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Abstract. We consider a random bistochastic matrix of size n of the form MQ where M is a uniformly distributed permutation matrix
and Q is a given bistochastic matrix. Under sparsity and regularity assumptions on Q, we prove that the second largest eigenvalue of
MQ is essentially bounded by the normalized Hilbert–Schmidt norm of Q when n grows large. We apply this result to random walks
on random regular digraphs.

Résumé. Considérons une matrice bi-stochastique aléatoire de taille n et de la forme MQ avec M une matrice de permutation unifor-
mément distribuée et Q une matrice bi-stochastique fixée. Sous des conditions de parcimonie et de régularité sur Q, on démontre que
la deuxième plus grande valeur propre de MQ est essentiellement bornée par la norme de Hilbert–Schmidt normalisée de Q lorsque n

est très grand. Ce résultat s’applique aux marches au hasard sur les graphes aléatoires dirigés réguliers.

MSC2020 subject classifications: 60B20; 60C05; 05C80
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1. Introduction

1.1. Model and main result

For n ≥ 1 integer, let [n] = {1, . . . , n}. Let Q ∈ Mn(C) be a bistochastic matrix of size n, that is, for any x, y in [n],
Qxy ≥ 0 and the constant vector 1 = (1, . . . ,1) ∈ R

n is an eigenvector of Q and its transpose Qᵀ:

Q1 = Qᵀ1 = 1. (1)

In probabilistic terms, Q is the transition matrix of a Markov chain on [n] which admits the uniform measure as an
invariant measure.

Let Sn be the symmetric group on n elements. We will denote by | · | the cardinal number of a set and the usual absolute
value, P(·) and E(·) are the probability and expectation under the uniform measure on Sn: for any subset E ⊂ Sn,

P(E) = |E|
|Sn| .
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Let σ be a uniformly distributed random permutation in Sn. We denote by M the n × n permutation matrix of σ . In
matrix notation, for all x, y ∈ [n],

Mxy = 1
(
σ(x) = y

)
.

In this paper, we study the n × n random matrix

P = MQ, (2)

or, in matrix notation, for all x, y ∈ [n], Pxy = Qσ(x)y . Then, P is the transition matrix of a Markov chain on [n] where
at each step, we compose with σ before performing a step according to Q. Note that P itself is bistochastic and thus
the constant vector 1 is an eigenvector of P and its transpose P ᵀ with eigenvalue 1. From Perron–Frobenius theorem, it
follows that 1 is the largest eigenvalue of P . We order non-increasingly the moduli of the eigenvalues of P , λi = λi(P ),

1 = λ1 ≥ |λ2| ≥ · · · ≥ |λn|. (3)

The spectral gap is defined as 1 − |λ2|. It measures the asymptotic mixing rate to equilibrium. For example, if P is
aperiodic and irreducible, then for any probability measure π0 on [n],

lim
t→∞

∥∥π0P
t − π

∥∥1/t

TV = |λ2|.

where π = 1/n is the invariant measure of P and, for a signed measure ν on [n], ‖ν‖TV = 1
2

∑
x |ν(x)| denotes the total

variation norm (we refer to [12]).
Our main result is a sharp probabilistic upper bound on |λ2| which involves strikingly very few parameters of Q. For

A ∈ Mn(C), the normalized Hilbert–Schmidt norm is defined as

‖A‖HS =
√

1

n
tr
(
AA∗)=

√√√√1

n

∑
x,y

|Axy |2 =
√√√√1

n

n∑
i=1

si(A)2, (4)

where the scalars si(A), denote the singular values of A (that is, the eigenvalues of
√

AAᵀ and
√

AᵀA).
The �1 to �∞ norm of A ∈ Mn(C) is

‖A‖1→∞ = max
x,y

|Axy |.

For some applications, we introduce a relaxation of this norm. It is defined, for 0 < δ ≤ 1, as

‖A‖(δ)
1→∞ = inf

E⊂[n],|E |<n1−δ
max
x /∈E,y

|Ayx |, (5)

(note that this is not a norm for δ �= 1 and ‖A‖(1)
1→∞ = ‖A‖1→∞). We also introduce a usual sparsity parameter of

A ∈ Mn(C), defined as

‖A‖1→0 = max
x

∣∣{y : Axy �= 0}∣∣, (6)

(this is the �1 to �0 pseudo-norm for the pseudo-norm �0 on C
n, ‖u‖�0 =∑

x 1(ux �= 0)).
For the remainder of the text, we fix some 0 < δ < 1 and set the following notation

d := ∥∥QᵀQ
∥∥

1→0 and ρ := ‖Q‖HS ∨ ‖Q‖(δ)
1→∞.

We will always assume that d ≥ 2 (otherwise d = 1, Q itself is a permutation matrix and P and M have the same
distribution). We observe that d and ρ are intrinsic parameters of P since ‖Q‖HS = ‖P‖HS, ‖Q‖(δ)

1→∞ = ‖P‖(δ)
1→∞,

‖QᵀQ‖1→0 = ‖P ᵀP‖1→0. Note also that the singular values of P and Q are equal. Our main result asserts that |λ2| is
essentially bounded by ρ as long as d is not too large.

Theorem 1. Let n ≥ 1 be an integer and let σ be a uniformly distributed random permutation in Sn. Let M be the
permutation matrix of σ and Q ∈ Mn(R) be a bistochastic matrix as above. Let P = MQ. The eigenvalues of P are
denoted as in (3). Then for any 0 < c0 < δ ≤ 1, there exists a constant c1 > 0 (depending only on δ, c0) such that

P
(|λ2| ≥ (1 + ε)ρ

)≤ n−c0,
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Fig. 1. Plot of the eigenvalues of P for a single realization of M when n = 500 and Q = pIn + (1 − p)In/2 ⊗ D where In is the identity matrix
of size n, D is the matrix of size 2 given by D11 = D22 = 0, D21 = D12 = 1 with p = 1/2 (left) and p = 1/3 (right). The circles in red have radii
‖Q‖HS =

√
p2 + (1 − p)2.

where

ε = c1
logd√
logn

.

See Figure 1 for numerical simulations. Theorem 1 implies that in many cases, the second largest eigenvalue of P is
much smaller than the second largest eigenvalue of Q. Assume for example that Q is symmetric (in probabilistic term,
Q is a reversible Markov chain) and that ρ = ‖Q‖HS (that is ‖Q‖(δ)

1→∞ ≤ ‖Q‖HS). Then the eigenvalues of Q are real
and their absolute values coincide with the singular values of Q. From (4), ‖Q‖HS is the �2-average of the eigenvalues
of Q, the latter is typically much smaller than the second largest eigenvalue of Q in absolute value. Note also that the
eigenvalues of M are all of modulus 1 and that, with probability tending to 1 as n goes to infinity, M is non irreducible.
It follows that, even if the Markov chains Q and M have a small spectral gap (Q may even be non irreducible), the
composed Markov chain P = MQ has typically a large spectral gap.

The conclusion of Theorem 1 is especially interesting when ρ = ‖Q‖HS. This is a condition on the inhomogeneity of
the matrix Q. Indeed, observe that

max
y

Qyx ≤
√∑

y

Q2
yx.

Assume that the right-hand side of the above inequality does not depend on x. Then we find that ‖Q‖1→∞ ≤ ‖Q‖HS
and ρ = ‖Q‖HS. The latter condition holds for example if Q is a transition matrix of simple random walk on the simple
regular graph.

We remark that the order n−c0 in Theorem 1 cannot be improved significantly when Q admits an invariant subspace
of small dimension spanned by vectors of the canonical basis (ex)x∈[n]. More precisely, assume for example that H =
span(e1, . . . , ek) is the invariant subspace of Q for some fixed integer 1 ≤ k ≤ n/2. Consider the event σ([k]) = [k]. It is
not hard to check that this event has probability 1/

(
n
k

)≥ 1/nk . On this event, H and its orthogonal H⊥ are both invariant
by Q. Hence, on this event, λ1 = λ2 = 1 and

P
(|λ2| = 1

)≥ n−k.

Similarly, if δ = 0 (that is, ρ = ‖Q‖HS), the conclusion of the theorem may be wrong. Assume for example that Q is
a bistochastic matrix such that the subset

S = {
x ∈ [n] : Qyxx = 1 for some yx ∈ [n]}
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is of positive proportion in [n]. Then the probability that for at least one of such x ∈ S, we have σ(x) = yx is uniformly
lower bounded in n. On the latter event, λ2 = 1 since Pxx = 1.

We expect that when ρ = ‖Q‖HS and d = exp(o(
√

logn)), the conclusion of Theorem 1 is sharp. Namely, we con-
jecture that for any ε > 0, |λ2| ≥ (1 − ε)ρ with probability tending to 1 as n goes to infinity. In the next subsection, we
will discuss some examples where the conjecture is true. There is an indirect evidence supporting this conjecture when
we replace the random permutation matrices by other random unitary matrices. Let U be a random unitary matrix of size
n sampled according to the Haar measure on the unitary group. Under mild assumptions on Q, it is known that the spec-
tral radius of UQ/‖Q‖HS converge in probability to 1, see [9,10,16] and, for the connection to free probability [11,15].
More generally, from these references, we might also guess an asymptotic formula for the empirical distribution of the
eigenvalues of P/‖Q‖HS.

Theorem 1 is related to the recent work by Coste [6]. There, the author studies the spectral gap of the transition matrix
of simple random walk on a random digraph. With our notation, it corresponds to the second eigenvalue of a Markovian
matrix of size m, proportional to n, of the form ASBᵀ, where S is uniformly distributed in Sn and A,B are specific
matrices in Mm,n(C) such that A1n = 1m and Bᵀ1m = 1n. In some cases treated in [6], the upper bound on |λ2| is also
given by (1 + o(1))‖BᵀA‖HS. Our two results are thus of the same nature even if they are not directly comparable.

We remark finally that Theorem 1 can be extended to some extend beyond the uniform measure on Sn, see Remark 2
below, and beyond bistochastic matrices, see Remark 3 (for examples to matrices Q such that 1 is a common eigenvector
of Q and Qᵀ).

1.2. Random walks on random digraphs

In this section, we state some immediate consequences of Theorem 1.
A digraph G = (V ,E) is the pair formed by a countable vertex set V and a set of oriented edges E ⊂ V × V . If

e = (u, v) ∈ E then e is an incoming edge of v and an outgoing edge of u. For r ∈ N, we say that G is r-regular if any
vertex has exactly r incoming and r outgoing edges. If the set E is symmetric then G can be interpreted as an undirected
graph.

Theorem 2. Let n ≥ 1 and r ≥ 2 be integers and Q be the transition matrix of a simple random walk on a r-regular
digraph G = (V ,E) with V = [n]. Let σ be a uniformly distributed permutation in Sn and let M be its permutation
matrix. Let P = MQ be as in (2) with eigenvalues denoted as in (3). For any 0 < c0 < 1, there exists c1 > 0 (depending
only on c0) such that the conclusion of Theorem 1 holds with ρ = 1/

√
r and d = r2.

In the above theorem, the matrix P is the transition matrix of the simple random walk on the random digraph Gσ =
(V ,Eσ ) where Eσ = {(σ−1(x), x′) : (x, x′) ∈ E}. Note that Gσ will have many weak cycles of length 4 if G has many
weak cycles of length 4 where a weak cycle of length k ≥ 1 is a sequence (v0, . . . , vk) in V such that v0 = vk and for each
t ∈ [k], either (vt−1, vt ) ∈ E or (vt , vt−1) ∈ E (in words: it is a cycle in the undirected graph associated to G).

Theorem 2 can be applied to uniformly sampled r-regular digraphs.

