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Abstract. In this paper, we determine the Poisson boundary of the relativistic Brownian motion in two classes of Lorentzian manifolds,
namely model manifolds of constant scalar curvature and Robertson–Walker space–times, the latter constituting a large family of curved
manifolds. Our objective is two fold: on the one hand, to understand the interplay between the geometry at infinity of these manifolds
and the asymptotics of random sample paths, in particular to compare the stochastic compactification given by the set of exit points of
the process to classical purely geometric compactifications such as the conformal or causal boundaries. On the other hand, we want to
illustrate the power of the dévissage method introduced by the authors (in Séminaire de Probabilités XLVIII (2016) 199–229 Springer),
method which we show to be particularly well suited in the geometric contexts under consideration here.

Résumé. Dans cet article, nous déterminons la frontière de Poisson du mouvement brownien relativiste dans deux classes de varié-
tés lorentziennes, les espaces modèles de courbure constante et les espaces de Robertson–Walker qui constituent une vaste famille
d’espace-temps courbes. Notre objectif est double : d’une part, il s’agit de comprendre les relations entre la géométrie à l’infini de
ces variétés et le comportement asymptotique des trajectoires browniennes, avec comme objectif de comparer la compactification sto-
chastique formée par les points de sortie du processus aux frontières purement géométriques, conformes ou causales. D’autre part,
nous souhaitons illustrer la pertinence de la méthode de dévissage introduite par les auteurs (Séminaire de Probabilités XLVIII (2016)
199–229 Springer), méthode qui s’avère particulièrement bien adaptée aux différents contextes géométriques considérés.
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1. Introduction and setting

1.1. Long time asymptotics of relativistic Markov processes

The study of stochastic processes in the context of Lorentzian geometry has both physical and mathematical strong
motivations. One the one hand, from a physical perspective, Lorentzian diffusions are very adequate models to study
random motions or fluid dynamics in the framework of Einstein’s special or General Relativity theory, see for example [13,
14,18] and the references therein. On the other hand, from a more mathematical perspective, considering the importance
of the heat kernel as a tool in Riemannian geometry, it appears very natural to investigate the links between local/global
geometry and the asymptotics of random paths in a Lorentzian setting.

Among the natural questions concerning the interplay between randomness and geometry, we are here particularly
interested in understanding how the long time asymptotic behavior of random processes reflects the geometry at infinity
of the underlying manifold on which they are defined. The study of the asymptotic geometry of a manifold identifies
with the one of its geometric compactifications. In the Lorentzian framework, due to their importance in physics and
in particular in cosmology, such compactifications of space–times have been introduced and intensively studied by both
physicists and geometers. The most popular constructions in this context are the conformal and causal boundaries, see
e.g. [29] and the references therein.

From both geometric and probabilistic points of view, of primer interest are the so-called relativistic processes, that is
to say random processes whose law is covariant under the action of local isometries of the manifold. In the case where
the latter has constant curvature, relativistic Markov processes can be entirely classified. They are the projections of
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invariant Lévy processes with values in the isometry group of the manifold, see [35]. If the base manifold has non-constant
curvature, jumps of the sample paths are difficult to handle and one usually restricts the study to the one of continuous
Markov processes, i.e. diffusion processes. Following Dudley’s seminal work [15,16] in Minkowski space–time, Franchi
and Le Jan constructed in [23], on the future-directed half of the unitary tangent bundle of an arbitrary Lorentz manifold,
a diffusion process which is Lorentz-covariant. This process, that we will simply call relativistic Brownian motion or
relativistic diffusion in the sequel, and whose precise definition is recalled in Section 1.2.3, is the Lorentzian analogue of
the classical Brownian motion on a Riemannian manifold. It can be seen either as a random perturbation of the timelike
geodesic flow on the unitary tangent bundle, or as a stochastic development of Dudley’s diffusion in a fixed tangent space.
Variants and generalizations of this process can be found in [9,11,24].

The study of the articulation between the asymptotics of relativistic processes and the geometry at infinity of the
underlying manifold can be performed by following the general following scheme. A first task consists in expliciting the
almost sure long time asymptotics of the sample paths of the process. Beyond this almost sure asymptotics, the long time
behavior of the process is then fully encoded in its Poisson boundary, whose definition is also recalled in Section 1.2.4,
and which captures all the probabilistic “information” at infinity. Having identified the Poisson boundary as generated by
some shift invariant random variables, one can then compare the support of the latter to the purely geometric boundaries,
see which one carries more information etc. Let us briefly recall here that the determination of the Poisson boundary can
also be rephrased in the language of harmonic analysis since it identifies with the set of bounded harmonic functions for
the infinitesimal generator of the process.

In a general setting, the explicit determination of the Poisson boundary of a Markov process is a highly non-trivial
task. Indeed, as soon as the underlying state space is not a semi-simple Lie group or an homogeneous space, standard Lie
groups methods such as the ones developed in [7,25,26,30], techniques such as explicit Doob h-tranforms [32], explicit
couplings or shift-couplings [12] are hardly implementable. Recently, the authors introduced in [6] the so-called dévissage
method which allows to overcome this difficulty, at least in the case where the state space has enough symmetries and the
dynamics of the considered process respects these symmetries.

Following the general scheme described above, a detailed study of the long time almost sure asymptotics of the
relativistic diffusion has been performed in a certain number of examples of Lorentzian manifolds: Minkowski space–
time [17], Schwartzschild space–time [23], Gödel space–time [22], de Sitter and Anti de Sitter space–times in [35] and in
a large class of curved, warped product space–times in [2,4]. Nevertheless, the full determination of the Poisson boundary
of a relativistic Markov process has only been performed in the continuous context, namely for the relativistic diffusion,
and only in Minkowski space–time in [6,8] and in a very particular case of Robertson–Walker space–time in [3]. In these
two examples, it was shown that the set of exit points of the relativistic diffusion actually identifies with the geometric
conformal and causal boundaries cited above, so that it is quite natural to ask if it is always the case.

In this work, thanks to an extensive use of the dévissage method, we explicitly determine the Poisson boundary of the
relativistic diffusion in a large class of Lorentzian manifolds. This class is composed of all model space–times of constant
curvature namely Minkowski, de Sitter and Anti de Sitter space–times, as well as all expanding Robertson–Walker space–
times studied in [4]. Doing so, we are able to explicitly relate the geometry at infinity of the underlying manifold via its
conformal/causal boundary to the sample paths asymptotics. In particular, we show that the set of exit points of the
relativistic diffusion indeed identifies with the conformal boundary in the case of model space–times of non-negative
curvature, but that it is no more the case in Anti de Sitter space–time or for curved space–times. In the studied cases,
our results confirm a conjecture by Franchi and Le Jan asserting that the Poisson boundary of the relativistic diffusion
identifies with equivalence classes of light rays.

Let us emphasize that in each geometric case considered in the article, the exact determination of the Poisson boundary
is obtained via the dévissage method. Nevertheless, our results cover a large variety of geometric behaviors, each case
demanding a specific treatment and the adaptation of the dévissage scheme. The fact that the same method allows to
conclude in such a variety of situations illustrates its power and flexibility.

The plan of the paper is the following: in the next subsection, we briefly introduce the geometric and probabilistic
settings of our study. In Section 2, we then state our main results, which consist in the exact determination of the Poisson
boundary of the relativistic diffusion in all the manifolds under consideration. Finally, Section 3 is devoted to the proofs
of the stated results.

1.2. Geometric and probabilistic settings

In order to state our results in the next section, we quickly introduce here the geometric and probabilistic frameworks of
our study.
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1.2.1. Lorentzian model manifolds
The global geometric framework of our study is the one of Lorentzian manifolds, that is, finite dimension differentiable
manifolds M, endowed with a pseudo-metric g of signature (−,+, . . . ,+). Due to the non-positivity of the metric, given
a point ξ ∈ M, a tangent vector ξ̇ ∈ TξM to such a manifold can be of three different types, namely ξ̇ is said to be
time-like if gξ (ξ̇ , ξ̇ ) < 0, space-like if gξ (ξ̇ , ξ̇ ) > 0 and light-like if gξ (ξ̇ , ξ̇ ) = 0. In the same way, a smooth curve (ξt )t∈I

on M is said to be time-like (resp. space/light-like) if for each t ∈ I , the tangent vector ξ̇t = dξt/dt ∈ TξtM is time-like
(resp. space/light-like). A curve is said to be causal if it is light-like or time-like and a Lorentzian manifold is said causal
if it does not admits closed causal curves. A time-like curve with values in M can always be parametrized by its arc-
length or proper time s, so that gξs (ξ̇s , ξ̇s) = −1. The unitary tangent bundle associated to time-like tangent vectors of
pseudo-norm −1 will be denoted by T 1M, and if a chronological orientation if given on M, then T 1+M will denote its
positive part consisting of future oriented vectors.

As in the Riemannian setting, a Levi–Civita connection can be associated to the pseudo-metric g which allows to define
a Riemann curvature tensor, and thus a scalar curvature after taking the trace. Of primer interest are then the Lorentzian
manifolds of constant scalar curvature, or model space–times, which are the analogues of the Euclidean space R

d , the
Euclidean sphere S

d and the hyperbolic space H
d in the Riemannian context. Let Qp,q denote the canonical quadradic

form of signature (p, q) on R
p+q , namely for x = (x1, . . . , xp+q) ∈R

p+q

Qp,q(x, x) := −
p∑

k=1

|xk|2 +
q∑

�=p+1

|x�|2.

