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Robotic hand prostheses require a controller to decode muscle contrac-
tion information, such as electromyogram (EMG) signals, into the user’s de-
sired hand movement. State-of-the-art decoders demand extensive training,
require data from a large number of EMG sensors and are prone to poor pre-
dictions. Biomechanical models of a single movement degree-of-freedom tell
us that relatively few muscles, and, hence, fewer EMG sensors are needed to
predict movement. We propose a novel decoder based on a dynamic, func-
tional linear model with velocity or acceleration as its response and the re-
cent past EMG signals as functional covariates. The effect of each EMG sig-
nal varies with the recent position to account for biomechanical features of
hand movement, increasing the predictive capability of a single EMG signal
compared to existing decoders. The effects are estimated with a multistage,
adaptive estimation procedure that we call Sequential Adaptive Functional
Estimation (SAFE). Starting with 16 potential EMG sensors, our method cor-
rectly identifies the few EMG signals that are known to be important for an
able-bodied subject. Furthermore, the estimated effects are interpretable and
can significantly improve understanding and development of robotic hand
prostheses.

1. Introduction. Over 160,000 Americans are transradial (i.e., below-elbow) amputees,
henceforth TRAs, and must learn how to perform tasks without their intact hand (Ziegler-
Graham et al. (2008)). Passive hand prostheses are useful but cannot fully emulate the func-
tionality of an intact hand. State-of-the-art multifunctional robotic prostheses, such as the
FDA-approved DEKA arm system (Resnik (2011), Resnik et al. (2011)), have more advanced
mechanical systems that move according to a prosthesis controller (PC) that decodes user in-
puts into movement. These inputs are often electromyogram (EMG) signals because they
measure activation of muscles due to contractions which are known to cause hand movement
for an able-bodied (AB) subject.

Figure 1 summarizes the movement process for an AB subject and a TRA equipped with
a robotic prosthesis. For both AB subjects and TRAs, intended hand movement begins with
initiation of action potentials that are conducted along motor neurons from the central nervous
system. The neural signals travel along the motor neural pathway and propagate onto the
muscle fibers, causing the muscle to contract. The action potential measured from the muscle
fibers is called motor unit action potential (MUAP). An EMG signal taken from a surface
electrode placed on an intact or residual forearm represents the sum of MUAPs across one or
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FIG. 1. The biomechanical process for hand movement for an AB subject and TRA. A motor command starts as
an internal limb representation of the intended hand movement (A) followed by neural signals sent from the motor
cortex (B) to forearm muscles (C) causing them to contract. For an AB subject, tendons connecting the muscles
to joints in the hand (D, bottom) are stretched, producing hand movement (E, bottom). For a TRA equipped with
a robotic prosthesis, their muscle contractions are measured with EMG sensors (C) and the PC (D, top) decodes
the EMG signals into robotic hand movements (E, top).

more forearm muscles and conveys information about the magnitude and duration of muscle
contractions. For an AB subject the contractions stretch tendons connected to bones in the
hand, leading to hand movement. These physical connections no longer exist for a TRA, but
TRAs can still activate their residual muscles and may sense movement in their missing limb
(Mercier et al. (2006)).

Two important and related questions are: (1) how many EMG sensors are needed to cap-
ture relevant muscle contraction information?, and (2) how should the PC decode the EMG
data to produce movement? A traditional direct myoelectric PC uses two EMG sensors corre-
sponding to antagonistic muscles for control of a single movement along a degree-of-freedom
(DOF), such as wrist flexion/extension. To determine the sensor locations, prosthetists first
palpate a muscle while the TRA contracts their muscles to attempt movement along a sin-
gle DOF. The EMG signal on the targeted skin surface areas is visually checked by probing
different locations with a bipolar electrode. A chosen EMG sensor location should be inde-
pendent of a coactivating antagonistic muscle. Unfortunately, it is difficult to use these PCs
to operate multiple DOFs intuitively (Resnik et al. (2018)).

EMG pattern recognition (PR) is the state-of-the-art decoding method for prosthesis con-
trol (Scheme and Englehart (2011)). PR assumes that the varying patterns of multichannel
EMG signals can be decoded to different hand/wrist motions. In both clinical practice and
research settings, the placement of EMG sensors is not muscle specific because EMG cross
talks (i.e., signals detected from nearby muscles) do not significantly affect decoding perfor-
mance (Resnik et al. (2018)). Rather, the amount and variety of neural information recorded
in EMG signals determines the accuracy for classifying motions. To ensure that “sufficient”
neural information is captured, studies have used redundant (Huang et al. (2010)) or high-
density electrodes (Zhou et al. (2007)) to saturate the surface of the residual limb. However,
this electrode saturation comes with costs: (1) it requires frequent, lengthy calibration, (2)
its implementation increases the challenges in computer hardware design for data streaming
and real-time EMG processing and (3) its prediction performance may degrade due to noise
introduced by additional sensor information.

Unlike EMG PR, an EMG-driven musculoskeletal model decodes the EMG input into
movement based on human physiology (Crouch and Huang (2016)). For these models, sat-
uration of the EMG recording surface does not necessarily increase the neural information
captured. In fact, there are only 20 muscles in the human forearm (O’Rahilly and Müller
(1983)). If muscle-specific EMG recordings can be captured, the PC decoder needs fewer
electrodes. Crouch and Huang (2017) proposed a low-dimensional PC decoder based on a
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FIG. 2. EMG sensor labels differentiated by movement DOF contribution. EMG label 7 measures a muscle that
contributes to both finger and wrist extension and so has a combined symbol. The posture used for data collection
is shown in the bottom right.

planar link-segment dynamic model that includes only four virtual muscles while still incor-
porating relevant knowledge of the biomechanical system. Their model accurately predicted
continuous wrist and finger movement with only four independent EMG signals, one for
each virtual muscle. However, selection of the relevant EMG sensors remains an important
and critical problem for TRAs, as many muscles are inaccessible to external EMG sensors
due to muscle loss or depth of the muscle in the arm.

This paper introduces a novel EMG-based decoder and functional estimation procedure
that is selective of the EMG without sacrificing prediction performance. The velocity or ac-
celeration of a given movement DOF is predicted by multiple functional covariates corre-
sponding to the recent past behavior EMG signals, whose effects can vary with the recent
DOF’s position. EMG selection and estimation is done simultaneously through our proposed
Sequential Adaptive Functional Estimation (SAFE) procedure that uses multiple, adaptive
stages of a penalized fitting criterion.

