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Abstract. We establish the general equivalence between rare event process for arbitrary continuous functions whose maximal values
are achieved on non-trivial sets, and the entry times distribution for arbitrary measure zero sets. We then use it to show that for
differentiable maps on a compact Riemannian manifold that can be modeled by Young’s towers, the rare event process and the limiting
entry times distribution both converge to compound Poisson distributions. A similar result is also obtained on Gibbs–Markov systems,
for both cylinders and open sets. We also give explicit expressions for the parameters of the limiting distribution, and a simple criterion
for the limiting distribution to be Poisson. This can be applied to a large family of continuous observables that achieve their maximum
on a non-trivial set with zero measure.

Résumé. Nous établissons l’équivalence générale entre les processus d’événements rares pour des fonctions continues arbitraires dont
les valeurs maximales sont atteintes sur des ensembles non-triviaux, et la distribution des temps d’entrée pour des ensembles de mesure
nulle arbitraires. Nous utilisons ensuite cette équivalence afin de montrer que, pour des applications différentiables sur une variété
riemannienne compacte qui peuvent être réalisées par des tours de Young, le processus d’événements rares et la distribution limite des
temps d’entrée convergent tous deux vers des lois de Poisson composées. Un résultat similaire est également obtenu pour des systèmes
de Gibbs–Markov, à la fois pour des ensembles cylindriques et ouverts. Nous donnons également des expressions explicites pour les
paramètres de la loi limite, et un critère simple garantissant que cette dernière est une loi de Poisson. Tout ceci peut être appliqué à une
grande famille d’observables continues qui atteignent leur maximum sur un ensemble non-trivial de mesure nulle.
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1. Introduction

The extreme value theory and its relation with entry/return times statistics have been a hot topic for the last decade. For
a given potential function, one observes the occurrence of extreme phenomenon, when the observation of the potential
along the underlying dynamical systems achieves a very high value. When the maximal value of the potential is achieved
at a generic point, the extreme value distribution is known to converge to one of the three limiting laws (Gumbel, Fréchet,
or Weibull distribution, all of which are of the form e−τ ), which agrees with the classical extreme value theory. We invite
the reader to the book [11] for more details. However, when the maximal value is achieved on a periodic point, one will
pick up a point mass at the origin. This is because the periodic behavior will generate a cluster of exceedances, which
will prevent generic points from entering its neighborhoods. It is then shown in [15] that for non-periodic points, the total
number of exceedances within a time scale suggested by Kac’s theorem is Poissonian in limit, while for periodic points
the limiting distribution is compound Poisson. In particular, the compound part is a geometric distribution, with parameter
θ given by the portion of points that remains in the neighborhood under the iteration of f m where m is the period. This is
generally known as the Pólya–Aeppli distribution, and the parameter θ is sometimes called the extremal index.

For the limiting distribution of entry/return times, Pitskel [26] proved that for Markov chains, the number of entries to
cylinder neighborhoods around a generic point is Poissonian. This result is later generalized to systems with various types
of mixing properties, see for example [1], and to dynamically defined Bowen-balls (see [20]). The same result holds for
geometric balls when the map is modeled by Young’s towers, which is proven by Collet, Chazottes [9] for towers with
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exponential tails, and Haydn, Wasilewska [17], Pene, Saussol [24] for polynomial tails. In the case of periodic points, it
is shown in [18] that the number of returns is close to a Pólya–Aeppli distribution.

It is not a coincidence that extreme value distributions and entry times distributions agree for both non-periodic and
periodic points. This is proven in [14], where the authors show that these distributions are equivalent if one considers
potential functions that have certain symmetry and regularity near the maximal value.

An important yet very difficult step forward is to study the entry/exceedance distribution for the neighborhoods of any
measure zero set. One of the key motivations lies in the shortest distance between different orbits, which is studied in [7].
If one defines φ(x, y) = − log min0≤k≤n−1{d(f kx,f ky)} which is the shortest distance between the orbits segments of x

and y before time n, then φ can be seen as a potential function on the product system f × f : M × M → M × M which
achieves its maximal value (infinity) along the diagonal {(x, x) : x ∈ M}. Then to study the distribution property of φ, one
is forced to look at the entry/return times to the diagonal under the product system. Another motivation is given in [13],
where the authors study the extreme value distribution near a Cantor set.

One of the most important advances in this direction is in [12], where it is shown that the marked rare event point
process (i.e., one considers not only the number of exceedances, but also the spatial position where such exceedances
happen) will converge to the compound Poisson process with intensity θ and multiplicity d.f. π , under the assumption
that:

(1) the thresholds {un} are taken such that the measure of {X0 > un} is of order 1/n; here X0 = ϕ is the potential function
(below we will refer to it as the observable);

(2) there is a normalizing sequence {an} and θ ∈ [0,1], a probability distribution π(x) such that

lim
n

P(Rp,0(un, x/an))

P(Un)
= θ

(
1 − π(x)

);
(3) two technical conditions and hold;
(4) the Condition ULCp(un) (Unlikely Long Clusters).

More importantly, the conditions and can be verified if one assumes that the system has decay of
correlations against L1 functions. However, this is known to be a very strong assumption as it implies the decay of
correlations against L∞ functions at exponential speed. In the meantime, it is unclear when the intensity, θ and the
distribution, π(x) exist.

A more recent breakthrough is obtained in [19]. In this paper, the authors establish the existence of the parameters θ

and {λ�} for the compound Poisson distribution using the short return probabilities {α̂�}; they also prove the convergence
of the entry times distribution using a compound binomial approximation theorem. One of the key ingredients in the
proof is the desynchronization of the neighborhoods Un with the cut-off of the short return time K (previously, the short
return time depends on n. See equations (2) and (8)). This allows them to easily show convergence without worrying
about the meaning of a ‘short’ return. Then, they consider a family of systems that are ‘mostly’ hyperbolic which was
first introduced in [21] by Haydn and the author of this paper. Such systems satisfy:

(a) the stable and unstable disks are globally defined;
(b) the contraction/expansion/distortion on such disks are ‘good’ except on a set with small measure;
(c) the measure can be globally decomposed into conditional measures along the unstable disks;
(d) the system has polynomial decay of correlations.1

In this paper, we will consider both cylinders and open neighborhoods around an arbitrary null set. The main goal is to
establish the convergence of the (unmarked) rare event process2 to the compound Poisson distribution, for maps that are
either Gibbs–Markov or modeled by Young’s towers. Note that we do not assume how the measure of such neighborhoods
approach zero, nor do we impose any condition such as ULC(un). Following the work of [19], the parameters {λ�} will
be determined explicitly by the short return probabilities of such neighborhoods. We will demonstrate how to control the
error term in the compound binomially approximation theorem (which are, unsurprisingly, very similar to the conditions

and in [12]), using either φ-mixing or decay of correlations against L∞ functions, both at polynomial speed.
We also obtain several approximation results under general settings (Lemmas 5.6, 5.7) along the way, which allows

one to approximate open neighborhoods with cylinders. As a corollary, we provide an easy-to-check criterion for the

1It is likely that such maps are, in fact, modeled by Young’s towers with polynomial tails; see [3] and [5].
2Using the word ‘process’ may be a slight exaggeration, as we will only show the convergence of the limiting distribution instead of the convergence of
entire process. However, we believe that such convergence can be obtained by modifying the compound binomial approximation theorem in [19] (i.e.,
show the approximation by the compound binomial process) following the work of [12,15], which will probably require a standalone paper.
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limiting distribution to be Poisson. We also show that for potential functions achieving their maximal value on a null set,
the extreme value distribution converges to e−α1τ (with α1 being the extremal index).

The secondary products of our proof are Proposition 5.4 and Proposition 6.2, where we show that whether or not one
synchronizes K with n will not affect the parameter of the limiting distribution. This, in particular, proves that the α1
defined by (5) below is indeed the extremal index studied in [13].

We do not aim to provide specific examples in this paper, as it has been shown in [4] that every system with an
absolutely continuous physical measure and sufficient decay of correlations must admit Young’s tower. On the other
hand, computing the parameters and verifying assumptions, in particular 3 and 4, are usually lengthy (see, for instance,
those examples in [12,13,16,19]), and will be carried out in a standalone paper.

2. Statement of results

A random variable W is compound Poisson distributed, if there exists i.i.d. random variables Zj , j = 1,2, . . . taking value
in positive integers, and an independent Poisson distributed random variable P , such that W = ∑P

j=1 Zj (with W = 0
when P = 0). In other words, the number of occurrences within each time interval can be partitioned into independent
clusters, whose total number follows a Poisson distribution while the number of occurrences within each cluster is dis-
tributed according to Z1. If we set λ� = P(Z1 = �), � = 1,2, . . . and let s be the parameter for P , then we say that W is a
compound Poisson distributed for the parameters {sλ�}. More details on the compound Poisson distribution will be given
in Section 3.

Throughout this paper, unless otherwise specified, we will assume that (M,B,μ,f ) is a measure preserving systems
with M a compact Riemann manifold, f : M → M a differentiable map, B the Borel σ -algebra and μ an f -invariant
probability measure. We will frequently write P = μ when we interpret μ(A) as the probability of the event A.

We take a continuous observable (potential function)

ϕ : M → R∪ {±∞},
such that the maximal value of f (which could be positive infinite) is achieved on a μ measure zero closed set �, and
consider the process generated by the dynamics of f and the observable ϕ:

X0 = ϕ, X1 = ϕ ◦ f, . . . , Xk = ϕ ◦ f k, . . . .

Let {un} be a non-decreasing sequence of real numbers and {wn} a non-decreasing sequence of integers with un → supf

and wn → +∞, such that

wnP(X0 > un) → τ ∈R
+ as n → ∞ (1)

for some positive real number τ . We will think of un as a sequence of thresholds, and the event {Xk > un} marks an
exceedance above the threshold un. Also denote by Un the open set

Un := {X0 > un}.
We are interested in the total number of such exceedances before time N . To this end, we define, for integers n and N ,

ξN
un

(x) =
N−1∑
k=0

I{Xk>un}(x),

where IU is the indicator function of the set U . This is known as the rare event process in [15], under the special case
wn = n.

To characterize the limiting distribution of ξN
un

as n → ∞ we first observe that since {un} is non-decreasing and f is
continuous, we have Un ⊂ Un−1, and⋂

n

Un = �.

It then follows that μ(Un) ↘ 0 = μ(�). Furthermore, (1) means that the measure of Un is of the order τ/wn.
To state the parameters of the compound Poisson distribution, we assume that the following limits exist for K large

enough and every � ≥ 1:

α̂� = lim
K→∞ lim

n→∞μUn

(
τ �−1
Un

≤ K
)
, (2)
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where μUn(τ
�−1
Un

≤ K) is the conditional probability of having at least (� − 1) returns to Un before time K . We will see
later that one only need to assume that the limit in n exists, since α̂(K) := limn→∞ μUn(τ

�−1
Un

≤ K) is monotonic in K .
See the discussion in Section 3.1.

Then we put for every integer � > 0 and K > 0,

λ�(K,Un) = P(
∑2K

i=0 IUn ◦ f i = �)

P(
∑2K

i=0 IUn ◦ f i ≥ 1)
. (3)

In other words, λ�(K,Un) is, conditioned on having an entry to the set Un, the probability to have precisely � entries in
the following time interval with length 2K + 1.

We will see later that the existence of the limits defining α̂� implies the existence of the following limits:

λ� = lim
K→+∞ lim

n→∞λ�(K,Un), (4)

and

α1 = lim
K→∞ lim

n→∞μUn(τUn > K). (5)

The real number α1 ∈ (0,1) is generally known as the extremal index (EI). See Freitas et al [15].
More importantly, assuming the existence of {α̂�}, we will see that {λ�} satisfies

∑
� λ� = 1 (thus can be realized as

the distribution of some random variable X0), and can be explicitly determined using {α̂�}. The relation between these
sequences can be found in Section 3.1, in particular, Theorem 3.4.

Next, we turn our attention to the nested sequence {Un}. In the most general setting, the geometry of the set Un can
be quite bizarre. To deal with this issue, we will make the following assumption on the shape of Un. For each rn > 0, we
approximate Un by two open sets (‘o’ and ‘i’ stand for ‘outer’ and ‘inner’):

Uo
n =

⋃
x∈Un

Brn(x), and Ui
n = Un

∖ ( ⋃
x∈∂Un

Brn(x)

)
.

It is easy to see that

Ui
n ⊂ Un and Un ⊂ Uo

n ,

with

d
(
Ui

n, (Un)
c
) ≥ rn, and d

(
Un,

(
Uo

n

)c) ≥ rn.

The following assumption requires Un to be well approximable by U
i/o
n .