The Lorentzian manifold of dimension d +1 with constant zero scalar curvature is the Minkowski space–time R1,d which
is simply defined as Rd+1, endowed with pseudo-metric Q1,d . The analogue of the Euclidean sphere, i.e. the Lorentzian
manifold of constant scalar curvature equal to one is the de Sitter space–time dSd+1 which is defined as

dSd+1 := {x ∈R
d+2,Q1,d+1(x, x) = 1

}
,

endowed with the metric Q1,d+1 inherited of the ambient space. Finally, the Lorentzian manifold of constant scalar
curvature equal to −1 is the Anti de Sitter space–time AdSd+1 defined as

AdSd+1 := {x ∈R
d+2,Q2,d (x, x) = −1

}
,

also endowed with pseudo-metric Q2,d inherited of the ambient space. As already mentioned, we will be mostly interested
here in relating the long time asymptotic behavior of the relativistic Brownian motion in a space–time M to the geometry
at infinity of the latter. The three model space–times M = R

1,d ,dSd+1 and AdSd+1 are all conformally flat and each
admits a natural compactification as a subset of Einstein static universe R × S

d . This compactification, introduced by
Penrose in [31], is called the conformal boundary of the manifold. In the case of R1,d and dSd+1 this conformal boundary
coincides with the causal boundary and is topologically a cone for R1,d and a sphere for dSd+1. The manifold AdSd+1 is
not causal since its contains closed time-like geodesic and thus, it does not admit a causal boundary. Nevertheless it has
a well defined conformal boundary, which is topologically a torus S1 × S

d−1, identified with the Einstein flat conformal
Lorentz manifold of dimension d , denoted by Eind in the sequel. For a detailed description of Lorentzian model space–
times and their conformal boundary, we refer to [20,21] and the references therein.

1.2.2. Robertson Walker space–times
The second type of Lorentzian manifolds we will consider in this article is the one of Robertson–Walker space–times.
They are among the simplest examples of curved space–times, yet their geometry is rich and flexible enough to have a
good idea of the interplay between the random paths asymptotics and the manifold on which they live. A Robertson–
Walker space–time M := I ×α M is defined as a Cartesian product of a open interval (I,−dt2) (the base) and a
Riemannian manifold (M,h) of constant curvature (the fiber), endowed with a Lorentz metric of the following form
g := −dt2 + α2(t)h, where α is a positive C2 function on I , called the expansion function or torsion function. A gen-
eral study on the geometry of warped product manifolds can be found in [37]. More specific results on the geometry
of Robertson–Walker space–times and their geodesics can be found in [19]. Since a Riemannian manifold of constant
curvature is isometric to the Euclidean space, its sphere of the hyperbolic space, without loss of generality, we can restrict
ourselves to the cases where M =R

d,Sd or Hd . We will assume here that the “time interval” is infinite i.e. I = (0,+∞),
that the torsion function satisfies limt→+∞ α(t) = +∞ and the natural set of Hypotheses 1 and 2 of [4], summarized as

• α is log-concave on I , i.e. the Hubble function H := α′/α is non-increasing;
• α has either, polynomial, sub-exponential or exponential growth.
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All Robertson–Walker space–times are conformally flat, so they also admit a conformal compactification as subsets of
Einstein static universe as the model space–times considered above. Nevertheless, this compactification is not intrinsic
and this is the reason why another compactification is usually preferred in the physical and mathematical literature: the
causal boundary. This compactification, first introduced in [27], consists in attaching an ideal point to every inextensible,
time/light-like curve in such a way that the ideal point only depends on the past of the trajectory. The precise definition of
the causal boundary and its determination in the case of Robertson–Walker space–times can be found in details in [1]. In
the sequel, the (future oriented component of the) causal boundary of a space–time M will be simply denoted by ∂M.

1.2.3. Relativistic Brownian motion
The stochastic process which is the object of our attention in this article is the relativistic diffusion introduced in [23].
Let us recall that this process is the natural generalization of the standard Riemannian Brownian motion to the Lorentzian
context. The sample paths (ξs, ξ̇s) of the relativistic diffusion are time-like curves that are future directed and parametrized
by the arc length s so that the diffusion actually lives on the positive part of the unitary tangent bundle T 1+M of a general
Lorentzian manifold (M, g) of dimension d + 1. These sample paths can be seen either as random perturbations of
time-like geodesics or as the stochastic development of Dudley’s Minkowskian diffusion in the initial fixed tangent space,
the latter being the unique continuous Markov process whose law is Lorentz covariant, see [15]. More prosaically, the
infinitesimal generator of the diffusion writes

L := L0 + σ 2

2
�V , (1)

where the differential operator L0 generates the geodesic flow on T 1M, �V is the vertical Laplacian, and σ > 0 is a
real parameter. Equivalently, if ξμ is a local chart on M and if �

μ
νρ denote the usual Christoffel symbols, the relativistic

diffusion is the solution of the following system of stochastic differential equations (in Itô form), for 0 ≤ μ ≤ d{
dξ

μ
s = ξ̇

μ
s ds,

dξ̇
μ
s = −�

μ
νρ(ξs)ξ̇

ν
s ξ̇

ρ
s ds + d × σ 2

2 ξ̇
μ
s ds + σ dM

μ
s ,

(2)

where the braket of the martingales M
μ
s is given by〈

dMμ
s , dMν

s

〉= (ξ̇ μ
s ξ̇ ν

s + gμν(ξs)
)
ds.

Moreover, since the sample paths are parametrized by the arc length s, we have the pseudo-norm relation:

gμν(ξs)ξ̇
μ
s ξ̇ ν

s = −1. (3)

1.2.4. Poisson boundary and the dévissage method
Let us conclude this introduction by emphasizing that the long time asymptotic behavior of a stochastic process is fully
captured by its invariant sigma field modulo negligible sets, also classically called the Poisson boundary. In this paper,
we will only consider stochastic processes with infinite lifetime. Recall that a continuous Markov process (Zs)s≥0 with
values in a state space X can always be realized as the coordinate process Zs(ω) = ωs on the canonical probability space
(�,F) where � := C(R+,X) is the paths space and F is its standard Borel sigma field. The data of the Markov process
(Zs)s≥0 with values in X entails the data of a family of distributions (Pz)z∈X on (�,F), Pz being the law of the trajectory
starting from z ∈ X. The asymptotic sigma field of the process is then defined as F∞ :=⋂s≥0 σ(Zu,u > s). Considering
the classical shift operators (θt )t≥0 on �:

θs : � → �

ω = (ωs)s≥0 �→ θtω := (ωt+s)s≥0,

the invariant sigma field Inv((Zs)s≥0) associated to the process (Zs)s≥0 is defined as the sub-sigma field of F∞ composed
of invariant events, that is events A ∈ F∞ such that θ−1

t A = A for all t > 0. As shown e.g. in Proposition (3.4) of [34],
it is well know that there is a canonical isomorphism between set Hb of bounded harmonic functions for the generator
of the process and the set Binv of bounded Inv((Zs)s≥0)-measurable random variables up to equivalence, two bounded
shift-invariant random variables being considered as equivalent, if they agree Pz almost surely, for each z ∈ X. This
isomorphism is explicit, namely it is given by

Hb −→ Binv/∼, u �→ lim
s→+∞u(Zs),
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where the existence of the last limit is ensured by the martingale convergence Theorem. The inverse map is then simply
obtained by taking the expectation Ez under Pz, namely

Binv/∼ −→ Hb, H �→ u(z) := Ez[H ].
With these definitions and properties in mind, in order to determine the Poisson boundary of a diffusion, we will either
show that its invariant sigma field is almost surely generated by some explicit limit random variables, or we will show that
bounded harmonic functions can be represented as expectations of bounded measurable functions of these limit random
variables.

As announced in Section 1.1, our main tool to determine the Poisson boundary of the relativistic diffusion will be
the dévissage method introduced by the authors in the paper [6]. For the sake of self containess, let us recall here the
framework and main results of the latter. Let E be a differentiable manifold and G a finite dimensional connected Lie
group, in particular G carries a right invariant Haar measure μ. If K is a compact sub-group of G, we will denote by
G/K the associated homogeneous space and by π : G → G/K the canonical projection. As usual, let us denote by
C∞(E × G,R) the set of smooth functions from E × G to R. From the natural left action of G on itself

G × G → G

(g,h) �→ g.h := gh,

we deduce a left action of G on C∞(E × G,R), namely:

G × C∞(E × G,R) → C∞(E × G,R)

(g, f ) �→ g · f := ((x,h) �→ f (x,g.h)
)
.

In this context, let (Xs,Ys)s≥0 be a diffusion process with values in E × G and with infinite lifetime. We denote by L
its infinitesimal generator acting on C∞(E × G,R). The law of a sample path (Xs,Ys)s≥0 starting from (x, y) will be
denoted by P(x,y), and E(x,y) will denote the associated expectation. The hypotheses under which the dévissage method
can be applied are of different nature and are the following.

The dévissage conditions.

1. The process (Xs)s≥0 is a subdiffusion of (Xs,Ys)s≥0. The sigma field Inv((Xs)s≥0) is either trivial or it is generated
by a random variable �∞ with values in a separable measure space (S,G, λ), the law of the limit variable �∞ under
Px being absolutely continuous with respect to the measure λ, for any starting point x ∈ E.

2. For any starting point (x, y) ∈ E × G, the process (Ys)s≥0 converges P(x,y)-almost surely when s goes to infinity to a
random variable Y∞ in G.

3. The infinitesimal generator L of the diffusion is equivariant under the action of G on the space C∞(E × G,R), i.e.
L(g · f ) = g · (Lf ), ∀f ∈ C∞(E × G,R).

4. All bounded L-harmonic functions are continuous on E × G.

Remark 1. The third condition on the equivariance of the diffusion under the action of the group G can be rephrased
in a more probabilistic way as follows. For all g in G, the law of (Xs, g.Ys)s≥0 under Px,y coincides with the law of
(Xs,Ys)s≥0 under Px,g.y . Note also that, since the generator of the relativistic diffusion given by (1) is hypoelliptic, the
fourth dévissage condition is automatically satisfied in this case of interest here.

The main result of [6] is then the following.

Theorem 1 (Theorem 1 and 2 of [6]). Suppose that the full diffusion (Xs,Ys)s≥0 satisfies the above dévissage condi-
tions, then the two sigma fields Inv((Xs,Ys)s≥0) and Inv((Xs)s≥0) ∨ σ(Y∞) coincide up to P(x,y)-negligible sets. More
precisely

1. If Inv((Xs)s≥0) is trivial, then Inv((Xs,Ys)s≥0) coincides with σ(Y∞) up to negligible sets. Equivalently, if u is
a bounded L-harmonic function, then there exists a bounded measurable function ψ on G such that u(x, y) =
E(x,y)[ψ(Y∞)], for all (x, y) ∈ E × G.