The paper is organized as follows. Section 2 describes the collection and processing of
the EMG and movement data and provides motivation for our proposed decoder. Section 3
briefly reviews current EMG-based PCs and highlights their deficiencies. Section 4 details the
dynamic, functional linear model that makes up our decoder, and Section 5 details the SAFE
approach. Section 6 presents the analysis results from data collected from an AB subject,
including EMG selection, effect interpretations and prediction performance. A simulation
study is performed in Section 7, showing the robustness of our method to varying covariance
assumptions. Section 8 concludes the paper with a discussion of impacts and extensions.

2. Data collection and processing. EMG and movement data were collected from an
AB subject’s right limb. Figure 2 shows the placement of 15 EMG surface electrodes on the
subject’s limb and labels those electrodes placed near muscles known to contribute to the
movement DOFs of interest, metacarpophalangeal (MCP) flexion/extension and wrist flex-
ion/extension. For simplicity, we refer to MCP flexion/extension as finger flexion/extension,
because it involves simultaneous movement of all fingers excluding the thumb. To provide a
baseline for selection performance, we also generated an external signal unrelated to move-
ment, giving a total of 16 signals, denoted by X1, . . . ,X16 with X9 being the external signal.

The EMG signals were normalized between zero (no contraction) and one (maximal con-
traction) based on previous training. They then were high-pass filtered at 40 Hz, rectified
and low-pass filtered at six Hz using a 4th order Butterworth zero-phase filter (Butterworth
(1930)). Movement data were collected by reflective markers placed on nine anatomical lo-
cations on the forearm, wrist and hand, and were recorded at 120 Hz using an infrared motion
capture system (Vicon Motion Systems Ltd., UK). The movement data were filtered at six Hz
using a 4th order Butterworth filter and the joint angles (in degrees) were calculated from a
musculoskeletal model (Holzbaur, Murray and Delp (2005)) in OpenSim (Delp et al. (2007)).
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FIG. 3. Joint finger position (degrees) for extension and flexion movements and normalized EMG signals for X7
and X12. Event (a) demonstrates restricted movement due to maximal finger extension. Event (b) demonstrates
movement due to passive forces, lacking concurrently active EMG signals.

EMG and joint angle data were collected synchronously for approximately 30 seconds
while the subject performed basic hand movements in a fixed arm posture shown in Figure 2.
Isolated, single DOF movements were performed following either a consistent pattern or a
random pattern. The movements during a random pattern were determined by the AB subject.
The consistent pattern had the subject alternate between performing maximal finger flexion
and extension. Before performing the opposite movement, they allowed their hand to return to
a neutral position by relaxing their muscles. There were six independent datasets for isolated
finger movement, three observing consistent movement patterns and three observing random
movement patterns. The same was done for isolated wrist movement.

Figure 3 is a snapshot of synchronous data for a consistent finger movement pattern. Prior
to Figure 3(a), X7’s signal concurrently increases as the fingers extend. In Figure 3(a), the
fingers are at maximal extension while X7’s signal decreases, meaning the subject is relaxing
the corresponding muscle. Figure 3(b) has no concurrent muscle contractions while the fin-
gers flex toward a neutral state of 20 degrees. This type of movement is attributable to passive
forces generated by muscle relaxation. Note the time delay between the muscle’s relaxation
in Figure 3(a) and the resulting passive force movement in Figure 3(b).

Figure 3 is convincing that EMG data can predict movement but omits all the potential
EMG signals that complicate EMG selection. The left plot in Figure 4 shows all 15 EMG
signals (ignoring X9) for the same time period as in Figure 3, and the right plot shows the
concurrent correlations among all 16 signals, calculated across the entire 30-second data
window. Between 0.5 and 1.5 seconds, the dominant signal belongs to X7, but many other
signals are active as well, such as X5. The high concurrent correlations indicate redundant
EMG information and the presence of latent signals that complicate EMG selection. The next
section discusses how decoders in current EMG-based PCs address these issues.

3. Current EMG-based control strategies. The ith instance (i = 1, . . . ,N ) of data col-
lection includes K measured and processed EMG signals, xik (k = 1, . . . ,K), and a measure
for each movement DOF of interest. For example, we let zi denote the movement DOF po-
sition. It is common to divide the data into time windows and summarize the EMG and
movement data within each window. In some cases movement in each window is assigned
to a movement category, such as flexion or extension. The xik’s are often converted into a
feature set summarizing its behavior in the time window, such as the moving average or slope
(Hargrove, Englehart and Hudgins (2007)), and these feature sets are the decoder’s inputs
instead of the original xik’s.
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FIG. 4. Overlay plot (left) of 15 EMG signals during one instance of finger extension and flexion observed and
concurrent correlation plot (right) between all 16 signals for the entire dataset.

Hahne et al. (2014) simultaneously predicted multiple wrist movement DOFs with linear
and nonlinear regression (e.g., mixture of linear experts and kernel ridge regression) based
on feature sets from 192 EMG signals. They compared performance across different sub-
sets of the EMG sensors and determined fewer signals produced comparable predictions to
the full set, but no formal variable selection was performed. Scheme and Englehart (2011)
summarized and compared several statistical PR classifiers (e.g., K-nearest-neighbors, sup-
port vector machine, quadratic discriminant analysis) on EMG/movement data and discussed
challenges faced by these classifiers. Both papers noted the importance of the amount and the
type of EMG information in the feature set for a decoder’s prediction performance.

Jiang, Englehart and Parker (2009) and Jiang et al. (2014) proposed a generative model
to incorporate underlying neurophysiological processes largely ignored by PR approaches.
The j th movement DOF (j = 1, . . . ,M) was assigned two opposing latent control signals
representing positive and negative directions (e.g., extension/flexion), denoted by c

p
ij and cn

ij ,

respectively. Let xi = (xi1, . . . , xiK)T be the vector of K EMG signals at instance i. Equating
xi = Wci where W is the K × 2M synergy matrix and ci = (c

p
i1, c

n
i1, . . . , c

p
iM, cn

iM)T , they
solved for W and ci requiring both to have nonnegative elements. Their approach does not re-
quire any measured movement data but restricts the DOF of movements the subject performs
to help identify the control signals during the calibration session.

