate for Lubombo had the highest uncer-
tainty.

We assess the independence assumption for both the MSM and FSW data analysis. Since
we use a hierarchical model and MCMC-based Bayesian computation, we use the model ad-
equacy checks based on posterior predictive samples, as described in Chaper 6.3 of Gelman
et al. (2013). Similar tests were performed for the capture-recapture data in Bao, Raftery and
Reddy (2015). As in Section 3.2, we view the problem as an incomplete contingency table.
In each MCMC iteration we first compute a χ2 goodness of fit statistic using the table of ob-
served counts (actual observed counts and imputed counts for that iteration) and the expected
counts (total population size × cell probabilities for that iteration under the independence as-
sumption). We then see if this statistic is less than the χ2 statistic from a randomly generated
(posterior predictive) contingency table using the same cell probabilities. The average of this
binary variable over all the posterior samples gives us the tail-probability (p-value for testing
the independence assumption). The p-values are provided in Table 6. We see that, for both
MSM and FSW, p-values for all regions are sufficiently large and does not offer any evidence
against the independence assumption.

6. Additional analyses. We conducted simulation studies and additional analyses of the
eSwatini data to assess the performance of the models and robustness of the estimates to var-
ious choices. We only present one representative set of results here, with the rest (sensitivity
to prior and hyper-parameter choices) provided in Section S4 of the Supplementary Material
(Datta et al. (2020)).

6.1. Simulation studies. We first conducted a set of simulation studies to assess the per-
formance of our data augmented Bayesian model for generating direct estimates of popula-
tion size in multiple regions using incomplete and misaligned data. The simulation framework
closely resembled the data available to us. For MSM, we used four sites representing Piggs
Peak, Mbabane, Manzini and Nhlangano and simulated MSM population sizes at each of

these sites as N(s) ind∼ Binomial(P (s), φ(s)). We used the true total populations P (s)’s from
Table 12 and the posterior means of φ(s) from Table 2 to generate the data. This implies
that the data generating mechanism is not similar to the model fitted which assumes an ex-
changeable model for the φ(s) and, hence, gives us an opportunity to validate sensitivity to
the exchangeability assumption. Subsequent to generating the N(s), we generate the complete
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TABLE 7
Simulation results for MSM size estimation. True values and coverage probabilities were averaged over 100

simulations. The estimates are the posterior mean. CP denotes coverage probability

Region Parameter Truth Estimate CP

MSM (18–32 years) size Piggs Peak N(PP) 102 102 96%
estimates for each site Nhlangano N(Nh) 166 162 92%

Mbabane N(Me) 456 447 93%
Manzini N(Mn) 449 463 92%

MSM proportions Piggs Peak φ(PP) 3.5% 3.5% 96%
Nhlangano φ(Nh) 4.1% 4.0% 92%
Mbabane φ(Me) 4.5% 4.3% 90%
Manzini φ(Mn) 2.8% 2.9% 98%

Inclusion probabilities Piggs Peak p
(PP)
UID 30% 30% 95%

Piggs Peak p
(PP)
SRV 57% 57% 98%

Nhlangano p
(Nh)
UID 63% 65% 94%

Nhlangano p
(Nh)
RNB 8% 8% 93%

Nhlangano p
(Nh)
SRV 42% 42% 99%

Mbabane p
(Me)
SRV 48% 49% 99%

Mbabane p
(Me)
UID 47% 48% 98%

Mbabane p
(Me)
CPN 12% 12% 92%

Manzini p
(Mn)
SRV 40% 39% 91%

Manzini p
(Mn)
UID 44% 43% 92%

Manzini p
(Mn)
CPN 12% 11% 97%

inclusion history in the listings D(s) for each individual, that is, we generate the finest parti-
tion counts from Multinomial(N(s), {pA,Ac}A⊂D(s)), where the inclusion probabilities pA,Ac

for the finest partitions are defined in (19). As before, we use the posterior mean estimates of
p

(s)
x from Table 2 to construct the pA,Ac .
For estimating MSM size using the generated data, we do not use all the counts but only

a subset, mirroring the incompleteness and misalignment in the eSwatini data, as highlighted
in Figure 2. Table 7 presents the true parameter values and the posterior means averaged over
100 replicate datasets and the corresponding coverage probabilities of posterior 95% credible
intervals. We see that estimates of all the parameters—size estimates, MSM percentages and
inclusion probabilities—for all the four sites are very close to their simulated truths. The
coverage probabilities for most of these parameters are also close to the nominal level of
95%.