2. If Inv((Xs)s≥0) is generated by a random variable �∞ ∈ S, then Inv((Xs,Ys)s≥0) coincides with σ(�∞, Y∞) up to
negligible sets. Equivalently, if u is a bounded L-harmonic function, then we have u(x, y) = E(x,y)[ψ(�∞, Y∞)] for
all (x, y) ∈ E × G, for a bounded measurable function ψ on S × G.
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The above results in the Lie group framework can be naturally extended to the case where the Lie group G is replaced
by an homogeneous space G/K , as soon as the homogeneous diffusion can be lifted to a diffusion satisfying the preceding
hypotheses.

Theorem 2 (Theorem 3 of [6]). Let (Xs,Ys)s≥0 with values in E×G/K , such that there exists a K-right equivariant dif-
fusion (Xs,Gs)s≥0 in E ×G satisfying the above dévissage conditions and such that under P(x,y) the process (Xs,Ys)s≥0

has the same law as (Xs,π(Gs))s≥0 under P(x,g) for g ∈ π−1({y}). Then for all starting points (x, y) ∈ E × G/K , the
two sigma fields Inv((Xs,Ys)s≥0) and Inv((Xs)s≥0) ∨ σ(Y∞) coincide up to P(x,y)-negligible sets.

Remark 2. Note that all the sigma fields we consider here are in fact sub-sigma fields of the underlying Borel sigma field
F . In particular Inv((Xs)s≥0) is a sub-sigma field of Inv((Xs,Ys)s≥0). The fact that (Xs)s≥0 is a sub-diffusion entails that
there exists a family of probability measures (Px)x∈E on (�,F) such that for all A ∈ σ(Xs, s ≥ 0) and (x, y) ∈ E×G, we
have P(x,y)(A) = Px(A). In particular Inv((Xs)s≥0) modulo P(x,y) negligible sets and Inv((Xs)s≥0) modulo Px negligible
sets coincide for all (x, y) ∈ E × G.

1.2.5. Use of the dévissage method in our context
Let us now briefly describe how the dévissage method can be used in our context. Unless otherwise stated, the state
space X will be the unitary tangent bundle T 1+M and the universe � will be the associated paths space, endowed with its
standard Borel sigma field F . For each considered geometry situation, we will choose an appropriate coordinates system
on T 1+M. Note that, even seen in this chart, the relativistic diffusion is still a stochastic process defined on the paths space
(�,F). The choice of the coordinates system will be done in such a way that the dévissage scheme can be implemented,
the process being split into some subdiffusion and some converging parts. The limits of these converging coordinates will
precisely be the shift invariant random variables which generate the Poisson boundary of the full relativistic diffusion. We
emphasize the fact these limit random variables are still defined on the paths space (�,F).

Note that in some situation it will be more convenient to lift the relativistic diffusion to the orthonormal frame bundle
O+(M), the later being seen as our new state space. In that case the natural paths space will be �� := C(R+,O+(M))

endowed with its Borel sigma field �F . Note that this lifting does not affect the previous scheme since, if we denote by
π : O+(M) → T 1+M the canonical projection and (�Pe)e∈O+(M) the law of the lifted trajectories, we have indeed for all
e ∈ O+(M) such that π(e) = x and for all A ∈ F

Px(A) =�Pe

({�ω ∈ ��,
(
π(�ωs)

)
s≥0 ∈ A

})
.

Hence we can make explicit the Poisson boundary of the relativistic diffusion from the study of its lifted version.

2. Statement of the results

In this section, we state the main results of the article, namely we determine the long time asymptotics and the Poisson
boundary of the relativistic diffusion in all Lorentzian model space–times and in expanding Robertson–Walker space–
times. This allows us to compare the stochastic compactification of the underlying manifolds given by the exit points of
the relativistic diffusion, to the other (purely) geometric compactifications such as the conformal or causal boundaries.

2.1. Lorentz model manifolds

Let us first consider the case of model space–times, i.e. Lorentzian manifolds with constant scalar curvature. The only
two cases where the Poisson boundary of the relativistic Brownian motion was previously fully determined are the causal
model space–times i.e. Minkowski and de Sitter space–times. In order to give a complete picture of what happen on model
space–times, let us first recall these results.

As already noticed above, in causal model space–times, the conformal and causal boundaries coincide, namely they
both topologically identify with a cone R+ ×S

d−1 in the case of Minkowski space–time, and with a sphere Sd in the case
of de Sitter space–time. Note that in a causal Lorentzian manifold, by definition, any inextensible causal path converges
to a point of the causal boundary so that it is obvious that the relativistic diffusion in the case of M =R

1,d or dSd+1 will
converge to a random point ξ∞ ∈ ∂M. What is remarkable here is that there is no extra invariant information, the Poisson
boundary is fully described by the sigma field generated by ξ∞.

In the case of Minkowski space–time this result was first established by Bailleul in [8], by Bailleul and Raugi in [10]
and was also recovered by the authors in [6] using the dévissage method.
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Fig. 1. Asymptotics of the relativistic diffusion in Minkowski space–time R
1,d and in the associated Penrose diagram.

Theorem 3 ([8,10] and [6]). Let (ξ0, ξ̇0) ∈ T 1+R1,d and let (ξs, ξ̇s)s≥0 be the relativistic diffusion in T 1+R1,d starting from
(ξ0, ξ̇0). Then almost surely as s goes to infinity, the process (ξs)s≥0 with values in R

1,d converges to a random point ξ∞
of the causal boundary ∂R1,d . Moreover, the invariant sigma field of the full process Inv((ξs, ξ̇s)s≥0) coincides with the
sigma field σ(ξ∞) up to P(ξ0,ξ̇0)

negligible sets.

Figure 1 illustrates the convergence of the process (ξs)s≥0 with values in Minkowski space–time to a random point
ξ∞ of the causal / conformal boundary, which topologically identifies here with a cone R

+ × S
d−1. A limit point ξ∞ =

(δ∞, θ∞) ∈ ∂R1,d ≈ R
+ × S

d−1 corresponds to causal curves which go to infinity in the direction θ∞ ∈ S
d−1 along an

affine hyperplane characterized by the scalar δ∞ ≥ 0. Let us notice that, tranversally to this hyperplane, the process has
non-converging fluctuations and refer to [8] or Section 4.2.1 of [6] for more details.

The identification of the Poisson boundary of the relativistic diffusion with values in de Sitter space–time dSd+1 was
established by the first author in [3]. We propose here in Section 3.1 a new / alternative proof of this result, exploiting
the Lie group and warped product structures of the unitary tangent bundle of the manifold. The necessary geometric
background is recalled in Sections 3.1.1 and 3.1.3.

Theorem 4 ( [3]). Let (ξ0, ξ̇0) ∈ T 1+dSd+1 and let (ξs, ξ̇s)s≥0 be the relativistic diffusion in T 1+dSd+1 starting from (ξ0, ξ̇0).
Then almost surely as s goes to infinity, the process (ξs)s≥0 with values in dSd+1 converges to a random point ξ∞ of the
causal boundary ∂dSd+1. Moreover, the invariant sigma field of the full process Inv((ξs, ξ̇s)s≥0) coincides with σ(ξ∞) up
to P(ξ0,ξ̇0)

negligible sets.

Via a stereographic projection, Figure 2 represents the de Sitter space–time in the projective space as the complemen-
tary set of a ball. The causal boundary then identifies with the topological boundary i.e the sphere S

d , and the typical
almost sure behavior of the relativistic diffusion is to go to infinity towards a random point on this sphere.

Remark 3. Let us emphasize here that in the two cases of causal model space–times R
1,d and dSd+1 of non-negative

curvature, the probabilistic information at infinity of the full relativistic diffusion (ξs, ξ̇s) is thus carried by the single
first projection ξs with values in the base manifold. In particular, no information is hidden in the asymptotic behavior
of the derivative ξ̇s , nor in its interaction with its antiderivative. Moreover, since the Poisson boundary coincides almost
surely with the sigma field generated by ξ∞ ∈ ∂dSd+1, the set of exit points of the diffusion, i.e. the support of this limit
random variable, which can be seen as a stochastic compactification of the base manifold, actually coincides with the
purely geometric (causal or conformal) boundaries.

Let us now turn to new results and consider the last case of model space–time, namely the Anti de Sitter space–time of
negative constant curvature. As already noticed in Section 1.2.1, this space–time is not causal and therefore has no causal
boundary. Nevertheless, it has a natural conformal compactification which identifies with the Einstein static space–time
Eind . The following theorem is proved in Section 3.1, exploiting again the Lie group and warped product structures of
the unitary tangent bundle.
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Fig. 2. Projective image of de Sitter space–time and asymptotics of the relativistic diffusion.

Fig. 3. Asymptotics in the projective image of Anti de Sitter space–time.

Theorem 5. Let (ξ0, ξ̇0) ∈ T 1+AdSd+1 and let (ξs, ξ̇s)s≥0 be the relativistic diffusion with values in T 1+AdSd+1 and start-
ing from (ξ0, ξ̇0). Then almost surely as s goes to infinity, the process (ξs)s≥0 is asymptotic to a random light circle �∞
in the conformal boundary identified with the Einstein conformal manifold Eind . The sample path (ξs, ξ̇s)s≥0 carries an
extra invariant information given by a random point p∞ ∈ �∞ on the limit light circle and the invariant σ -field of the full
diffusion (ξs, ξ̇s)s≥0 coincides with σ(p∞, �∞) up to P(ξ0,ξ̇0)

negligible sets.

In Figure 3 the Anti de Sitter space–time is seen in the projective space as the interior of an one-sheeted hyperboloid
which represent its conformal boundary (the Einstein universe of dimension d). A path of the relativistic diffusion is
represented being asymptotic to a light circle in the hyperboloid (a line in the projective space so a circle topologically).