Assumption 1. There exists a positive, decreasing sequence of real numbers {rn} with rn → 0 (whose rate will be
specified later, see Theorem E), such that

μ
(
Uo

n \ Ui
n

) = o(1)μ(Un). (6)

Here o(1) means the term goes to zero under the limit n → ∞. This also applies to the rest of the paper.
We will also impose an assumption on the topological boundary of Un.

Assumption 2. The sets Un have ‘small boundaries’, in the sense that for r small enough (but doesn’t need to be too
small, depending on n), μ(Br(Un)) = μ(Un) + F(r) where Br(Un) = ⋃

x∈Un
Br(x), and F(r) is a function of r with

F(r) → 0 as r → 0 (with certain rate that will be specified later, see Theorems D and E).

Next, we have to assume that the set {Un} consists mainly of ‘good points’, in the sense that the tail of the tower
has small measure in Un. This assumption is more technical and as a result, the precise statement will be postponed to
Section 6 (see the statement of Theorem E).
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Assumption 3. 3 There exists K0 > 0 and p′′ > 1, such that for every n large enough and every K0 < k < wn, there is
0 ≤ s(k) � k/2, such that the set (for the precise definition, see (28)):

�̃i := {
x ∈ �0,i : the last visit to �0 before time k is in �0,m with Rm < s(k)

}
satisfies

G(k) :=
∑

i

∑Ri

j=0 μ0(f
−jUn ∩ (�0,i \ �̃i))

μ(Un)
≤ Ck−p′′

.

Finally, if f is invertible, we will make the following additional assumption on the conditional measure of Un.

Assumption 4. 4 There exists C > 0, such that for each 0 ≤ b ≤ s(1/μ(Un)) and γ u ∈ �u, we have

μγ u

(
f −bUn ∩ �0

) ≤ Cμ(Un),

for n large enough. Here �0 is the base of the tower, and μγ u are the conditional measures of μ0 = μ|�0 along leaves in
�u (the precise definition of μ0 and �u are in Section 3.3).

Note that the assumption holds trivially for those γ u ∈ �u that do not intersect with f −b(Un).
With that we are ready to state the main theorem of this article.

Theorem A. Assume that f : M → M is a C1+α non-invertible map that can be modeled by Young’s towers with
summable tail. Let ϕ : M → R ∪ {±∞} be a continuous observable, achieving its maximum on a closed set � with
μ(�) = 0. Assume that there exists a sequence of thresholds {un} such that (1) is satisfied, and the corresponding sets Un

satisfy Assumptions 1 and 2, such that {α̂�} defined by (2) exists and satisfies
∑∞

�=1 �α̂� < ∞.
Suppose one of the following two assumptions holds:

(1) either the tower is defined using the first return map, and Un ⊂ �0 for n large enough;
(2) or Assumption 3 holds, and the decay rate satisfies C(k) = o(k−1).

Then we have

P
(
ξwn
un

= k
) → m

({k})
as n → ∞, where m is the compound Poisson distribution for the parameters {τα1λ�}�.

The previous theorem has a similar formulation in the invertible case:

Theorem B. Assume that f : M → M is a C1+α (local) diffeomorphism that can be modeled by Young’s towers, with
decay rate C(k) = o(k−1). Let ϕ : M → R ∪ {±∞} be a continuous observable, achieving its maximum on a closed set
� with μ(�) = 0. Assume that there exists a sequence of thresholds {un} such that (1) is satisfied, and the corresponding
sets Un satisfy Assumption 1 to 4, with

∑∞
�=1 �α̂� < ∞.

Then the rare event process ξN
un

= ∑N−1
k=0 I{Xk>un} satisfies

P
(
ξwn
un

= k
) → m

({k})
as n → ∞, where m is the compound Poisson distribution for the parameters {τα1λ�}�.

Remark 2.1. In both theorems, the assumption on the continuity of ϕ can be weakened. One only need ϕ to be upper
semi-continuous, and take Un to be the closed set {X0 ≥ un} or its interior. The proof applies without any change. In fact,
the proof below does not depend on whether Un is open or not. This is particularly useful when one considers Cantor-like
sets. See for instance [13].

3A similar condition is verified for geometric balls in [9], see in particular the appendix there. The proof uses the Besicovitch covering lemma, which
clearly does not hold for arbitrary open sets. Therefore we state it as a technical assumption.
4This assumption can be weakened so that μγ u(f −bUn ∩ �0) ≤ Cμ(Un) holds for all γ except on a sequence of sets whose measures (with respect
to the transversal measure on �s ) are small comparing to the measure of Un . One only need to slightly modify the proof in Section 6.2.
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As the first corollary, we give a simple criterion for the limiting distribution to be indeed Poisson. For any measurable
set U ⊂ M, we define the periodic of U , denoted by π(U), as:

π(U) = min
{
k > 0 : f −kU ∩ U �=∅

}
.

This can be seen as the first time that some point in U returns to U . We also define the essential periodic5 for a positive
measure set U to be

πess(U) = min
{
k > 0 : μ(

f −kU ∩ U
)
> 0

}
.

Clearly one has π(U) ≤ πess(U). On the other hand, μ is supported on the entire manifold M and U is open, then we
have π(U) = πess(U), as the nonempty intersection picked up by π(U) must be an open set with positive measure.

Definition 1. We say that a set � intersects every forward orbit at most once, if for every x ∈ M we have

#
{
k ≥ 0 : f k(x) ∈ �

} ≤ 1.

Equivalently, if for every x ∈ �, {k > 0 : f k(x) ∈ �} =∅.

Corollary 2.2. Assume that the nested sequence {Un} satisfies πess(Un) → ∞. Then the parameters α1 and {λ�} exist
and satisfy α1 = 1 = λ1, λ� = 0 for � ≥ 2. Furthermore, if the assumptions of either Theorem A or B hold, then the rare
event process ξun converges to a Poisson distribution with parameter τ .

In particular, if � = ⋂
n Un intersects every forward orbit at most once, then the rare event process ξun converges to a

Poisson distribution with parameter τ .

In particular, if x is a non-periodic point then it is easy to see that π(Br(x)) → ∞ as r → 0. We then recover the
classical result on the Poisson distribution for metric balls at non-periodic points. For a non-trivial example, let f be
the Arnold’s cat map on T

2. Let p be a fixed point of f and take any x ∈ Ws
loc(p). We then take � to be the segment

between x and f (x) inside Ws
loc(p) (with either x or f (x) excluded), then � intersect every forward orbit at most once.

In particular, we have α1 = 1. The same result is obtained in a later work [8, Theorem 2.1(3)] where the proof is much
more involved.

We would also like to point out that a similar condition is observed by Freitas et al in [13, Theorem 3.2] for interval
maps and Cantor sets, where they formulate it as “the dynamics considered is not compatible with the self-similar structure
of the maximal set”.

The second corollary deals with the rare event distribution for the process {Xk}. A similar result is obtained in a recent
work by Freitas et al in [13], assuming two technical conditions, namely and , hold.6

Corollary 2.3. Assume that the conditions of Theorem A or B hold. Then the extremal value process

Mn = max{Xk, k = 0, . . . , n − 1}
satisfies

P(Mwn ≤ un) → e−α1τ

as n → ∞. In particular, if πess(Un) → ∞ then the limiting distribution is e−τ .

This corollary easily follows from the observation that {Mwn ≤ un} = {ξwn
un

= 0}, and for a compound Poisson distri-
bution m with parameters {α1τλ�}, m({0}) = P(P = 0) = e−α1τ where P is the Poisson part of m. See the discussion on
the properties of compound Poisson distribution in Section 3.2.

This paper is organized in the following way: in Section 3 we collect some existing results on the return and entry
times to an arbitrary null set �, and establish the existence of the parameters {λ�} and α1. We will also introduce an

5The period π(·) has been studied extensively in a series of papers (see for example, [27] for the asymptotic behavior, [2] for the fluctuation and [22]
for its relation with the local escape rate. However, as far as the author is aware, the essential period πess(·) has not been previously studied.)
6Similar to the conditions and mentioned earlier, such conditions can be checked if one has decay of correlations against all L1

observables. However, this assumption does not hold for Young’s towers with sub-exponential tails. See the discussion in Remark 3.10.
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abstract compound binomial approximation theorem which will be the main tool to show convergence to a compound
Poisson process.

In Section 4, we will establish the general equivalence between rare event process and entry times, thus converting the
limiting distribution of rare event process for the observable ϕ to the limiting entry times distribution of the set �, on
which ϕ achieves its maximum. The novelty here is that we do not assume the measure of the sets {X0 > un} to be of
order τ/n. This is done in Theorem C.

Then in Sections 5 and 6, we prove the convergence of the entry times distribution to the compound Poisson process, for
non-invertible and invertible systems respectively. To make the paper more interesting, we will use completely different
techniques for these two cases: in the case of non-invertible maps, we will prove the convergence to the compound Poisson
distribution for the induced system using φ-mixing property, then apply an inducing argument to extend the result to the
original map. This yields an interesting theorem by itself (Theorem D), and will allow us to get rid of the very technical
Assumption 3; in the case of invertible maps, we will use fast decay of correlations which is used by [9] and [17].

We would like to point out that in all the theorems in this paper, we do not assume the measure μ to be the SRB measure
(in the invertible case) or the absolutely continuous invariant probability (in the non-invertible case). As is shown in [25]
and several recent papers, Young’s tower usually support many interesting measures other than the SRB measure. Among
them are the equilibrium states of geometric potentials, and sometimes the measure of maximal entropy, where our results
can be applied.

3. Preliminaries

In this section, we will introduce several notations that will be used throughout the paper. Most importantly, we will
introduce the short return and entry times on a sequence of nested sets, and deal with the existence of λ�’s defined by
(4). Then we will state a compound binomial approximation theorem developed in [19], which will enable us to show the
convergence to the compound Poisson distribution. The last subsection contains the general definition of Young’s towers
for both invertible and non-invertible maps.

3.1. Return and entry times on a sequence of nested sets

In this section we recall the general results on the number of entries to an arbitrary null set � within a cluster. For this
purpose, we write, for any subset U ⊂ M,

τU (x) = min
{
j ≥ 1 : f j (x) ∈ U

}
the first entry time to the set U . Then τU |U is the first return time for points in U . Higher order entry times can be defined
recursively:

τ 1
U = τU , and τ

j
U (x) = τ

j−1
U (x) + τU

(
f τ

j−1
U (x)

)
.

For simplicity, we write τ 0
U = 0 on U .

Given a sequence of nested sets Un, n = 1,2, . . . with Un+1 ⊂ Un,
⋂

n Un = � and μ(Un) → 0, we will fix a large
integer K > 0 (which will be sent to infinity later), and assume that the limit

α̂�(K) = lim
n→∞μUn

(
τ �−1
Un

≤ K
)

exists for K sufficiently large and for every � ∈ N. By definition α̂�(K) ≥ α̂�+1(K) for all �, and α̂1(K) = 1 due to our
choice of τ 0. Also note that α̂�(K) is non-decreasing in K for every �. As a result, we have for every � ≥ 1:

α̂� = lim
K→∞ α̂�(K) exists for every �, and α̂1 = 1, α̂� ≥ α̂�+1. (7)

Note that in the definition of α̂, the cut-off for the short return time K does not depend on the set Un. Another way to
study the short return properties for the nested sequence Un is to look at

β� = lim
n→∞μUn

(
τ �−1
Un

≤ sn
)

(8)

for some increasing sequence of integers {sn}, with snμ(Un) → 0 as n → ∞. In other words, one can synchronize K

and n in the same limit. This is the approach taken by Freitas et al in [13]. However, we will see later in Proposition 5.4
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and 6.2 that under our settings, we have β� = α̂�, while the latter is significantly easier to use (also potentially easier for
numerical simulation).

To demonstrate the power of desynchronizing K from n, recall that for any set U , the essential periodic of U is given
by:

πess(U) = min
{
k > 0 : μ(

f −kU ∩ U
)
> 0

}
.

Then the following lemma can be easily verified using the definition of α̂:

Lemma 3.1. Let Un be a sequence of nested sets. Assume that πess(Un) → ∞ as n → ∞, then α̂� exists and equals zero
for all � ≥ 2.

Proof. For each K , one can take n0 large enough such that πess(Un) > K for all n > n0. Then for � ≥ 2,

μUn

(
τ �−1
Un

≤ K
) ≤ μUn

(
K⋃

k=0

f −kUn ∩ Un

)
= 0

since all the intersections have zero measure. �

Note that the converse of this lemma does not hold. Also note that the similar result for β� will require information on
the rate at which π(Un) or πess(Un) → ∞.7 See [22] for more detail.

Now let us come back to the properties of α̂�. We assume that the limit

p�
i = lim

n→∞μUn

(
τ �−1
Un

= i
)

exists for every i ≥ 0, � ≥ 1. This is the limit of the conditional probability of the level sets of the �th return time τ �
Un

.
Then it is shown in [19] that the following relation holds between {α̂�} and {p�

i }.