We proceeded in the same manner described above for MSM in conducting simulation
studies for the FSW analysis. The details are provided in Section S4.1 of the Supplemen-
tary Material (Datta et al. (2020)). The simulation results for FSW, like the MSM simulation,
were extremely accurate in terms of parameter estimation and inference. Overall, the simula-
tion studies demonstrate the ability to generate accurate direct estimates of key populations
for multiple regions based on our Bayesian hierarchical model using multiple multiplier data
disguised as incomplete and misaligned capture-recapture data. Given that the simulated data
was generated independently for each region, using the MSM or FSW percentages estimated
in Tables 2 or 4, and then analyzed using an exchangeable model, it also demonstrates pro-
priety of the exchangeability assumption for the eSwatini data.
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TABLE 8
Three Lincoln–Peterson (multiplier-method) estimates and our

model based size estimate of the MSM population size in
Nhlangano

Estimator type Estimate (credible interval)

mult.uid 173 (148–197)
mult.rnb 140 (64–216)
mult.avg 156 (106–206)
mult.Bayes 169 (151–192)

6.2. Comparison with average multiplier method. In this section we analyze the MSM
data from Nhlangano to show how the different Lincoln–Peterson estimates compare with
our model based estimates. We use the MSM data from Nhlangano for this comparison, as
it has three data sources (UID, RNB and SRV) and, therefore, yields two multiplier method
estimates—one using UID and one using RNB (the SRV is always used).

We have the following four multiplier method estimates for MSM population size in
Nhlangano:

N̂
(Nh)
mult.uid = N

(Nh)
UID N

(Nh)
SRV

N
(Nh)
{UID,SRV},{}

, N̂
(Nh)
mult.rnb = N

(Nh)
RNBN

(Nh)
SRV

N
(Nh)
{RNB,SRV},{}

,

N̂
(Nh)
mult.avg which is the average of the two, and N̂

(Nh)
mult.Bayes which is the estimate (posterior

mean) from our Bayesian multiplier method.
In Table 8 we compare these and our model based estimate (from Table 2) and the respec-

tive credible intervals. The variance estimate of the generic Lincoln–Peterson estimate in (1)
is given by

(21) ̂V (N̂) = n1n2(n1 − n12)(n2 − n12)

n3
12

.

The credible intervals for the Lincoln–Peterson estimators N̂
(Nh)
mult.uid and N̂

(Nh)
mult.rnb were cal-

culated as estimate ±1.96 ∗ √
respective variance estimates. The credible interval for the av-

erage method was simply calculated as average of the credible intervals for N̂
(Nh)
mult.uid and

N̂
(Nh)
mult.rnb. Several interesting findings can be observed from Table 8. First, we note that the

two multiplier-method estimates using UID and RNB, respectively, yield widely different re-
sults. The estimates differ by about 20%, and the estimate using RNB does not even lie within
the 95% credible interval of the estimate using UID. The credible interval using RNB is also
very wide (about three times the length of the credible interval using UID). This shows how
different listings can yield very different multiplier-method estimates, leading to the quandary
of which one to use. Interestingly, we see that our model based estimate aligns very closely
with the estimate using UID instead of aligning with the average estimate. Even the credible
intervals from our model were much closer to that using the UID data instead of the average
method which has twice as wide credible interval.

To understand why our model, instead of giving equal weights to UID and RNB esti-
mates, places more weight on the UID estimate, we look back at the inclusion probabilities
of UID and RNB for Nhlangano in Table 2. We see that p

(Nh)
UID was estimated to be 63% while

p
(Nh)
RNB was only 7.6%. This very large discrepancy between the two inclusion probabilities

is perhaps the driving force in our model aligning with the UID estimate. The low-inclusion
probability for RNB implies that the estimate will typically have high variance. Our model
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seems to incorporate this information thereby weighting the different sources in a data-driven
manner while the average estimate places equal weights on all the sources ignoring the vari-
ances.