Corollary 1. Let n ≥ 1 and r ≥ 2 be integers. Let P be sampled uniformly over bistochastic matrices of size n × n with
entries in {0,1/r} and with eigenvalues as in (3). Then for any 0 < c0 < 1, there exists c1 > 0 (depending only on c0)
such that the conclusion of Theorem 1 holds with ρ = 1/

√
r and d = r2.

For r ≥ 2 uniformly bounded in n, Corollary 1 is contained in [6, Corollary 1.2]. There is a converse of Corollary 1 in
some range of the degree r . It is a consequence of the main results in [5,13] that, if r ≤ n − (logn)96 and r → ∞, then,
for any ε > 0, with probability tending to 1 as n goes to ∞, |λ2| ≥ (1 − ε)ρ. Hence, if r → ∞ and r = exp(o(

√
logn)),

|λ2|/ρ converges in probability to 1 as n → ∞.
Let us give another application of Theorem 1. From Birkhoff-von Neumann Theorem, the set of bistochastic matrices

is the convex hull of permutation matrices. We thus have the decomposition

Q =
r∑

i=1

piMi, (7)

where Mi are permutations matrices and (p1, . . . , pr) is a probability vector. This decomposition is not unique in general.
Our next result asserts that if Q admits such decomposition with r not too large and matrices Mi which have few common

non-zeros entries then the second largest eigenvalues of P is at most (1 + o(1))

√∑
i p

2
i .
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Theorem 3. Let n ≥ 1 and r ≥ 2 be integers, p = (p1, . . . , pr) be a probability vector and σ1, . . . , σr be permutations in
Sn with associated permutation matrices M1, . . . ,Mr . Assume that Q is given by (7). We set S = {x ∈ [n] : ∃i �= j, σi(x) =
σj (x)}. Let σ be a uniformly distributed permutation in Sn and let M be its permutation matrix. Let P = MQ be as in
(2) with eigenvalues denoted as in (3). For any 0 < c0 < δ ≤ 1, there exists a constant c1 > 0 (depending only on δ, c0)

such that if |S| ≤ n1−δ , then the conclusion of Theorem 1 holds with ρ =
√∑

i p
2
i and d = r2.

In Theorem 3, assume that S =∅. Then G = (V ,E) and Gσ = (V ,Eσ ) with V = [n], E = {(x, σi(x)) : x ∈ V, i ∈ [r]}
and Eσ = {(σ−1(x), σi(x)) : x ∈ V, i ∈ [r]} are r-regular digraphs. The transition matrices Q and P correspond to

anisotropic random walks on G and Gσ . Interestingly, the scalar
√∑

i p
2
i is the spectral radius of the anisotropic random

walk on the infinite homogeneous directed tree, see the monograph [7].

Corollary 2. Let n ≥ 1 and r ≥ 2 be integers, p = (p1, . . . , pr) be a probability vector and σ1, . . . , σr be independent
and uniformly distributed permutations in Sn with associated permutation matrices M1, . . . ,Mr . Set

P =
r∑

i=1

piMi

with eigenvalue denoted as in (3). For any 0 < c0 < 1, there exists a constant c1 > 0 (depending only on c0) such that the

conclusion of Theorem 1 holds with ρ =
√∑

i p
2
i and d = r2.

Consider the setting of Corollary 2 in the case pi = 1/r for all i ∈ [r]. Then ρ = 1/
√

r . It follows from the main result
in [1] that if, for some c > 0, (logn)12 ≤ r ≤ cn then for any ε > 0, |λ2| ≥ (1 − ε)ρ with probability tending to 1 as n

goes to infinity. Hence, in the regime (logn)12 ≤ r ≤ exp(o(
√

logn)), |λ2|/ρ converges in probability to 1 as n goes to
infinity.

1.3. Strategy of proof of Theorem 1

The proof of Theorem 1 will follow the strategy developed in [2,3,14] to study the spectral gap of non-backtracking
operators of random graphs. This approach is quite general and it is designed to compute the top eigenvalues of a matrix
defined on a sparse random graph such that the successive powers of the matrix count some weighted paths with few
cycles.

Let us summarize the strategy of proof and its caveats. We will fix an integer � of order logn. Since (1) also holds for
P , it is immediate to check that

|λ2|� ≤ ∥∥(P �
)
|1⊥
∥∥ := max

〈v,1〉=0

‖P �v‖2

‖v‖2
. (8)

Our main result is an upper bound for the operator norm of P � on 1⊥. By adjusting the constants c0, c1, Theorem 1 is
an immediate consequence of (8) and the following result applied to � ∼ (c0/3) logn/ logd .

Theorem 4. For any 0 < c0 < δ ≤ 1, there exists a constant c1 > 0 such that, for any integer � ≥ 1,

P
(∥∥(P �

)
|1ᵀ
∥∥≥ ec1

√
lognρ�

)≤ d�+50
√

lognn−c0 .

To prove Theorem 4, it would seem natural to introduce the matrix P = MQ where

M = M − 1

n
· 1 ⊗ 1 = M −EM, (9)

and

1 ⊗ 1 = 11ᵀ.

Indeed, from (1),∥∥(P �
)
|1ᵀ
∥∥= ∥∥(P )�

∥∥.
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A usual route would then be estimating the operator norm ‖(P )�‖ thanks to the high trace method. That is, we use for
any real random matrix B and integer m ≥ 1,

E‖B‖2m = E
∥∥BBᵀ∥∥m ≤ E tr

[(
BBᵀ)m]. (10)

Our problem requires to use the above inequality with B = (P )� and �m � logn. However, as explained above, due
to the potential presence of low dimensional invariant subspaces in P , the event λ2 = 1 has probability at least n−c and
hence E‖(P )�‖2m ≥ n−c, which may be much larger than ρ(1 + ε)2�m for ε small enough, in the regime �m � logn.

To circumvent this difficulty, we have to remove beforehand some events. We will then use the crucial fact that with
high probability the random matrix M is free of �-tangles with the matrix Q, where a tangle is a path of length � which
contains at least two cyles in a graph associated to the non-zero entries of P = MQ and Q or meet the subset E ⊂ [n] (see
Definition 2 below for a precise definition). For an intuition, recall that the matrix P h = (QM)h is the h-steps transition
of the Markov chain. Now every multiplication by M sends a point x ∈ [n] to a random point σ(x), and since Q has few
non zero entries, as long as h is not too large, for most starting points, it is unlikely that there exists trajectories which
come back at their starting point after h steps.

On this event, we will have the matrix identity

P � = P (�),

where P (�) is a matrix where the contribution of all tangles will vanish at once (see (13) below). Thanks to basic linear
algebra, we will then project the matrix P (�) on the orthogonal of the vector 1 and give a deterministic upper bound of
‖(P �)|1ᵀ‖ in terms of the operator norms of new matrices which will be expressed as weighted paths of length at most �.

In the remainder of the proof, we will use the high trace method to upper bound the operator norms of these new
matrices: if A is such matrix, we will use (10) for some integer m of order

√
logn. By construction, the expression on the

right-hand side of (10) is then an expected contribution of some weighted paths of lengths 2m� of order �
√

logn.
The study of the expected contribution of weighted paths in (10) will have a probabilistic and a combinatorial part.

The necessary probabilistic computations on the random permutation are gathered in Section 3. In Section 4, we will use
these computations together with combinatorial upper bounds on directed paths to deduce sharp enough bounds on our
operator norms. The success of this step will essentially rely on the fact that the contributions of tangles vanish in P (�).
Finally, in Section 5, we gather all ingredients to conclude.

In the remainder of the paper, we let E be a fixed subset of [n] of cardinality at most n1−δ which achieves the minimum
in (5) for A = Q.

2. Path decomposition

In this section, we fix σ ∈ Sn with permutation matrix M and a positive integer �. Our aim is to derive a deterministic
upper bound on the norm of (P �)1⊥ defined in (8) (in forthcoming Lemma 1) when M and Q satisfy a property which
will be called �-tangle-free. This can be studied by an expansion of paths in the graph. To this end, we introduce some
definition.

Definition 1. A path of length k is a sequence γ = (x1, y1, x2, . . . , xk, yk, xk+1), with xt , yt ∈ [n] and Qytxt+1 > 0. The
set of paths of length k is denoted by �k . If x, y ∈ [n], we denote by �k

xy paths in �k such that x1 = x, xk+1 = y.
A subpath of γ is a path of the form (xs, ys, . . . , yt , xt+1) with 1 ≤ s ≤ t ≤ k, or, if xi = xj for some 1 ≤ i < j ≤ n, a

path of the form (xs, ys, . . . , xi, yj , . . . , xt+1) with 1 ≤ s ≤ i < j ≤ t ≤ k.

We will use the convention that a product over an empty set is equal to 1 and the sum over an empty set is 0. By
construction, for integer k ≥ 0, from (2) we find that

(
P k
)
xy

=
∑

γ∈�k
xy

k∏
t=1

Mxtyt Qyt xt+1 , (11)

where the sum is over all paths of length k from x to y. Note that, in the above expression for P k , only the summand
depends on the permutation σ . Observe that M defined in (9) is the orthogonal projection of M on 1⊥. The matrix
(P )k = (MQ)k can similarly be written as

(
(P )k

)
xy

=
∑

γ∈�k
xy

k∏
t=1

Mxtyt
Qyt xt+1 .
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As pointed in Introduction, the matrix (P )k is orthogonal projection of P k on 1⊥ but it is not suited for our probabilistic
analysis.

We will now introduce the central definition of tangled paths. Recall that E ⊂ [n] is a fixed set of cardinality at most
n1−δ which achieves the minimum in (5).

Definition 2. Fix the integer h := �20
√

logn�.

• A coincidence is a path (x1, y1, . . . , xt , yt , xt+1) with (x1, . . . , xt ) pairwise distinct such that ((QᵀQ)h)x1xt+1 > 0.
• An E -coincidence is a path (x1, y1, . . . , xt , yt , xt+1) with (x1, . . . , xt ) pairwise distinct such that x1 = xt+1 is in E .
• A path γ is tangle-free if it contains (as subpaths) at most one coincidence, no E -coincidence. It is tangled otherwise.

The subsets of tangle-free paths in �k and �k
xy will be denoted by Fk and Fk

xy respectively.
• The pair (M,Q) is �-tangle-free if for any k ∈ [�] and γ = (x1, y1, x2, . . . , xk, yk, xk+1) ∈ �k\Fk , we have

k∏
t=1

Mxtyt = 0.

Importantly, note that the definition of paths, coincidences and tangles do not depend on σ , they depend only on the
non-zero entries of Q. For example, the set �k does not depend on the permutation matrix M . Observe also that the
condition ((QᵀQ)h)xx′ > 0 is equivalent to the existence of an integer 0 ≤ k ≤ h and sequences (x0, . . . , xk), (y1, . . . , yk)

such that x0 = x, xk = x′, (x0, . . . , xk) pairwise distinct and for any s ∈ [k], min(Qysxs−1 ,Qys,xs ) > 0.

Remark 1. Note that by our definition, a path following multiple times the same cycle may not be tangled. For example,
assume that x1, . . . , xt are points in [n]\E such that there does not exist an integer 0 ≤ s < h and i �= j with Qs

xi ,xj
> 0.

Then the following path

γ = (x1, y1, x2, y2, x3, y3, x4, y4, x2, y2, x3, y3, x4, y4, x2, y2, x3, y3, x4, y4, x5)

is tangle-free. Note however that if one of the xj ’s in E then the path is tangled.