Crouch and Huang (2016) developed a decoder based on a planar lumped-parameter mus-
culoskeletal model for the two DOFs considered in this paper. The decoder reliably predicted
continuous movement with only four EMG signals corresponding to muscles known to con-
tribute to these movements for AB subjects. The results relied on their prior knowledge of
the important muscles and their ability to target them with the four surface electrodes. This
knowledge is unknown for a given TRA whose musculoskeletal structure has been signifi-
cantly altered, and it is unclear how the important EMG signals would be selected for a TRA.
We next describe a new class of EMG-based decoders based on a flexible statistical model that
can recover many of the biomechanical features directly incorporated in the musculoskeletal
model in Crouch and Huang (2016) and lends itself to an EMG selection method.

4. Proposed decoder and penalized estimation. As demonstrated in Figure 3, move-
ment can be influenced by concurrent and recent past changes in Xk . The effect may also
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depend on the position, as observed in Figure 3(a) in which there is no change in position de-
spite a decreasing EMG signal. Hence, our proposed decoder is based on a functional linear
model with a scalar response, yi , and K functional predictors defined on S whose effects can
vary with covariate, zi ∈ Z ,

(4.1) E[yi |Xi1, . . . ,XiK, zi] =
K∑

k=1

∫
S

Xik(s)γk(s, zi) ds.

Here, γk(·, ·) is an unknown bivariate function defined on S ×Z that quantifies the effect of
the kth functional covariate, briefly written as Xik , on the mean of yi conditional on zi . When
possible, we shorten γk(·, ·) as simply γk .

For model (4.1) to be used as an EMG-based decoder, yi is set to either movement velocity
or acceleration, zi is the movement position and Xik is a curve describing the recent past
behavior of the kth EMG signal. Each Xik is defined on S = [−δ,0], where s = 0 refers
to the concurrent time relative to the velocity yi and δ is a predetermined historical length.
Consistent with our application, each Xik is measured at δ + 1 equally-spaced time points,
Xik(j) = x(i+j)k for j = −δ, . . . ,0. As in Section 3, we window the data; however, we do
not reduce the EMG data into a feature set. Section 6.1 and Section A of the Supplementary
Material (Stallrich et al. (2020)) detail how the yi values were estimated from the observed
zi and how the Xik were created from the EMG data for this application.

With yi being the first or second derivative of zi , model (4.1) is a forced differential equa-
tion system with nonlinear forcing functions for each EMG signal (Ramsay and Hooker
(2017)). The covariate-varying effects in the forcing functions are a direct extension of the
functional linear model described in Cardot, Ferraty and Sarda (2003), Ferraty et al. (2012),
Goldsmith et al. (2011), McLean et al. (2014), Ramsay and Silverman (2005) and have been
recently applied to functional data in Cardot and Sarda (2008), Davenport (2013), Wu, Fan
and Müller (2010). In their Section 1.1.6, Ramsay and Hooker (2017) analyzed handwriting
movements of Chinese characters by modeling the acceleration with a harmonic oscillator,
but they did not use EMG-based forcing functions. Both velocity and acceleration models are
considered in Section 6 as well as forcing functions that do not depend on position.

4.1. Model approximation. Following Wood (2006) and Eilers and Marx (2003), we
approximate γk with a tensor product of two finite dimensional univariate basis functions,
{ωl(·)} and {τm(·)}, defined on S and Z , respectively. We use the same bases for all
γk ; so, γk(s, z) = ∑L

l=1
∑M

m=1 ωl(s)τm(z)βklm, where the βklm’s are basis coefficients for
the kth functional covariate’s effect that need to be estimated. In matrix form, γk(s, z) ≈
ωT (s)Bkτ (z) where ωT (s) = (ω1(s), . . . ,ωL(s)), τT (z) = (τ1(z), . . . , τM(z)) and Bk =
(βklm) is an L × M coefficient matrix.

Approximate the integrals in (4.1) by∫
S

Xik(s)γk(s, zi) ds ≈
{ 0∑

j=−δ

x(i+j)kω(j)T

}
Bkτ (zi) = XT

ikωBkτ (zi).(4.2)

Define XT
ikωτ = XT

ikω ⊗ τ (zi), where ⊗ is the Kronecker product operator. For notational

simplicity denote XT
ikωτ by X̃

T
ik , and let βk denote the vectorized version of Bk . Then, we

approximate model (4.1) by

(4.3) E[yi |X̃i1, . . . , X̃iK ] ≈
K∑

k=1

X̃
T
ikβk,

so that estimation of γk is done through estimation of βk .
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4.2. Penalized estimation. It is necessary to regularize estimation of βk to prevent over-
fitting and to encourage interpretable γ̂k . We further desire the estimation procedure to
force some estimates to zero to determine a subset of important functional covariates. Fan,
James and Radchenko (2015), Gertheiss, Maity and Staicu (2013), Matsui and Konishi
(2011), Pannu and Billor (2017) have discussed functional variable selection with scalar-
on-functional regression models. Our proposed approach is inspired by these ideas and ac-
commodates more complex regression coefficients.

Following Gertheiss, Maity and Staicu (2013), we adopt the penalized least squares ap-
proach for estimation that simultaneously induces sparsity and controls smoothness of the
γk’s. For simplicity, assume {ωl(·)}Ll=1 and {τm(·)}Mm=1 are orthogonal B-spline bases. We
allow L and M to be sufficiently large to capture the complexity of the regression surfaces
and penalize the degree of smoothness. We measure smoothness through the total curva-
ture in each direction with ‖γ ′′

k,s‖ and ‖γ ′′
k,z‖, where ‖γ ′′

k,s‖2 = ∫
S

∫
Z{γ ′′

k,s(s, z)}2 dzds and
γ ′′
k,s = ∂2γk/∂s2. Sparsity results from penalizing the effect’s total magnitude, measured by

‖γk‖. By orthogonality of the bases,

‖γk‖2 = βT
k βk,

∥∥γ ′′
k,s

∥∥2 = βT
k (�s ⊗ IM)βk,∥∥γ ′′

k,z

∥∥2 = βT
k (IL ⊗ �z)βk,

(4.4)

where �s = ∫
ω′′(s)ω′′(s)T ds and ω′′(·) is the vector of second derivatives ω′′

l (·) with a
similar definition for �z. The three norms in (4.4) are combined into the penalty term