Lemma 3.2 ([19, Lemma 1]). For every � ≥ 2, we have

α̂� =
∑

i

p�
i .

Note that α̂�(K) is the conditional probability to have at least � − 1 returns in a cluster with length K . If we consider
the level set:

α�(K) = lim
n→∞μUn

(
τ �−1
Un

≤ K < τ�
Un

)
and its limit

α� = lim
K→∞α�(K), (9)

then it is easy to see that α� = α̂� − α̂�+1 which, in particular, implies the existence of α�. It also follows from the previous
lemma that

α� =
∑

i

(
p�−1

i − p�
i

)

for � ≥ 2. In the special case � = 1, we have

α1 = lim
K→∞ lim

n→∞μUn(τUn > K) = 1 −
∑

i

p2
i . (10)

7Since it is not always possible to take sn = πess(Un)−1. See for example the recent work [8] where Un is taken to be a neighborhood of a line segment

with radius 1
n , and the system in question is Anosov. In several cases of [8, Theorem 2.1] the authors chose sn = (logn)5, which is much larger than

πess(Un).
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To see the relation between {α�} and {λk} defined by (3) and (4), we put

ZK
n =

2K∑
i=0

IUn ◦ f i

which counts the number of entries to Un in a cluster with length 2K . Then α�(2K) = limn μUn(Z
K
n = �), and (3) can be

written as

λ�(K,Un) = P
(
ZK

n = �|ZK
n > 0

) = P(ZK
n = �)

P(ZK
n > 0)

.

Let us also introduce the notation

ZK,−
n =

K−1∑
i=0

IUn ◦ f i, and ZK,+
n =

2K∑
i=K

IUn ◦ f i.

Then ZK
n = Z

K,−
n + Z

k,+
n . (9) then becomes

α� = lim
K→∞ lim

n→∞P
(
ZK,−

n = �|Un

) = lim
K→∞ lim

n→∞P
(
ZK,+

n = �|f K(Un)
)
, (11)

where the second equality follows from the invariance of μ. Note that the same expression holds in the case � = 1.
Define WK

n = ∑K
i=0 IUn ◦ f i = Z

K,−
n + IUn ◦ f K . Then it follows that

α� = lim
K→∞ lim

n→∞P
(
WK

n = �|Un

)
.

The next lemma controls the probability to have a very long cluster of entries.

Lemma 3.3 ([19, Lemma 2]). Assume that the limits in (7) and (9) exist and satisfy
∑∞

�=1 �α̂� < ∞. Then for every
η > 0, there exists K0 > 0 such that for all K ′ > K ≥ K0, we have

PUn

(
WK ′−K

n ◦ f K > 0
) ≤ η,

for all n large enough (depending on K and K ′).

Finally, we give the relation between {λ�} and {α�}.

Theorem 3.4 ([19, Theorem 2]). Assume that Un is a sequence of nested sets with μ(Un) → 0. Assume that the limits in
(7) exist for K large enough and every � ≥ 1. Also assume that

∑∞
�=1 �α̂� < ∞.

Then

λ� = α� − α�+1

α1
,

where α� = α̂� − α̂�+1. In particular, the limit defining λk exists. Moreover, the average length of the cluster of entries
satisfies

∞∑
�=1

�λ� = 1

α1
.

Note that by (4), λ� ≥ 0 as long as they exist. This in turn shows that {α�} is a non-increasing sequence in �, which,
surprisingly enough, cannot be easily seen from their definitions. We also have

∑
� λ� = 1 due to the telescoping sum.

The following lemma is a byproduct of the proof of the previous theorem. Write I
i = IUn ◦ f i , we get:

Lemma 3.5. For every η > 0, we have∣∣P(
ZK,−

n = k,ZK,+
n = � − k, IK = 1

) − P
(
ZK,−

n = k′,ZK,+
n = � − k′, IK = 1

)∣∣ ≤ ημ(Un)

for all 0 ≤ k, k′ < �, provided that K and n are large enough.
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To conclude this section, we introduce the next lemma on the entry times (note that the probability below is NOT
conditioned on Un), which will be used to show the convergence of the parameters of the compound Poisson distribution:

Lemma 3.6 ([19, Lemma 3]). Under the assumptions of Theorem 3.4, we have

lim
K→∞ lim

n→∞
P(τUn ≤ K)

Kμ(Un)
= α1.

3.2. Compound Poisson distribution and a compound binomial approximation theorem

Here we review the general properties of compound Poisson distributions and state the approximation theorem that was
proven in [19].

A probability measure m on N0 = N ∪ {0} is compound Poisson distributed with parameters {sλ� : � ≥ 1}, if the
probability generating function ϕm is given by

ϕm(z) = exp

(∫ ∞

0

(
zx − 1

)
dρ(x)

)
,

where ρ is the measure on N defined by ρ = ∑
� sλ�δ�; here δ� is the point mass at �. If we write L = ∑

� sλ�, then
L−1ρ becomes a probability measure. Let P be a Poisson random variable with parameter L, and Zj , j = 1, . . . an i.i.d.
sequence of random variables with

P(Zj = �) = λ� = L−1sλ�.

Then the random variable W = ∑P
j=1 Zj has a compound Poisson distribution. We will refer to P as the Poisson part,

and Zj as the compound part of W . If we have in addition that
∑

�≥1 λ� = 1 (which is the case in this paper due to
Theorem 3.4 and the remark afterward), then L = s, and E(W) = sE(Z1). Moreover, we will see later (Remark 3.8) that
s = τα1, which is the desired parameter for Theorems A and B.

Just like the classical Poisson distribution can be approximated by binomial distributions, compound Poisson distribu-
tion can be approximated by compound binomial distributions with the same compound part. For this purpose, we take a
large integer N , a parameter s > 0 and put p = s/N . Let Q be a binomially distributed random variable with parameters
(N,p), and define

W ′ =
Q∑

j=1

Zj ,

where Z′
j s are i.i.d. random variables as before. W ′ has generating function ϕW ′(z) = (p(ϕZ1 −1)+1)N , where ϕZ1(z) =∑

� z�λ� is the generating function of Z1. Note that as N tends to infinity, Q converges to a Poisson distribution with
parameter s, thus W ′ will converge to a compound Poisson distribution W with parameters {sλ�}. This can be easily
proven by checking the convergence of the generating function.

The following theorem gives the convergence of a dependent, stationary {0,1}-valued process to a compound binomial
distribution:

Theorem 3.7 ([19, Theorem 3]). Let {Xn}n∈N be a stationary {0,1}-valued process and WN = ∑N
i=0 Xi for some

large integer N . Let K , � be positive integers such that �(2K + 1) < N and define Z = ∑2K
i=0 Xi , Wb

a = ∑b
i=a Xi .

Let m̃ be the compound binomial distribution measure where the binomial distribution has values p = P(Z ≥ 1) and
N ′ = N/(2K + 1), and the compound part has probabilities λ� = P(Z = �)/p.

Then there exists a constant C, independent of K and �, such that∣∣P(
WN = k

) − m̃
({k})∣∣ ≤ C

(
N ′(R1 +R2)

) + �P(X0 = 1),

where

R1 = sup
M∈[�,N ′]

q∈(0,N ′−�)

∣∣∣∣∣
q−1∑
u=1

(
P
(
Z = u ∧ W

M(2K+1)
�(2K+1) = q − u

) − P(Z = u)P
(
W

M(2K+1)
�(2K+1) = q − u

))∣∣∣∣∣,
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and

R2 =
�∑

n=2

P
(
Z ≥ 1 ∧ Z ◦ f (2K+1)n ≥ 1

)
.

Remark 3.8. If one takes a sequence of nested sets {Un} with μ(Un) → 0, then the parameters of the binomial part are
p = P(τUn ≤ 2K) and N ′ = τ

(2K+1)μ(Un)
. Then as n → ∞ then K → ∞, the binomial part will converge to a Poisson

distribution with parameter:

s = lim
K

lim
n

pN ′ = τ lim
K

lim
n

P(τUn ≤ 2K)

(2K + 1)μ(Un)
= τα1,

due to Lemma 3.6. As a result, the parameters of the compound part will converge to sλ� = τα1λ�, as desired.

Remark 3.9. This theorem and its proof are similar to the abstract Poisson approximation theorem by Collet and Cha-
zottes [9], where the error terms R1 and R2 are also similar to the error terms in the classical Chen–Stein method by
Arratia el al [6]. A Chen–Stein method approach to the compound Poisson distribution is also under development by
Gallo, Haydn and Vaienti [16].

However, we would like to point out that the Chen–Stein method may not be suitable for invertible maps with Young’s
towers, due to the gap in both error terms being opened towards the past, making it difficult to apply the decay of
correlations.

Remark 3.10. The error terms R1 and R2 are similar to the conditions Dp(un)
∗ and D′

p(un)
∗ used by Freitas et al in

[15]. As we will see later, R1 can be verified similar to Dp using decay of correlations against L∞ functions. On the
other hand, the proof of D′

p in [15] requires decay of correlations against L1 functions, which does not hold for Young’s

towers with less than exponential tail. This is because decay of correlations against L1 functions at summable rate implies
the decay of correlations again all L∞ functions with exponential rate [4, Theorem B].

However, as we will see in later sections, the error term R2 is very easy to verify due to the desynchronization between
K and n.

3.3. Young’s towers

Young’s towers, also known as the Gibbs–Markov–Young structure, were first introduced by Young in [29] and [30] as a
discrete time suspension over a countable Markov map. The base of the tower is constructed in a way such that every time
a partition set returns, it will be mapped to the entire base, with well controlled hyperbolicity and distortion estimates. It
turns out that the decay of correlations for the tower depends on the time it takes for points to return. The first paper, [29],
deals with the local diffeomorphisms on compact manifolds whereas the second paper, [30], contains a more abstract
setting for non-invertible systems. Below, we will discuss these two cases separately.

3.3.1. The non-invertible case
In this subsection we assume that f is a differentiable map of a Riemannian manifold M . Assume that there is a subset
�0 ⊂ M with the following properties:

(i) �0 is partitioned into disjoint sets �0,i , i = 1,2, . . . and there is a return time function R : �0 → N, constant on
the partition elements �0,i , such that f R maps �0,i bijectively to the entire set �0. We write Ri = R|�0,i

.

(ii) For j = 1,2, . . . ,Ri − 1 put �j,i = {(x, j) : x ∈ �0,i} and define � = ⋃∞
i=1

⋃Ri−1
j=0 �j,i . Note that {(x,0) : x ∈

�0,i} can be naturally identified with �0,i . � is called the Markov tower for the map f . It has the associated partition
A= {�j,i : 0 ≤ j < Ri, i = 1,2, . . . } which typically is countably infinite. The map F : � → � is given by

F(x, j) =
{

(x, j + 1) if j < Ri − 1,

(T x,0) if j = Ri − 1,

where we put T = f R for the induced map on �0. If we denote by π� : � → M, π�((x, j)) = f j (x) then π� semi-
conjugates F and f .

(iii) Non-uniformly expanding: there is 0 < κ < 1 such that for all x, y ∈ �0,i , d(T x,T y) > κ−1d(x, y). Moreover,
there is C > 0 such that d(f kx,f ky) ≤ Cd(T x,T y) for all x, y ∈ �0,i and 0 ≤ k < Ri .
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(iv) The separation time function s(x, y), x, y ∈ �0, is defined as the largest positive n so that (f R)j x and
(f R)j y lie in the same sub-partition elements for 0 ≤ j < n, i.e. (f R)j x, (f R)j y ∈ �0,ij for some i0, i1, . . . , in−1

while (f R)j x and (f R)j y belong to different �0,i ’s. We extend the separation time function to all of � by putting
s(x, y) = s(FR−j x,FR−j y) for x, y ∈ �j,i .

(v) There is a finite given ‘reference’ measure on �0 which can be lifted to � by F . We denote the measure on �0 by

ν0 and the lifted measure by ν, and assume that the Jacobian JF = d(F−1∗ ν)

dν
is Hölder continuous in the following sense:

there exists a λ ∈ (0,1) so that∣∣∣∣Jf Rx

Jf Ry
− 1

∣∣∣∣ ≤ C2λ
s(T x,T y)

for all x, y ∈ �0,i , i = 1,2, . . . .
The reference measure on �0 is often taken to be the Riemannian volume restricted to �0. If the return time R is

integrable with respect to ν0, i.e.,∫
�0

R dν0 < ∞,

then by [30, Theorem 1], there exists an F -invariant probability measure μ̃ on � which is absolutely continuous with
respect to ν. Then the pushed forward measure μ = π∗μ̃ is a measure on M which is absolutely continuous with respect
to the Riemannian volume.