If the pair (M,Q) is �-tangle-free then by definition, for any k ∈ [�] and for any γ in �k
xy\Fk

xy , the summand on the
right-hand side of (11) is zero. Therefore,

P k = P (k), (12)

where P (k) is defined by the following formula

(
P (k)

)
xy

:=
∑

γ∈Fk
xy

k∏
t=1

Mxtyt Qyt xt+1 . (13)

For k ∈ [�], we define similarly the matrix P (k) by

(
P (k)

)
xy

=
∑

γ∈Fk
xy

k∏
t=1

(M)xt yt Qyt xt+1 . (14)

Note that it is not necessarily true that even if the pair (M,Q) is �-tangle-free that (P )� = P (�). Nevertheless, we may
still express P (�)v in terms of P (�)v for all v ∈ 1⊥ at the cost of adding an explicit error term. We start with the following
telescopic sum decomposition:

(
P (�)

)
xy

= (
P (�)

)
xy

+
∑

γ∈F�
xy

�∑
k=1

k−1∏
t=1

(Mxtyt
)Qyt xt+1 · Qykxk+1

n
·

�∏
t=k+1

Mxtyt Qytxt+1 , (15)

which is a consequence of the identity,

�∏
t=1

at =
�∏

t=1

bt +
�∑

k=1

k−1∏
t=1

bt · (ak − bk) ·
�∏

t=k+1

at .
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We now rewrite (15) as a sum of matrix products for lower powers of P (k) and P (k) up to some remainder terms. For
k ∈ [�], let T �,k denote the set of paths γ = (x1, y1, . . . , y�, x�+1) such that (i) γ ′ = (x1, y1, . . . , yk−1, xk) ∈ Fk−1, (ii)
γ ′′ = (xk+1, yk+1, . . . , y�, x�+1) ∈ F�−k , (iii) γ is tangled. We have the following picture:

γ = (
γ ′, yk, γ

′′)= (x1, y1, . . . , yk−1, xk︸ ︷︷ ︸
γ ′∈Fk−1

, yk, xk+1, yk+1, . . . , y�, x�+1︸ ︷︷ ︸
γ ′′∈F�−k

).

Then, if T
�,k
xy is the subset of γ ∈ T �,k such that x1 = x and x�+1 = y, we set

(
R

(�)
k

)
xy

=
∑

γ∈T
�,k
xy

k−1∏
t=1

(Mxtyt
)Qyt xt+1 · Qykxk+1 ·

�∏
t=k+1

Mxtyt Qytxt+1 . (16)

Let us rewrite (15) as

(
P (�)

)
xy

= (
P (�)

)
xy

+ 1

n

�∑
k=1

∑
γ∈F�

xy

k−1∏
t=1

(Mxtyt
)Qyt xt+1 · Qykxk+1 ·

�∏
t=k+1

Mxtyt Qytxt+1

︸ ︷︷ ︸
denoted by S(k, x, y)

.

For fixed k ∈ [�], let us rewrite the summand S(k, x, y). Using the following equality,

F�
xy

⊔
T �,k

xy =
⊔

xk∈[n]

⊔
xk+1∈[n]

⊔
yk∈[n]:Qykxk+1>0

{(
γ ′, yk, γ

′′)|γ ′ ∈ Fk−1
xxk

, γ ′′ ∈ F�−k
xk+1y

}
,

and using the definition (16) for (R
(�)
k )xy , we obtain that

S(k, x, y) =
∑

xk∈[n]

∑
xk+1∈[n]

∑
yk∈[n]

∑
γ ′∈Fk−1

xxk

∑
γ ′′∈F�−k

xk+1y

k−1∏
t=1

(Mxtyt
)Qyt xt+1 · Qykxk+1 ·

�∏
t=k+1

Mxtyt Qyt xt+1 − (
R

(�)
k

)
xy

=
∑

xk∈[n]

∑
xk+1∈[n]

∑
yk∈[n]

(
P (k−1)

)
xxk

· Qykxk+1 · (P (�−k)
)
xk+1y

− (
R

(�)
k

)
xy

=
∑

xk∈[n]

∑
xk+1∈[n]

(
P (k−1)

)
xxk

· (1 ⊗ 1 · Q)xkxk+1 · (P (�−k)
)
xk+1y

− (
R

(�)
k

)
xy

= (
P (k−1)(1 ⊗ 1)P (�−k)

)
xy

− (
R

(�)
k

)
xy

,

where at the last line we have used that Q is bistochastic: 1 ⊗ 1 · Q = 1 ⊗ (1ᵀQ) = 1 ⊗ 1. Therefore,

P (�) = P (�) + 1

n

�∑
k=1

P (k−1)(1 ⊗ 1)P (�−k) − 1

n

�∑
k=1

R
(�)
k ,

where we have set P (0) = P (0) = I . Observe that if (M,Q) is �-tangle-free, then (12) and P being bistochastic imply

1ᵀP (�−k) = 1ᵀP �−k = 1ᵀ.

Hence, if (M,Q) is �-tangle-free and 〈v,1〉 = 0, ‖v‖2 = 1, we find

∥∥P �v
∥∥

2 ≤ ∥∥P (�)
∥∥+ 1

n

�∑
k=1

∥∥R(�)
k

∥∥.
We mention here that the method used for the proof of the above inequality first appeared in [14] and was further

developed in [2,3,6].
We arrive at the following lemma.
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Lemma 1. Let � ≥ 1 be an integer and σ ∈ Sn with permutation matrix M be such that the pair (M,Q) is �-tangle-free.
Then,

∥∥(P �
)
|1ᵀ
∥∥≤ ∥∥P (�)

∥∥+ 1

n

�∑
k=1

∥∥R(�)
k

∥∥.

3. Computations on random permutation

In this section, we check that if σ is uniformly distributed on Sn then, with high probability the pair (M,Q) is �-tangle-
free provided that � is not too large. We will then state a proposition on the expected product of entries of the permutation
matrix M . Recall that h = �20

√
logn� was defined in Definition 2.

Lemma 2. There exists c > 0 such that for any integer � ≥ 1, the pair (M,Q) is �-tangle-free with probability at least
1 − c�d�+2hn−δ .

Proof. We may assume without loss of generality that � ≤ n/2 (otherwise the content of the lemma is empty). Let us
say that a path γ = (x1, y1, . . . , yk, xk+1) occurs if for any t ∈ [k], Mxtyt = 1 (that is σ(xt ) = yt ). If the pair (M,Q) is
�-tangled then at least one of the three following paths occurs for some integers with 1 ≤ k + k′ ≤ �, 1 ≤ i ≤ k + k′ and
1 ≤ k ≤ j ≤ k + k′ + 1:

(Ik,k′,i ) There exists a path (x1, y1, . . . , xk+k′+1), where all xt ’s are pairwise distinct except possibly x1 = xk+1 and
xi = xk+k′+1 such that (x1, y1, . . . , xk+1) and (xi, yi, . . . , xk+k′+1) are distinct coincidences.
(I ′

k,k′,j ) There exists a path (x1, y1, . . . , xk+k′+1) where all xt ’s are pairwise distinct except possibly x1 = xk+k′+1 such
that (xk, yk, . . . , xj ) is a coincidence and (x1, y1, . . . xk+k′+1) is a coincidence.
(IIk) There exists a path (x1, y1, . . . , yk, xk+1) which is an E -coincidence.

The configuration Ik,k′,i describes the situation when γ has two consecutive coincidences, I ′
k,k′,j accounts for the

possibility that one coincidence is contained in another. IIk describes the possibility of a closed cycle containing an
element in E .

Let us bound the probability of the two different configurations. Recall that if {a1, . . . , at } and {b1, . . . , bt } are two
subsets of cardinal t then

P
(
σ(a1) = b1, . . . , σ (at ) = bt

)= 1

(n)t
. (17)

where (n)t = n(n − 1) · · · (n − t + 1).
Let us start with Ik,k′,i . Then, there are (n)k+k′−1 choices for (xj ), j /∈ {k + 1, k + k′ + 1}, at most dh choices for xk+1

and xk+k′+1 and ‖Qᵀ‖k+k′
1→0 ≤ dk+k′

choices for the yt ’s (since Qytxt+1 > 0 by the definition of a path). We apply (17) with
t = k + k′ and as = xs , bs = ys , we arrive at

P(Ik,k′,i ) ≤ dk+k′
d2h(n)k+k′−1

(n)k+k′
≤ 2

dk+k′+2h

n
,

(where the last inequality uses � ≤ n/2).
The same argument gives

P
(
I ′
k,k′,j

)≤ dk+k′
d2h(n)k+k′−1

(n)k+k′
≤ 2

dk+k′+2h

n
.

Similarly, for IIk there are at most |E | choices for x1, (n)k−1 choices for (xj ), j /∈ {1} and dk choices for the yt ’s. From
(17), we get

P(IIk) ≤ dk+h|E |(n)k−1

(n)k
≤ 2

dk|E |
n

≤ 2
dk

nδ
,

(where we have used the assumption that |E | ≤ n1−δ). �
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Let x = (x1, . . . , xk),y = (y1, . . . , yk) ∈ [n]k . We are interested in estimating for 0 ≤ k0 ≤ k,

E

k0∏
t=1

Mxtyt

k∏
t=k0+1

Mxtyt .

To this end, the arcs of (x,y) is defined as

Axy = {
(xt , yt ) : t ∈ [k]}.

The cardinal of Axy is at most k. The multiplicity of e ∈ Axy is me =∑k
t=1 1((xt , yt ) = e). An arc e = (x, y) is consistent,

if {t : (xt , yt ) = (x, y)} = {t : xt = x} = {t : yt = y}. It is inconsistent otherwise. The following proposition is proved in
[2, Proposition 27].

Proposition 1. There exists a constant c > 0 such that for any x = (x1, . . . , xk),y = (y1, . . . , yk) ∈ [n]k with 2k ≤ √
n

and any k0 ≤ k, we have

∣∣∣∣∣E
k0∏

t=1

Mxtyt

k∏
t=k0+1

Mxtyt

∣∣∣∣∣≤ c2b

(
1

n

)a( 3k√
n

)a1

,

where a = |Axy|, b is the number of inconsistent arcs of (x,y) and a1 is the number of 1 ≤ t ≤ k0 such that (xt , yt ) is
consistent and has multiplicity 1 in Axy.

4. Expected high trace method

In this section, we use the expected high trace method to derive upper bounds on the operator norms of P (�) and R
(�)
k

defined respectively by (14) and (16). Before starting the formal proof, let us give an overview of the arguments.
The expected high trace method was introduced by Füredi and Komlós [8] in random matrix theory. It starts from the

two elementary observations: (i) for any matrix A ∈ Mn(R), ‖A‖ ≤ tr((AAᵀ)k)1/(2k) and these two terms are equivalent
if k � log(n) and (ii) if A is a random matrix, we may use to a great benefit the linearity of the trace and the expectation
to estimate this last expression:

E tr
{(

AAᵀ)k}=
∑

x1,...,x2m

E

m∏
i=1

(Ax2i−1x2i
Ax2i+1x2i

), (18)

where x2m+1 = x1 and the sum runs over all xi ’s in [n]. The core of the argument is thus to capture which sequences
(x1, . . . , x2m) will dominate the sum on the right-hand side of (18). Drawing a parallel with statistical physics, there is
the usual tension between high energy terms (sequences (x1, . . . , x2m) such that E

∏m
i=1 Ax2i−1x2i

Ax2i+1x2i
is large) and

the entropic contribution (contributions of typical sequences (x1, . . . , x2m)). In our context for A = P (�), the right-hand
side of (18) will depend on both the randomness of the permutation M and the structure of the matrix Q. In the definition
of ρ = ‖Q‖HS ∨ ‖Q‖(δ)

1→∞, high energy terms are responsible of the factor ‖Q‖(δ)
1→∞ while the entropic contribution is

captured by the factor ‖Q‖HS.
The usual strategy to estimate the right-hand side of (18) is to interpret the sequence (x1, . . . , x2m) as a path on the

complete graph on [n] and try to bound E
∏m

i=1 Ax2i−1x2i
Ax2i+1x2i

in terms of simple graph invariants such as the number
of vertices. The goal is then to count how many paths give rise to a graph with these invariants. The arguments are thus
quite technical and with a strong combinatorial flavor. In the seminal paper of Füredi and Komlós [8] it was sufficient to
keep track of the number of vertices. Our proof follows roughly the same strategy than [2–4,6,14] where similar random
matrices are studied and where it was possible to keep track of the number of vertices and the number of edges thanks
to an analog of our tangle-free assumption. In the present paper however, the argument is substantially more involved
because we have to take into account some features of the deterministic matrix Q. Due to this unusual situation, the
graph, denoted below by Kγ , that we will associate to a path (x1, . . . , x2m) will depend on the matrix Q and there will be
three graph invariants: the number of vertices, the number of edges and a new parameter p which will somewhat quantify
how much the path interferes with the matrix Q.
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4.1. Operator norm of P (�)

In this paragraph, we prove the following proposition.