Pφ(γk) = (‖γk‖2 + φs

∥∥γ ′′
k,s

∥∥2 + φz

∥∥γ ′′
k,z

∥∥2)1/2 = (
βT

k Qφβk

)1/2
,(4.5)

where Qφ = ILM + φs(�s ⊗ IM) + φz(IL ⊗ �z) is positive-definite and the tuning param-
eters φ = (φs, φz) > 0 control the smoothness of γk in the direction s and z. For instance,
large values of φs force γ̂k to be marginally linear in S . We estimate βk by minimizing the
criterion

(4.6)
N∑

i=1

(
yi −

K∑
k=1

X̃
T
ikβk

)2

+ λ

K∑
k=1

(
βT

k Qφβk

)1/2
,

where λ > 0 controls the sparsity of the γk’s.
Let Rφ be the Cholesky factor of Qφ , that is, Qφ = RφRT

φ , and set ˜βk = RT
φ βk and

W ik = R−1
φ X̃ik . The criterion (4.6) can be written as

(4.7)
N∑

i=1

(
yi −

K∑
k=1

W T
ik

˜βk

)2

+ λ

K∑
k=1

‖ ˜βk‖2,

which, for a fixed φ, is the group LASSO criterion described in Yuan and Lin (2006) and
Yang and Zou (2013), Yang and Zou (2015). Minimizing (4.7) can be done efficiently using
the groupwise-majorization-descent algorithm (Yang and Zou (2013)) for given λ and φ.

Rebuilding ̂Bk from ̂βk = (RT
φ )−1̂

˜β , we estimate γk with γ̂k(s, z) = ω(s)T ̂Bkτ (z).

4.3. Selection of λ and φ. The optimal tuning parameters π∗ = (λ∗, φ∗
s , φ∗

z ) are cho-
sen empirically by comparing the prediction performance of the minimizer of (4.7) across
multiple settings in the tuning parameter space, for example, K-fold cross-validation (CV).
For longitudinal data, like this data application, K-fold block CV is recommended, in which
the data are not partitioned randomly but rather into K equally-sized sequential sections
(Roberts et al. (2017)). CV is performed across a set of π ’s, each producing a set of esti-
mates, {γ̂k,π } and an average prediction error (APEπ ) across the folds. Let πmin be the π
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having APEmin, the smallest APEπ . The πmin is one choice for the optimal π , but we rec-
ommend a version of the one-standard-error rule (Friedman, Hastie and Tibshirani (2001),
Krstajic et al. (2014), Yang and Zou (2015)). First, gather the considered π ’s whose corre-
sponding APEπ ≤ APEmin + SEmin, where SEmin is the estimated standard error of APEmin.
From this subset choose the π whose estimates minimize

∑
k Pφ(γ̂k,π ) with φ = (1,1), being

a measure of model complexity balancing sparsity and smoothness of the γ̂k’s.

5. Sequential adaptive functional estimation (SAFE). The fitting criterion (4.6) does
not allow for different shrinkage and smoothness for the functional predictors which may
inflate the number of false positives. Adaptive estimation is one way to improve variable se-
lection performance (Ciuperca (2019), Gertheiss, Maity and Staicu (2013), Guo et al. (2015),
Ivanoff, Picard and Rivoirard (2016), Meier (2009), Zou (2006)). This section describes a
sequential, adaptive fitting procedure that is generally applicable to linear models fit using a
group LASSO-type penalty.

5.1. Adaptive weight penalty. Adaptive LASSO is an iterative fitting procedure that
translates preliminary estimates γ̃k into weights that are incorporated into penalty (4.5) to
improve variable selection performance. Here, the kth functional covariate is assigned the
positive weight vector wk = (fk, gk, hk), where fk weights the sparsity penalty ‖γk‖2 and gk

and hk weight the smoothing penalties ‖γ ′′
k,s‖2 and ‖γ ′′

k,z‖2, respectively. We set the weights
to fk = 1/‖γ̃k‖, gk = 1/‖γ̃ ′′

k,s‖ and hk = 1/‖γ̃ ′′
k,z‖. The adaptive penalty function is denoted

(5.1) Pφ,w(γk) = (
fk‖γk‖2 + gkφs

∥∥γ ′′
k,s

∥∥2 + hkφz

∥∥γ ′′
k,z

∥∥2)1/2
.

The weighted penalty for γk can be efficiently calculated by Pφ,w(γk) = (βT
k Qφ,wβk)

1/2,
where Qφ,w = fkILM + gkφs(�s ⊗ IM) + hkφz(IL ⊗ �z). Constructing (4.7) with Qφ,w

instead of Qφ incorporates these weights in the estimation procedure.
Selection performance of the adaptive group LASSO procedure depends on the accuracy

of the γ̃k’s (Zou (2006)). Initial estimation by minimizing (4.7) without penalizing ‖γk‖2

(Gertheiss, Maity and Staicu (2013)) may produce poor estimates for this data application
due to high correlation between the functional predictors (see Figure 4) and dependency of
the Xik distributions on zi ; see Section A of the Supplementary Material (Stallrich et al.
(2020)). Instead, we recommend initial estimates by optimizing (4.7) which includes the
sparsity penalty. This is essentially a two-stage, adaptive estimation procedure where the
first stage sets wk = (1,1,1) for all covariates to generate initial estimates. The weights are
updated, and a second stage of adaptive estimation is performed. Next, we formalize and
generalize this sequential, adaptive procedure.

5.2. Sequential adaptive algorithm. The first stage of Sequential, Adaptive Functional
Estimation (SAFE) performs adaptive group LASSO with w1

k = (1,1,1), producing the stage
1 estimates {γ̂ 1

k }Kk=1 for optimal tuning parameters π1∗. Let K1 be the active variable sub-
set of {1, . . . ,K} where γ̂ 1

k 	= 0, and let �1 = {γ̂ 1
k ;k ∈ K1}. All k /∈ K1 are removed from

consideration for the remaining stages of the estimation procedure.
The second stage of SAFE starts by calculating weights w2

k for k ∈ K1 from their corre-
sponding γ̂ 1

k ∈ �1. Adaptive group LASSO is performed with these w2
k producing the stage

2 estimates {γ̂ 2
k }k∈K1 for optimal tuning parameters π2∗. Note, the π2∗ are found from a new

implementation of K-fold CV (or block CV). This gives the second stage active variable set
K2 and active variable estimates �2. This two-stage approach is similar to the relaxed LASSO
(Meinshausen (2007)) and the work by Wei and Huang (2010) and Guo et al. (2015).