We could not repeat this exercise for the other regions, as the MSM data from Piggs Peak
and the FSW data from Piggs Peak, Lavumisa and Nhlangano only have two data sources and
yields a single estimate, whereas both the MSM and the FSW data for Mbabane and Manzini
are misaligned, so the traditional multiplier-method cannot be computed.

Next, we used the model based estimates for MSM in Nhlangano to simulate 100 datasets
in the same fashion as in Section 6.1 but only restricted to Nhlangano. Figure 5 compares the
performance of the methods. The densities of size estimates based on the 100 datasets for each
of the methods are provided in Figure 5(a). We see that among the two multiplier methods
based on single nonsurvey sources, mult.uid and mult.rnb, the former performs substantially
better than the latter whose density is both more dispersed and biased away from the true
value. The average multiplier method, which is usually used in such settings of multiple
multiplier sources, performs better than mult.rnb but is still significantly biased. The density
from the Bayesian multiplier method which also uses both sources (UID and RNB) aligns
almost indistinguishably with the better performing method (UID). It is also centered around
the true population size (black vertical line) and has much less variability than mult.avg. In
Figure 5(b) we plot the average size estimate and 95% credible intervals over the 100 datasets.
The point estimate once again clearly reveals the superiority of our Bayesian method over the
average multiplier method which incurs bias from the mult.rnb part. Looking at the interval
estimates, we see that the interval width for mult.rnb and mult.avg are an order of magnitude
wider than the intervals for mult.uid and mult.Bayes.

We also calculated and compared the same four estimators used in Table 8 to the simu-
lated true size estimates in terms of mean absolute error (MAE), mean square error (MSE),
coverage probability (CP) and mean credible interval width (CIW) for these 100 replicate
datasets. The results of the comparison are presented in Table 9. We observe that, like the
real data analysis in Table 8, all the evaluation metrics from our model closely align with the
multiplier method using UID. These two estimators produce substantially lower MAE and
MSE than the multiplier method using RNB or the average multiplier method. The credi-
ble interval widths for our model and for N̂mult.uid are also an order of magnitude narrower
than from the other two methods. In terms of coverage probability, our model produces slight
under-coverage whereas the average multiplier method results in slight over-coverage. The
effect of low inclusion probability for RNB is clearly evident with both the estimator using
RNB or the average estimator, giving equal weights to RNB and UID producing worse error
estimates and wider intervals.

The results comprehensively demonstrate how our Bayesian multiplier method performs
better than the average multiplier method. Despite not leveraging any prior distinction be-
tween the reliability of the two data sources UID and RNB, the Bayseian method weights
them differently, aligning with the one (UID) which leads to the more accurate multiplier-
method estimate.

7. Relaxing the independence assumption. We propose a Bayesian nonparametric ex-
tension of our model to settings where the assumption of independent data sources is vio-
lated. We first discuss the related assumption of homogeneity of population also used in our
model and all standard capture-recapture formulations. While several solutions to model the
heterogeneity have been proposed (Manrique-Vallier and Fienberg (2008)), we focus on the
finite mixture model as it offers an avenue to model nonindependent data sources. A finite
mixture model represents the heterogeneous population as a union of homogeneous stratas
such that we can use the independence assumption within each strata. Assuming population
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FIG. 5. Comparison of the different multiplier methods for 100 simulated datasets. Black line indicates the mean
true population size.

stratification along a known and measured variable (covariate), various forms of stratified
capture-recapture methods are available (Sekar and Deming (1949)).