When the return time function R is the first return time of x to the base �0, i.e., R(x) = τ�0(x), then we say that the
tower is defined using the first return map. In this case, the semi-conjugacy π indeed conjugates the tower with the real
dynamics.

The set {x : (R(x) > k)} is usually referred to as the tail of the tower. It has been shown in [30] that if ν0(R > k) ≤
Ck−p for some C > 0 and p > 1, then the system has decay of correlations for Hölder (or Lipschitz) functions against
L∞ functions at polynomial rate: let Cγ be the space of γ -Hölder functions from M to R; then for any functions φ ∈ Cγ

and ψ ∈ L∞, we have∣∣∣∣
∫

M
φ · ψ ◦ f k dμ −

∫
M

φ dμ

∫
M

ψ dμ

∣∣∣∣ ≤ C‖φ‖γ ‖ψ‖L∞C(k), (12)

where C(k) is a positive, decreasing sequence with C(k) → 0 as k → ∞, with rate depending on ν0(R(x) > k).

3.3.2. The invertible case
Next we consider the invertible case. We refer the readers to [29] and [3] for the precise definition. Roughly speaking, a
(local) diffeomorphism f is modeled by Young’s towers if there exists a set � and two continuous families �s = {γ s

x }
and �u = {γ u

x } of smooth stable and unstable disks with dimγ s + dimγ u = dim M, such that � consists of points that
are the (unique) transverse intersection of disks in �s and �u. Without loss of generality, we assume that the diameter of
all the disks in �s and �u are between 1/2 and 1.

It is then assumed that there is a partition of �s = ⋃
i �

s
i . One should think of each �i as the ‘product’ of the �0,i

with entire stable disks. If we denote by �i the intersection of disks in �s
i with disks in �u, then {�i} is a partition of �.

Consider the return time function R, which is a function that is constant on each �i (thus R is constant on every stable
disk), such that f R(�i) consists of entire u-disks intersecting with �. In particular, this means that f R has the Markov
property:

f R
(
γ s(x)

) ⊂ γ s
(
f R(x)

)
, and f R

(
γ u(x)

) ⊃ γ u
(
f R(x)

)
.

Similar to (iii) of the non-invertible towers, we assume that on unstable disks, f is backward contracting at polynomial
rate:

∀γ u ∈ �u,x, y ∈ γ u,n ≥ 0, we have d
(
f −nx,f −ny

) ≤ C

nα
. (13)

Similarly, f is forward contracting at polynomial rate along stable disks:8

∀γ s ∈ �s, x, y ∈ γ s, n ≥ 0, we have d
(
f nx,f ny

) ≤ C

nα
. (14)

8In most examples (such as those in [5,29] and [28]), the contracting rates along both stable and unstable disks are indeed exponential. This is because the
measures in question are usually hyperbolic (i.e., all the Lyapunov exponents are non-zero), and the return map is defined using ‘hyperbolic times’. To
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Note that such contracting/expanding rate only applies to disks in �s and �u, which are usually only defined inside a very
small open ball in M .

The separation function s(x, y) is defined in a similar way as in the non-invertible case, with the extra assumption
that s(x, y) only depends on the stable disks that contain x and y. The reference measure ν is usually taken such that the
conditional measures of ν are the restriction of the Riemannian volume on the unstable disks, which we denote by νγ u .
Then it is assumed that the Jacobian of the return map, Jf R|γ u , is Hölder continuous: for every γ u ∈ �u and x, y ∈ γ u,

log
Jf R|γ u(x)

Jf R|γ u(y)
≤ βs(f R(x),f R(y)).

We also need the Jacobian of the holonomy map along stable disks, denoted by �γ u ′,γ u : γ u′ ∩ � → γ u ∩ �, to be
absolutely continuous with respect to the reference measure νγ u ′ .

It is shown in [29] and [3] that under the above assumptions, if the return time function R is integrable with respect
to some νγ u , then there exists a measure μ0, supported on �0, whose conditional measures along γ u are absolutely
continuous with respect to νγ u . μ0 can be lifted to a measure μ on the entire tower, which is an SRB measure. Moreover,
the system has decay of correlations for Hölder functions against L∞ functions that are constant on stable disks: if
νγ u(R > k) ≤ Ck−p for some γ u ∈ �u, C > 0 and p > 1, then one has∣∣∣∣

∫
M

φ · ψ ◦ f k dμ −
∫

M
φ dμ

∫
M

ψ dμ

∣∣∣∣ ≤ C‖φ‖γ ‖ψ‖L∞C(k), (15)

for φ ∈ Cγ and ψ ∈ L∞ such that ψ |γ s is constant for every γ s . Here C(k) is a positive, decreasing sequence with C(k) →
0 as k → ∞, with rate depending on ν0(R(x) > k). 9 The rate function C(k) is of order k−(p−1) if νγ u(R > k) ≤ Ck−p ,
and is (stretched) exponential if νγ u(R > k) is (stretched) exponential.

4. Equivalence of rare event process and entry times distribution

In this section we will establish the relation between rare event process and entry times distributions. Such relation was
first discovered by Freitas et al in [14] for rare event laws and first entry times distributions, in the case wn = n and
U = Br(x).

Recall that {Un} is a sequence of nested sets whose measures satisfy (1), and ξN
un

= ∑N−1
k=0 I{Xk>un} is the rare event

process defined with respect to {un} and the process Xj = ϕ ◦f j . On the other hand, we define the entry times distribution
of a set U as

ζN
U =

N−1∑
k=0

IU ◦ f k. (16)

The next general theorem states that the distribution of ξN
un

and ζN
Un

are the same:

Theorem C. For any measure preserving system (M,B,μ,f ) and any continuous function ϕ : M → R ∪ {±∞}, let
{un}, {wn} be two non-decreasing sequences such that (1) holds for the process Xj = ϕ ◦ f j . Then for the nested sets
Un = {X0 > un}, the following statements are equivalent:

(1) there exists a distribution m such that P(ξ
wn
un

= k) → m({k}) as n → ∞ for every k;

(2) there exists a distribution m such that P(ζ
τ/μ(Un)
Un

= k) → m({k}) as n → ∞ for every k.

Here τ > 0 is given by (1).

be more precise, for η ∈ (0,1), a positive integer n is called a (η,u)-hyperbolic time of x, if for every 0 ≤ k < n, we have
∏n

j=k ‖Df −1(f j (x)|Eu)‖ ≤
Cηn−j . (η, s)-hyperbolic times are defined similarly using the forward iterations of f .

Every hyperbolic measure has plenty of hyperbolic times for typical points of the measure, due to the Pliss lemma. Also note that if n is a hyperbolic
time of x and m is a hyperbolic time of f n(x), then n + m is a hyperbolic time of x. Therefore, one can ask the contracting estimate to hold for every
n ≥ 0 as long as all the return times R(x) are hyperbolic times of x. We refer the readers to [5] for more details on hyperbolic times and how to use
them to construct Young’s towers.
9In [3] the decay of correlation is proven when φ and ψ are both Hölder continuous. However, since the proof there uses the quotient along stable disks
to obtain a non-invertible tower, where the decay of correlations is known for ψ ∈ L∞ by [30, Theorem 3], one can easily check that the same proof
carries over to L∞ functions ψ that are constant on stable disks.
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Remark 4.1. Note that in this theorem, we do not assume any type of mixing condition, nor do we need any regularity
assumptions on Un such as Assumption 1. Also note that the distribution m depends implicitly on τ > 0.

Remark 4.2. Due to the Kac’s theorem, the average of the return time on any positive measure set U is given by 1
μ(U)

.
This coincides with the normalizing factor τ/μ(Un).

An a simple corollary, we obtain the equivalence between extremal value laws and first entry times distribution for any
continuous observable:

Corollary 4.3. Under the assumptions of Theorem C, the following statements are equivalent:

(1) the extremal value process Mn = max{Xk, k = 0, . . . , n − 1} satisfies P(Mwn ≤ un) → G(τ) for some function G;
(2) the first entry time τUn satisfies P(τUn > τ

μ(Un)
) → G(τ) for some function G.

Proof of Theorem C. From the definition of Xj and Un, we see that

{Xk > un} = {
ϕ ◦ f k > un

}
= f −k{ϕ > un}
= f −kUn,

which means

ξN
un

=
N−1∑
k=0

I{Xk>un} =
N−1∑
k=0

If −kUn

=
N−1∑
k=0

IUn ◦ f k

= ζN
Un

.

To prove the theorem, it suffices to show that∣∣P(
ξwn
un

= k
) − P

(
ζ

τ/μ(Un)
Un

= k
)∣∣ → 0

for each k, since then the convergence of either one of them to m({k}) will imply the convergence of the other to the same
limit. To this end, we write

an = min
{
wn, τ/μ(Un)

}
and bn = max

{
wn, τ/μ(Un)

}
,

then we have

{
ξwn
un

= k
} −̇ {

ζ
τ/μ(Un)
Un

= k
} ⊂

{
bn−1∑
k=an

IUn ◦ f k ≥ 1

}
,

where −̇ is the symmetric difference.
It then follows that∣∣P(

ξwn
un

= k
) − P

(
ζ

τ/μ(Un)
Un

= k
)∣∣

≤ P

(
bn−1∑
k=an

IUn ◦ f k ≥ 1

)

= μ

(
bn−1⋃
k=an

f −kUn

)

≤ (bn − an)μ(Un)
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=
∣∣∣∣wn − τ

μ(Un)

∣∣∣∣μ(Un)

= ∣∣wnμ(Un) − τ
∣∣ → 0,

thanks to (1). This finishes the proof of Theorem C. �

Proof of Corollary 4.3. Note that

{Mwn ≤ un} = {Xj ≤ un for all j = 0,1, . . . ,wn − 1}
= {

ξwn
un

= 0
}
.

On the other hand,{
τUn >

τ

μ(Un)

}
= {

ζ
τ/μ(Un)
Un

= 0
}
.

So the corollary follows from Theorem C by taking k = 0, and considering m({0}) as a function of τ . �

Remark 4.4. Corollary 4.3 is first obtained in [14] for functions ϕ where the maximal value is achieved at a single point
x, for the case wn = n. Moreover, it is assumed that the function has certain regularity near x. It turns out that such
regularity assumption will make the extremal value distribution to be either Gumbel, Fréchet, or Weibull distribution. See
the book [11] for more discussion on this topic.

5. Proof of Theorem A when Un ⊂ �0

This Section contains the proof of Theorem A, under the additional assumption that Un ⊂ �0 for n large enough and that
the tower is defined using the first return map. The general case will be dealt with in the next section.

In view of Theorem C, we only need to show that under the assumptions of Theorem A, the distribution of the entry
times ζUn converges to the compound Poisson distribution with parameters {α1τλ�}. The proof is carried out in four
steps:

(1) first we show that for φ-mixing measures, the entry times distribution for a union of cylinders can be approximated
by a compound binomial distribution;

(2) furthermore, assume that the system is Gibbs–Markov, we will show the convergence to the compound Poisson
distribution, for a sequence of nested cylinder sets; this step yields a theorem that is interesting in itself (Theorem D);

(3) then we will approximate the sets Un from inside by unions of cylinders, and prove that the entry times distribution
will converge to the same limit;

(4) finally, we verify that the return maps for the Young’s towers, T = f R , satisfy the assumptions above; then an
inducing argument will carry the convergence to the original map f .

One thing to keep in mind is that, in this section, we will not use Assumption 3 or 4. In the meantime, Assumptions 1 and
2 are only used when one considers open sets Un (Theorem 5.5).

5.1. Compound binomial distribution of cylinder sets for φ-mixing measures

In this subsection, we let T be a map on a probability space � and μ be a T -invariant probability measure on �. We
assume that there is a measurable partition (finite or countably infinite) A of � and denote by An = ∨n−1

j=0 T −jA its nth
join. An is a partition of � and its elements are called n-cylinders. For a point x ∈ � we denote by An(x) ∈An the unique
n-cylinder that contains the point x. We assume that A is generating, that is

⋂
n An(x) consists of the singleton {x}.

Definition 2. The measure μ is left φ-mixing with respect to A if∣∣μ(
A ∩ T −n−kB

) − μ(A)μ(B)
∣∣ ≤ φ(k)μ(A)

for all A ∈ σ(An), n ∈ N and B ∈ σ(
⋃

j Aj ), where φ(k) is a decreasing function which converges to zero as k → ∞.
Here σ(An) is the σ -algebra generated by n-cylinders.
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For simplicity we will drop the superscript in ζ (as it is always coupled with the measure of U ) and write

ζU = ζ
τ/μ(U)
U =

τ/μ(U)−1∑
k=0

IU ◦ f k.