SAFE is easily generalized to more than two stages and, as shown in Section 6, may
perform better with more stages. Let r = 1, . . . ,R index the stages of SAFE where stage r
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uses weights, wr
k , calculated from �r−1 for r ≥ 2 and w1

k = (1,1,1). This gives R active
variable sets, K1, . . . ,KR , and active variable estimates, �1, . . . ,�R . The number of stages
could be preset or chosen based on a stopping criterion that assesses the consistency of the
Kr and/or �r for increasing r . For example, SAFE could stop if Kr = Kr−1 or when changes
in the effect estimates in �r compared to �r−1 are below some threshold. In Section 6 we
fixed R = 5 and assessed convergence by plotting the norms in (4.4) across the stages to
check whether any of the nonzero γ̂k approached 0. An example is given in Section C.4 of
the Supplementary Material (Stallrich et al. (2020)).

If the tuning parameter space is not explored well, it is possible that the APEmin could in-
crease significantly for increasing stages. To prevent this, we retain the APEmin and its SEmin
from the first stage and include these values in the second stage CV. Denote these retained
values by APE∗

min and SE∗
min. If the second stage APEmin ≤ APE∗

min, we continue with CV
as usual and updated APE∗

min = APEmin and SE∗
min = SEmin. Otherwise, we collect those

second stage π ’s with APEπ ≤ APE∗
min + SE∗

min and select π2∗ as the one that minimizes∑
k Pφ(γ̂k,π ) with φ = (1,1). If APEπ > APE∗

min + SE∗
min for all second stage π ’s, we restart

SAFE with a finer grid of tuning parameter candidates. The process for more than two stages
is straightforward.

In a similar spirit to Leeb, Pötscher and Ewald (2015) and Zhao, Shojaie and Witten
(2017), after the last SAFE stage we may re-estimate the γk for k ∈ KR using only a smooth
regularization to potentially reduce the estimation bias caused by the sparsity penalty. We
recommend these estimates be compared to those in �R , as the latter estimates may be more
interpretable due to their penalization of ‖γk‖2.

SAFE’s approach is easily generalized to models other than (4.1). The model need not
even be functional. In the next section we implement variations of SAFE with three other
functional variable selection algorithms and show how it can also improve their selection
performance.

6. EMG selection and prediction for hand movement. We applied the proposed meth-
ods to the AB subject’s data described in Section 2. Based on the structure of a biological
limb, at least one signal is needed to control flexion and extension of a given movement DOF.
However, the AB musculoskeletal system has muscle redundancies, meaning multiple mus-
cles can contribute to a given movement DOF (see Figure 2). The ideal decoder would need
only one EMG signal for extension and another for flexion without sacrificing prediction
performance.

We expected estimation of γk to be challenging for this data application for two reasons.
Figure 4 suggested the presence of latent factors among the 16 measured signals, which can
be explained by the EMG sensors being indirect measures of redundant muscle contractions.
Moreover, Section A of the Supplementary Material (Stallrich et al. (2020)) demonstrates
how the distribution of the Xik can vary with position, with some positions having Xik ≈ 0.
The latter can cause some inconsistent behavior of the estimated effects, as we will see in
Section 6.4.

We considered three competitors that perform functional variable selection and estimation
on a model with a smooth, position effect and covariate-invariant effects for the EMG

(6.1) E[yi |Xi1, . . . ,XiK, zi] = α(zi) + ∑
k

∫ 0

−δ
Xik(s)γk(s) ds.

Since yi is either the first or second derivative of zi , model (6.1) resembles a forced har-
monic oscillator (Ramsay and Hooker (2017)), D2z = −βz + u, where u is a forcing input.
Model (6.1) sets u = ∑

k

∫ 0
−δ Xik(s)γk(s) ds and replaces −βz with a smooth effect α(zi),
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due to the positional constraints on extension/flexion of the fingers and wrist. The three com-
petitors represent current functional variable selection methods and represent the approaches
described in Section 3. All four methods are summarized here:

• SAFE(z): Model (4.1) with SAFE.
• AGL: Model (6.1) with SAFE, essentially adaptive group LASSO from Gertheiss, Maity

and Staicu (2013).
• LAD: Model (6.1) with SAFE minimizing least absolute deviation (Pannu and Billor

(2017)).
• FAR: Model (6.1) with group smoothly clipped absolute deviation penalty, that is, linear

functional additive regression from Fan, James and Radchenko (2015).

Adaptive weighting was incorporated into AGL and LAD but not FAR because it was un-
clear how weighting should be performed. FAR was performed for R = 2 stages due to its
lack of weighting, while the other three methods used R = 5 stages. The position effect was
approximated by α(zi) = τ (zi)

T βz, and its weighted sparse/smooth measures were included
in penalty (5.1).

6.1. Computational details. The estimation procedure is similar to gradient matching
(Ramsay and Hooker (2017), Chapter 8) which uses initial estimates of the response (i.e.,
velocity or acceleration) from the observed position data. The velocity values, yi , were esti-
mated from a smoother of the position data, zi , based on a large set of sixth-order B-spline
basis functions fit with a third-order penalty using fda (Ramsay and Silverman (2005),
Ramsey et al. (2014)) in R ( (2017)). The acceleration values were similarly estimated but
with a fourth-order penalty. The ŷi were centered and scaled to have mean 0 and variance
1, and thinned by selecting every 20th observation in order to reduce the high temporal cor-
relation, leaving approximately N = 200 responses. For each ŷi , we extracted the previous
δ + 1 EMG observations, ending with the ith EMG value. We chose a past time window of
approximately 300 ms (δ = 40) based on observed passive force movement from Figure 3.
All Xik were previously normalized between 0 and 1, so we only centered each curve at
time points s = −δ, . . . ,0. More details may be found in Section A of the Supplementary
Material (Stallrich et al. (2020)).

For SAFE(z), γk(·, ·) was modeled with orthogonal cubic B-splines of dimension L = 10
and M = 10 in the s and z directions, respectively. Both alternatives AGL and LAD set
L = 10 basis functions for γk(·), while FAR used L = 5 because it does not penalize smooth-
ness. The optimal tuning parameters were found using five-fold block CV, as described in
Section 4.3, with tuning parameter values log(φs), log(φz) ∈ {−10,−5,0,5,10} and log(λ)

from −20 to 0 in increments of 0.25. We required gk,hk ≤ exp(10) to circumvent compu-
tational issues that arose when γ̂k was approximately linear in either the s or z direction.
We used the R package gglasso (Yang and Zou (2013)) for AGL and SAFE(z), rqPen
(Sherwood and Maidman (2017)) for LAD and R code from the corresponding author of Fan,
James and Radchenko (2015) for FAR.