If knowledge of such a covariate is not presumed, one proceeds via a latent discrete model
for the covariate implying that every individual belongs to one of C possible homogeneous
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TABLE 9
Model comparison metrics for the different multiplier method estimates for the 100 simulated MSM datasets

Estimator type MAE MSE CP CIW

mult.avg 35 61 97% 207
mult.rnb 67 120 93% 370
mult.uid 10 13 86% 45
mult.Bayes 10 12 89% 44

classes. We now have a two-stage hierarchical model

I(j)i | C(j) = c
ind∼ Bernoulli

(
pi[c]), i = 1, . . . , S, j = 1, . . . ,N,

C(j)
iid∼ Categorical(π) such that π [c] ≥ 0 and π ′1 = 1,

(22)

where C(j) is the class-membership for the j th individual and pi[c] is the inclusion prob-
ability for the ith source in class c, for c = 1, . . . ,C, i = 1, . . . , S. Throughout this section
we will use the notation x[c] to denote the version of x restricted to class c. For example,
NA,B[c] will denote the number individuals in class c, each of whom were included in all
sources of A and no sources of B , and hence

∑C
c=1 NA,B[c] = NA,B .

Marginalizing over the latent class-memberships we have the inclusion probabilities

u∗
A,B = P

(
I(j)i = 1 ∀i ∈ A,I(j)i′ = 0 ∀i′ ∈ B

)
=

C∑
c=1

π [c] ∏
i∈A

pi[c]
∏
i∈B

(
1 − pi[c])

=
C∑

c=1

π [c]uA,B[c].

(23)

It is evident that this is a generalization of the inclusion probabilities in (4) and no longer
assumes inclusions in the different listings are independent. In fact, any discrete distribution
can be represented as (23) for some choice of C (Dunson and Xing (2009), Vermunt et al.
(2008)). Arnold, Hayakawa and Yip (2010), Basu and Ebrahimi (2001), Norris and Pollock
(1996) applied such finite mixture models to relax the independence assumption for capture-
recapture data. If C is considered unknown and assigned a prior, Bayesian computation will
need to rely on reversible jump MCMC (Green (1995)) type algorithms due to change in
parameter dimensionality for different values of C. A more sophisticated solution that cir-
cumvents RJMCMC was proposed in Manrique-Vallier (2016). Akin to ideas in Dunson and
Xing (2009) and Manrique-Vallier and Reiter (2014), a Bayesian nonparametric approach
was adopted using Dirichlet process mixtures.

Our extension of capture-recapture to incomplete and misaligned data can be harmonized
with this state-of-the-art approach of Manrique-Vallier (2016) for relaxing the independence
assumption. We now outline this extension that combines the incompleteness model of Sec-
tion 3.2 with the Dirichlet process prior for π of Manrique-Vallier (2016).

If all the counts {nA,Ac [c] : c ∈ 1, . . . ,C,A ⊂ S} were known, the joint likelihood will be
given by

(24) N !
C∏

c=1

π [c]N[c] ∏S
i=1 pi[c]ni [c](1 − pi[c])N[c]−ni [c]∏

A⊂S∗ nA∪{S},S∗\A[c]!∏A⊂S∗ nA,Ac [c]! .
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However, none of the finest partition counts nA,Ac [c] are known, as they correspond to par-
titions based on a latent clustering variable. Hence, we formulate a Gibbs sampler to impute
them. Note that none of the known quantities, that is, the marginal counts ni = ∑C

c=1 ni[c]
and the counts within the survey participants VS = ∑C

c=1
∑

A⊂S∗ nA∪{S},S∗\A feature directly
in (24) above. However, we can rewrite (24) as

(25)
S∏

i=1

(
Ui−1
Vi

) ∏
A⊂S

⎛⎝(
u∗

A,Ac

)nA,Ac

(
nA,Ac

nA,Ac [1], . . . , nA,Ac [C]
) C∏

c=1

p∗
A,Ac [c]

⎞⎠ ,

where p∗
A,B[c] = uA,B[c]/u∗

A,B , and Ui ’s and Vi’s are same as in Section 4.1. Recall that
Wi = {nA∪{i},B∪{i+1,...,S} | A ∪ B = {1, . . . , i − 1},A ∩ B = {}} with WS = VS and W0 being
the set of KP members who aren’t included in any of the S listings.