We will also write S � B if there is a universal constant C such that S ≤ C · B . Recall that λ(K,U) is defined by (3) and
α1(K,U) = μU(τU > K).

The next theorem is the compound binomial approximation for a union of n-cylinders. A similar result is obtained in
[16] using the Chen–Stein method. Here we will prove it using the compound binomial distribution theorem in Section 3.

To simplify the notation, we let K be an integer and put Zj = ∑(j+1)(2K+1)−1
i=j (2K+1) Xi as the j th block, with Xi = IU ◦ T i

as before. We will also write

φ1(k) =
∞∑

j=k

φ(j)

for the tail sum of φ.

Theorem 5.1. Let μ be a T -invariant probability measure that is left φ-mixing with respect to an at most countable,
generating partition A. Assume that φ(k) is summable in k. Let U ∈ σ(An) be a union of n-cylinders with positive
measure.

Then there exists a constant C > 0, such that for all integers K , � with �(2K + 1) < τ/μ(U) and every k ∈ N0, one
has ∣∣P(ζU = k) − m

({k})∣∣ ≤ Cφ(�/2) + (2K + 2)�μ(U) + φ1(K)

+ τ

(2K + 1)μ(U)

j0∑
j=1

P(Z0 ≥ 1 ∧ Zj ≥ 1), (17)

where m is compound binomial with parameters (τ/((2K + 1)μ(U)),P(τU ≤ 2K)) on the binomial part, {λ�(K,U)} on
the compound part, and j0 = [n/(2K + 1)] + 2.

Proof. We employ the compound binomial approximation theorem in Section 3 on N = [τ/μ(U)]. Put V b
a = ∑b

j=a Zj .
Then for any 2 ≤ � ≤ N ′ = N/(2K + 1) (where we assume N ′ is an integer for simplicity), we have∣∣P(

V N ′
0 = k

) − m
({k})∣∣ ≤ CN ′(R1 +R2) + �μ(U),

where

R1 = sup
M∈[�,N ′]

q∈(0,N ′−�)

∣∣∣∣∣
q−1∑
u=1

(
P
(
Z0 = u ∧ V M

� = q − u
) − P(Z0 = u)P

(
V M

� = q − u
))∣∣∣∣∣,

and

R2 =
�∑

j=1

P(Z0 ≥ 1 ∧ Zj ≥ 1).

Here m is the compound binomial distribution with parameter N ′ = τ/((2K + 1)μ(U)), p = P(Zj ≥ 1) = P(τU ≤ 2K)

in the binomial part, and (1/p)P(Zj = �) = λ�(K,U) in the compound part.
Next we will estimate the error terms R1 and R2 using the left φ-mixing property. We will also use the following

trivial estimate:

P(Z0 ≥ 1) = μ

(
2K⋃
i=0

T −iU

)
≤ (2K + 1)μ(U).

1. Estimate R1.
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Note that {Z0 = u} ∈ σ(An+2K+1), and {V M
� = q − u} ∈ T −�σ(

⋃
j Aj ). Therefore, if � ≥ 2(n + 2K + 1) then we

get from the mixing property,

R1 ≤ φ(�/2)

q−1∑
u=1

P(Z0 = u)

≤ φ(�/2)P(τU ≤ 2K + 1)

≤ φ(�/2)(2K + 1)μ(U).

2. Estimate R2. To estimate R2, we first note that since {Z0 ≥ 1} ∈ σ(An+2K+1), and n will be sent to infinity while K

is fixed,10 one cannot use the mixing assumption on P(Z0 ≥ 1 ∧ Zj ≥ 1) for small values of j .
To solve this issue, we write

j0 = [
n/(2K + 1)

] + 2.

When j ≥ j0, we have a gap between {Z0 ≥ 1} ∈ σ(An+2K+1) and {Zj ≥ 1} ∈ T −j (2K+1)σ (
⋃

j Aj ) with size at least K .
The mixing property then yields:

P(Z0 ≥ 1 ∧ Zj ≥ 1) ≤ P(Z0 ≥ 1)
(
P(Zj ≥ 1) + φ

(
(j − 1)(2K + 1) − n

))
= P(Z0 ≥ 1)2 + P(Z0 ≥ 1)φ

(
(j − 1)(2K + 1) − n

)
,

where the second line follows from stationarity. Sum over j > j0 and recall that φ(k) � k−p for some p > 1, we obtain

�∑
j=j0

P(Z0 ≥ 1 ∧ Zj ≥ 1)

≤
�∑

j=j0

P(Z0 ≥ 1)2 + P(Z0 ≥ 1)φ
(
(j − 1)(2K + 1) − n

)

≤ �(2K + 1)2μ(U)2 + (2K + 1)μ(U)
∑
j≥j0

φ
(
(j − 1)(2K + 1) − n

)

� �(2K + 1)2μ(U)2 + (2K + 1)μ(U)φ1(K).

3. Collect the error terms.
Now we collect the estimates above and obtain (recall that N ′ = N/(2K + 1) = τ/((2K + 1)μ(U))):∣∣μ(ζn = k) − m

({k})∣∣
� N ′

(
φ(�/2)(2K + 1)μ(U) + �(2K + 1)2μ(U)2

+
j0∑

j=1

P(Z0 ≥ 1 ∧ Zj ≥ 1) + (2K + 1)μ(U)φ1(K)

)
+ �μ(U)

� φ(�/2) + (2K + 2)�μ(U) + φ1(K) + τ

(2K + 1)μ(U)

j0∑
j=1

P(Z0 ≥ 1 ∧ Zj ≥ 1).
�

Remark 5.2. The first two terms on the right-hand-side of (17) will converge to zero if one considers a sequence of
nested sets Un with μ(Un) → 0 and let � = μ(Un)

−1/2. The third term can be dealt with by sending K to infinity on
a second limit (recall that φ is assumed to be summable). Doing so will also make the compound binomial distribution

10This fact is not used in this theorem, but is essential for the convergence to the compound Poisson distribution in our setup, as the convergence of
parameters λ�(K,U) require two separate limits.
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m converge to a compound Poisson distribution with the desired parameters {τα1λ�}, as we have seen in Remark 3.8,
Section 3.2. However, controlling the last term will require more information on other structures of the system. This is
carried out in the next subsection.

5.2. Gibbs Markov systems

Recall that a map T : � → � is called Markov if there is a countable measurable partition A on � with μ(A) > 0 for all
A ∈ A, such that for all A ∈A, T (A) is injective and can be written as a union of elements in A. Write An = ∨n−1

j=0 T −jA
as before, it is also assumed that A is (one-sided) generating.

Fix any λ ∈ (0,1) and define the metric dλ on � by dλ(x, y) = λs(x,y), where s(x, y) is the largest positive integer n

such that x, y lie in the same n-cylinder. Define the Jacobian g = JT −1 = dμ
dμ◦T and gk = g · g ◦ T · · ·g ◦ T k−1.

The map T is called Gibbs–Markov if it preserves the measure μ, and also satisfies the following two assumptions:

(i) The big image property: there exists C > 0 such that μ(T (A)) > C for all A ∈A.
(ii) Distortion: logg|A is Lipschitz for all A ∈ A.

For example, if a differentiable map f is modeled by Young’s towers with a base �0, then the return map T = f R :
�0 → �0 is a Gibbs–Markov map with respect to the invariant measure μ|�0 = (hν)|�0 and the partition {�0,i}, since
T (�0,i ) = �0.

In view of (i) and (ii), there exists a constant D > 1 such that for all x, y in the same n-cylinder, we have the following
distortion bound:∣∣∣∣gn(x)

gn(y)
− 1

∣∣∣∣ ≤ Ddλ

(
T nx,T ny

)
,

and the Gibbs property:

D−1 ≤ μ(An(x))

gn(x)
≤ D.

It is well known (see, for example, Lemma 2.4(b) in [23]) that Gibbs–Markov systems are exponentially φ-mixing, that
is, φ(k) � ηk for some η ∈ (0,1).

Before stating the next theorem, we will make some assumption on the sizes of the nested sequence {Un}. We assume
that each Un is a union of κn-cylinders, for some integers κn → ∞ as n → ∞. For each n and j ≥ 1, we define Cj (Un) =
{A ∈ Aj ,A ∩ Un �=∅} the collection of all j -cylinders that have non-empty intersection with Un. Then we write

U
j
n =

⋃
A∈Cj (Un)

A

for the approximation of Un by j -cylinders from outside. For each fixed j , {Uj
n }n is also nested, that is, U

j

n+1 ⊂ U
j
n .

Obviously we have Un ⊂ U
j
n for all j , and Un = U

j
n if j ≥ κn. Also note that the diameter of j -cylinders are exponentially

small in j . Together with the distortion property (ii), we see that the measure of j -cylinders are also exponentially small
in j .

The next theorem shows the convergence to the compound Poisson distribution for a nested sequence of cylinder sets
Un, which is interesting in its own right:

Theorem D. Let T be a Gibbs–Markov system and Un ∈ σ(Aκn) a sequence of nested sets with κnμ(Un) → 0. Assume
that {α̂�} defined in (2) exists, and satisfies

∑
� �α̂� < ∞. We also assume that there are constants C > 0 and p′ > 1 such

that μ(U
j
n ) ≤ μ(Un) + Cj−p′

for every j ≤ κn.
Then the entry times distribution ζUn = ∑τ/μ(Un)−1

k=0 IUn ◦ f k satisfies

P(ζUn = k) → m
({k})

as n → ∞ for every k ∈ N0, where m is the compound Poisson distribution with parameters {τα1λ�} with λ�, α1 defined
by (4) and (5) respectively.
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Proof. In view of Theorem 5.1, Remark 3.8 and 5.2, we only need to show that the last term in (17):

τ

(2K + 1)μ(Un)

j0∑
j=1

P(Z0 ≥ 1 ∧ Zj ≥ 1)

converges to zero under the limit in n followed by a limit in K . Here j0 = κn/(2K +1)]+2 and Zj = ∑(j+1)(2K+1)−1
i=j (2K+1) Xi .

We start with some observations on the Gibbs–Markov systems. First, By the big image property, for any j -cylinder
A ∈Aj , we have

μ
(
T jA

) ≥ C, (18)

where C is the constant from (i).
Secondly, for any j -cylinder A and any set U ∈ �, the distortion property (ii) and the Gibbs property gives

μ(U ∩ A)

μ(A)
≤ D

μ(T j (U ∩ A))

μ(T jA)
. (19)

Now we are ready to estimate μ(Un ∩ T −jUn):

μ
(
Un ∩ T −jUn

) ≤
∑

A∈Cj (Un)

μ
(
T −jUn ∩ A

)

=
∑

A∈Cj (Un)

μ(T −jUn ∩ A)

μ(A)
μ(A)

�
∑

A∈Cj (Un)

μ(T j (T −jUn ∩ A))

μ(T jA)
μ(A)

�
∑

A∈Cj (Un)

μ(Un)μ(A)

= μ(Un)μ

( ⋃
A∈Cj (Un)

A

)
= μ(Un)μ

(
U

j
n

)
,

where we use (19) and (18) on the third and forth line, respectively.
Then for j ≥ 2,

P(Z0 ≥ 1,Zj ≥ 1) ≤
∑

0≤k,�<2K+1

μ
(
T −kUn ∩ T −�−j (2K+1)Un

)

=
(j+1)(2K+1)∑

u=(j−1)(2K+1)

(
(2K + 1) − ∣∣u − j (2K + 1)

∣∣)μ(
Un ∩ T −uUn

)

≤ (2K + 1)

(j+1)(2K+1)∑
u=(j−1)(2K+1)

μ
(
Un ∩ T −uUn

)
.

Summing over j from 2 to j0, we get

j0∑
j=2

P(Z0 ≥ 1,Zj ≥ 1) ≤ 2(2K + 1)

(j0+1)(2K+1)∑
u=(2K+1)

μ
(
Un ∩ T −uUn

)

� (2K + 1)μ(Un)

κn+2(2K+1)∑
u=2K+1

μ
(
Uu

n

)

� (2K + 1)μ(Un)

((
κn + 4(2K + 1)

)
μ(Un) +

κn∑
u=2K+1

u−p′
)

,
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where the last line follows from the assumption that μ(U
j
n ) ≤ μ(Un) + Cj−p′

and the observation that U
j
n = Un for

j ≥ κn. Dividing by (2K + 1)μ(Un), we see that

τ

(2K + 1)μ(Un)

j0∑
j=2

P(Z0 ≥ 1 ∧ Zj ≥ 1)

�
(
κn + 4(2K + 1)

)
μ(Un) +

∑
u≥2K+1

u−p′

�
(
κn + 4(2K + 1)

)
μ(Un) + K−(p′−1).