6.2. Performance metrics. For the AB subject, the muscles driving the movement of in-
terest (finger or wrist extension/flexion) and the subset of EMG sensors that best measure
these muscles’ contractions were known. Let K = KF ∪KE denote the index set of these im-
portant EMG signals where KF and KE partition K into index sets corresponding to flexion
and extension, respectively. From Figure 2, these sets for finger and wrist movements were:

• Finger: KF = {X12}, KE = {X5,X7}.
• Wrist: KF = {X8,X10,X11,X14}, KE = {X2,X7,X13,X15}.
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TABLE 1
Variable selection performance metrics for consistent (top three rows) and random (bottom three row) finger

movement patterns with velocity as the response. The top and bottom row in each cell represents the results of the
initial and final stage, respectively. TPR = 1 for all scenarios

AGL LAD FAR SAFE(z)

Pattern RSP [Size] FPR [FP] RSP [Size] FPR [FP] RSP [Size] FPR [FP] RSP [Size] FPR [FP]

FC1
0.21 [13]
0.50 [9]

0.77 [10]
0.54 [7]

0.21 [13]
0.71 [6]

0.77 [10]
0.31 [4]

0.93 [3]
0.93 [3]

0.00 [0]
0.00 [0]

0.86 [4]
1.00 [2]

0.15 [2]
0.00 [0]

FC2
0.43 [10]
0.57 [8]

0.54 [7]
0.39 [5]

0.29 [12]
1.00 [2]

0.69 [9]
0.00 [0]

0.86 [4]
0.86 [4]

0.08 [1]
0.08 [1]

0.93 [3]
1.00 [2]

0.08 [1]
0.00 [0]

FC3
0.29 [12]
0.57 [8]

0.69 [9]
0.46 [6]

0.79 [5]
1.00 [2]

0.15 [2]
0.00 [0]

0.93 [3]
0.93 [3]

0.00 [0]
0.00 [0]

0.86 [4]
1.00 [2]

0.15 [2]
0.00 [0]

FR1
0.43 [10]
0.86 [4]

0.54 [7]
0.15 [2]

0.86 [4]
1.00 [2]

0.08 [1]
0.00 [0]

0.93 [3]
0.93 [3]

0.08 [1]
0.08 [1]

0.79 [5]
1.00 [2]

0.15 [2]
0.00 [0]

FR2
0.86 [4]
1.00 [2]

0.08 [1]
0.00 [0]

0.86 [4]
0.93 [3]

0.077 [1]
0.00 [0]

0.86 [4]
0.86 [4]

0.08 [1]
0.08 [1]

0.86 [4]
0.93 [3]

0.08 [1]
0.00 [0]

FR3
0.93 [3]
1.00 [2]

0.08 [1]
0.00 [0]

0.43 [10]
1.00 [2]

0.54 [7]
0.00 [0]

0.64 [7]
0.64 [7]

0.31 [4]
0.31 [4]

0.86 [4]
1.00 [2]

0.08 [1]
0.00 [0]

We compared the four methods with metrics focusing on identification of KF and KE as well
as prediction accuracy:

• Size = |K̂|, ideal size = 2 with |K̂ ∩KF | = 1 and |K̂ ∩KE| = 1.
• Sparsity (SP) = 1−|K̂|/K , ideal sparsity = 14/16 = 0.875. Also, relative sparsity (RSP) =

SP/0.875.
• False positive rate (FPR) = FP/|Kc|, where Kc is the complement of K and FP = |K̂ ∩
Kc|.

• True positive rate (TPR) = T P/2, where T P = 1(|K̂ ∩ KF | ≥ 1) + 1(|K̂ ∩ KE| ≥ 1)

focuses on whether we find a member of KF and KE .
• Average prediction error (APE) = ∑N0

i=1(y0i − ŷ0i )
2/N0 for N0 holdout observations, y0i .

6.3. Variable selection results. Table 1 shows the results of the variable selection perfor-
mance for the six finger movement datasets with velocity as the response; acceleration and
wrist movement results may be found in the Supplementary Material (Stallrich et al. (2020)).
The datasets are referenced by movement DOF (F = Finger, W = Wrist), movement pattern
(C = Consistent, R = Random) and replicate (1,2,3), for example, FC1 = Finger move-
ment, Consistent pattern, replicate 1. In Table 1 all methods tended to overselect in the initial
stage. The final iteration of SAFE(z) selected signals {X7,X12} in all six datasets; for FR2
it also selected X5. Both AGL and LAD benefited from adopting the SAFE approach, gen-
erally having better selection properties in the final stage than the initial stage. LAD’s final
selection iteration was similar to SAFE(z), except for FC1 selecting six total EMG signals.
AGL overselected for all datasets, except FR2 and FR3. FAR generally performed well but
overselected for FC2 and FR1-FR3.

Selection results for the acceleration-based models were generally worse than those shown
in Table 1; see Table 1 in the Supplementary Material (Stallrich et al. (2020)). SAFE(z) iden-
tified the correct signals for all datasets but dropped X12 for FR3. The competing methods
had more erratic results, both over- and under-selecting. For these reasons, we will focus our
attention only on the velocity-based model.

For wrist movement, AGL, LAD and FAR selected many EMG signals from KF and KE

and often had nonzero FPRs; see Table 2 in the Supplementary Material (Stallrich et al.
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FIG. 5. Estimated coefficients for X7 (left) and X12 (right) under a smoothness-only penalty (top) and the
sparse/smooth estimates from SAFE(z) (bottom). To help interpretation, the x-axis is in terms of previous seconds
from the concurrent time, indicated by 0.00. Darker colors indicate positive velocity (flexion), and lighter colors
indicate negative velocity (extension).

(2020)). SAFE(z) always selected one EMG sensor from each KF and KE , except for WC1
when it selected two signals from each group. SAFE(z) also maintained FPR = 0 for all
datasets.