We group the latent finest partition counts nA,Ac [c] as follows. Let W ∗
i denote the ma-

trix formed by stacking up the row vectors (nA,B[1], . . . , nA,B[C])′ for all (A,B) such that
nA,B ∈ Wi . In the Gibbs sampler, we update the tuples (Vi,W

∗
i ) for i = 0, . . . , S and the

cluster-and-source-specific inclusion probabilities p1[1], . . . , pS[C]. First, for i = 0 we up-
date:

1. Generate W0 ∼ NB(r,1 − u∗{},S),
2. Update V0 = N = W0 + r ,
3. Generate W ∗

0 | W0, · ∼ Multinomial(W0,p
∗{},S),

where p∗
A,Ac = (p∗

A,Ac [1], . . . , p∗
A,Ac [c]))′ and, as before, r is the total number of KP mem-

bers included in at least one of the listings which is known given V1, . . . , VS . This update is
exactly identical to the analogous update in Step (v) of Manrique-Vallier (2016). Similarly,
assuming a Beta(a, b) prior for the inclusion probabilities pi[c]’s and a Stick-breaking prior
(Sethuraman (1994)) for (π[1], . . . , π[C])′, the updates for these parameters remain same as
the analogous updates in Steps (ii), (iii) and (iv) of Manrique-Vallier (2016).

The remaining part of the Gibbs sampler, that is, the updates for (Vi,W
∗
i ) for i ≥ 1, is

entirely different from the sampler in Manrique-Vallier (2016) and extends the sampler in
Section 4.1. This is because Manrique-Vallier (2016) assumes knowledge of complete inclu-
sion histories of any individual listed in one of the S listings, which is not the case in our
application and many other applications involving multiplier method, where only the inclu-
sion histories of individuals taking the survey is known. The sampler in this section is set
under this more general setting without assuming knowledge of complete inclusion histories.
Hence, the need for the following Gibbs imputations of (Vi,W

∗
i )’s.

As in Section 4.1, Vi = Wi + ∑S
j=i+1 Vij . Given N,V1, . . . , Vi−1,Vi+1, . . . , VS in the

Gibbs sampler,
∑S

j=i+1 Vij is known, and we only need to sample Wi .
Note that

pr
(
Wi,W

∗
i | ·) ∝

⎛⎜⎜⎝Ui−1 −
S∑

j=i+1

(Vij + V ij )

Wi

⎞⎟⎟⎠
× ∏

(A,B):nA∪{i},B∈Wi

(u∗
A∪{i},B

u∗
A,B∪{i}

)nA∪{i},B

× ∏
A:nA,Ac∈Wi

(
nA,Ac

nA,Ac [1], . . . , nA,Ac [C]
) C∏

c=1

p∗
A,Ac [c].
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The first two rows correspond to a noncentral multivariate hypergeometric distribution for

Wi with the vector of odds Oi = {u∗
A∪{i},B

u∗
A,B∪{i}

: (A,B) � nA∪{i},B ∈ Wi}; the last row corresponds

to products of multinomial distribution for the rows of W ∗
i given Wi . Hence, for i = 1, . . . , S,

the Gibbs update for (Vi,W
∗
i ) is given by:

1. Generate Wi ∼ FNCMVHG2i−1(ni −∑S
j=i+1 1′Vij ,Ui−1 −∑S

j=i+1(Vij +V ij ),Oi),

2. Update Vi = Wi + ∑S
j=i+1 Vij ,

3. Generate W ∗
i | Wi, · ∼ ∏

A:nA,Ac∈Wi
Multinomial(nA,Ac,p∗

A,Ac).

As WS = VS and V1 are known, so we skip their updates and only update W ∗
S and W ∗

1 . Note
that if there was only one cluster, that is, we were using the independence model, then the
odds Oi becomes proportional to the vector of ones. So, the noncentral distribution in Step
1 reduces the the central multivariate hypergeometric distribution of (15). Thus, the nonin-
dependence model and the Gibbs sampler is a coherent generalization of the independence
model.

8. Conclusion. We have presented uncertainty quantified size estimates of MSM and
FSW for all four regions of eSwatini. The size estimates derived here can be used to charac-
terize distributions of HIV risks, current gaps in coverage of HIV prevention and treatment
and support dynamic HIV transmission models to estimate the contribution of the unmet
HIV prevention and treatment needs among key populations to the HIV epidemic in eSWa-
tini (Sabin et al. (2016), WHO (2010)).