The first term goes to zero with n → ∞, and the second term vanishes with K → ∞ (recall that p′ > 1).
We are only left with P(Z0 ≥ 1,Z1 ≥ 1). We take any K ′ < K and split the sum in Z0 as:

Z′
0 =

2K+1∑
i=2K+1−K ′

Xi, and Z′′
0 = Z0 − Z′

0.

Then

P(Z0 ≥ 1,Z1 ≥ 1) ≤ P
(
Z′′

0 ≥ 1,Z1 ≥ 1
) + P

(
Z′

0 ≥ 1
)

≤ P
(
Z′′

0 ≥ 1,Z1 ≥ 1
) + K ′μ(Un).

For the first term on the right-hand-side, we follow the previous estimate to obtain:

P
(
Z′′

0 ≥ 1,Z1 ≥ 1
) ≤

∑
0≤k≤2K+1−K ′

0≤�<2K+1

μ
(
T −kUn ∩ T −�−(2K+1)Un

)

≤ (2K + 1)

2(2K+1)∑
u=K ′

μ
(
Un ∩ T −uUn

)

≤ (2K + 1)μ(Un)

2(2K+1)∑
u=K ′

μ
(
Uu

n

)

� (2K + 1)μ(Un)

(
2(2K + 1)μ(Un) +

2(2K+1)∑
u=K ′

u−p′
)

.

Divide by (2K + 1)μ(Un), we obtain that for any K ′ < K ,

τ

(2K + 1)μ(Un)
P(Z0 ≥ 1,Z1 ≥ 1) � Kμ(Un) + (

K ′)−(p′−1) + K ′

K
.

If we choose K ′ = √
K then all three terms converge to zero under the limit n → ∞ then limit in K → ∞. This finishes

the proof of Theorem D. �

Remark 5.3. The assumption that κnμ(Un) → 0 is very mild, as the measure of κn cylinders are of the order λ−κn , so
one allows the number of κn-cylinders in Un to be exponentially large in κn.

The same can be said about the assumption μ(U
j
n ) ≤ μ(Un) + Cj−p′

. In fact, we will see in the next subsection that
the difference between U

j
n and Un are precisely those j -cylinders that cross the topological boundary of Un.

Recall that β� is defined by (8) as an alternative way to study the short return properties of {Un} by synchronizing K

and n (thus taking only one limit). As a by-product of the previous theorem, we have the following relation between {β�}
and {α̂�}:

Proposition 5.4. Under the assumptions of Theorem D, for any increasing sequence {sn} with sn → ∞ and snμ(Un) → 0,
the sequence {β�} defined by (8) exists and satisfies β� = α̂� for all � ≥ 1.
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Proof. We estimate |β� − α̂�| by writing:∣∣μUn

(
τ �−1
Un

≤ sn
) − μUn

(
τ �−1
Un

≤ 2K
)∣∣

≤ μUn

(
sn∑

i=2K+1

Xi ≥ 1

)

≤ 1

μ(Un)

sn/(2K+1)∑
j=1

P(X0 = 1,Zj ≥ 1)

≤ I + II,

where I is the sum over j from 1 to j0 = [κn/(2K + 1)] + 2, and II is the sum from j0 to sn/(2K + 1).
For II, we follow the estimation of R2 in the proof of Theorem 5.1 and obtain by the φ-mixing assumption:

II ≤ 1

μ(Un)

sn/(2K+1)∑
j=j0

μ(Un)P(Z0 ≥ 1) + μ(Un)φ
(
(j − 1)(2K + 1) − κn

)

≤ snμ(Un)

2K + 1
+ φ1(K),

where φ1 is the tail sum of φ as before.
For I , we use the argument in the proof of Theorem D and get:

I = 1

μ(Un)

j0∑
j=1

P(X0 = 1,Zj ≥ 1)

≤ 1

μ(Un)

j0∑
j=1

(j+1)(2K+1)∑
k=j (2K+1)

μ
(
U ∩ T −kUn

)

= 1

μ(Un)

(j0+1)(2K+1)∑
k=2K+1

μ
(
U ∩ T −kUn

)

≤ 1

μ(Un)

(j0+1)(2K+1)∑
k=2K+1

μ(Un)μ
(
U

j
n

)

≤ (
κn + 4(2K + 1)

)
μ(Un) +

κn∑
j=2K+1

j−p′

�
(
κn + 4(2K + 1)

)
μ(Un) + K−(p′−1).

Collecting the estimations above and sending n to infinity, we obtain∣∣β� − α̂�(2K)
∣∣ � φ1(K) + K−(p′−1),

which converges to zero following the limit in K . This concludes the proof. �

Recall that α1 is defined by (5) and satisfies α1 = α̂1 − α̂2. In particular, this proposition shows that α1 coincides with
the extremal index θ = limn μUn(τUn > sn) defined in [13].

5.3. From cylinders to open sets

Now we shift our attention to Un’s that are not necessarily unions of cylinder sets. For this purpose, let � = M be a
compact Riemannian manifold and T = f a differentiable map on M. We will still assume that there is a (at most)
countable partition A, with respect to which the system is Gibbs–Markov. Examples of such systems include Markov
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interval maps, higher dimensional expanding maps with Markov partition, and the return map of Young’s towers for
non-invertible maps.

We will take {Un} a sequence of nested open sets with measure converging to zero. In particular, one can take a
continuous function ϕ : M → R ∪ {±∞} and a sequence of thresholds {un}, and let Un = {x : f (x) > un}. As before,
we are interested in the limiting distribution of P(ζUn = k), which can be immediately translated into the distribution of
P(ξ

wn
un

= k) according to Theorem C, where {wn} is a sequence of integers satisfying (1).
Note that the sets Un are very likely not unions of cylinders in An, thus one cannot directly apply Theorem D. To

solve this issue, we will approximate Un by unions of cylinders from inside. Given any set U ⊂ M and ρ > 0, we write
Bρ(U) = ⋃

x∈U Bρ(x) for the ρ-neighborhood of U .
The main result of this section is the following theorem:

Theorem 5.5. Let (M,μ,f,A) be a Gibbs–Markov system, and {Un} be a nested sequence of open sets that satisfies
Assumption 1. Assume that {α̂�} defined by (2) exists and satisfies

∑
� �α̂� < ∞. Write κn the smallest positive integer

with diamAκn ≤ rn where rn is the sequence in Assumption 1. We assume that:

(a) κnμ(Un) → 0;
(b) Un have small boundary: there exists C > 0 and p′ > 1, such that

μ

( ⋃
A∈Aj ,A⊂Brn (∂Un)

A

)
≤ Cj−p′

for all j ≤ κn.

Then the entry times distribution ζUn = ∑τ/μ(Un)−1
k=0 IUn ◦ f k satisfies

P(ζUn = k) → m
({k})

as n → ∞ for every k ∈N0, where m is the compound Poisson distribution with parameters {τα1λ�}.
In particular, the rare event process ξ has the same limiting distribution:

P
(
ξwn
un

= k
) → m

({k}),
where wn is a sequence of integers given by (1).

To prove this theorem we first introduce some notations. Let rn be the sequence of real numbers given by Assumption 1.
For each n, we take κn to be the smallest integer such that diam(Aκn) ≤ rn, and put

Vn =
⋃

A∈Aκn ,A⊂Un

A.

In other words, Vn is the approximation of Un from inside by κn-cylinders. Due to the choice of κn, we have

Ui
n ⊂ Vn ⊂ Un,

and

μ(Un \ Vn)

μ(Un)
= o(1). (20)

It then follows that κnμ(Vn) → 0, provided that κnμ(Un) → 0.
Theorem D requires us to estimate the measure of V

j
n , which is the union of j -cylinders that has non-empty intersection

with Vn. Observe that

V
j
n ⊂

⋃
A∈Aj ,A∩Un �=∅

A;

moreover, the difference between Vn and V
j
n satisfies

V
j
n \ Vn ⊂

⋃
A∈Aj ,A⊂Brn (∂Un)

A.
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This gives

μ
(
V

j
n

) ≤ μ(Vn) + μ

( ⋃
A∈Aj ,A⊂Brn (∂Un)

A

)
� μ(Vn) + j−p′

, (21)

thanks to the assumption (b).
Then we can apply Theorem D on the sequence of nested cylinder sets Vn ∈Aκn to get

P(ζVn = k) → m
({k}),

where m is the compound Poisson distribution with parameters {αV
1 τλV

� } defined using {Vn}. It remains to show that
the parameters αU

1 , λU
� defined using {Un} coincides with those defined using {Vn}, and that ζUn has the same limiting

distribution with ζVn .
In view of Theorem 3.4, to prove that parameters satisfy λU

� = λV
� , we only need to show the following lemma:

Lemma 5.6. Let Vn, Un be two sequences of nested sets with Vn ⊂ Un for each n. Put

α̂∗
� = lim

K→∞ lim
n→∞μ∗n

(
τ �−1∗n

≤ K
)
, ∗ = U,V.

Then α̂U
� = α̂V

� provided that (20) holds.

Proof. To simplify the notation, we drop the index on Un. We have to estimate:

∣∣μU

(
τ �−1
U ≤ K

) − μV

(
τ �−1
V ≤ K

)∣∣
≤ 1

μ(U)

∣∣μ(
τ �−1
U ≤ K ∧ U

) − μ
(
τ �−1
V ≤ K ∧ V

)∣∣ + μ(U \ V )

μ(U)
μV

(
τ �−1
V ≤ K

)

≤ 1

μ(U)

∣∣μ(
τ �−1
U ≤ K ∧ U

) − μ
(
τ �−1
V ≤ K ∧ U

)∣∣ + 1

μ(U)
μ(U \ V )

+ μ(U \ V )

μ(U)
μV

(
τ �−1
V ≤ K

)
.

The second and third term on the right-hand-side converge to zero as n → ∞, thanks to (20). The first term is estimated
as

1

μ(U)

∣∣μ(
τ �−1
U ≤ K ∧ U

) − μ
(
τ �−1
V ≤ K ∧ U

)∣∣
≤ μU(τU\V ≤ K)

≤ 1

μ(U)
Kμ(U \ V ) → 0 as n → ∞.

This finishes the proof of the lemma. �

As a simple consequence of this lemma, we have
∑

� �α̂V
� < ∞, provided that

∑
� �α̂U

� < ∞.
Finally we control the difference between ζUn and ζVn .

Lemma 5.7. Assume that {Un}, {Vn} are two sequences of nested sets with Vn ⊂ Un. Moreover, assume that (20) holds.
Then

∣∣P(ζUn = k) − P(ζVn = k)
∣∣ → 0

as n → ∞.
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Proof. First note that 1
μ(Vn)

> 1
μ(Un)

, i.e., ζVn contains more terms. We have

∣∣P(ζUn = k) − P(ζVn = k)
∣∣ ≤ P

(
τUn\Vn ≤ 1

μ(Un)

)
+ P

( 1/μ(Vn)∑
i=1/μ(Un)

IUn ◦ f i ≥ 1

)

≤ 1

μ(Un)
μ(Un \ Vn) + μ(Un)

(
1

μ(Vn)
− 1

μ(Un)

)
→ 0.

The proof is finished. �

With these lemmas, we conclude the proof of Theorem 5.5.

Remark 5.8. It can be seen from the proof that one does not need Vn to be a subset of Un. If {Vn} is a nested sequence
such that

μ(Un −̇ Vn)

μ(Un)
→ 0 as n → ∞,

where −̇ is the symmetric difference, then the same proof will show that α̂U
� = α̂V

� for all � ≥ 1. Similarly, ζUn and ζVn

must converge to the same compound Poisson distribution with the same parameters.
Note that the proof of the previous two lemmas does not require the system to be Gibbs–Markov or even mixing. The

proof also applies to invertible systems without any change.

Remark 5.9. Note that in the assumption (b), we only need the estimate on the boundary of Un for j < κn. This coincides
with our statement of Assumption 2 at the beginning of the paper, where we need r to be small but not too small, where
the lower bound depends on n.

Assumption (a) of Theorem D is rather mild. Normally the sets Un are the ρn-neighborhood of � for some ρn > 0, and
the measure of Un are of order ρa

n for some a > 0. Then Assumption 1 holds with rn = ρb
n for some b > 1 large enough.

Since the diameter of n-cylinders are exponentially small, κn is of order | logρn|. In this case, κnμ(Un) → 0 holds.
On the other hand, to achieve assumption (b) in Theorem 5.5, note that diamAj � λj , so V

j
n is the (ρn + λj )-

neighborhood of �, and V
j
n \ Vn consists of the (λj )-neighborhood of ∂Un, whose measure can be controlled if μ is

absolutely continuous with respect to the volume on M and if � is ‘nice’ (for example, a embedded submanifold with
dimension less than dim M).