6.4. EMG effect interpretations. The SAFE(z) estimated effects for all finger/wrist
datasets can be found in Sections B.3 and C.3 of the Supplementary Material (Stallrich et al.
(2020)), respectively. Figure 5 here shows two sets of SAFE(z) estimates γ̂7 and γ̂12 for FC3,
one using only a smoothness penalty (top panels) and another from the final SAFE stage
(bottom panels). Fixing s = 0, concurrent activation of X7 led to finger extension (negative
velocity), while concurrent activation of X12 led to finger flexion (positive velocity). The top
panels suggest the effect of X12 was strongest when the hand was fully extended (negative po-
sition). This is impossible for the consistent movement pattern because the flexor digitorum,
measured by X12, never contracted during maximal finger extension, meaning Xi,12(s) ≈ 0 at
this position. By not penalizing ‖γ12‖2, the estimated effect deviated from 0 while maintain-
ing its smoothness and without degrading the model’s fit. When this penalty was included,
the estimated effects approached 0 at these positions, providing clearer interpretations of the
EMG’s movement contributions. For this reason we use the final stage estimates for interpre-
tation and prediction.

The effect of varying X12 on finger movement was concentrated between 0 < zi < 55,
during which the fingers were in a neutral or flexed position. For these zi , concurrent ac-
tivation of X12 produced finger flexion, while past activation of X12 contributed to finger
extension. The impact of X7 was most relevant between angles −30 < zi < 20, a range of
extended and neutral finger positions. For these zi , concurrent activation of X7 led to finger
extension, while past activation led to finger flexion. This indicates our model successfully
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FIG. 6. In-sample CV MSE means and standard errors for the optimal tuning parameters of the last selection
stage (top panel) and out-sample prediction MSE means and standard errors (bottom panel) using the remaining
five data sets.

captured the passive force effects from past EMG behavior. Section B.4 of the Supplementary
Material (Stallrich et al. (2020)) gives the interested reader additional interpretations of these
effects.

6.5. Prediction performance. Each model for a given dataset was used to predict move-
ment for the remaining five data sets. We calculated the mean and standard error of APEs
across these five holdout samples for each data set and refer to this as out-sample predic-
tion. Prediction was challenging across datasets, particularly when the consistent-movement
models were asked to predict random movement. In-sample predictions were also consid-
ered, referring to the mean and standard error of the CV APEs across the five in-sample folds
under the optimal π∗. Figure 6 shows that across nearly all scenarios, SAFE(z) outperforms
the competitors in mean APE using fewer EMG signals. As expected, finger out-sample APE
for the consistent movement datasets had higher standard errors, likely due to the prediction
of random movements. SAFE(z) APEs for the wrist movement data were consistently small
across the two movement patterns.

7. Simulation study. Recall that the original data were thinned to circumvent potential
issues resulting from temporal correlations between the yi ’s. A simulation study was per-
formed to investigate the impact of covariance misspecification on variable selection perfor-
mance. The FC3 data and its estimated coefficients (Figure 5) were used to generate responses
under various error structures. The data-generating model was yi = ∫

S Xi7(s)γ̂7(s, zi) ds +∫
S Xi,12(s)γ̂12(s, zi) ds + εi , where εi was a zero-mean error process with isotropic covari-

ance function

cov(εi, εi′) = σ 2
h

[
1
(
i = i ′

) + θ exp
{−(∣∣i − i′

∣∣/η)2}]
.
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TABLE 2
Average performance metrics across 100 data sets for six covariance settings θ = 0.25,10,100 and correlation

decay that is slow(η = 100) and fast (η = 10) with model based on fits of dataset FC3. The top and bottom row in
each cell represents the results of the first and second stage, respectively. TPR = 1 for all scenarios

Settings AGL LAD FAR SAFE(z)

θ Decay RSP [Size] FPR [FP] RSP [Size] FPR [FP] RSP [Size] FPR [FP] RSP [Size] FPR [FP]

0.25 Slow
0.86 [3.92]
0.95 [2.66]

0.13 [1.74]
0.05 [0.62]

0.76 [5.37]
0.90 [3.36]

0.23 [3.00]
0.10 [1.26]

0.93 [2.94]
0.94 [2.88]

0.04 [0.55]
0.04 [0.50]

0.88 [3.66]
0.99 [2.06]

0.13 [1.62]
0.01 [0.06]

0.25 Fast
0.83 [4.32]
0.95 [2.71]

0.17 [2.14]
0.05 [0.64]

0.73 [5.85]
0.89 [3.58]

0.27 [3.44]
0.11 [1.41]

0.94 [2.90]
0.94 [2.84]

0.04 [0.52]
0.04 [0.50]

0.86 [3.93]
0.99 [2.12]

0.15 [1.90]
0.01 [0.12]

10 Slow
0.88 [3.62]
0.94 [2.81]

0.12 [1.49]
0.06 [0.73]

0.77 [5.20]
0.93 [2.98]

0.22 [2.90]
0.07 [0.90]

0.95 [2.75]
0.95 [2.71]

0.03 [0.41]
0.03 [0.38]

0.93 [3.04]
0.99 [2.02]

0.08 [1.02]
0.01 [0.02]

10 Fast
0.75 [5.47]
0.92 [3.15]

0.24 [3.17]
0.08 [1.07]

0.64 [7.07]
0.90 [3.41]

0.36 [4.63]
0.10 [1.34]

0.90 [3.35]
0.91 [3.20]

0.07 [0.84]
0.06 [0.74]

0.84 [4.24]
0.99 [2.07]

0.17 [2.19]
0.01 [0.07]

100 Slow
0.87 [3.81]
0.94 [2.82]

0.13 [1.66]
0.06 [0.75]

0.76 [5.38]
0.91 [3.22]

0.24 [3.05]
0.09 [1.13]

0.95 [2.76]
0.95 [2.69]

0.04 [0.46]
0.03 [0.42]

0.92 [3.08]
0.99 [2.05]

0.08 [1.06]
0.01 [0.05]

100 Fast
0.76 [5.39]
0.94 [2.91]

0.24 [3.09]
0.07 [0.87]

0.61 [7.48]
0.87 [3.89]

0.38 [4.91]
0.14 [1.78]

0.90 [3.39]
0.90 [3.34]

0.06 [0.80]
0.06 [0.77]

0.83 [4.41]
0.99 [2.08]

0.18 [2.31]
0.01 [0.08]

Here, θ is related to the dominant sources of dependence; θ = 0 means that the responses are
uncorrelated with var(εi) = σ 2

h while large θ reflects a higher degree of dependency and, for
fixed σ 2

h , increases variance to var(εi) = σ 2
h (1+θ). In addition, η > 0 controls the correlation

decay where larger values imply slower correlation decay. The simulation study varied over
two factors:

• θ = 0.25,10,100
• η = 10 (Fast Decay) and 100 (Slow Decay)

and sets σ 2
h so that var(εi) = σ 2

h (1 + θ) equals the in-sample MSE from the FC3 data appli-
cation. For each setting we simulated 100 independent samples with N = 200 observations
and analyzed the data with all four competitors from Section 6 with S = 2 stages.