More (geometric) details on the almost sure behavior of the relativistic diffusion on de Sitter and Anti de Sitter space–
times are given in Section 3.1.3, using the Iwasawa decomposition of the Lie algebra associated to their unitary tangent
bundles. In particular, the significance of the above “extra information”, i.e. the fact that random limit light circle is
pointed is explained.

Remark 4. The above Theorem 5 is thus the first example where the set of exit points of the relativistic Brownian motion,
seen as the support of the limit random variables generating the invariant sigma field, does not coincide with the natural
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Fig. 4. Asymptotics of the projection of the relativistic diffusion in T 1M with finite horizon and depending on the fact that H 3 is integrable at infinity
(left) or not (right).

geometric boundary. More precisely, the latter is here richer than the conformal boundary, with the extra information of
the dotted light circle. We will see in the next section that this fact, which could a priori sounds like an exception in the
constantly curved case, is actually the rule in curved space–times.

2.2. Robertson–Walker space–times

Let us now describe, in an exhaustive way, the asymptotic behavior of the relativistic diffusion in expanding Robertson–
Walker space–times. Let us recall that the warping function α is assumed to log-concave, in other words its logarithmic
derivative H := α′/α, known as the Hubble function, is assumed to be decreasing. From a geometric point of view,
the geometry at (the future oriented) infinity of the manifold M = (0,+∞) ×α M differs drastically depending on the
finiteness of the integral

I (α) :=
∫ ∞ du

α(u)
.

In the case where the integral I (α) is finite, the manifold is said to have a finite horizon, meaning in particular that the
projections of light-like geodesics in the Riemannian fiber M are convergent. Moreover, the (future oriented part of the)
causal boundary of the manifold then identifies with a space-like copy of M , see [1]. The sample paths of the relativistic
diffusion then obey the following dichotomy, which is illustrated in Figure 4, depending on the integrability of the Hubble
function.

Theorem 6. Let M := (0,+∞) ×α M be a Robertson–Walker space–time such that I (α) < +∞. Let (ξ0, ξ̇0) ∈ T 1+M
and let (ξs, ξ̇s)s≥0 = (ts , xs, ṫs , ẋs)s≥0 be the relativistic diffusion in T 1+M starting from (ξ0, ξ̇0).

1. If H 3 /∈ L
1, then almost surely as s goes to infinity, the process (xs)s≥0 converges to a random point x∞ in M , and the

invariant sigma field of the full diffusion Inv((ξs, ξ̇s)s≥0) coincides with σ(x∞) up to P(ξ0,ξ̇0)
negligible sets.

2. If H 3 ∈ L
1, then almost surely as s goes to infinity, the process Ys := (xs, ẋs/|ẋs |)s≥0 converges to a random point

Y∞ in T 1M , and the invariant sigma field of the full diffusion Inv((ξs, ξ̇s)s≥0) coincides with σ(Y∞) up to P(ξ0,ξ̇0)

negligible sets.

Remark 5. In the first case where H 3 /∈ L
1, the support of limit random variable generating the Poisson boundary of

the relativistic diffusion thus again identifies with the purely geometric causal boundary ∂M, i.e. the Riemannian fiber
M here. This happens for example for torsion functions α with exponential or sub-exponential growth, e.g. of the form
α(t) = et or α(t) = etβ with 2/3 < β < 1. Nevertheless, in the second case where H 3 ∈ L

1, which happens for example
for all the torsion functions α with polynomial growth, the normalized derivative also converges to a random variable and
the set of exit points of the diffusion is then richer than the causal boundary.

We now turn to the case of Robertson–Walker space–times M = (0,+∞) ×α M with infinite horizon, i.e. I (α) =
+∞. In this case, the asymptotic behavior of the diffusion heavily depends on the geometry of the Riemannian fiber
M = R

d,Sd or Hd , this is the reason why we state our results separately. Let us begin with the flat fiber case M = R
d

and for simplicity, let us assume here (and here only) that the torsion function α has polynomial growth in the sense that
there exists 0 < c ≤ 1 such that limt→+∞ H(t) × t = c.
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Fig. 5. Asymptotics of the relativistic diffusion under the hypotheses of Theorem 7.

Theorem 7. Let M := (0,+∞) ×α R
d be a Robertson–Walker space–time such that α has polynomial growth and

I (α) = +∞. Let (ξ0, ξ̇0) ∈ T 1+M and let (ξs, ξ̇s)s≥0 = (ts, xs, ṫs , ẋs)s≥0 be the relativistic diffusion in T 1+M starting
from (ξ0, ξ̇0). Then almost surely as s goes to infinity, the two processes (�s)s≥0 := (ẋs/|ẋs |)s≥0 and (δs)s≥0 := (xs −
�s

∫ ts
1 du/α(u))s≥0 converge to random points �∞ ∈ S

d−1 and δ∞ ∈ R
d respectively, and the invariant sigma field of

the full diffusion Inv((ξs, ξ̇s)s≥0) coincides with σ(�∞, δ∞) up to P(ξ0,ξ̇0)
negligible sets.

Remark 6. Compared to Theorem 3 illustrated in Figure 1, where the relativistic diffusion is asymptotic to a random
hyperplane with non-converging transversal fluctuations, under the hypotheses of Theorem 7, it asymptotically describes
a random line, more precisely a light-like geodesics encoded by the direction �∞ and a point δ∞ ∈ R

d , as illustrated in
Figure 5. For a Robertson–Walker space–time of the form M = (0 + ∞) ×α R

d with I (α) = +∞, the causal boundary
∂M coincides with the one of Minkowski space–time described above, namely it is still topologically a cone R

+ × S
d−1

which can be interpreted as a set of hyperplane, not a set a lines. Therefore, the stochastic compactification of the base
manifold given by set of exit points of the relativistic diffusion is again richer than its purely geometric analogue.

In infinite horizon I (α) = +∞ and in the case of a spherical fiber M = S
d , i.e. in the case of a warped product with

infinite horizon and with a compact fiber, the causal boundary of M := (0,+∞) ×α S
d is simply reduced to a point,

see [1]. Nevertheless, the Poisson boundary of the relativistic diffusion is non-trivial since the spherical projection of the
process asymptotically describe a random big circle in S

d as stated in the next Theorem and illustrated in Figure 6. This
random big circle is actually the only invariant stochastic information carried by the process at infinity.

Theorem 8. Let M := (0,+∞) ×α S
d be a Robertson–Walker space–time such that I (α) = +∞. Let (ξ0, ξ̇0) ∈ T 1+M

and let (ξs, ξ̇s)s≥0 = (ts , xs, ṫs , ẋs)s≥0 be the relativistic diffusion in T 1+M starting from (ξ0, ξ̇0). Then almost surely as
s goes to infinity, the process (xs)s≥0 asymptotically describes a random big circle in S

d generated by two orthogonal
random vectors (u∞, v∞) ∈ S

d × S
d and the invariant sigma field of the full diffusion Inv((ξs, ξ̇s)s≥0) coincides with

σ(u∞, v∞) up to P(ξ0,ξ̇0)
negligible sets.

We conclude with the negatively curved case M =H
d .

Theorem 9. Let M := (0,+∞) ×α H
d be a Robertson–Walker space–time such that I (α) = +∞. Let (ξ0, ξ̇0) ∈ T 1+M

and let (ξs, ξ̇s)s≥0 = (ts , xs, ṫs , ẋs)s≥0 be the relativistic diffusion in T 1+M starting from (ξ0, ξ̇0). Then almost surely as
s goes to infinity, the process (xs)s≥0 goes to infinity along a random direction θ∞ ∈ S

d−1 ∼ ∂Hd . Moreover, the scalar
process (δs)s≥0 defined by δs := sinh−1(|xs |) − ∫ ts

1 du/α(u) converges almost surely to a random point δ∞ ∈ R. The
invariant sigma field of the full diffusion Inv((ξs, ξ̇s)s≥0) coincides with σ(θ∞, δ∞) up to P(ξ0,ξ̇0)

negligible sets.

Remark 7. In this last case of a Robertson–Walker space–time with infinite horizon and hyperbolic fiber, the (future
oriented part of the) causal boundary also identifies topologically with a cone of the type R

+ × S
d−1, see [1]. Making

the parallel with the case of a Euclidean fiber, the relativistic diffusion goes here to infinity in a the random direction θ∞
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Fig. 6. Asymptotics of the relativistic diffusion in Robertson–Walker space–times with infinite horizon and spherical fiber.

Fig. 7. Asymptotics of the relativistic diffusion in Robertson–Walker space–times with infinite horizon and hyperbolic fiber.

along a random hypersurface (not an hyperplane as before) characterized by the scalar δ∞ ≥ 0, see Figure 7. As in the flat
Minkowskian case, the set of exit points of the relativistic diffusion thus coincides here again with the natural geometric
compactification of the base manifold.

3. Proof of the results

We now give the proofs of the results stated in the last section. The next Section 3.1 is devoted to the proof of Theorem 4
and 5 concerning the Poisson boundary of the relativistic diffusion in model space–times. The case of Robertson–Walker
space–times is then treated in Section 3.2.