Proposition 2. Assume d ≤ exp(
√

logn). For any c0 > 0, there exists c1 > 0 (depending on c0, δ) such that for any
integer 1 ≤ � ≤ logn, with probability at least 1 − n−c0 ,

∥∥P (�)
∥∥≤ ec1

√
lognρ�.

Recall the number h defined in Definition 2. Let m be a positive integer so that

6m < h. (19)

With the convention that x2m+1 = x1, we find from (14),

∥∥P (�)
∥∥2m = ∥∥P (�)P (�)ᵀ∥∥m ≤ tr

{(
P (�)P (�)ᵀ)m}

=
∑

x1,...,x2m

m∏
i=1

(
P (�)

)
x2i−1,x2i

(
P (�)

)
x2i+1,x2i

=
∑

x1,...,x2m

m∏
i=1

[ ∑
γ2i−1∈F�

x2i−1,x2i

�∏
t=1

(M)x2i−1,t y2i−1,t
Qy2i−1,t x2i−1,t+1

]

×
[ ∑

γ2i∈F�
x2i+1,x2i

�∏
t=1

(M)x2i,t y2i,t
Qy2i,t x2i,t+1

]

=
∑

x1,...,x2m

∑
γ1,...,γ2m

γ2i−1∈F�
x2i−1,x2i

,

γ2i∈F�
x2i+1,x2i

m∏
i=1

�∏
t=1

(M)x2i−1,t y2i−1,t
Qy2i−1,t x2i−1,t+1

�∏
t=1

(M)x2i,t y2i,t
Qy2i,t x2i,t+1 ,

where we used the notation γi = (xi,1, yi,1, . . . , yi,�, xi,�+1) ∈ F�.
Now, we define W�,m as the set of γ = (γ1, . . . , γ2m) such that γi = (xi,1, yi,1, . . . , yi,�, xi,�+1) ∈ F� and for all i ∈ [m],

x2i,1 = x2i+1,1 and x2i−1,�+1 = x2i,�+1, (20)

with the convention that x2m+1,1 = x1,1. Using this notation, we obtain

∥∥P (�)
∥∥2m ≤

∑
γ∈W�,m

2m∏
i=1

�∏
t=1

(M)xi,t yi,t
Qyi,t xi,t+1 . (21)

Our goal is to estimate the expectation of the above expression thanks to Proposition 1 and a counting argument which
will rely crucially on the fact that an element γ ∈ W�,m is composed of 2m tangle-free paths, (γ1, . . . , γ2m).

We will count the elements in W�,m in terms of a measure of the size of their support. For γ = (γ1, γ2, . . . , γ2m) ∈ W�,m,
we define Xγ = {xi,t : i ∈ [2m], t ∈ [�]} and Yγ = {yi,t : i ∈ [2m], t ∈ [�]}. We then consider the graph Kγ with vertex set
Xγ and, for any x, x′ in Kγ , {x, x′} is an edge of Kγ if and only if(

QᵀQ
)
xx′ > 0.

(That is, there exists y ∈ [n] such that min(Qyx,Qyx′) > 0). The graph Kγ induces an equivalence relation on Xγ , where
each equivalence class is a connected component of Kγ . We set

cc(x) := the equivalence class of x.
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(Note that cc depends implicitly on Xγ ). By definition, for any x′ ∈ cc(x) with x′ �= x, there exists a sequence
(x0, x1, . . . , xk) of distinct points in Xγ such that

x0 = x, xk = x′ and
(
QᵀQ

)
xt−1xt

> 0 for any t ∈ [k].

The arcs of γ = (γ1, γ2, . . . , γ2m) ∈ W�,m, denoted by Aγ , is the set of distinct pairs (xi,t , yi,t ). We define W�,m(s, a,p)

as the set of γ ∈ W�,m with s = |Xγ |, a = |Aγ | and s − p connected components in Kγ . Then taking the expectation in
(21), we may write

E
∥∥P (�)

∥∥2m ≤ E

∑
γ∈W�,m

2m∏
i=1

�∏
t=1

Mxi,t yi,t
Qyi,t xi,t+1 =

∑
s,a,p

∑
γ∈W�,m(s,a,p)

μ(γ )q(γ ),

where for γ ∈ W�,m, we have defined

μ(γ ) := E

2m∏
i=1

�∏
t=1

Mxi,t ,yi,t
and q(γ ) =

2m∏
i=1

�∏
t=1

Qyi,t xi,t+1 . (22)

To estimate the above sum, we decompose further W�,m(s, a,p) into equivalence classes as follows. For γ, γ ′ ∈
W�,m(s, a,p), let us say γ ∼ γ ′ if there exist a pair of permutations α and β in Sn such that the image of Kγ by α is
Kγ ′ and for any (i, t), x′

i,t = α(xi,t ), y′
i,t = β(yi,t ) (where γ ′ = (γ ′

1, γ
′
2, . . . , γ

′
2m) with γ ′

i = (x′
i,1, y

′
i,1, . . . , y

′
i,�, x

′
i,�+1)).

We define W�,m(s, a,p) as the set of equivalence classes. An element in W�,m(s, a,p) is unlabeled in the language of
combinatorics.

We notice that μ(γ ) = μ(γ ′) if γ ∼ γ ′ and we obtain the bound,

E
∥∥P (�)

∥∥2m ≤
∑
s,a,p

∣∣W(s, a,p)
∣∣ max
γ∈W(s,a,p)

(∣∣μ(γ )
∣∣ ∑

γ ′∈W�,m(s,a,p):
γ ′∼γ

q
(
γ ′)). (23)

To estimate the right-hand side of the above inequality, we will establish three results respectively. In Lemma 3, for a
given triple (s, a,p), we give a combinatorial bound on the number |W�,m(s, a,p)|. In Lemma 5, we produce a bound
for the sum of q(γ ) over all γ in a single equivalence class. In Lemma 6, we estimate the probabilistic weight μ(γ ).
Importantly all these bound are expressed in terms of the common genus g := a +p − s + 1 of elements in W�,m(s, a,p).
To conclude the proof of Proposition 2, it will remain to combine the three lemmas in expression (23).

Lemma 3. If g := a + p − s + 1 < 0 or 2g + 2m > p, then W�,m(s, a,p) is empty. Otherwise, we have

∣∣W�,m(s, a,p)
∣∣≤ 24mp

(
as2�

)2m(g+3)
.

We start with an important lemma on the size of the connected components of Kγ . It is based on the assumption that
each γ ∈ W�,m is made of 2m tangle-free paths and that m is not too large.

Lemma 4. Let γ ∈ W�,m. Then for any x ∈ Xγ , cc(x) has at most 4m elements.

Proof. The proof is by contradiction. Assume that there exist x ∈ Xγ and k ≥ 2 such that 2km+1 ≤ |cc(x)| ≤ 2(k+1)m.
Then, from the pigeonhole principle, there exists i ∈ [2m] such that γi visits at least k + 1 distinct vertices in cc(x). That
is, there exist 1 ≤ t1 < · · · < tk+1 ≤ � such that zs := xi,ts are distinct vertices in cc(x).

Let B(x, r) denote the ball of radius r in the graph Kγ around x. By definition, B(x, r) is contained in the set of
x′ ∈ Xγ such that ((QᵀQ)r)xx′ > 0. We now claim that there exists a pair (s1, s2) with 1 ≤ s1 < s2 ≤ k + 1 such that
for any (s, s′) �= (s1, s2), with 1 ≤ s < s′ ≤ k + 1, we have B(zs, h/2) ∩ B(zs′ , h/2) = ∅. Indeed, otherwise, we could
find distinct s1 < s2 and s3 < s4 such that the distance between zs2p−1 and zs2p

is at most h with p ∈ {1,2}. In particular,
((QᵀQ)h)zs2p−1 ,zs2p

> 0 and this contradicts the assumption that γi is tangle-free.
It follows also that for any 1 ≤ s ≤ k + 1, B(zs, h/2) contains at least h/2 vertices. Indeed, since k ≥ 2, we may

consider s′ �= s such that {s, s′} �= {s1, s2}. Then from what precedes, the distance between zs and zs′ is at least h (recall
that h is even). In particular, the first h/2 vertices on the shortest path from zs to zs′ are in B(zs, h/2). We deduce that for
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any s,∣∣∣∣B
(

zs,
h

2

)∣∣∣∣≥ h

2
.

So finally, since B(zs, h/2) ∩ B(zs′ , h/2) is empty for all unordered pairs {s, s′} with s, s′, s2, pairwise distinct, we
have proved that∣∣∣∣∣

k+1⋃
s=1

B

(
zs,

h

2

)∣∣∣∣∣≥ ∑
s �=s2

∣∣∣∣B
(

zs,
h

2

)∣∣∣∣≥ kh

2
.

On the other end,
⋃k+1

s=1 B(zs, h/2) is contained in cc(x). Using that |cc(x)| ≤ 2(k + 1)m, we deduce that

kh

2
≤ 2(k + 1)m.

Hence, since k ≥ 2,

h ≤ 4m + 4

k
m ≤ 6m.

It contradicts (19). �

Proof of Lemma 3. The proof of Lemma 3 follows closely from [3, Lemma 17] and [2, Lemma 16]. Some new arguments
are however introduced to deal with the parameter p. In order to upper bound |W�,m(s, a,p)|, we need to find an efficient
way to encode the paths γ ∈ W�,m(s, a,p) (that is, find an injective map from W�,m(s, a,p) to a larger set whose
cardinality is easier to be upper bounded).

If γ ∈ W�,m, i ∈ [2m], t ∈ [�], we set γi,t = (xi,t , yi,t , xi,t+1). We shall explore the sequence (γi,t ) in lexicographic
order denoted by � (that is (i, t) � (i + 1, t ′) and (i, t) � (i, t + 1)). We think of the index (i, t) as a time. We define
(i, t)− as the largest index smaller than (i, t): (i, t)− = (i, t − 1) if t ≥ 2, (i,1)− = (i − 1, �) if i ≥ 2 and, by convention,
(1,1)− = (1,0).

We now define a relevant information on γ which characterizes its equivalence class. For y ∈ Yγ , we define ȳ as
the order of apparition of y in the sequence (yi,t )i∈[2m],t∈[�]. Similarly, for x ∈ Xγ , x̄ is the order of apparition of x

in (xi,t )i∈[2m],t∈[�] and c̄c(x) is the order of apparition of cc(x) among the connected components of Kγ . Finally, if
x ∈ Xγ , we set �x = (x̄, sx), where sx is the set of x̄′ with x′ ∈ Xγ such that x̄′ < x̄ and (QᵀQ)xx′ > 0. For example
x̄1,1 = ȳ1,1 = c̄cγ (x1,1) = 1 and �x1,1 = (1,∅). If x1,2 �= x1,1 and (QᵀQ)x1,1x1,2 > 0, we would have �x1,2 = (2, {1}).
Finally, we set γ̄i,t = (�xi,t , ȳi,t , �xi,t+1). By construction, if the sequence (γ̄i,t )i∈[2m],t∈[�] is known then the equivalence
class of γ can be determined unambiguously. We thus need to find an encoding of this sequence (γ̄i,t )i∈[2m],t∈[�].