The complex nature of the dataset, owing to the small number of sites with direct data,
incompleteness and misalignment, shaped most of these analysis and motivated the methods
development. Importantly, given similar dynamics of stigma affecting key populations in
many countries with generalized HIV epidemic settings, the small data problem is a common
one. In response, We proposed a general Bayesian multiplier method for generating a unified
size estimate using multiplier data from multiple sources via a data augmented model. In
the process we offered a Gibbs sampler based solution to sample from the distribution of
2 × 2 × . . . × 2 contingency tables with known marginals. The Bayesian implementation is
fast and ensures proper uncertainty propagation leading to meaningful credible intervals for
size estimates. It also allows borrowing of strength across multiple regions, in modeling the
region specific percentages of MSM and FSW, which is essential for extrapolation. In our
setup we used a simple exchangeable model to achieve this, but if more sites have direct data,
then one can easily expand to a regression model. We also proposed a solution for misaligned
data which helped us to disentangle the data at the Corridor to produce separate estimates for
Mbabane and Manzini.

Despite the modeling innovations proposed here, the analysis relied on a number of as-
sumptions which we highlight to ensure that the estimates are understood in the proper con-
text.

Independence. As we have highlighted multiple times in Section 3.1, the assumption that
inclusion or exclusion in each of the listings of a region are jointly independent is central to
the capture-recapture model and Lincoln–Peterson estimates, their model-based extension to
multiple data sources and our extension to incomplete and misaligned data. In our analyses we
conducted tests to see that the independence assumption was not violated in the data. How-
ever, this may not be the case in general. In general, if inclusion in two sources are positively
correlated, then the Lincoln–Peterson estimate will underestimate the true population size,
and, if the sources are negatively correlated then it will overestimate. Hence, in Section 7 we
provided a solution for the setting when this assumption is violated. We showed how we can
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seamlessly harmonize our model with a state-of-the-art solution to modeling nonindependent
capture-recapture data using Bayesian nonparametric (Dirichlet process) priors (Manrique-
Vallier (2016)). This ensures that our model can accommodate nonindependence in the most
general form and remain computationally tractable. A set of simulation studies comparing
the independent and the Dirichlet-process based dependent model is presented in Section S3
of the Supplementary Material (Datta et al. (2020)).

Immigration. Throughout the analysis we assumed a closed population, that is, no migra-
tion between the regions and into or out of eSwatini from other countries. This is unrealistic,
especially as the Corridor, which informs the size estimates for both Hhohho and Manzini
region, witnesses a lot of movement. Also Piggs Peak is located near the border with South
Africa. Therefore, frequent immigration and emigration is common. Migration has not been
accounted for in the analysis due to lack of data.

We did some theoretical and simulation studies to assess the impact of immigration on
our model. The results, detailed in Section S1 of the Supplementary Material (Datta et al.
(2020)), show that if the counts for a source gets inflated by a factor of c due to immi-
gration, the corresponding inflation in the Lincoln–Peterson size estimate is only cp where
p is the inclusion probability for that source. Just as an example, even if immigration in-
flates counts by 20% but inclusion probability in source 1 is 15%, the estimates will only
be inflated by 20% × 15% = 3%. Hence, unless both the inclusion probability and the im-
migration inflation factor for a source are very high, the impact on the size estimates are
moderate.

Age extrapolation. There are two age related assumptions in the analysis:

1. Engagement age-range: Our first assumption is about the age-specific participation of
the MSM or FSW community in the different listings. We assume that the age distribution
of survey participants matches age distribution of those included in the other sources. Based
on the empirically predominant age-group in the survey, this amounted to assuming that for
each data source, among the FSW (or MSM) members the same age-group (18–35 for FSW,
18–32 for MSM) participate in all the listings.

This assumption is a function of the structure and availability of the data. Most of the
nonsurvey sources generally do not have age-resolved data but just a summary count. The
survey is the only listing with information about age distribution. Hence, assuming the age
distribution of participants in the other listings (which has no age-data) to be same as the age
distribution of the survey is a convenient assumption.