3.1. Poisson boundary in model manifolds

As mentioned in Section 2.1, using elaborated coupling techniques, Bailleul first established Theorem 3 in [8], i.e. the fact
that the support of the Poisson boundary of the relativistic diffusion in Minkowski space–time identifies with the causal /
conformal boundary. Then using techniques from random walks on Lie groups, this result was recovered by Bailleul and
Raugi in [10]. As a first application of the dévissage method, we also gave a concise proof of this result in [6]. The case of
de Sitter space–time, i.e. Theorem 4 above, appears as a particular case of the main result of [3]. Indeed, it is well known
that de Sitter space–time can be globally written as a Robertson–Walker space–time with a flat fiber and with a torsion
function with exponential growth, which is precisely the framework of the latter article.
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We are thus left with the proof of Theorem 5 concerning the Anti de Sitter space–time. The method we follow here
will in fact provide a proof of both Theorems 4 and 5 at the same time. As the sphere and the hyperbolic space, the de
Sitter dSd+1 and Anti de Sitter AdSd+1 space–times are homogeneous spaces and their orthonormal frame bundle are
identified with Lie groups which are respectively PSO(1, d + 1) and PSO(2, d). The relativistic diffusion can naturally be
lifted to a diffusion with values in the orthonormal frame bundle. Those Lie groups are semi-simple and the study of the
asymptotic behavior of the (lifted) relativistic diffusion can be done using well known results on random walks on semi-
simple Lie groups. The plan of the proof of Theorems 4 and 5 is then the following: in the next Section 3.1.1, we precise
the geometric setting and the generator of the lifted diffusion process; then in Section 3.1.2, using suitable Iwasawa
coordinates, we determine its almost sure asymptotics using standard results for Markov processes on Lie groups; the
geometric meaning of these convergence results is detailed in Section 3.1.3. Finally, in Section 3.1.4, we compute the
Poisson boundary of the process using the dévissage method.

3.1.1. Lifting the relativistic diffusion
As recalled in Section 1.2.1, the de Sitter space–time dSd+1 is the unit sphere in R

1,d+1 of the quadratic form Q1,d+1.
Let denote by PSO(1, d + 1) the connected component of the identity of SO(1, d + 1), the group of Q1,d+1-isometries
of determinant 1. Then PSO(1, d + 1) acts by isometry and transitively on dSd+1 which can be identified with the
homogeneous space PSO(1, d + 1)/SO(1, d), SO(1, d) being identified with the stabilizer of one point in dSd+1. Denote
by (e0, e1, . . . , ed+1) the canonical basis of R1,d+1, and so Q1,d+1(e0) = −1 and Q1,d+1(ei) = 1 for i ∈ {1, . . . , d + 1}.
Define by π̃ the projection

π̃ : PSO(1, d + 1) −→ dSd+1

g �−→ g(e1)

i.e. the orthonormal frame bundle projection onto dSd+1. An element g of PSO(1, d + 1) provides g(e1) ∈ dSd+1 and
also an orthonormal basis (g(e0), g(e2), . . . , g(ed+1)) of Tg(e1)dSd+1. Since PSO(1, d +1) acts transitively on the unitary
tangent bundle T 1+dSd+1, it can be identified with the quotient PSO(1, d + 1)/SO(d) via the projection π defined by

π : PSO(1, d + 1) −→ T 1+dSd+1

g �−→ (
g(e0), g(e1)

)
,

the stabilizer of (e0, e1) being isomorphic to SO(d). In the same manner, recall that the Anti de Sitter space–time AdSd+1

is a unit sphere in R
2,d for the quadratic form Q2,d

AdSd+1 = {ξ ∈ R
d+1,Q2,d (ξ) = −1

}
,

identified with the homogeneous space PSO(2, d)/SO(d) via the projection (denoted π̃ again)

π̃ : PSO(2, d) −→ AdSd+1

g �−→ g(e0).

Any element g ∈ PSO(2, d) then provides a point g(e0) in AdSd+1 as well as an orthonormal basis (g(e1), . . . , g(ed+1))

of the tangent space Tg(e0)AdSd+1. Moreover, the whole unitary tangent bundle T 1+AdSd+1 is identified with the homo-
geneous space PSO(2, d)/SO(d) via the projection (also denoted by π )

π : PSO(2, d) −→ T 1+AdSd+1

g �−→ (
g(e0), g(e1)

)
.

In the two cases, dSd+1 and AdSd+1, the relativistic diffusion (ξs, ξ̇s)s≥0 is thus the projection onto respectively
T 1+dSd+1 and T 1+AdSd+1 of a left invariant diffusion (gs)s≥0 on a Lie group, respectively PSO(1, d + 1) and PSO(2, d)

whose generator L̃ takes the Hörmander form

L̃ = σ 2

2

d∑
i=1

V 2
i + H0,
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(Vi)i=1,...,d and H0 are left invariant vector fields (respectively vertical and horizontal relatively to the bundle projection
π̃ ). Precisely, in the case of dSd+1

H0(g) = g
(
e0e

∗
1 + e1e

∗
0

)
, Vi(g) = g

(
ei+1e

∗
0 + e0e

∗
i+1

)
, 1 ≤ i ≤ d,

and in the case of AdSd+1

H0(g) = g
(
e1e

∗
0 − e0e

∗
1

)
, Vi(g) = g

(
ei+1e

∗
1 + e1e

∗
i+1

)
, 1 ≤ i ≤ d.

Saying that (ξ̇s , ξs)t≥0 is the projection by π of (gs)s≥0 is equivalent to the fact that, for every smooth function f :
T 1+M →R (M = dSd+1 or AdSd+1) one has

L̃(f ◦ π) = L(f ) ◦ π.

The asymptotic behavior and the Poisson boundary of the relativistic diffusion (ξs, ξ̇s)s≥0 will be obtained from the one of
(gs)s≥0. Note that both PSO(1, d +1) and PSO(2, d) are semi-simple Lie groups and moreover the left invariant diffusion
(gs)s≥0 is hypoelliptic (satisfying Hörmander condition). Thus, the asymptotic behavior of (gs)s≥0 can be made explicit
using classical results on random walks and Markov processes ([25,30,33,36]) on semi-simple Lie groups.

3.1.2. Asymptotics of the lifted diffusion in Iwasawa coordinates
Let us for the moment denote by G for PSO(1, d + 1) or PSO(2, d) and choose an Iwasawa decomposition G = NAK

(and Lie(G) = N ⊕ A ⊕ K). Recall that K is a maximal compact sub-group (isomorphic to SO(d + 1) in the case
PSO(1, d + 1), and to (O(2) × O(d)) ∩ SL(d + 2) in the case of PSO(2, d)), A is an abelian Lie group (of dimension
1 in the case PSO(1, d + 1) or 2 in the case PSO(2, d)) and N has a nilpotent Lie algebra N . Then decomposing gs in
Iwasawa coordinates gs = nsasks one observes that (ks)s≥0 and (as, ks)s≥0 are diffusions respectively on K and A × K .
Precisely, writing explicitly the dynamics of the diffusion in Iwasawa coordinates, see e.g. [30], if {·}K, {·}A, {·}N denotes
the Iwasawa projections of Lie(G) onto K, A, N , we get

dks = σ

d∑
i=1

{
Ad(ks)Vi

}
Kks ◦ dBi

s + {Ad(ks)H0
}
Kks ds, (4)

das = σ

d∑
i=1

as

{
Ad(ks)Vi

}
A ◦ dBi

s + as

{
Ad(ks)H0

}
A ds, (5)

dns = σ

d∑
i=1

nsAd(as)
{
Ad(ks)Vi

}
N ◦ dBi

s + nsAd(as)
{
Ad(ks)H0

}
N ds. (6)

In particular, from Equations (4), (5), (6), one can easily check that the processes (ks)s≥0 and (ks, as)s≥0 are subdiffusions
of the full process (ks, as, ns)s≥0. In our particular cases, since the projection of (gs)s≥0 onto the unitary fiber bundle
identified with G/SO(d) is a diffusion, it follows that the projection (θs)s≥0 of (ks)s≥0 onto K/SO(d) (identified with S

d

for dSd+1 and S
1 for AdSd+1) is itself a diffusion process, i.e. a Markov process, whose dynamics is explicit. Precisely

in the Anti de Sitter case, using the explicit Iwasawa decomposition of PSO(2, d) detailed in the next Section 3.1.3
and denoting by θs ∈ S

1 the element of the circle defined by the relations ks(e0) = cos(θs)e0 + sin(θs)e1 and ks(e1) =
− sin(θs)e0 + cos(θs)e1, the SDE solved by (ks)s≥0 provides the following explicit dynamics of (θs)s≥0

dθs = σ cos(θs) dWs +
(

1 + σ 2(d − 2)

4
sin(2θs)

)
ds, (7)

where (Ws)s≥0 is an usual Brownian motion. In the case of de Sitter space–time, considering the explicit Iwasawa decom-
position of PSO(1, d + 1) also given in Section 3.1.3 and denoting θs := ks(e1) ∈ S

d , one gets the following dynamics of
(θs)s≥0 obtained from the SDE solved by (ks)s≥0,

dθs = −σ
(
e∗

1θs

)
dMθ

s − σ 2

2

[
(d − 2)

(
e∗

1θs

)
e1 + 2

(
e∗

1θs

)2
θs

]
ds + (e1θ

∗
s − θse

∗
1

)
θs ds, (8)

where the martingale term is dMθ
s :=∑d

i=1 ks(ei+1) dBi
s and has covariation bracket given by (Id − θ∗

s θs) ds. Using
classical results on finite dimensional diffusion processes, one can then easily get that (θs)s≥0 admits a unique invariant
probability measure on K/SO(d) and is hence ergodic. In particular, the Poisson boundary Inv((θs)s≥0) is trivial.
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Let us now concentrate on the diffusion process (ks, as)s≥0. In the de Sitter case, the process (as)s≥0 takes values in
R. Starting from Equation (5) and using Itô formula, the Doob–Meyer decomposition of logas is the sum of a martingale
term and an additive functional of (θs)s≥0. By the ergodic theorem, one then deduces that 1

s
logas converges almost-surely

as s goes to infinity to some deterministic constant η∞ ∈ R. In the same manner, in the Anti de Sitter case, it is easily
seen that the matrix logarithm 1

s
logas converges almost surely to some deterministic limit η∞. A fundamental and well

known fact is that, in both cases, the limit η∞ then necessarily belongs to the interior of the Weyl chamber corresponding
to the Iwasawa decomposition chosen. Indeed, this result is classical for random walks generated by a density measure,
see e.g. the standard references [25,28,36] or [30]. Although we are working here with diffusion processes, the study can
naturally be reduced to the “random walk” framework by discretizing the time, with of course no effect on the fact that
the limit η∞ is in the interior of the Weyl chamber.