To this end, we start by building a sequence of non-decreasing directed forests which will allow us to find this compact
representation of γ ∈ W�,m(s, a,p). We set Vγ = [s − p], Vγ will be thought as the set of connected components of
Kγ ordered by the order of their apparition (since γ ∈ W�,m(s, a,p), there are s − p such connected components). We
consider the colored directed graph � = (Vγ ,Eγ ) on the vertex set Vγ defined as follows. For each time (i, t), we put
the directed edge ei,t := (c̄c(xi,t ), c̄c(xi,t+1)) in Eγ whose color is defined as the pair (x̄i,t , ȳi,t ) (note that � may have
loop edges of the form (c, c) or multiple edges of the form (c, c′) if c is connected to c′ by distinct colored edges). By
definition, we have |Eγ | = a. By (20), the graph � is weakly connected, that is, after forgetting the direction of the edges
of �, it becomes a connected undirected graph. Hence the genus of � is non-negative:

0 ≤ g = |Eγ | − |Vγ | + 1 = a − (s − p) + 1 = a − s + p + 1. (24)

This already implies the first claim of the lemma.
We define �i,t as the subgraph of � spanned by the edges ej,s with (j, s) � (i, t). We have �2m,� = �. We now

inductively define a spanning forest of �i,t as follows. T1,0 has no edge and a vertex set {1}. We say that (i, t) is a first
time if adding the edge ei,t to T(i,t)− does not create a (weak) cycle. Then, if (i, t) is a first time, we add to T(i,t)− the edge
ei,t . It gives Ti,t . If (i, t) is not a first time, we set Ti,t = T(i,t)− . By construction, Ti,t is a spanning forest of �i,t . We set
T = T2m,�. Due to (20), we have the following observations.

– If i is odd, Ti,t is weakly connected for all t ∈ [�];
– If i is even, Ti,t has at most two (weak) connected components for all t ∈ [� − 1] and Ti,� is weakly connected.

In particular, T = T2m,� is a spanning tree of � viewed as an undirected graph.
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For each even i, we define the merging time (i, ti ) as the smallest time (i, t) such that Ti,t is weakly connected. Note
that the merging time will be a first time if ti ≥ 2.

The edges of �\T will be called excess edges. The genus g of � defined by (24) is also the number of excess edges:

|� \ T | = |Eγ | − |Vγ | + 1.

We call (i, t) an important time if the visited edge ei,t is an excess edge.
By construction, the path γi can be decomposed by the successive repetition of

(1) a sequence of first times (possibly empty);
(2) an important time or the merging time;
(3) a path using the colored edges of the forest defined so far (possibly empty).

Recall that there is at most one path between two vertices of an oriented forest. Hence, in step (3), it is sufficient to
know the starting and ending point to recover the path followed.

We can now build a first encoding of the sequence (γ̄i,t )i∈[2m],t∈[�]. Assume that the sequence (γ̄j,s)(j,s)≺(i,t) is known
and that we seen so far u vertices in Xγ and v elements in Yγ . Then, we observe that if (i, t) is a first time and not the
merging time, γ̄i,t is fully determined:

– if t ≥ 2 or t = 1 and i odd, �xi,t = �x(i,t)−+1, �xi,t+1 = (u + 1,∅) and ȳi,t = v + 1,
– if t = 1 and i even, �xi,1 = (u + 1,∅), �xi,2 = (u + 2,∅) and ȳi,1 = v + 1.

Indeed, if t ≥ 2 or t = 1 and i odd, we have �xi,t = �x(i,t)−+1 by (20). Also, since (i, t) is a first time and not the merg-
ing time, cc(xi,t+1) has not been seen before. In particular, xi,t+1 has not been seen before and for any (j, s) ≺ (i, t),
(QᵀQ)xj,sxi,t+1 = 0. It follows that �xi,t+1 = (u + 1,∅). Moreover, if we had yi,t = yj,s for some (j, s) ≺ (i, t), then,
by definition, Qyj,sxj,s+1 > 0 and Qyj,sxi,t+1 = Qyi,t xi,t+1 > 0. In particular, (QᵀQ)xj,s+1xi,t+1 > 0, this contradicts that
cc(xi,t+1) has not been seen before. We deduce that ȳi,t = v + 1. The case t = 1 and i even is similar.

If (i, t) is an important time, we mark the time (i, t) by the vector (ȳi,t , x̄i,t+1, x̄i,τ ), where (i, τ ) is the next step outside
Ti,t (by convention, if the path γi remains on the forest, we set τ = � + 1). By construction, (i, τ ) is also the next first,
important or merging time. Note that xi,t+1 or xi,τ could be seen for the first time (then by construction, xi,t+1 or xi,τ

would belong to a connected component which has already been seen). If this is the case, we replace x̄i,t+1 or x̄i,τ by
�xi,t+1 or �xi,τ and we call this extra mark the connected component mark. Similarly if (i, t) is the merging time, we mark
the time (i, t) by the merging time mark (ȳi,t , x̄i,t+1, x̄i,τ ), where (i, τ ) is the next step outside Ti,t . Again, if xi,t+1 or xi,τ

are seen for the first time, we replace x̄i,t+1 or x̄i,τ by the connected component mark. It gives rise to our first encoding
of the sequence (γ̄i,t )i∈[2m],t∈[�].

Observe that p =∑s−p

i=1 (li − 1) where li is the size of the i-th connected component. Hence p is equal to the number
of connected component marks and it is upper bounded by the twice the number of excess edges plus the number of
merging times:

p ≤ 2(g + m).

It proves the second statement of the lemma.
The issue with this first encoding is that the number of important times may be large. This is where the hypothesis

that each path γi is tangle-free comes into play, more precisely, by Lemma 4 and (19), the path γi can visit at most one
distinct cycle of � (since the diameter of a connected graph is at most its number of vertices).

We are going to partition important times into three categories, namely short cycling, long cycling and superfluous
times. For each i, consider the smallest time (i, t0) such that cc(xi,t0+1) ∈ {cc(xi,1), . . . , cc(xi,t0)}. Let 1 ≤ σ ≤ t0 be
such that cc(xi,t0+1) = cc(xi,σ ). By assumption, Ci = (c̄c(xi,σ ), . . . , c̄c(xi,t0+1)) will be the unique cycle of � visited
by γi . The last important time (i, t) � (i, t0) will be called the short cycling time. We denote by (i, t̂ ) the smallest time
(i, t̂) � (i, σ ) such that c̄c(xi,t̂+1) is not in Ci (by convention t̂ = � + 1 if γi remains on Ci ). If t̂ > t0 + 2, this means that
the cycle Ci has been visited several times from time (i, t0 + 1) to time (i, t̂ ). We modify the mark of the short cycling
time as (ȳi,t , x̄i,t+1, σ, t̂ , x̄i,τ ), where (i, τ ), τ ≥ t̂ , is the next step outside Ti,t (it is the next first or important time after
(i, t̂), by convention τ = � + 1 if the path remain on the tree). Important times (i, t ′) with 1 ≤ t ′ < t or τ ≤ t ′ ≤ � are
called long cycling times. The other important times are called superfluous. The key observation is that for each i ∈ [2m],
the number of long cycling times in γi is bounded by g − 1 (since there is at most one cycle, no edge of � can be seen by
γi twice outside the time interval between (i, t + 1) and (i, τ ), the −1 coming from the fact that the short cycling time is
an important time).

We now have our second encoding. We can reconstruct the sequence (γ̄i,t )i∈[2m],t∈[�] from the positions of the merging
times, the long cycling and the short cycling times and their respective marks. For each i, there are at most 1 short cycling
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time, 1 merging time and g − 1 long cycling times. There are at most �2m(g+1) ways to position them. By Lemma 4, for
any x, the number of x′ such that (QᵀQ)xx′ > 0 is at most 4m. Hence, there are at most 24m possibilities for a connected
component mark. Also, note that |Yγ | ≤ a for any γ ∈ W�,m(s, a,p). Thus, there are at most as2 different possible marks
for a long cycling time and as2�2 marks for a short cycling time. Finally, for even i, there are also at most as2 possibilities
for the merging time mark. We deduce that∣∣W�,m(s, a,p)

∣∣≤ �2m(g+1)
(
24m

)p(
as2)m(as2)2m(g−1)(

as2�2)2m

≤ �2m(g+3)24mp
(
as2)2m(g+1)

.

We find the last statement of the lemma. �

We now estimate of the sum of q(γ ) over all γ in a single equivalence class. Recall the notion of multiplicity defined
above Proposition 1, the multiplicity of an arc (x, y) ∈ Aγ is the number of times (i, t) such that (xi,t , yi,t ) = (x, y).

Lemma 5. Assume further that m ≤ δ
8

logn
logd

. Then, there exists a constant c > 0 (depending on δ) such that for any
γ ∈ W�,m(s, a,p),∑

γ ′∈W�,m(s,a,p):
γ ′∼γ

q
(
γ ′)≤ cd2g+2(m−1)+a1+pns−pρ2�m,

where g = a − s + p + 1 and a1 is the number of arcs of Aγ with multiplicity one.

Proof. The proof relies on a decomposition of the product q(γ ) over edges in the graph � = (Vγ ,Eγ ) defined in the
Lemma 3. Let e = (u, v) be an edge of � with color (x̄, ȳ) and multiplicity k = k(e). Let us define the out-degree
b = b(e) as the number of distinct elements x̄i,t+1 such that (x̄i,t , ȳi,t ) = (x̄, ȳ) (in words, b is the number of distinct
elements in the v-th connected component which are visited immediately after a visit of (x̄, ȳ)). Now, the product q(γ )

can be decomposed as

q(γ ) =
∏

e∈Eγ

Qk1
yx1

· · ·Qkb
yxd

, (25)

where e = (u, v) is a generic edge as above and k1 + · · · + kb = k, kj ≥ 1 and x1, . . . , xb are in the v-th connected
component of γ .

We thus have the upper bound

∑
γ ′:γ ′∼γ

q
(
γ ′)≤

∑
�

∏
e∈Eγ

(∑
y

Q
k1
yx′

1
· · ·Qkd

yx′
d

)
, (26)

where the first sum
∑

� is over all possible choices for the elements in Xγ ′ .

To help the reader, let us first assume that ‖Q‖(δ)
1→∞ = ‖Q‖1→∞ (for example if δ = 1). Then ρ = ‖Q‖HS ∨‖Q‖1→∞.

If e = (u, v) is a generic edge as above, then∑
y

Qk1
yx1

· · ·Qkb
yxb

≤ ∥∥Qᵀ∥∥
1→0‖Q‖k

1→∞ ≤ dρk, (27)

where we have used∥∥Qᵀ∥∥
1→0 ≤ ∥∥QᵀQ

∥∥
1→0 = d.