However, this assumption is not unreasonable; as given similar methods of recruitment
and engagement of MSM or FSW in research and program, it is very likely that commu-
nity members included in the survey are very similar to those engaging in the other pro-
grams. Also, typically, the issue of engagement is not limited to the survey and tends to
be the case in general for the program. This is to say that the age group dominating the
survey likely represents the age group that are also the majority participants in the other
listings. Hence, assuming that the different engagements have similar age coverage is not
unreasonable in such data-scarce settings (see Weir et al. (2018), for more discussion on
this).

We can impose this assumption directly on the empirical counts or use it via mod-
eling of the population-level age-specific inclusion probabilities. We did the former, as
the likelihood due to the latter adds more parameters and does not facilitate convenient
Gibbs updates. However, the latter version of the assumption is weaker, as it postulates
that, although the population-level age-specific odds ratios of being included in a listing
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are same across listings, the empirical age distributions may not be exactly same. We of-
fer some heuristics in Section S2 of the Supplementary Material (Datta et al. (2020)) on
why this weaker assumption would lead to very similar size estimates as the stronger
one.

We reemphasize that we do not assume that the proportion of FSW (or MSM) who par-
ticipate in a listing is constant across all ages. This would be an inappropriate assumption as
participations vary by age.

Finally, to generalize our method to other real world applications in settings where we
cannot make any assumption about similarity in age distributions among different listings,
we could simply consider age to be the latent stratifying factor and use the extension we
proposed to the mixture model framework of Section 7 to accommodate nonindependence
and heterogeneity for obtaining the size estimates.

2. Extrapolation beyond the engagement age-range: The second assumption is related
to extrapolation of estimates to age-groups other than those represented in the data. The as-
sumption is that, among all women (or men), the proportion who are FSW (or MSM) are
same within and outside the engagement age-range.

Since the survey participants predominantly belonged to the engagement age ranges of
18–32 for MSM and 18–35 for FSW, in order to extrapolate to the broader age group of
15–49 years, we rely on this assumption which in many settings is a reasonable one for
MSM but may not be for FSW. This is because sexual orientation is a fixed trait whereas
an occupation is less so. However, in this study there is no age-resolved data to model the
fractions as functions of age for the extrapolation. Related studies suggest that the percent
that remain selling sex is pretty consistent across age groups, and this assumption is used
to extrapolate from the age group representing the data collection to the broader age group
of 15–49 years (Holland et al. (2015, 2016)). If however, this is not true and the percent-
age of FSW in the age group 35–49 is less (or more) than the percentage in the age group
18–35, then these estimates are overestimating (or underestimating) the FSW population
size.

Geographical extrapolation. We only have data from four or five geographically sep-
arated sites with which it is not possible to model a spatial correlation among the MSM
or FSW fractions across Tinkhundlas that can then be used for geographical extrapolation.
Hence, we resorted, to generate estimates for the entire regions based on direct estimates at
the few sites. We hypothesized that the MSM or FSW proportions in the Tinkhundlas were
similar to the respective proportions at their closest sites and used a spatial autoregression
model where the mean estimate of MSM or FSW fraction for a Tinkhundla without data was
modeled as the average of those of its neighboring Tinkhundlas (see Section 5.2 for more
details).

In summary, all these assumptions were needed given limited primary data of key popula-
tions reinforcing the need to effectively study the needs of those at highest risk of HIV even
in the context of generalized epidemics. The model-based approach also ensures impact of
all these assumptions are well understood. These estimates are not authoritative, but they do
offer significantly more statistical rigor over common practices, like wisdom-of-the-crowd
estimates or average multiplier method, which we have shown to be inferior to our approach.
Additionally, we offer a solution to the common problem of geographical misalignment in
such datasets, in presence of which even these naive average multiplier method estimates
cannot be evaluated. Future programmatic and survey data focused on key populations in
eSwatini can be used to corroborate or refute these conjectures and ultimately better describe
the distributions of HIV risks in countries with the most generalized HIV epidemics.
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APPENDIX: TOTAL POPULATION NUMBERS

This section details the rationale and process of calculating the denominators P (s), the
total male or female population in the 90th percentile age range for each location. To do this,
we used preliminary results from the 2017 eSwatini census and interpolated the population
number to get estimates for P (s) in 2014, when the survey was conducted.