Remark 8. In the case of de Sitter space–time, due to the simplicity of Equation (7), the invariant measure of (θs)

is explicit and the positivity of the limit η∞ = lims→+∞ 1
s

logas can be checked easily by an explicit and elementary
computation. In the Anti de Sitter case however, although the invariant measure of (θs) can also be made explicit starting
from Equation (8), computations are much more involved, so that the fact that the limit η∞ belongs to the interior of the
Weyl chamber seems hard to check using only elementary methods.

Recall that, by definition, an element a ∈ A+ of the Weyl chamber contracts, by adjonction, an element Y of the
nilpotent algebra N , namely

Ad(a)(Y ) =
∑

φ∈�+
e−φ(loga)Yφ,

where �+ is the set of positive roots. From this contraction property and from the fact that 1
s

logas converges almost
surely to an element η∞ of the Weyl chamber, one then deduces that the dynamics of ns is contracting exponentially fast
and so that ns converges almost surely to an asymptotic random variable n∞ with values in N . The next Proposition sums
up the almost sure long time asymptotic behavior of the relativistic diffusion in de Sitter and anti de Sitter space–times,
seen in Iwasawa coordinates.

Proposition 1. The relativistic diffusion (ξs, ξ̇ )s≥0 in dSd+1 or AdSd+1, written in Iwasawa coordinates, corresponds
bijectively to the diffusion (ns, as, θs)s≥0 ∈ N × A × K/SO(d).

• The process (θs)s≥0 is an ergodic subdiffusion, taking values in S
d in the case of dSd+1, and in S

1 in the case of
AdSd+1.

• The process (θs, as)s≥0 is also a subdiffusion, where (as)s≥0 takes values in A identified with R for dSd+1 or R2 for
AdSd+1. As s goes to infinity, 1

s
logas converges almost surely to a deterministic point η∞ of the Weyl chamber A+.

• The process (ns)s≥0, with values in N identified to R
d for dSd+1 or R2d−2 for AdSd+1, converges almost surely as s

goes to infinity to an asymptotic random variable n∞ ∈ N .

3.1.3. Geometric identification of the boundary
Let us now describe with more geometrical details the almost sure asymptotic behavior of the relativistic diffusion
(ξ̇s , ξs)s≥0 in dSd+1 and AdSd+1 space–times.

Asymptotics in de Sitter space–time. The de Sitter space–time is a double cover of an open set of the projective space
Pd+1

R via the map

p : dSd+1 −→ Pd+1
R

ξ �−→ vect(ξ).

In the affine chart given by the hyperplan {ξ ∈ R
1,d+1, ξ0 = 1} the image of the isotropy cone of Q1,d+1 is a sphere and

the image of dSd+1 correspond to the exterior of that sphere which we denote by ∂dSd+1 and corresponds to the causal
and conformal boundary of dSd+1. The Lie algebra o(1, d + 1) of PSO(1, d + 1) is by definition

o(1, d + 1) =
{(

0 u∗
u A

)
, u ∈R

d+1,A ∈ R
(d+1)×(d+1),A∗ = −A

}
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and the Iwasawa decomposition o(1, d + 1) =N ⊕A⊕K we choose is precisely

A =
⎧⎨⎩
⎛⎝0 β 0

β 0 0
0 0 0

⎞⎠ , β ∈ R

⎫⎬⎭ , N =
⎧⎨⎩
⎛⎝0 0 h∗

0 0 −h∗
h h 0

⎞⎠ , h ∈ R
d

⎫⎬⎭ ,

and K =
{(

0 0
0 A

)
,A ∈R

(d+1)×(d+1),A∗ = −A

}
.

Thus the Iwasawa decomposition of gs writes explicitly

gs = nsasks = exp

⎛⎝ 0 0 h∗
s

0 0 −h∗
s

hs hs 0

⎞⎠⎛⎝cosh(βs) sinh(βs) 0
sinh(βs) cosh(βs) 0

0 0 Id

⎞⎠(1 0
0 Rs

)

where Rs ∈ SO(d + 1). Then, we get that (ξ̇s , ξs) := π(gs) = (gs(e0), gs(e1)) = (nsas(e0), nsasθs), where by definition
θs := ks(e1) corresponds to the first column of Rs and belongs to the set {ξ ∈ R

1,d+1, ξ0 = 0 and Q1,d+1(ξ) = 1} � S
d .

From the above Proposition 1, we know that almost surely βs goes to infinity with s and since θs is bounded, we get

Q1,d+1
(
ns(e0 + e1), ξs

)= Q1,d+1
(
ns(e0 + e1), nsasθs

)
= Q1,d+1

(
a−1
s (e0 + e1), θs

)
= e−βs Q1,d+1(e0 + e1, θs) −→

t→+∞ 0.

From a geometrical point of view, this means that in the projective space, all adherent point of p(ξs) belongs to the set
of points in Pd+1

R which are Q1,d+1-orthogonal to the limit point p(n∞(e0 + e1)). This set is the tangent space of the
sphere ∂dSd+1 at the point p(n∞(e0 + e1)). But by definition p(ξs) is a causal curve and converges to a point of the
causal boundary which is also ∂dSd+1. This implies necessary that p(ξs) converges to p(n∞(e0 + e1)). Note that one can
also recover this result writing θs =∑d+1

i=1 θi
s ei so that

ξs = θ1
s ns

(
sinh(βs)e0 + cosh(βs)e1

)+ d+1∑
i=2

θi
s nt (ei).

In [35], it is shown that (θ1
s )s≥0 is a diffusion process taking values in [−1,1] which stays eventually in ]0,1[, implying

that, for s large enough, we have θ1
s �= 0. Since βs goes to infinity with s, one gets(

θ1
s eβs

)−1
ξs −→

s→+∞ n∞(e0 + e1), and thus p(ξs) = p
((

θ1
s eβs

)−1
ξs

) −→
s→+∞ p

(
n∞(e0 + e1)

)
.

Let now describe the asymptotic behavior of (ξ̇s)s≥0. We have ξ̇s = ns(cosh(βs)e0 + sinh(βs)e1) and so e−βs ξ̇s converges
to n∞(e0 + e1). Thus

p(ξ̇s) = p
(
e−βs ξ̇s

) −→
s→+∞ p

(
n∞(e0 + e1)

)
.

Geometrically, the almost sure asymptotic behavior of (ξs, ξ̇s)s≥0 in the projective space in thus the one described in
Figure 8.

Remark 9. For every � ∈ ∂dSd+1 which is different to p(e0 − e1) there is a unique n ∈ N such that θ = p(n(e0 + e1)).
Thus, Theorem 4 can be rephrased saying that the invariant σ field of (ξ̇s , ξs)s≥0 is generated by the asymptotic point
�∞ := p(n∞(e0 + e1)) belonging to the causal boundary of dSd+1.

Asymptotics in Anti de Sitter space–time. Recall that by definition, the Anti de Sitter space–time is the algebraic sub-
manifold AdSd+1 = {ξ ∈R

2,d ,Q2,d (ξ) = −1} and let us denote by Eind := {ξ ∈R
2,d ,Q2,d (ξ) = 0} which inherits from

Q2,d a flat conformal Lorentzian structure and is called the Einstein Lorentz manifold. Denote by p : R2,d \ {0} → Pd+1
R

the projection onto the projective space. Then p(AdSd+1) is an open set whose boundary is p(Eind), and seen in the affine
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Fig. 8. Asymptotics of the relativistic diffusion under the hypotheses of Theorem 7.

chart {ξ ∈ R
2,d , ξ0 = 1}, p(AdSd+1) is the interior of a one-sheeted hyperboloid corresponding to p(Eind). The Lie al-

gebra o(2, d) of PSO(2, d) is the set of matrices

o(2, d) =
⎧⎨⎩
⎛⎝ 0 a b∗

−a 0 c∗
b c A

⎞⎠ , a ∈ R, b, c ∈R
d,A ∈R

d×d,A∗ = −A

⎫⎬⎭ ,

and the Iwasawa decomposition o(2, d) =N ⊕A⊕K we choose is given by

K =
⎧⎨⎩
⎛⎝0 −θ 0

θ 0 0
0 0 A

⎞⎠ ,A ∈ R
d×d,A∗ = −A,θ ∈R

⎫⎬⎭ ,

A=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎝
0 0 λ 0 0
0 0 0 μ 0

λ 0 0 0 0
0 μ 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎠λ,μ ∈R

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ,

and the nilpotent Lie algebra

N =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎝
0 −(x + y) 0 x − y h∗

x + y 0 x + y 0 h̃∗

0 x + y 0 −(x − y) −h∗
x − y 0 x − y 0 −h̃∗

h h̃ h h̃ 0

⎞⎟⎟⎟⎟⎟⎠ , x, y ∈R, h, h̃ ∈R
d−2

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

The Weyl chamber is the set of elements of A such that λ > 0, μ > 0 and λ − μ > 0. Remark that dimA = 2, dimK =
1 + d(d−1)

2 and dimN = 2d − 2. Denote by N , A and K the Lie groups associated so that PSO(2, d) = NAK . Since
T 1+AdSd+1 is identified with PSO(2, d)/SO(d) one has the Iwasawa diffeomorphism

N × A × S
1 −→ T 1AdSd+1

(n, a, θ) �−→ (
na
(
cos(θ)e0 + sin(θ)e1

)
, na
(− sin(θ)e0 + cos(θ)e1

))
.

Thus in Iwasawa coordinates the relativistic diffusion writes

ξs = nsas

(
cos(θs)e0 + sin(θs)e1

)
, ξ̇s = nsas

(− sin(θs)e0 + cos(θs)e1
)
.

Define the processes (λs)s≥0 and (μs)s≥0 so that

as = exp
(
λs

(
e2e

∗
0 + e0e

∗
2

)+ μs

(
e3e

∗
0 + e0e

∗
3

))
, ∀s ≥ 0.
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By Proposition 1, since log(as)/s converges to a deterministic element of the interior of the Weyl chamber, one deduces
that λs

s
→ λ∞ > 0, μs

s
→ μ∞ > 0 and λ∞ > μ∞. Let us now define

us := e−λs nsas(e0), vs := e−μs nsas(e1),

so that we have

ξs = cos(θs)e
λs ut + sin(θs)e

μs vs, and ξ̇s = − sin(θs)e
λs us + cos(θs)e

μs vs.