Besides, if b = 1 and k ≥ 2, we also have the bound∑
y

Qk
yx1

≤
∑
y

Q2
yx1

‖Q‖k−2
1→∞ ≤ ρk−2

∑
y

Q2
yx1

. (28)

We now partition the edges e = (u, v) with color (x̄, ȳ), multiplicity m and in-degree d in Eγ in three sets, E1 is the
set of edges of multiplicity k = 1. E21 is the set of edges such that k ≥ 2 and the v-th connected component is a singleton.
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Finally E22 is the set of edges such that k ≥ 2 and the v-th connected component has at least two elements. Note that any
edge e ∈ E1 ∪ E21 has out-degree b = 1 and by definition a1 = |E1|. If e is in E1 ∪ E22, we use (27), if e is in E21, we
use (28). For any γ ′ ∈ W�,m(s, a,p), γ ′ ∼ γ , we arrive at

q
(
γ ′)≤

∏
e∈E1∪E22

(
dρk

) ∏
e∈E21

(
ρk−2

∑
y

Q2
yx′

1

)
, (29)

where in the second product, if e = (u, v) ∈ E21, x′
1 ∈ Xγ ′ is the unique element in the v-th connected component of γ ′.

We may now estimate the (26). There are at most ns−pdp choices for the different elements in Xγ ′ . The term ns−p

accounts for the possibilities of the first element in each of s − p connected components. The term dp = ‖QᵀQ‖p

1→0
is an upper bound on the choices for the remaining p elements in the connected components (we add the elements one
by one in each connected component in an order which preserves connectivity and we use that for any x there at most
‖QᵀQ‖1→0 other x′ such that (QᵀQ)xx′ > 0). In (29), if e is in E21, we may sum over all x′

1 ∈ [n] (the possibilities for
the unique vertex in the v-th connected component), we get∑

γ ′:γ ′∼γ

q
(
γ ′) ≤ ns−pdp

∏
e∈E1∪E22

(
dρk

) ∏
e∈E21

(
ρk−2‖Q‖2

HS

)
= ns−pdp+a1+|E22|ρ2�m, (30)

where we have used that the sum of the multiplicities is equal to 2�m.
It remains to give an upper bound on |E22|. To this end, let sk (respectively s≥k) be the set of vertices of � of in-degree

k (respectively ≥ k). We have

s0 + s1 + s≥2 = s − p and s1 + 2s≥2 ≤
∑

k

ksk = a.

Subtracting to the right-hand side, twice the left hand side,

s1 ≥ 2(s − p) − a − 2s0 ≥ a − 2g − 2m + 2.

Indeed, at the last step the bound s0 ≤ m follows from the observation that only a vertex u ∈ Vγ such that u = c̄c(xj,1)

for some 1 ≤ j ≤ 2m can be of in-degree 0. We observe also that s1 ≤ a1 + |E12| (vertices of in-degree 1 are in bijection
with their unique incoming edge, which cannot be in E22). In particular,

|E22| = a − a1 − |E12| ≤ a − s1 ≤ 2g + 2m − 2. (31)

It concludes the proof when ‖Q‖(δ)
1→∞ = ‖Q‖1→∞.

In the general case, the bounds (27)-(28) remain valid except when xj or x belong to E . To deal with this case, we first
observe the inequality

1 =
(∑

y

Qyx

)2

≤ ∥∥Qᵀ∥∥
1→0

∑
y

Q2
yx ≤ d

∑
y

Q2
yx.

Summing over x, it implies that

1√
d

≤ ‖Q‖HS ≤ ρ. (32)

Hence, in (27)-(28) when xj or x belong to E , we may use the inequality Qyx ≤ 1 ≤ √
dρ. With the argument leading to

(29), we obtain for any γ ′ ∈ W�,m(s, a,p), γ ′ ∼ γ ,

q
(
γ ′)≤ du/2

∏
e∈E1∪E22

(
dρk

) ∏
e∈E21:x′

1 /∈E

(
ρk−2

∑
y

Q2
yx′

1

) ∏
e∈E21:x′

1∈E
ρk, (33)

where u = uγ ′ is the number of times (i, t), i ∈ [2m], t ∈ [�] such that x′
i,t+1 ∈ E and Now, for any γ ′ ∈ W�,m(s, a,p)

with γ ′ ∼ γ , let r = rγ ′ be the number of connected components which contain at least one element in E . We claim that
the number uγ ′ defined in (33) satisfies

u ≤ 4mr.
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Indeed, since γi is tangle-free for each i ∈ [2m], γi visits at most once each element in E (to avoid a E -coincidence) and
at most 2 distinct elements in each connected components (to avoid two or more than two coincidences). Hence, for each
i ∈ [2m], the number of t ∈ [�] such that x′

i,t+1 ∈ E is at most 2r . It gives the claimed bound.
We thus deduce from (33) that

q
(
γ ′)≤ d2mr

∏
e∈E1∪E22

(
dρk

) ∏
e∈E21:x′

1 /∈E

(
ρk−2

∑
y

Q2
yx′

1

) ∏
e∈E21:x′

1∈E
ρk. (34)

Now, in view of (34), we should upper bound the number of γ ′ ∈ W�,m(s, a,p), γ ′ ∼ γ such that rγ ′ = r . A rough
upper bound is given by(

s − p

r

)
ns−p−r

(|E |d4m
)r

dp ≤ ns−pdp
(
sd4mn−δ

)r
.

Indeed, on the left hand side, the binomial term bounds the number of choices for the connected components which
contain at least one element in E . As pointed above, the term dp bounds the possibilities for all but the first element in
each connected component. Finally the term |E |d4m is an upper bound for the number of possibilities of the first element
of a connected element which contains an element in E (by Lemma 4, for any such element, say x0, there exists a sequence
(x0, . . . , x4m) such that x4m ∈ E and (QᵀQ)xs−1xs > 0 for all s ∈ [4m]).

Hence, from (34), the argument leading to (30) gives the upper bound

∑
γ ′:γ ′∼γ

q
(
γ ′)≤ ns−pdp+a1+|E22|ρ2�m

s−p∑
r=0

(
sd6mn−δ

)r
.

We have s ≤ 2�m ≤ 10�logn�3/2 from (19). Hence the assumption d8m ≤ nδ implies that (sd6mn−δ) ≤ 1/2 for all n large
enough. It follows that, for all n large enough, the above geometric series is bounded by 2 and∑

γ ′:γ ′∼γ

q
(
γ ′)≤ 2ns−pdp+a1+|E22|ρ2�m.

From (31), it concludes the proof. �

Recall the definition (22) of μ(γ ) of the average contribution of γ in (21). Our final lemma will use Proposition 1 to
estimate this average contribution.

Lemma 6. There is a constant c > 0 such that, if γ ∈ W�,m(s, a,p), g = a − s + p + 1 and a1 is the number of arcs in
Aγ which are visited exactly once in γ , then we have

∣∣μ(γ )
∣∣≤ cm+gn−a

(
6�m√

n

)(a1−4g−2m+2p)+
.

Moreover, a1 ≥ 2(a − �m).

Proof. Let A1 ⊂ Aγ be the set of e = (x, y) which are visited exactly once in γ , that is such that

2m∑
i=1

�∑
t=1

1
(
e = (xi,t , yi,t )

)= 1.

Let A′
1 be the subset of A1 of consistent arcs and let A∗ the set of inconsistent arcs (recall the definition above Proposi-

tion 1). We have∣∣A′
1

∣∣+ |A∗| ≥ |A1|.
Set a′

1 = |A′
1| and a≥2 = |Aγ \ A1|. That is, a≥2 is the number of e ∈ Aγ which are visited at least twice. We have

a1 + a≥2 = a and a1 + 2a≥2 ≤ 2�m.



2988 C. Bordenave, Y. Qiu and Y. Zhang

Therefore,

a1 ≥ 2(a − �m).

It gives the second claim. Using the terminology of the proof of Lemma 3, a new inconsistent arc can appear after leaving
the forest constructed so far, at a first visit of an excess edge, or at the merging time (i even) of γi , i ∈ [2m]. Every such
step can create 2 inconsistent arcs. A step outside the forest constructed so far is preceded by the visit of a new excess
edge. Hence, if b = |A∗|, then

b ≤ 4g + 2m

and

a′
1 ≥ a1 − b.

The bound on b can be slightly improved. As already pointed in the proof of Lemma 3, p =∑s−p

i=1 (li − 1) where li is
the size of the i-th connected component. The first visit to any element in the connected component beyond the first will be
a new excess edge but it will not create an inconsistent arc. It follows that b ≤ 4g +2m−2p and a′

1 ≥ a1 −4g −2m+2p.
It remains to apply Proposition 1. �

All ingredients have been gathered to prove Proposition 2.

Proof of Proposition 2. We define

m =
⌈

δ

10

√
logn

⌉
. (35)

From (23) and Markov inequality, it suffices to prove that for some c > 0,

S =
∑
s,a,p

∣∣W(s, a,p)
∣∣ max
γ∈W(s,a,p)

(∣∣μ(γ )
∣∣ ∑

γ ′∈W�,m(s,a,p):
γ ′∼γ

q
(
γ ′))≤ necm2

, (36)

where �′ = � + 1 + 1/m and μ(γ ) was defined in (22).
Let γ ∈ W�,m(s, a,p) with a1 arcs of multiplicity one. Set g = g(s, a,p) = a − s +p − 1, by Lemma 5 and Lemma 6,

∣∣μ(γ )
∣∣ ∑

γ ′∈W�,m(s,a,p):
γ ′∼γ

q
(
γ ′)≤ cd2g+2(m−1)+a1+pns−pρ2�mcm+gn−a

(
6�m√

n

)(a1−4g−2m+2p)+
.

Since d ≥ 1, we have da1 ≤ d4g+2m−2pd(a1−4g−2m+2p)+ . Using a1 ≥ 2(a − �m), we deduce the following upper bound,
for some new constant c > 1,

∣∣μ(γ )
∣∣ ∑

γ ′∈W�,m(s,a,p):
γ ′∼γ

q
(
γ ′)≤ (cd)6g+4mn−g+1ρ2�m

(
(6d�m)2

n

)(a−(�+1)m−2g+p)+
.

For ease of notation, we set

ε = (6d�m)2

n
= o(1),

where we have used that d ≤ exp(
√

logn) and �m = O(logn)3/2. Now by Lemma 3, since a ≤ 2�m, s ≤ 2�m+ 1 ≤ 3�m,
for some new constant c > 1 changing from line to line, we arrive at

S ≤ nρ2�m
∑

s,a,p:g(s,a,p)≥0,p≤2g(s,a,p)+2m

24mp
(
as2�

)2m(g+3)
(cd)6g+4mn−gε(s−�′m−g)+

≤ n(c�m)24m(cd)4mρ2�m
∑

s,g,p:g≥0,p≤2g+2m

24mp(c�m)8mgd6gn−gε(s−�′m−g)+ ,
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where at the last line, we have performed the change of variable a → g = a +p − s + 1. Then, we may sum over p, using
(logn)c = eo(m) and d ≤ e10m/δ , we get for some new constant c > 0,

S ≤ necm2
ρ2�m

∑
s,g≥0

(
L

n

)g

ε(s−�′m−g)+,

where we have set L = (c�m)8md6. We decompose the above sum as follows

S ≤ S1 + S2 + S3,

where S1 is the sum over {1 ≤ s ≤ �′m,g ≥ 0}, S2 over {�′m < s,0 ≤ g ≤ s − �′m}, and S3 over {�′m < s,g > s − �′m}.
We start with the first term:

S1 = necm2
ρ2�m

�′m∑
s=1

∞∑
g=0

(
L

n

)g

.

For our choice of m in (35), for some c > 0 and n large enough,

L

n
= ec(log logn)

√
logn

n
≤ 1

2
.

In particular, for n large enough, the above geometric series converges:

S1 ≤ 2necm2
ρ2�m

�′m∑
s=1

≤ nec′m2
ρ2�m.

Adjusting the value of c′, the right-hand side of (36) is an upper bound for S1. Similarly, since L/(εn) ≥ 2, we find

S2 ≤ necm2
ρ2�m

∞∑
s=�′m+1

εs−�′m
s−�′m∑
g=0

(
L

εn

)g

≤ 2necm2
ρ2�m

∞∑
s=�′m+1

εs−�′m
(

L

εn

)s−�′m

= 2necm2
ρ2�m

∞∑
k=1

(
L

n

)k

.