We conclude this subsection with the following observation:

Remark 5.10. Note that the proof of the previous theorem does not depend on whether the system is non-invertible or not.
In particular, Theorem 5.5 holds when the system is invertible and φ-mixing (where the partition An should be defined
using two-sided join, i.e., An = ∨n

i=−n f −iA). Such systems include Axiom A diffeomorphisms with equilibrium states
and dispersing billiards.

Similarly, Theorem D also holds for the systems mentioned above, as the only ingredient in the proof is the distortion
estimate, which holds as long as the systems has sufficient hyperbolicity.

5.4. The inducing argument

Now let f be a non-invertible, differentiable map f on a compact manifold M, preserving an invariant measure μ. We
assume that ϕ : M → R ∪ {±∞} is a continuous function that achieves its maximum on a set � with zero measure. The
following theorem is proven in [12]:

Theorem 5.11 ([12, Theorem 2.C]). Assume that there is a set � ⊂ M with positive μ measure, with � ⊂ �. Assume
that there is a sequence of thresholds {un}, such that the sets Un = {x : ϕ(x) > un} are contained in � for n large enough.
Moreover, assume that the induced map T : � → � is defined using the first return map of f on �, such that the return
time function is integrable with respect to the induced measure μ0 = μ|�.

Then if the rare event process ξ for the induced system (�,T ,μ0) is compound Poisson distributed, so is the rare event
process for the original system (M, f,μ).
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Then if f is modeled by Young’s tower defined using the first return map, and Un ⊂ �0 (as we have assumed at the
beginning of this section), then one can apply Theorem 5.5 on the induced Gibbs–Markov map T = f R to obtain the
compound Poisson distribution for the induced rare event process. Theorem 5.11 will then guarantee that the original
system has the same distribution. This finishes the proof of Theorem A, under the extra assumption that Un is contained
in the induced base �0 and that the tower is defined using the first return map. As a trade-off, we do not need (the very
technical) Assumption 3.

This result is not very satisfactory, however, as in higher dimensions, �0 is usually a Cantor set with empty interior,
and the tower is often defined using a higher order return map.11 The general case of Theorem A will be dealt with in the
next section.

6. Proof of Theorem B and the general case of Theorem A

In this section, we will prove Theorems A and B using an argument that is similar to [19], which was originally motivated
by [9]. Roughly speaking, we will approximate indicator functions I{Z0=u} by Hölder continuous functions φ, and approx-
imate I{V M

� =q−u} by L∞ functions ψ that are constant on stable disks. This will allow us to use decay of correlations (15)

to estimate terms like P(Z0 = u,V M
� = q − u). More importantly, we do not need to consider the case j ≤ j0 separately

while controlling R2. As a trade-off, we have to construct φ and ψ very carefully, which will require assumptions on
the topological boundary of Un. Also note that the desynchronization between n and K plays an important role in the
approximation.

In view of Theorem C, we need to show that the hitting times distribution ζUn converges to the compound Poisson
distribution with parameters {τα1λ�}. This is stated as the following theorem:

Theorem E. Let f be either a C1+α (local) diffeomorphism or a non-invertible map that can be modeled by Young’s
tower, with the decay rating satisfying C(k) = o(1/k). Assume that {Un} is a sequence of nested sets with μ(Un) → 0 and∑

� �α̂� < ∞. Furthermore, assume that Assumptions 1 to 4 hold with:

(1) rn = o(
μ(Un)
C(�n/2)

) for a sequence �n ↗ ∞ with �nμ(Un) → 0; here C is the rate in the decay of correlations given by
(12) or (15);

(2) for Assumption 2:
(a) in the non-invertible case, μ(Br(∂Un)) =O(rp′

) for p′ > 1/α; here α > 0 is given by (13);
(b) in the invertible case, μ(Br(∂Un)) =O(rp′

) for p′ > 2/α;
(3) p′′ > 1 in Assumption 3.

Then the entry times distribution ζUn satisfies

P(ζUn = k) → m
({k})

as n → ∞ for every k ∈ N0, where m is the compound Poisson distribution with parameters {τα1λ�} with λ�, α1 defined
by (4) and (5) respectively.

The rest of this section is devoted to the proof of this theorem.
We use the same notation as in the last section. For an integer K we write Zj = ∑(j+1)(2K+1)−1

i=j (2K+1) Xi , where Xi =
IUn ◦ f i . Then we apply Theorem 3.7 on the sequence {Xj } with N = τ/μ(Un), and estimate∣∣P(

V N ′
0 = k

) − m
({k})∣∣ ≤ CN ′(R1 +R2) + �μ(U),

where N ′ = τ/((2K + 1)μ(Un)), and

R1 = sup
M∈[�,N ′]

q∈(0,N ′−�)

∣∣∣∣∣
q−1∑
u=1

(
P
(
Z0 = u∧V M

� = q − u
) − P(Z0 = u)P

(
V M

� = q − u
))∣∣∣∣∣,

and

R2 =
�∑

j=1

P(Z0 ≥ 1 ∧ Zj ≥ 1).

11In the case of C1+α surface diffeomorphisms, one can always construct towers using the first return map. See [10, Theorem B]
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6.1. Estimate R1

To simply notation, we will drop the index in Un from now on. Write

R1(q,u) = ∣∣(P(
Z0 = u ∧ V M

� = q − u
) − P(Z0 = u)P

(
V M

� = q − u
))∣∣,

which is non-vanishing only if u ≤ 2K + 1.
The set {Z0 = u} is a disjoint union of the sets

Z�v =
u⋂

j=1

f −vj U ∩
⋂

i /∈{vj }
f −iUc,

where �v = (v1, . . . , vu) with 0 ≤ v1 < · · · < vu ≤ 2K marks the u entries to U before time 2K . Note that for u ≥ 2K + 1
(and possibly for certain �v with u ≤ 2K + 1), Z�v will be empty.

Recall that Ui and Uo in Assumption 1 are the approximations of U from inside and outside, respectively. This invites
us to define

Zo
�v =

u⋂
j=1

f −vj Uo ∩
⋂

i /∈{vj }
f −i

(
Ui

)c
,

as the approximations of Z�v from outside. Clearly one has Z�v ⊂ Zo
�v for all vectors �v. Moreover, there are Lipschitz

functions φo
�v that satisfy

φo
�v (x) =

{
1, x ∈ Z�v,
0, x /∈ Zo

�v ,

with Lipschitz constants bounded by CK/rn for some constant K depending on f and K (but not on n, u or �v), with rn
as in Assumption 1.12 By the construction, we have

IZ�v ≤ φo
�v ,

with difference bounded by∫
M

(
φo

�v − IZ�v
)
dμ ≤ μ

(
Zo

�v \ Z�v
) ≤ μ

(
Uo \ U

) = o
(
μ(U)

)
,

thanks to Assumption 1.
Then we have∣∣(P(

Z�v ∧ V M
� = q − u

) − μ(Z�v)P
(
V M

� = q − u
))∣∣

=
∣∣∣∣
∫

M
IZ�v · I{V M

� =q−u} dμ −
∫

M
IZ�v dμ

∫
M
I{V M

� =q−u} dμ

∣∣∣∣
≤ X + Y + Z, (22)

where

X =
∫

M

(
φo

�v − IZ�v
)
I{V M

� =q−u} dμ,

Y =
∣∣∣∣
∫

M
φo

�v · I{V M
� =q−u} dμ −

∫
M

φo
�v dμ

∫
M
I{V M

� =q−u} dμ

∣∣∣∣,
Z =

∫
M

(
φo

�v − IZ�v
)
dμ

∫
M
I{V M

� =q−u} dμ.

12One simple way to construct such functions is to first construct Lipschitz functions on Ui/o with norm bounded by 1/rn , then iterate them under f .
Since one only needs to iterate no more than K times, the Lipschitz constant is affected by a constant CK .
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Note that

X + Z ≤ 2
∫

M

(
φo

�v − IZ�v
)
dμ = o

(
μ(U)

)
, (23)

so we are left to estimate Y . One can easily check that the estimates below do not depend on M , q , u or �v.
Case 1. f is non-invertible.
In this case, we apply directly the decay of correlations (12) for non-invertible towers to the Lipschitz function φo

�v and
L∞ function I{V M

� =q−u}. This gives

Y ≤ C
∥∥φo

�v
∥∥

LipC(�) ≤ CK

rn
C(�). (24)

Case 2. f is invertible.
We need to approximate I{V M

� =q−u} by L∞ functions that are constant on stable disks. We take any positive integer

�′ ≤ � and write, for k ≥ (2K + 1)�′,

Sk(U) =
⋃
i

Ri−1⋃
j=0

⋃
γ∈�s

f k+j (γ∩�0,i )∩∂U �=∅

f j (γ )

for the union of stable disks (and their forward images before returning to �0) whose image under f k will intersect with
the topological boundary of U . Note that f kSk(U) is a union of f k+j γ for γ ∈ �s . The polynomial contraction along
stable disks (14) gives

diam
(
f k+j γ

) ≤ C/(k + j)α ≤ C/kα.

If we write Br(∂U) for the r-neighborhood of ∂U , then the observation above yields

f kSk(U) ⊂ BC/kα (∂U).

As a result, we get by the invariance of μ,

μ
(
Sk(U)

) ≤ μ
(
BC/kα (∂U)

)
.

Now we define (and suppress the dependence on q , u, n, � and M for simplicity):

S̃ =
(2K+1)(M+�′−�)⋃

k=(2K+1)�′
Sk(U).

Consider the L∞ function

ψ = I{V M+�′−�

�′ =q−u} · I
S̃c .

We see that ψ is constant on stable disks, since if x ∈ {V M+�′−�
�′ = q − u} ∩ S̃c hits U under the j th iteration of f for

j ∈ [(2K +1)�′, (2K +1)(M +�′ −�)], then the entire stable disk at x will be contained in U under the same iteration.
Meanwhile, we can easily estimate the L1 norm of the difference between ψ and I{V M+�′−�

�′ =q−u}:∫
M

|ψ − I{V M+�′−�

�′ =q−u}|dμ =
∫

M
1 − I

S̃c dμ

= μ(S̃)

≤
(2K+1)(M+�′−�)∑

k=(2K+1)�′
μ

(
Sk(U)

)

≤
∑

k≥(2K+1)�′
μ

(
BC/kα (∂U)

)
.



1130 F. Yang

The term Y can now be estimated as

Y =
∣∣∣∣
∫

M
φo

�v · I{V M+�′−�

�′ =q−u} ◦ f �−�′
dμ −

∫
M

φo
�v dμ

∫
M
I{V M+�′−�

�′ =q−u} dμ

∣∣∣∣
≤

∣∣∣∣
∫

M
φo

�v · ψ ◦ f �−�′
dμ −

∫
M

φo
�v dμ

∫
M

ψ dμ

∣∣∣∣
+ 2

∑
k≥(2K+1)�′

μ
(
BC/kα (∂U)

)

≤ CK

rn
C
(
� − �′) + 2

∑
k≥(2K+1)�′

μ
(
BC/kα (∂U)

)
(25)

for any 0 ≤ �′ ≤ � < N ′.
Collect (22), (23) and (25) (or (24) in the non-invertible case) and sum over u and �v, we get (recall that we are only

interested in the case u ≤ 2K + 1, since otherwise {Z0 = u} will be empty; therefore the total number of summands is
bounded by a constant that depends on K):

R1 ≤ sup
q,M

q−1∑
u=1

∑
�v=(v1,...,vu),

0≤v1<···<vu≤2K

∣∣(P(
Z�v ∧ V M

� = q − u
) − μ(Z�v)P

(
V M

� = q − u
))∣∣

≤ C′
K

(
o
(
μ(Un)

) + 1

rn
C
(
� − �′) +

∑
k≥(2K+1)�′

μ
(
BC/kα (∂Un)

))
, (26)

where C′
K is a constant that does not depend on �, �′ or U . The last term does not show up when f is non-invertible.

6.2. Estimate R2

We use a strategy similar to the proof of Theorem D. Recall that μ0 is the measure supported on �0 and is invariant under
T = f R , such that μ is the lift of μ0 given by

μ(B) =
∞∑
i=1

Ri−1∑
k=0

μ0
(
f −k(B) ∩ �0,i

)
.

In particular, we have

μ
(
U ∩ f −j (U)

) =
∞∑
i=1

Ri−1∑
k=0

μ0
(
�0,i ∩ f −kU ∩ f −(k+j)U

)
.

6.2.1. Case 1. f is non-invertible
Recall that T = f R is the induced map on �0. For each vector �il = (i1, i2, . . . , il) ∈N

l , we define the l-cylinder I�il to be

I�il = �0,i1 ∩ T −1�0,i2 ∩ · · · ∩ T −(l−1)�0,il .

We are particularly interested in those cylinders I�il where the second last visited partition element �0,il−1 has a short
return time Ril−1 . To be more precise, for each integer s > 0, we define the collection of ‘good’ cylinders to be

IGs = {I�il : l ≥ 2,Ril ≤ s}.