By Proposition 1 again, we have then almost surely

us −→
s→+∞ n∞(e0 + e2), vs −→

s→+∞ n∞(e1 + e3).

Thus, in the manifold R
2,d , the plan vect(ξ̇s , ξs) = vect(us, vs) converges to the asymptotic plan vect(n∞(e0 +

e2), n∞(e1 + e3)) belonging to the isotropy cone of Q2,d . Choosing (us, vs) as a fixed basis of vect(ξ̇s , ξs), the two
points ξs and ξ̇s describe spirals and go to infinity faster in the direction given by us (since λs − μs goes to infinity with
s). Looking in the projective space Pd+1

R the line p(vect(ξs, ξ̇s)) = p(vect(us, vs)) then converges as s goes to infinity to
the asymptotic line �∞ := p(vect(n∞(e0 + e2), n∞(e1 + e3))) which belongs to Eind and is a light circle (more precisely
it is a light-like geodesic belonging to a light cone in Eind ).

One can easily check that n∞ is determinate by n∞(e0 + e2) and n∞(e1 + e3). In fact, given a point η ∈ Eind and a
light-like geodesic � ⊂ Eind passing by η such that � does not belong to the light cone of Eind with apex p(e0 − e2),
there is a unique n ∈ N such that p(η) = p(n(e0 + e2)) and � = p(vect(n(e0 + e2), n(e1 + e3))). This means that N is
diffeomorphic to the set of pointed light circle in p(Eind), which does not belong to the light cone with apex p(e0 − e1).
Thus the set of exit points of the relativistic diffusion in AdSd+1, encoded by n∞, is the pointed light circle (p∞, �∞),
given by p∞ := p(n∞(e0 + e2)) and �∞ := p(vect(n∞(e0 + e2), n∞(e1 + e3))). Therefore, even if p(ξ̇s) and p(ξs) are
asymptotic to the random light circle �∞, the relativistic diffusion carries an extra invariant information given by the point
p∞ ∈ �∞.

3.1.4. Expliciting the Poisson boundary
With the help of the dévissage method, more precisely with the help of Theorem 1 of Section 1.2.4, we are now in position
to make explicit the Poisson boundary of the relativistic Brownian motion in de Sitter and Anti de Sitter space–times.
The starting point is Proposition 1 describing the long time asymptotic behavior of the diffusion in Iwasawa coordinates.
Namely, we have seen in Section 3.1.2 that Xs := (as, θs)s≥0 is a subdiffusion of (Xs,Ys)s≥0 := (as, θs, ns)s≥0; moreover,
by Equation (6), the dynamics of the process Ys := ns depends only of (as, θs)s≥0 so that the equivariance condition is
satisfied (the group N acting on itself by translation) and it converges almost surely as s goes to infinity to Y∞ = n∞. Last,
the generator of the relativistic diffusion being hypoelliptic, harmonic functions are smooth. Therefore, all the dévissage
conditions are fulfilled and by Theorem 1, we get that Inv((as, θs, ns)s≥0) and σ(n∞) ∨ Inv((as, θs)s≥0) coincide up to
negligible sets.

It remains to check that the Poisson boundary of (as, θs)s≥0 is trivial. We will actually prove that the Poisson boundary
of the process (as, ks)s≥0 is trivial. Recall that L̃ is the generator of the lifted diffusion (gs = nsasks)s≥0 introduced in
Section 3.1.1 so that every harmonic function for the diffusion (as, ks)s≥0 is a L̃-harmonic function which is constant
in the N -variable. So, in order to verify that the Poisson boundary of (as, ks)s≥0 is trivial it remains to show that every
bounded L̃-harmonic function which is constant in the N -coordinates (or equivalently is N -left invariant) is constant.
For that we proceed as in [10,25,33] or [35] and show that a N -left invariant, L̃-harmonic function is necessarily A-left
invariant. So it is harmonic for the generator of the ergodic diffusion (ks)s≥0 and thus is constant.

Proposition 2. The invariant σ -field of the subdiffusion (as, ks)s≥0 is trivial a.s.

Proof. Let us recall the following classical fact about bounded harmonic functions of left invariant hypoelliptic diffusions
on Lie groups (cf Prop 3.4 of [10]). Denote by S the support of μ1 the law of g1 under PId. Note that the process (gn)n∈N
is a left random walk on G generated by μ1.

Lemma 1. Every bounded harmonic function f is right uniformly continuous and for every s ∈ S, f (gns) converges
Pg-a.s and

lim
n→+∞f (gns) = lim

n→+∞f (gn).
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Take now f a bounded L̃-harmonic function which is N -left invariant (or equivalently a bounded harmonic function
for the subdiffusion (as, ks)s≥0). We want to show that f is constant and for that it is sufficient to prove that it is A-left
invariant; indeed if it is the case, f depends only on the variable in K and so is harmonic for the ergodic diffusion (ks)s≥0

and thus is constant. Since A is abelian (and isomorphic to either R or R2 here) it is sufficient to verify that f (ak) = f (k)

holds for every k ∈ K and every a in some neighborhood VId of Id in A. We denote by S the support of the law of g1

under PId. By hypoellipticity, the set S contains some open set and thus SS−1 contains a neighborhood U of Id in G.
Then we take VId small enough such that{

kak−1, k ∈ K,a ∈ VId
}⊂ U .

Now fix a ∈ VId and choose k∞ belonging to the support of the invariant law of (ks)s≥0 and set u∞ := k−1∞ ak∞ which
belongs to U and thus to SS−1. So there exists s, s′ ∈ S such that u∞ = s′s−1. Then, denoting by E(a,k) the expectation
over all trajectories (as, ks)s≥0 starting at (a, k) ∈ A × K , one gets

f (ak) = E(a,k)

[
lim

n→+∞f (ankn)
]

= E(a,k)

[
lim

n→+∞f (ankns)
]

(using Lemma 1)

= E(Id,k)

[
lim

n→+∞f (aankns)
]

= E(Id,k)

[
lim

n→+∞f (anknuns)
]

where we set un := k−1
n akn. By ergodicity of (ks)s≥0, one deduces that for almost all trajectories it exists a (random)

sub-sequence (nm)m such that unm converges to u∞. Now, since f is right uniform continuous, and since u∞ = s′s−1, it
comes that for P(Id,k)-almost every trajectories

lim
n→+∞f (anknuns) = lim

m→+∞f (anmknmu∞s) = lim
m→+∞f

(
anmknms′).

But since s′ ∈ S one finally obtains, by Lemma 1, that

P(Id,k)-a.s., lim
n→+∞f (anknuns) = lim

n→+∞f (ankn).

Thus taking expectation, one gets

f (ak) = E(Id,k)

[
lim

n→+∞f (ankn)
]

= f (k),

and the proof is completed. �

Corollary 1. The invariant σ -field of the relativistic diffusion (ξ̇s , ξs)s≥0 with values in de Sitter or Anti de Sitter space–
times is generated by the asymptotic random variable n∞ ∈ N .

Proof. Recall that (ξ̇s , ξs)s≥0 is in bijection with (ns, as, θs)s≥0 so that

Inv
(
(ξ̇s , ξs)s≥0

)= Inv
(
(ns, as, θs)s≥0

)
.

By the dévissage method and Proposition 2, since (as, θs)s≥0 is a subdiffusion of (as, ks)s≥0, we deduce that up to
negligible sets

Inv
(
(ξ̇s , ξs)s≥0

)= σ(n∞) ∨ Inv
(
(as, θs)s≥0

)= σ(n∞). �

Remark 10. Let us summarize here the results of Section 3.1. In model space–times, the set of exit points of the rela-
tivistic diffusion is thus in bijection with the group N appearing in the Iwasawa decomposition of the orthonormal frame
bundle of the base manifold. In the case of de Sitter space–time, by Remark 9, the group N identifies with the causal /
conformal boundary ∂dSd+1 ≈ S

d . In the case of Anti de Sitter space–time, as detailed at the end of Section 3.1.3, the
group N this time identifies with the set of pointed light circles, carrying more information than the single conformal
boundary.
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3.2. Poisson boundary in Robertson–Walker space–times

Having given a full description of the long time asymptotics of the relativistic diffusion in the three Lorentz model
manifolds, we now turn to the case of curved manifolds and more precisely the case of Robertson–Walker space–times.
In this geometric context, the almost sure long time asymptotic behavior of the relativistic diffusion was described in
details in [2,4] and the main point here is thus to explicit the Poisson boundary. Let us first recall here some basic facts
that are established in the latter references. In a warped product M = (0,+∞) ×α M , the relativistic diffusion (ξs, ξ̇s)

with values in T 1M can naturally be written (ξs, ξ̇s) = (ts, ṫs , xs, ẋs) with (ts , ṫs ) ∈ T (0,+∞) and (xs, ẋs) ∈ T M , and
the fact that the process ξ̇s has unit pseudo-norm translates into the relation

ṫ2
s − 1 = α2(ts)|ẋs |2. (9)

The “temporal” process (ts , ṫs) then appears as a two-dimensional subdiffusion, solution of the following system of
Equations

dts = ṫs ds, dṫs = −H(ts)
(
ṫ2
s − 1

)
ds + dσ 2

2
ṫs ds + σ dMṫ

s ,

where Mṫ
s is a local martingale with bracket d〈Mṫ,Mṫ 〉s = (ṫ2

s −1) ds. In other words, it admits the following hypoelliptic
infinitesimal generator

L(t,ṫ) := ṫ ∂t +
(

−H(t)
(
ṫ2 − 1

)
ds + dσ 2

2
ṫ

)
∂ṫ + σ 2

2

(
ṫ2 − 1

)
∂2
ṫ
.