Again, for n large enough, the geometric series are convergent and the right-hand side of (36) is an upper bound for S2.
Finally, for n large enough,

S3 ≤ necm2
ρ2�m

∞∑
s=�′m+1

∞∑
g=s−�′m+1

(
L

n

)g

≤ necm2
ρ2�m

∞∑
s=�′m+1

2

(
L

n

)s−�′m+1

= 2necm2
ρ2�m

∞∑
k=0

(
L

n

)k

.

For n large enough, the right-hand side of (36) is an upper bound for S3. It concludes the proof. �

4.2. Operator norm of R
(�)
k

We now adapt the above subsection for the treatment of R
(�)
k . A rougher bound will suffice for our purposes.
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Proposition 3. Assume d ≤ exp(
√

logn). For any c0 > 0, there exists c1 > 0 (depending on c0) such that with probability
at least 1 − n−c0 , for all integers 1 ≤ k ≤ � ≤ logn,∥∥R(�)

k

∥∥≤ ec1
√

logn.

To help the reader, we use the same notation than in the Section 4.1, we add a prime exponent to our objects when the
definition differs from the corresponding definition in Section 4.1.

We fix for some positive integer m such that

12m < h. (37)

We use the inequality∥∥R(�)
k

∥∥2m ≤ tr
{(

R
(�)
k R

(�)
k

ᵀ)}
.

We may expand the trace. To this end, we define W ′
�,m as the set of γ = (γ1, . . . , γ2m) such that γi = (xi,1, yi,1, . . . , yi,�,

xi,�+1) ∈ T �,k and such that for all i ∈ [m], the boundary condition (20) holds. Using this notation, the computation
leading to (21) gives

∥∥R(�)
k

∥∥2m ≤
∑

γ∈W ′
�,m

2m∏
i=1

k−1∏
t=1

(Mxi,t yi,t
)Qyi,t xi,t+1 · Qyi,kxi,k+1 ·

�∏
t=k+1

Mxi,t yi,t
Qyi,t xi,t+1 . (38)

We set

γ ′
i = (xi,1, yi,1, . . . , yi,k−1, xi,k) and γ ′′

i = (xi,k+1, yi,k+1, . . . , yi,�, xi,�+1).

By construction γ ′
i and γ ′′

i are tangle-free paths.
As in Section 4.1, for γ = (γ1, γ2, . . . , γ2m) ∈ W ′

�,m, we define Xγ = {xi,t : i ∈ [2m], t ∈ [�]} and Yγ = {yi,t :
i ∈ [2m], t ∈ [�]}. We consider the same graph Kγ with vertex set Xγ and, for any x, x′ in Kγ , {x, x′} is an edge
of Kγ if and only if (QᵀQ)xx′ > 0. We denote by cc(x) the connected component of x ∈ Xγ in Kγ . The arcs of
γ = (γ1, γ2, . . . , γ2m) ∈ W ′

�,m, denoted by A′
γ , is the set of distinct pairs (xi,t , yi,t ) with t �= k. We define W ′

�,m(s, a,p)

as the set of γ ∈ W�,m with s = |Xγ |, a = |A′
γ | and s − p connected components in Kγ . We take the expectation in (38)

and write

E
∥∥R(�)

k

∥∥2m ≤
∑
s,a,p

∑
γ∈W ′

�,m(s,a,p)

μ′(γ )q(γ ),

where for γ ∈ W ′
�,m, we have defined

μ′(γ ) := E

2m∏
i=1

k−1∏
t=1

Mxi,t ,yi,t

�∏
t=k+1

Mxi,t
and q(γ ) =

2m∏
i=1

�∏
t=1

Qyi,t xi,t+1 . (39)

We decompose further W ′
�,m(s, a,p) into equivalence classes as follows. For γ, γ ′ ∈ W ′

�,m(s, a,p), let us say γ ∼ γ ′
if there exist a pair of permutations α and β in Sn such that the image of Kγ by α is Kγ ′ and for any (i, t), x′

i,t = α(xi,t ),
y′
i,t = β(yi,t ) (where γ ′ = (γ ′

1, γ
′
2, . . . , γ

′
2m) with γ ′

i = (x′
i,1, y

′
i,1, . . . , y

′
i,�, x

′
i,�+1)). We define W ′

�,m(s, a,p) as the set of
equivalence classes. Since μ(γ ) = μ(γ ′) if γ ∼ γ ′, we obtain the bound,

E
∥∥R(�)

k

∥∥2m ≤
∑
s,a,p

∣∣W ′(s, a,p)
∣∣ max
γ∈W ′(s,a,p)

(∣∣μ′(γ )
∣∣ ∑

γ ′∈W�,m(s,a,p):
γ ′∼γ

q
(
γ ′)). (40)

We start by bounding the cardinality of W ′
�,m(s, a,p).

Lemma 7. If g′ := a + p − s < 0 or 2g′ + 10m > p, then W ′
�,m(s, a,p) is empty. Otherwise, we have

∣∣W ′
�,m(s, a,p)

∣∣≤ 24mp
(
(a + 2m)2s2�

)4m(g′+4)
.
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We have the following analog of Lemma 4.

Lemma 8. Let γ ∈ W ′
�,m. Then for any x ∈ Xγ , cc(x) has at most 8m elements.

Proof. We repeat the proof of Lemma 4, we use this time that γ is composed of 4m tangle-free paths: γ ′
i , γ

′′
i , for i ∈ [2m].

By contradiction, we assume that there exist x ∈ Xγ and k ≥ 2 such that 4km + 1 ≤ |cc(x)| ≤ 4(k + 1)m. Then, from the
pigeonhole principle, there exists i ∈ [2m] and ε ∈ {′,′′ } such that γ ε

i visits at least k + 1 distinct vertices in cc(x). We
then repeat verbatim the proof of Lemma 4 and use (37). �

Proof of Lemma 7. We repeat the proof of Lemma 3. If γ ∈ W ′
�,m, i ∈ [2m], t ∈ [�], we set γi,t = (xi,t , yi,t , xi,t+1). We

shall explore the sequence (γi,t ) in lexicographic order denoted by � (that is (i, t) � (i + 1, t ′) and (i, t) � (i, t + 1)).
We think of the index (i, t) as a time. We define (i, t)− as the largest index smaller than (i, t) and, by convention,
(1,1)− = (1,0).

As in Lemma 3, for y ∈ Yγ , we define ȳ as the order of apparition of y in the sequence (yi,t )i∈[2m],t∈[�]. Similarly,
for x ∈ Xγ , x̄ is the order of apparition of x in (xi,t )i∈[2m],t∈[�] and c̄c(x) is the order of apparition of cc(x) among
the connected components of Kγ . Finally, if x ∈ Xγ , we set �x = (x̄, sx), where sx is the set of x̄′ with x′ ∈ Xγ such
that x̄′ < x̄ and (QᵀQ)xx′ > 0. Finally, we set γ̄i,t = (�xi,t , ȳi,t , �xi,t+1). By construction, if the sequence (γ̄i,t )i∈[2m],t∈[�]
is known then the equivalence class of γ can be determined unambiguously. We thus need to find an encoding of this
sequence (γ̄i,t )i∈[2m],t∈[�].

We set Vγ = [s − p] and consider the colored directed graph �′ = (Vγ ,E′
γ ) on the vertex set Vγ defined as follows.

For each time (i, t), with t �= k, we put the directed edge ei,t := (c̄c(xi,t ), c̄c(xi,t+1)) in E′
γ whose color is defined as the

pair (x̄i,t , ȳi,t ). By definition, we have |E′
γ | = a. Let �̄′ be the associated undirected graph (that is the undirected graph

obtained by forgetting the direction of the edges of �′). We observe that each connected component of �̄′ contains at least
a cycle. Indeed, by assumption γi is tangled while γ ′

i and γ ′′
i is tangle-free. Hence if the image of the paths of γ ′

i and γ ′
ii

on �̄′ do not intersect then each one contains a distinct cycle. Otherwise, the images of the paths intersect, then they are
in the same connected component of �̄′ and their union has at least two distinct cycles. Hence the number of edges of �′
is at least the number of vertices:

0 ≤ g′ = |Eγ | − |Vγ | = a − s + p.

This is the first claim of the lemma.
We define �′

i,t as the subgraph of �′ spanned by the edges ej,s with (j, s) � (i, t). We have �′
2m,� = �′. As in Lemma 3,

we now inductively define a spanning forest Ti,t of �′
i,t as follows. T1,0 has no edge and a vertex set {1}. We say that (i, t)

is a first time if adding the edge ei,t to T(i,t)− does not create a (weak) cycle. Then, if (i, t) is a first time, we add to T(i,t)−
the edge ei,t . It gives Ti,t . If (i, t) is not a first time, we set Ti,t = T(i,t)− . We set T = T2m,�.

For each even i, we define the first merging time (i, t ′i ) as the smallest time (i, t) with 1 ≤ t ≤ k − 1 such that Ti,t and
T(i,1)− have the same number of connected components. If this time does not exist, we set t ′i = k. Similarly, for each i,
the second merging time (i, t ′′i ) is the smallest time (i, t) with k ≤ t ≤ � such that Ti,t and T(i,k)− have the same number
of connected components. If this time does not exist, we set t ′′i = � + 1. If i is even then by (20), we have t ′′i ≤ �.

Note that the merging time will be a first time if ti ≥ 2.
The edges of �′\T will be called excess edges. We call (i, t) an important time if the visited edge ei,t is an excess

edge. The total number of excess edges is |Eγ | − |Vγ | + Nγ = g′ + Nγ where 1 ≤ Nγ ≤ 2m is the number of connected
components of �̄′. However, since each connected component has at least a cycle, in each connected component of T ,
there are at most g′ + 1 excess edges.

By construction, the path γ ′
i or γ ′′

i can be decomposed by the successive repetition of

(1) a sequence of first times (possibly empty);
(2) an important time or the merging time;
(3) a path using the colored edges of the forest defined so far (possibly empty).

We build a first encoding of the sequence (γ̄i,t )i∈[2m],t∈[�] as follows. If (i, t) is an important time, we mark the
time (i, t) by the vector (ȳi,t , x̄i,t+1, x̄i,τ ), where (i, τ ) is the next step outside Ti,t (by convention, if the path γi re-
mains on the forest, we set τ = � + 1). By construction, (i, τ ) is also the next first, important or merging time. Note
that xi,t+1 or xi,τ could be seen for the first time (then by construction, xi,t+1 or xi,τ would belong to a connected
component which has already been seen). If this is the case, we replace x̄i,t+1 or x̄i,τ by �xi,t+1 or �xi,τ and we call this
extra mark the connected component mark. Similarly if (i, t) is a first merging time, we mark the time (i, t) by the first
merging time mark (ȳi,t , x̄i,t+1, x̄i,τ ), where (i, τ ) is the next step outside Ti,t . Similarly, the second merging time mark
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is (ȳi,k, ȳi,t , x̄i,t+1, x̄i,τ ). Again, if xi,t+1 or xi,τ are seen for the first time, we replace x̄i,t+1 or x̄i,τ by the connected
component mark. Arguing as in the proof of Lemma 3, it gives a first encoding of the sequence (γ̄i,t )i∈[2m],t∈[�].

Observe that p =∑s−p

i=1 (li − 1) where li is the size of the i-th connected component of Kγ . Hence p is equal to the
number of connected component marks and it is upper bounded by twice the number of excess edges plus the number of
merging times:

p ≤ 2
(
g′ + Nγ + 3m

)≤ 2g′ + 10m.