IGs consists of all l-cylinders where the travel time from �0,il−1 to �0,il is less than s. We also write, for each k large
enough, the collection of ‘good’ cylinders whose length (under the iteration of f ) is around k:

IGs (k) =
{

I�il ∈ IGs :
l−1∑
j=1

Rij ≤ k <

l∑
j=1

Rij

}
.
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So if I�il ∈ IGs (k) then we have

k ≥
l−1∑
j=1

Rij =
l∑

j=1

Rij − Ril > k − Ril ≥ k − s. (27)

For each vector �il = (i1, . . . , il) such that I�il ∈ IGs (k), we write

�i′l = (i1, . . . , il−1),

i.e., we drop the last component from �il .
Now we turn to the estimate of R2. For given k < Ri , k′ > K0 and s = s(k + k′) given by Assumption 3, we denote

by �̃i the union of all the ‘good’ (l − 1)-cylinders in �0,i :

�̃i =
⋃

I�il ∈I
G
s (k+k′),I�il ⊂�0,i

I ′
�il , (28)

where we slightly abuse the notation and write I ′
�il = I�i′l , otherwise the index becomes impossible to read.

The next lemma is similar to the distortion estimate in the proof of Theorem D.

Lemma 6.1. We have

μ0
(
�̃i ∩ f −kU ∩ f −(k+k′)U

)
� μ(U)μ0

( ⋃
I ′
�il
:I�il ∈I

G
s (k+k′),I ′

�il
∩�0,i∩f −kU �=∅

I ′
�il

)
.

Proof. We have

μ0
(
�̃i ∩ f −kU ∩ f −(k+k′)U

)
≤

∑
I ′
�il
:I�il ∈I

G
s (k+k′),I ′

�il
∩�0,i∩f −kU �=∅

μ0
(
f −(k+k′)U ∩ I ′

�il
)

=
∑

I ′
�il
:I�il ∈I

G
s (k+k′),I ′

�il
∩�0,i∩f −kU �=∅

μ0(f
−(k+k′)U ∩ I ′

�il )

μ0(I
′
�il )

μ0
(
I ′
�il
)

�
∑

I ′
�il
:I�il ∈I

G
s (k+k′),I ′

�il
∩�0,i∩f −kU �=∅

μ0(T
l−1(f −(k+k′)U ∩ I ′

�il ))

μ0(T l−1I ′
�il )

μ0
(
I ′
�il
)
,

where we used the distortion estimate on the last inequality.
Note that I ′

�il are (l − 1)-cylinders, so the denominator satisfies μ0(T
l−1I ′

�il ) = μ0(�0) = 1. For the numerator, we

write, with b = k + k′ − ∑l−1
m=1 Rim ∈ [0, s] ∩N,

μ0
(
T l−1(f −(k+k′)U ∩ I ′

�il
)) ≤ μ0

(
T l−1(f −(k+k′)U

))
= μ0

(
f

∑l−1
m=1 Rim−(k+k′)U

)
= μ0

(
f −bU

)
≤ C0μ

(
f −bU

) = C0μ(U)

for some constant C0 > 0 independent of b.13

13The existence of such C0 follows from the facts that μ0 = μ|�0 and μ0(R) < ∞.
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Now we conclude that

μ0
(
�̃i ∩ f −kU ∩ f −(k+k′)U

)
� μ(U)μ0

( ⋃
I ′
�il
:I�il ∈I

G
s (k+k′),I ′

�il
∩�0,i∩f −kU �=∅

I ′
�il

)
.

�

Note that if I ′
�il is a ‘good’ (l − 1)-cylinder that has non-empty intersection with f −kU , then the backward contraction

along unstable disks (13) gives

diam
(
I ′
�il
)
�

(
l−1∑
j=1

Rij

)−α

≤ (
k + k′ − s

)−α ≤ (
k′ − s

)−α
.

As a result, such cylinders must be contained in the (k′ − s)−α-neighborhood of ∂U . This together with the previous
lemma and Assumption 3 give:

μ
(
U ∩ f −k′

(U)
)

≤
∑

i

Ri−1∑
k=0

μ0
(
�̃i ∩ f −kU ∩ f −(k+k′)U

) +
∑

i

Ri∑
k=0

μ0
(
f −kU ∩ (�0,i \ �̃i)

)

� μ(U)
∑

i

Ri−1∑
k=0

∑
I ′
�il
:I�il ∈I

G
s (k+k′),I ′

�il
∩�0,i∩f −kU �=∅

μ0
(
I ′
�il
) + G

(
k′)μ(U)

≤ μ(U)
(
μ

(
U ∪ B(k′/2)−α (∂U)

) + (
k′)−p′′)

� μ(U)
(
μ(U) + (

k′)−αp′ + (
k′)−p′′)

.

The rest of the proof follows the lines of the proof of Theorem D, with κn replaced by �. We obtain, for any K ′ < K ,

R2 � (2K + 1)μ(U)

(
�Kμ(U) + K−min{αp′,p′′}+1 + Kμ(U) + (

K ′)−(p′−1) + K ′

K

)
.

6.2.2. Case 2. f is invertible
We define the cylinders I�il and the collection of ‘good’ cylinders IGs (k) in the same way as before. We will estimate each

set �0,i ∩ f −kU ∩ f −(k+k′)U using the conditional measures of μ0.
Recall that μγ are the conditional measures of μ0 for γ ∈ �u. Similar to the proof of Lemma 6.1, we have

μγ

(
�̃i ∩ f −kU ∩ f −(k+k′)U

)
≤

∑
I ′
�il

:I�il ∈I
G
s (k+k′),I ′

�il
∩�0,i∩f −kU �=∅

μγ

(
f −(k+k′)U ∩ I ′

�il
)

=
∑

I ′
�il
:I�il ∈I

G
s (k+k′),I ′

�il
∩�0,i∩f −kU �=∅

μγ (f −(k+k′)U ∩ I ′
�il )

μγ (I ′
�il )

μγ

(
I ′
�il
)

�
∑

I ′
�il
:I�il ∈I

G
s (k+k′),I ′

�il
∩�0,i∩f −kU �=∅

μγ̃ (T l−1(f −(k+k′)U ∩ I ′
�il ))

μγ̃ (T l−1I ′
�il )

μγ

(
I ′
�il
)
,

where γ̃ = γ̃ (I ′
�il ) = γ (T l−1x) for x ∈ γ ∩ I ′

�il . As before, the denominator is bounded from above, and the numerator
satisfies

μγ̃

(
T l−1(f −(k+k′)U ∩ I ′

�il
)) ≤ μγ̃

(
f −bU

)
� μ(U)
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with b = k + k′ − ∑l−1
m=1 Rim ∈ [0, s] ∩ N, and the last inequality follows from Assumption 4. It then follows that (with

m(γ ) the transverse measure):

μ
(
U ∩ f −k′

(U)
)

≤
∫ ∑

i

Ri−1∑
k=0

μγ

(
�̃i ∩ f −kU ∩ f −(k+k′)U

)
dm(γ ) +

∑
i

Ri∑
k=0

μ0
(
f −kU ∩ (�0,i \ �̃i)

)

� μ(U)

∫ ∑
i

Ri−1∑
k=0

∑
I ′
�il
:I�il ∈I

G
s (k+k′),I ′

�il
∩�0,i∩f −kU �=∅

μ0
(
I ′
�il
)
dm(γ ) + G

(
k′)μ(U)

≤ μ(U)

(∫
μγ

(
U ∪ B(k′/2)−α (∂U)

)
dm(γ ) + k−p′′

)

= μ(U)
(
μ

(
U ∪ B(k′/2)−α (∂U)

) + k−p′′)
� μ(U)

(
μ(U) + (

k′)−αp′ + (
k′)−p′′)

.

6.3. Collect the estimates

In the non-invertible case, we have∣∣P(
V N ′

0 = k
) − m

({k})∣∣ ≤ CN ′(R1 +R2) + �μ(Un)

� Ko(1) + CKC(�)

Krnμ(Un)
+ �Kμ(Un) + K−min{αp′,p′′}+1 + Kμ(Un)

+ (
K ′)−min{αp′,p′′}+1 + K ′

K
+ �μ(Un).

Sending n to infinity then K to infinity with K ′ = √
K , we see that the error term goes to zero as n goes to infinity,

provided that

rn = o

(
μ(U)

C(�/2)

)
.

This will also make the compound binomial distribution to converge to the compound Poisson distribution, following
Remark 3.8. This finishes the proof of Theorem E in the non-invertible case.

In the invertible case,∣∣P(
V N ′

0 = k
) − m

({k})∣∣ ≤ CN ′(R1 +R2) + �μ(Un)

� CK

(
o(1) + C(�)

rnμ(Un)
+ 1

μ(Un)

∑
k≥(2K+1)�′

μ
(
BC/kα (∂Un)

)) + �Kμ(Un)

+ K−min{αp′,p′′}+1 + Kμ(Un) + (
K ′)−min{αp′,p′′}+1 + K ′

K
+ �μ(Un).

The third term is estimated by Assumption 2. We take � = μ(U)−1+ε for ε > 0 small enough, then

1

μ(Un)

∑
k≥(2K+1)�′

μ
(
BC/kα (∂Un)

)

� 1

μ(Un)

∑
k≥(2K+1)�′

k−αp′

� CKμ(Un)
−1�−(αp′−1)

= CKμ(Un)
(1−ε)(αp′−1)−1,
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which vanishes as long as αp′ > 2 and ε is taken small enough. We conclude the proof of Theorem E in the invertible
case, and Theorems A, B follow.

6.4. Synchronizing K and n

The following proposition is a by-product from the proof of the previous theorem, which states that β� defined in (8) by
synchronizing K and n is, in fact, the same as α̂�.

Proposition 6.2. Under the assumptions of Theorem E, for any increasing sequence {sn} with sn → ∞ and snμ(Un) → 0,
the sequence {β�} defined by (8) exists and satisfies β� = α̂� for all � ≥ 1.

The proof follows the estimate on R2 and is entirely similar to the proof of Proposition 5.4 and, therefore, will be
omitted.

6.5. Proof of Corollary 2.2

Assume that πess(Un) → ∞. By Lemma 3.1 we have α̂1 = 1 and α̂� = 0 for all � ≥ 2. Then Theorem 3.4 gives

α1 = α̂1 − α̂2 = 1, and α� = 0 for all � ≥ 2.

As a result, we have

λ1 = α1 − α2

α1
= 1, and λ� = 0 for all � ≥ 2.

In view of Theorem C, we only need to show that the entry times distribution ζUn converges to a Poisson distribution
with parameter τ > 0, where τ is given by (1). For this purpose, we apply Theorem E (or Theorem D and Theorem 5.5
when the tower is defined using the first return map). In this case, the compound part is a trivial distribution with P(Zj =
1) = 1. Then the compound Poisson distribution reduces to a Poisson distribution with parameter α1τ = τ .

To finish the proof, we state a general proposition regarding the periodic of Un. Note that the proof does not require
the system to be measure preserving, and � need not to have zero measure.

Proposition 6.3. Let f be a continuous map on the compact metric space M, and {Un} a nested sequence of sets (need
not be open), such that

⋂
n Un = ⋂

n Un. Then π(Un) → ∞ if and only if � intersects every forward orbit at most once.

Proof. We first prove the ‘only if’ part. Assume there exists a point x such that � ∩ Orb+(x) contains two points y and
y′ (if y = y′ then we are in the periodic point case). Without loss of generality, we take k > 0 such that y′ = f k(y). Then
we have π(Un) ≤ k for every n since y ∈ Un ∩ f −kUn, a contradiction.

For the ‘if’ part, we prove by contradiction. First, observe that π(·) is monotonic, i.e., π(U) ≥ π(V ) if U ⊂ V . There-
fore, if the sequence π(Un) does not go to infinity, it must remain bounded, thus has to converge to a finite number N .

It then follows that for each n large enough, there exists xn ∈ Un such that f N(xn) ∈ Un. Take a subsequence if
necessary, we may assume that xn → x. Note that for each n, we have x ∈ Un. This shows that x ∈ � = ⋂

n Un. Since f is
continuous, f N(xn) → f N(x), which must be contained in � according to the same argument. Then either �∩ Orb+(x)

contains at least two points, or x = f N(x), which means x is a periodic points; both cases contradict with the assumption
that � intersect every forward orbit at most once. �

Note that in our setting, the condition
⋂

n Un = ⋂
n Un holds from the construction. Now the final statement of Corol-

lary 2.2 follows from the observation that if � intersect every forward orbit at most once, then π(Un) → ∞, which means
πess(Un) → ∞. We conclude the proof of Corollary 2.2.
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