Table 2 shows the average variable selection for the six covariance scenarios. All methods
had a TPR = 1 and a negligible FPR. For example, SAFE(z)’s FPR never exceeded 0.009.
We also calculated the proportion of all 100 second-stage models with size greater than 2. For
SAFE(z), the largest proportion was 10% while the other methods had proportions ranging
from 15% (AGL, θ = 0.25, η = 10) to 72% (FAR, θ = 100, η = 100).

Figure 7 shows the in-sample MSE performance for the six covariance scenarios. As ex-
pected, the MSEs were larger for η = 100 than for η = 10, but they only slightly increased
as θ increased. These results provide evidence of SAFE’s robustness to covariance misspec-
ification. Section D of the Supplementary Material (Stallrich et al. (2020)) has results from
another numerical experiment that investigated the role of model misspecification on variable
selection and prediction.

8. Discussion and extensions. In this paper we proposed a new PC decoder based on a
covariate-varying, scalar-on-function linear model to account for the biomechanical charac-
teristics involved in hand movement. The functional predictors were the recent past behavior
of EMG signals measured across the subject’s limb, and the responses were finger and wrist
velocity during flexion/extension. The effects for each EMG signal were allowed to vary with
the current finger or wrist position. The bivariate effects were approximated using a tensor
product of basis expansions whose coefficients were estimated with a group LASSO penalty
that combined smoothing and sparseness penalization. We developed an adaptive, multistage
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FIG. 7. Average and standard deviation of in-sample MSEs across 100 datasets for six covariance settings
θ = 0.25,10,100 and Slow(η = 100)/Fast(η = 10) correlation decay with model based on fits of dataset FC3.
The bottom reference line is the in-sample MSE from the analysis of the FC3 data.

estimation procedure, called Sequential, Adaptive Functional Estimation (SAFE), motivated
by Meinshausen (2007), Wei and Huang (2010) and Guo et al. (2015). Section 6 showed our
proposed decoder estimated with SAFE was able to recover a sparse set of important EMG
signals for finger and wrist movement for an AB subject while competitors based on a more
conventional model overselected and had worse prediction. A numerical experiment based on
the data application also showed SAFE’s robustness to covariance misspecification for data
with high signal-to-noise ratios.

Our methodology provides biomedical engineers new tools for developing a TRA prosthe-
sis controller. For example, if it is difficult to identify the function and location of residual
muscles in the residual limb, engineers can first place high-density EMG electrodes over the
skin surface. If the TRA performs mirrored hand movements with both their intact and resid-
ual limb, movement data can be captured from their intact limb that corresponds to the EMG
patterns collected from the residual limb. Using our decoder and SAFE, engineers can remove
redundant EMG signals and examine the estimated effects to interpret the role each EMG sig-
nal has on movement. This reduces the computational burden associated with streaming and
processing large amounts of EMG data that hinder state-of-the-art PR methods and provides
a unique way to determine EMG electrode location for musculoskeletal model-based PCs.

The proposed SAFE procedure opens several research questions. This paper focuses on
approximating the bivariate coefficients with tensor products of finite dimensional basis func-
tions, which can cause the number of parameters to increase exponentially. Other economical
basis functions should be explored, such as splines over a triangulation or radial basis func-
tions, although these involve computational challenges for calculating the penalty. Another
avenue is to extend it to functional linear models where the functional measurements are
perturbed by error or are sparsely measured. In this case, one could smooth the functional
covariates using existing approaches (Xiao et al. (2016), Yao, Müller and Wang (2005)) and
employ them in a SAFE selection algorithm. We have also investigated constructing predic-
tion intervals based on the distribution-free split-conformal prediction sets (see Section E of
the Supplementary Material (Stallrich et al. (2020)) for a short demonstration), which as far
as the authors are aware has not been applied to functional regression.
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We conjecture that SAFE requires more stages when the true model is driven by few latent
variables. To see this, let L1(s) and L2(s) be two latent factors where E(yi |L1(s),L2(s)) =∫
S L1(s)β1(s) ds + ∫

S L2(s)β2(s) ds. Suppose we perform variable selection across K ob-
served covariates where, for simplicity, Xk(s) = αk1L1(s) + αk2L2(s). If we attempt to fit a
model with these covariates, we get the following model equivalency:

K∑
k=1

∫
S

Xk(s)γk(s) ds =
K∑

k=1

∫
S

(
αk1L1(s) + αk2L2(s)

)
γk(s) ds

=
∫
S

L1(s)
∑
k

αk1γk(s) ds +
∫
S

L2(s)
∑
k

αk2γk(s) ds.

For the fitted model to approximate the true model, the estimates, γ̂k(s), should satisfy∑
k αk1γ̂k(s) ≈ β1(s) and

∑
k αk2γ̂k(s) ≈ β2(s). That is, the true effects β1(s) and β2(s) will

be partitioned across the γ̂k(s) and variable selection across the Xk(s) implies we want a
sparse partition. Across the multiple stages of SAFE, these partitioned effects will be re-
flected in the updated adaptive weights and performing an additional fitting stage will even-
tually cause the predictors with larger weight to be removed from consideration. The number
of required stages to arrive at a sparse model is then likely driven by the αk1 and αk2. Paul
et al. (2008) investigated variable selection for predictors with this latent factor structure,
and many of their ideas could be extended to the functional variable problem. Their tech-
nique may be combined with SAFE selection and would allow us to efficiently screen a large
number of EMG signals.
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SUPPLEMENTARY MATERIAL

Additional numerical results (DOI: 10.1214/20-AOAS1324SUPPA; .pdf). The Supple-
mentary Material (Stallrich et al. (2020)) contains details for data re-construction, additional
results for finger and wrist movement analysis, simulation results, and demonstration of con-
structing distribution-free prediction intervals using split conformal inference.

R code, and data (DOI: 10.1214/20-AOAS1324SUPPB; .zip). R code and data (Stallrich
et al. (2020)) are provided in a zip file.
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