It proves the second statement of the lemma.
Arguing as in the proof of Lemma 3, to improve on the first encoding we use the hypothesis that each path γ ′

i or γ ′′
i

is tangle-free. We partition important times into three categories short cycling, long cycling and superfluous times. For
each i and ε ∈ {′,′′ }, consider the smallest time (i, t0) such that cc(xi,t0+1) ∈ {cc(xi,1), . . . , cc(xi,t0)}. Let 1 ≤ σ ≤ t0 be
such that cc(xi,t0+1) = cc(xi,σ ). By assumption, Ci = (c̄c(xi,σ ), . . . , c̄c(xi,t0+1)) will be the unique cycle of �′ visited
by γ ε

i . The last important time (i, t) � (i, t0) will be called the short cycling time. We denote by (i, t̂) the smallest time
(i, t̂) � (i, σ ) such that c̄c(xi,t̂+1) is not in Ci (by convention t̂ = � + 1 if γ ε

i remains on Ci ). We modify the mark of
the short cycling time as (ȳi,t , x̄i,t+1, σ, t̂ , x̄i,τ ), where (i, τ ), τ ≥ t̂ , is the next step outside Ti,t (it is the next first or
important time after (i, t̂ ), by convention τ = � + 1 if the path remain on the tree). Important times (i, t ′) with 1 ≤ t ′ < t

or τ ≤ t ′ ≤ � are called long cycling times. The other important times are called superfluous. As argued in the proof of
Lemma 3, for each i ∈ [2m] and ε ∈ {′,′′ }, the number of long cycling times in γ ε

i is bounded by g′ (recall that there are
at most g′ + 1 excess edges in the connected component of γ ε

i ).
We now have our second encoding. We can reconstruct the sequence (γ̄i,t )i∈[2m],t∈[�] from the positions of the merging

times, the long cycling and the short cycling times and their respective marks. For each i and ε ∈ {′,′′ }, there are at most
1 short cycling time, 1 merging times and g′ long cycling times. There are at most �4m(g′+2) ways to position them.
Note that |Yγ | ≤ a + 2m = a′, the term 2m coming from the elements yi,k , i ∈ [2m]. Hence, as argued in the proof of
Lemma 3, there are at most 24m possibilities for a connected component mark, at most a′s2 different possible marks for
a long cycling time, a′s2�2 marks for a short cycling time, at most a′s2 marks for the first merging time mark and a′2s2

for the second merging time. We deduce that

∣∣W ′
�,m(s, a,p)

∣∣ ≤ �4m(g′+2)
(
24m

)p(
a′s2)m(a′2s2)2m(

a′s2)4mg′(
a′s2�2)4m

.

≤ �4m(g′+4)24mp
(
a′2s2)4m(g′+1)

.

It concludes the proof. �

Lemma 9. For any γ ∈ W ′
�,m(s, a,p), we have

∑
γ ′∈W ′

�,m
(s,a,p):

γ ′∼γ

q
(
γ ′)≤ dpns−p.

Proof. The proof follows easily from the proof of Lemma 5. Let �′ = (Vγ ,E′
γ ) be the graph defined in Proposition 7.

Arguing as in (26), we have an upper bound of the form

∑
γ ′:γ ′∼γ

q
(
γ ′)≤

∑
�

∏
e∈Eγ

(∑
y

Q
k1
yx′

1
· · ·Qkb

yx′
b

)
,

where the first sum
∑

� is over all possible choices for the distinct elements in Xγ ′ , and the positive integers kj and the
elements x′

j ∈ Xγ ′ are determined by the edge e. Since kj ≥ 1 and
∑

y Qyx = 1, we have

∑
y

Q
k1
yx′

1
· · ·Qkd

yx′
d

≤ 1.

It follows that
∑

γ ′:γ ′∼γ q(γ ′) is upper bounded by number of possible choices for Xγ ′ . The latter is bounded by dpns−p

as explained in the proof of Lemma 5. �

We finally estimate μ′(γ ).
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Lemma 10. There is a constant c > 0 such that, if γ ∈ W�,m(s, a,p), g = a − s + p and a1 is the number of arcs in Aγ

which are visited exactly once in γ , then we have∣∣μ′(γ )
∣∣≤ cm+g′

n−a.

Proof. Let A∗ be the set of inconsistent arcs of A′
γ (as defined above Proposition 1). Using the terminology of the proof

of Proposition 7 and as argued in Lemma 10, |A∗| is upper bounded by four times the number of excess edges plus twice
the number of merging times. There are at most g′ + 2m excess edges and 3m merging times, hence,

|A∗| ≤ 4
(
g′ + 2m

)+ 6m.

It remains to apply Proposition 1. �

We are ready to prove Proposition 3.

Proof of Proposition 3. We define

m = �√logn�. (41)

For this choice of m, n1/m ≤ exp(
√

logn). Hence, from (23) and Markov inequality, it suffices to prove that for some
c > 0,

S =
∑
s,a,p

∣∣W ′(s, a,p)
∣∣ max
γ∈W ′(s,a,p)

(∣∣μ′(γ )
∣∣ ∑

γ ′∈W�,m(s,a,p):
γ ′∼γ

q
(
γ ′))≤ ecm2

. (42)

Let γ ∈ W ′
�,m(s, a,p). Set g′ = g′(s, a,p) = a − s + p, by Lemma 9 and Lemma 10,

∣∣μ′(γ )
∣∣ ∑

γ ′∈W ′
�,m

(s,a,p):
γ ′∼γ

q
(
γ ′)≤ dpcm+g′

n−g′
.

Now, by Lemma 7, since a ≤ 2�m, s ≤ 2�m + 1 ≤ 3�m, for some new constant c > 1 changing from line to line,

S ≤
∑

s,a,p:g′(s,a,p)≥0,p≤2g′(s,a,p)+10m

24mp
(
(a + 2m)2s2�

)4m(g′+4)
dpn−g′

cm+g′

≤ cm(c�m)80m
∑

s,g′,p:g′≥0,p≤2g′+10m

24mp(c�m)20mg′
dpn−g′

,

where at the last line, we have performed the change of variable a → g′ = a + p − s. Then, we may sum over p, using
(logn)c = eo(m) and d ≤ em, we get for some new constant c > 0,

S ≤ ecm2 ∑
s,g′≥0

(
L

n

)g′

,

where we have set L = (c�m)20m. Since s ≤ 3�m = eo(m) and L/n = o(1), we deduce that (42) holds. �

5. Proof of Theorem 4

All ingredients are finally gathered to prove Theorem 4. We start by reducing the range of � and d where there is something
to be proven. Up to adjusting the final constant c1, we may assume without loss of generality that d ≤ exp(

√
logn) and

� ≤ logn/ logd (otherwise the probabilistic bound is larger than 1). We fix any 0 < c0 < c′
0 < δ. Then by Lemma 2 and

Lemma 1, if � is the event that G is �-tangle-free, for any c > 0,

P
(∥∥P �

|1⊥
∥∥≥ ec

√
lognρ�

) = P
(∥∥P �

|1⊥
∥∥≥ ec

√
lognρ�;�)+ O

(
d�+2hn−c′

0
)

≤ P
(
J ≥ ec

√
lognρ�

)+ O
(
d�+2hn−c′

0
)
,
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where

J = ∥∥P (�)
∥∥+ 1

n

�∑
k=1

∥∥R(�)
k

∥∥.
On the other end, by Propositions 2-3, for some c′

1 > 0, with probability at least 1 − 2n−c′
0 ,

J ≤ ec′
1
√

lognρ� + 1

n

�∑
k=1

ec′
1
√

logn

≤ (
ec′

1
√

logn + �e
�
2 logd−logn

)
ρ�,

where we have used ρ ≥ 1/
√

d by (32). Since � ≤ logn/ logd , we find that the event

J ≤
(

ec′
1
√

logn + �√
n

)
ρ�

has probability at least 1 − 2n−c′
0 . We take any c > c′

1 and it remains to adjust the final constant c1 > c to deal with
bounded values of n. It concludes the proof of Theorem 4.

Remark 2. Lemma 2 and Proposition 1 are the only properties of the uniform measures on Sn which have been used in
the proof. Proposition 1 is used in Lemma 6 and Lemma 10 where we use that the number of inconsistent arcs is at most
c(g + m). The proof may thus be extended to other probability measures on Sn with other notions of inconsistency. For
example, if n is even, the set of matching Mn is the subset of permutations σ ∈ Sn such that σ(x) �= x and σ 2(x) = x for
all x ∈ [n]. Following [2], analogs of Lemma 2 and Proposition 1 hold for the uniform measure on Mn (the definition of
a consistent arc is slightly more constrained for matchings, but in Lemma 6 and Lemma 10, we may still upper bound the
number of inconsistent arcs by c(m + g)).

Remark 3. Proposition 2 and Proposition 3 are true beyond bistochastic matrices. An inspection of the proof reveals that
they hold for any matrix Q provided that maxx

∑
y |Qxy | ≤ c for some constant c > 0 (which will have an influence on

all other constants).

6. Proof of corollaries

6.1. Proof of Theorem 2

By construction, we have Qxy = 1((x, y) ∈ E)/r . It follows that

‖Q‖1→∞ = 1

r
and ‖Q‖HS = 1√

r
. (43)

It remains to apply Theorem 1 with δ = 1.

6.2. Proof of Corollary 1

Let P be the set of bi-stochastic matrices of size n with entries in {0,1/r}. From the proof of Theorem 2, for any
Q ∈P , (43) holds. Note that A = MB for some permutation matrix M is equivalent to M∗A = B . It follows that for any
permutation matrix M , if P is uniformly sampled over P , P and MP have the same distribution. In particular, P and
MP have the same distribution for M uniformly distributed and independent of P . We may thus apply Theorem 2 to MP

by conditioning on the value of P .

6.3. Proof of Theorem 3

Up to increasing the constant c1, we may assume that r ≤ exp(
√

logn). Obviously, if x /∈ S,

max
y

Qxy = max
i

pi ≤
√∑

i

p2
i .
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From our assumption on S, it follows that ‖Q‖(δ)
1→∞ ≤

√∑
i p

2
i .

Moreover, we have

QᵀQ =
∑
i,j

pipjM
∗
i Mj =

∑
i

p2
i I +

∑
j �=i

pipjM
∗
i Mj .

From the triangle inequality, we deduce that

‖Q‖HS ≤
∥∥∥∥∑

i

p2
i I

∥∥∥∥
HS

+
∑
j �=i

pipj

∥∥M∗
i Mj

∥∥
HS =

√∑
i

p2
i +

∑
i �=j

pipj

√√√√1

n

n∑
x=1

1
(
σi(x) = σj (x)

)
.

It follows that ‖Q‖HS ≤ ρ + √|S|/n ≤ (1 + r1/2n−δ/2)ρ (where we have used
∑

i pi = 1 and
∑

i p
2
i ≥ 1/r). It remains

to apply Theorem 1.

6.4. Proof of Corollary 2

Let 0 < c0 < 1 and fix some c0 < δ < 1. Up to increasing the constant c1, we may assume that r ≤ exp(
√

logn). For any
permutation matrix M , P has the same distribution as MP . In particular, P and MP have the same distribution for M

uniformly distributed and independent of M1, . . . ,Mr . Now, let S = {x ∈ [n] : ∃i �= j, σi(x) = σj (x)}. From the union
bound, we have

E|S| ≤ r(r − 1)P
(
σ1(x) = σ2(x)

)= r(r − 1)

n
.

Hence, from Markov inequality,

P
(|S| ≥ n1−δ

)≤ r2nδ−2.

Finally, on the event {S < n1−δ}, we apply Theorem 3 for MP by conditioning on the value of P .
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