This process is summarized in the following steps. We first identified where survey re-
spondents came from for each of the data collection sites. These reported locations were then
mapped to the corresponding Tinkhundlas which contain those locations. The total population
representing each site was initially calculated as a weighted average of the 2017 population
of these Tinkhundlas from which the participants came from, with the weights being pro-
portional to the number of participants from that Tinkhundla. We then calculated the 90th
percentile age of survey respondents for each survey site. This turned out to be 18–32 years
for MSM and 18–35 years for FSW. We calculated the region-specific proportions of individ-
uals in each region that fall in these age ranges and adjusted the total population using these
proportions. Finally, using the 2017 population numbers, we extrapolated backward in time to
obtain the population numbers in 2014. To do this, we used annual growth rate data for each
region, using census data from 2007 and 2017, and used these average annual growth rates
to interpolate our weighted population number from 2017 to 2014. All the information used
in this process, including the region specific annual growth rates, proportion of population
within the age range corresponding to 90% of the survey participants, the reported locations
of the participants along with the corresponding Tinkhundlas and the Tinkhundla-specific
weights used to obtain the site-specific total population numbers are in Tables 10 and 11. The
final population numbers representative of each site are provided in Table 12.
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SUPP; .pdf). Contains discussions on impact of unaccounted immigration, age-related as-
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those in Section 6.1 but for FSW, sensitivity of the data analysis with respect to choice of
priors for the size estimates and choice of Beta hyperparameters.
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TABLE 10
MSM: Region-specific age-group proportion, annual growth rates, counts and weights used for reported locations assigned to each Tinkhundla in determining the total population

representing the survey at each site

Percent Annual
of Males Growth

Region (18–32) Rate Site Locations reported Counts Tinkhundla Weight

Manzini 30% 1.1% Manzini Manzini/Matsapha 173 Manzini North and South, Kwaluseni 173/177
Malkerns 3 Lobamba Lombdzala 4/177
Mahlanya 1

Hhohho 29% 1.3% Mbabane Mbabane/Ezulwini 155 Mbabane East and West, Lobamba 155/223
Ngwenya 61 Motjane 68/223
Oshoek 3
Motshane 4

Piggs Peak Piggs Peak 54 Piggs Peak 54/57
Matsamo 3 Timphisini, Ntfonjeni 3/57

Shiselweni 26% −0.2% Nhlangano Nhlangano 70 Mbangweni 1
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TABLE 11
FSW: Region-specific age-group proportion, annual growth rates, counts and weights used for reported locations assigned to each Tinkhundla in determining the total population

representing the survey at each site

Percent of Annual
Females Growth

Region (18–32) Rate Site Locations reported Counts Tinkhundla Weight

Manzini 35% 1.1% Manzini Manzini/Matsapha 249 Manzini North and South, Kwaluseni 249/257
Malkerns 8 Lobamba Lombdzala 8/257

Hhohho 32% 1.3% Mbabane Mbabane/Ezulwini 198 Mbabane East and West, Lobamba 198/255
Ngwenya 55 Motjane 57/255
Oshoek 2

Piggs Peak Piggs Peak 121 Piggs Peak 121/127
Matsamo 2 Timphisini 2/127
Buhleni 4 Mayiwane 4/127

Shiselweni 29% −0.2% Nhlangano Nhlangano 47 Mbangweni 1
Lavumisa Lavumisa 81 Somntongo 81/88

Hluthi 3 Hosea 3/88
Matsanjeni 4 Matsanejni South 4/88
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TABLE 12
Male and female population numbers representative of the survey participants at each of the data collection sites

Site Male 18–32 population Female 18–35 population

Lavumisa – 1383
Piggs Peak 2940 2962
Mbabane 10,295 16,796
Manzini 16,324 20,323
Nhlangano 4038 4988
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