Lemma 4.1 [4] then ensures that almost surely ṫ2
s − 1 > 0 for all s > 0, i.e. |ẋs | > 0, allowing to consider the process

(xs, ẋs/|ẋs |) ∈ T 1M . The trajectories of the process being future oriented, we have in fact ṫs > 1 for all s > 0 which
ensures that the first component ts is transient. The recurrence/transience of the derivative ṫs is well understood and
is related to the rate of decrease of the Hubble function H , namely ṫs is almost surely transient if and only if Hd is
integrable at infinity, see Proposition 3.3 of [4]. No matter the recurrence or transience of the component (ṫs)s≥0, the
following Liouville Theorem for the temporal subdiffusion was established in [3].

Proposition 3 (Proposition 4.8 of [3]). The invariant sigma field associated to the diffusion (ts , ṫs ) is trivial, equivalently
all bounded L(t,ṫ)-harmonic functions are constant.

Remark 11. The proof of the above Proposition 3 given in the reference [3] actually shows that there exists an automatic
coupling between two independent copies of the temporal subdiffusions. This fact will be used in the proofs in the next
Propositions 5 and 6.

As in the case of geodesics, the long time asymptotic behavior of the “spatial” components (xs, ẋs/|ẋs |) of the rela-
tivistic diffusion is then intimately related to the finiteness of the two integrals. Let us consider

Cs :=
∫ s

0
Ċu du, and Ds :=

∫ s

0
Ḋu du, (10)

where

Ċs := 1

ṫ2
s − 1

Ḋs :=
√

ṫ2
s − 1

α(ts)
. (11)

The finiteness of these two random additive functionals is related to the geometry of the manifold in the following way.

Proposition 4 (Corollary 4.2 of [4]). If the torsion function α satisfies the hypotheses of Section 1.2.2, then we have the
equivalences

C∞ < +∞ a.s. ⇐⇒
{

H 3 ∈ L
1, if d ≥ 4

H 3 ∈ L
1− if d = 3,

D∞ < +∞ a.s. ⇐⇒ I (α) < +∞.
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Before getting into more details for each cases let us before recall that the pseudo-norm relation (9) insures that the rel-
ativistic diffusion (ξs, ξ̇s)s≥0 is in bijection with the diffusion (ts, ṫs , xs, ẋs/|ẋs |)s≥0 taking values in T (0,+∞) × T 1M .
When M = R

d we use the canonical coordinates (x1, . . . , xd) and when M = S
d or M = H

d we see it as Rieman-
nian submanifolds of R

d and R
1,d respectively and we use extrinsic coordinates (x0, x1, . . . , xd). The dynamics of

(xs, ẋs/|ẋs |) ∈ T 1M can be obtained from (2) and is given by{
dxs = Ḋs

ẋs|ẋs | ds,

d
ẋ

μ
s|ẋs | = −κḊsx

μ
s ds − σ 2 d−1

2 Ċs × ẋ
μ
s|ẋs | ds + σ

√
Ċs dM

ẋμ/|ẋ|
s μ = 0, . . . , d,

(12)

where we exclude the coordinate μ = 0 when M =R
d . The parameter κ denotes the constant curvature of M and values

0,1 and −1 if M =R
d , Sd or Hd respectively. The martingale terms M

ẋμ/|x|
s appearing in (12) are such that{

d〈Mẋμ/|ẋ|,Mṫ
s 〉 = 0, μ = 0, . . . , d,

d〈Mẋμ/|ẋ|,Mẋν/|ẋ|〉s = (δμν + (κ − 1)δμ0δν0 − κx
μ
s xν

s − ẋ
μ
s|ẋs |

ẋν
s|ẋs | ) ds μ, ν = 0, . . . , d.

Here again, in the case where M =R
d or equivalently κ = 0, the indices μ,ν = 0 are excluded. The reader familiar with

diffusion processes on manifolds will recognize in the dynamics of ẋs/|ẋs | the one of a spherical Brownian motion on the
unit spheres tangent to xs and changed in time by the clock Cs defined in Equations (10) and (11).

3.2.1. Robertson–Walker space–times with finite horizon
This section is devoted to the proof of Theorem 6 which corresponds to the case where the space–time M = (0,+∞)×α

M has finite horizon, i.e. the case where I (α) < +∞. Then, the asymptotic behavior of the relativistic diffusion obeys a
dichotomy depending on the integrability of the Hubble function, namely if the decreasing function H 3 is integrable at
infinity or not.

The case where H 3 ∈ L
1. In the case where the space–time M = (0,+∞) ×α M has finite horizon and the Hubble

function satisfies the condition H 3 ∈ L
1, then Theorem 3.3 of [4] makes explicit the almost sure asymptotic behavior of

the relativistic diffusion (ξs, ξ̇s) = (ts , ṫs , xs, ẋs), precisely

• the temporal process (ts , ṫs ) is transient almost surely,
• the spatial process (xs, ẋs/|ẋs |) with values in T 1M converges almost surely to a random point in T 1M .

Note that the unit tangent bundles of the Riemannian fibers M = R
d , Hd or Sd can all be expressed as homogeneous

spaces of the form G/K , namely we have

T 1
R

d =R
d
� SO(d)/SO(d − 1), T 1

H
d = PSO(1, d)/SO(d − 1), T 1

S
d = SO(d + 1)/SO(d − 1).

Moreover, the dynamics of the relativistic diffusion is easily seen to be equivariant under the action of K = SO(d − 1),
so that we are precisely in position to apply the dévissage scheme with

Xs := (ts , ṫs ) ∈ X := (0,+∞) × [1,+∞), Ys = (xs, ẋs/|ẋs |
) ∈ G/K.

Namely, applying Theorem 2 recalled in Section 1.2.4 yields the almost sure identification

Inv
(
ts , ṫs , ẋs/|ẋs |, xs

)= Inv(ts , ṫs) ∨ σ(Y∞).

From the above Proposition 3, we know that the invariant sigma field Inv(ts , ṫs ) is trivial, so we can conclude that
Inv(ts , ṫs , ẋs/|ẋs |, xs) = σ(Y∞), up to negligible sets, which is the first claim of Theorem 6.

We now give the proof of the second claim of Theorem 6. We give two separate proofs, the first one corresponding to
the case of a warped product with a Euclidean fiber, the second one allowing to deal with non zero curvature fibers.

The case where H 3 /∈ L
1 and the fiber is Euclidean. We consider here the case of a warped product M = (0,+∞)×αR

d

under the hypothesis that H 3 /∈ L
1. In virtue of Proposition 4.6 and the proof of Proposition 4.7 in [4] and Lemma 4.1 of

[3], the asymptotic behavior of the relativistic diffusion (ξs, ξ̇s) = (ts, ṫs , xs, ẋs) is then the following:

• the temporal subdiffusion (ts , ṫs) is transient.
• the process (ts , ṫs , ẋs/|ẋs |) is also a subdiffusion of the whole process.
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• there exists a Brownian motion �̃s with value in S
d−1, which is independent of the temporal subdiffusion and such

that normalized angular derivative writes ẋs/|ẋs | = �̃(Cs).
• the projection xs ∈R

d converges almost surely to a random limit point x∞ ∈R
d .

Let us now show how these results imply that the Poisson boundary of the full relativistic diffusion coincides with σ(x∞).
Let us first prove the following Liouville theorem

Proposition 5. The invariant sigma field associated to the diffusion (ts , ṫs , ẋs/|ẋs |) is trivial.

Proof. The proof is similar to the one of Proposition 4.9 in [3], for the sake of self-containess, we reproduce it here.
Following [12], the triviality of the Poisson boundary is equivalent to the existence of a shift coupling between two
sample paths of the process. To simplify the expressions, let us denote by �s the normalized derivative of the angular
process i.e. �s := ẋs/|ẋs | and by Xs the target process Xs := (ts , ṫs ,�s). By Proposition 4, under the hypothesis that
H 3 /∈ L

1, the clock Cs is almost surely divergent, hence the process �s is ergodic on the sphere. Let us consider two
independent versions Xi

s = (t is , ṫ
i
s ,�

i
s) of the process Xs starting from two distinct points Xi

0 = (t i0, ṫ
i
0,�

i
0) for i = 1,2.

By the above Remark 11, there exists two random times (finite almost surely) T1 and T2 such that(
t1
T1

, ṫ1
T1

)= (t2
T2

, ṫ2
T2

)
a.s.

Now define a new process (�′2
s )s≥0, such that �′2

s coincides with �2
s on the time interval [0, T2] and such that the future

trajectory (�′2
s )s≥T2 is the reflection of (�1

s )s≥T1 with respect to the median hyperplan between the points �1
T 1 and �2

T 2 .

The new process X′2
s := (t2

s , ṫ2
s ,�′2

s ) is again a version of the target process. Moreover, by ergodicity of the spherical
process, the first time T ∗ when the process (�1

s )s≥T1 intersects the median big circle between �1
T 1 and �2

T 2 is finite

almost surely, and one has naturally X′2
T2+T ∗ = e1

T1+T ∗ almost surely, hence the result. �

Let us now remark that the generator L of the full diffusion is equivariant under the action of (Rd,+) by translation.
Indeed, if LX denotes the generator of the subdiffusion Xs = (ts , ṫs ,�s), we have

L = ẋ∂x + LX =
(

ẋ

|ẋ| × |ẋ|
)

∂x + LX =
(

� ×
√

ṫ2 − 1

α(t)

)
∂x + LX,

and thus the action of Rd by translation on the variable x leaves L unchanged. In other words, we are in position to apply
the dévissage scheme with

Xs = (ts , ṫs , ẋs/|ẋs |
) ∈ X := (0,+∞) × [1,+∞) × S

d−1, Ys := xs ∈ G = (Rd ,+).
By Theorem 1, we deduce that almost surely

Inv
(
ts , ṫs , ẋs/|ẋs |, xs

)= Inv
(
ts , ṫs , ẋs/|ẋs |

)∨ σ(x∞).

Finally, using Proposition 5, we can then conclude that

Inv
(
ts , ṫs , ẋs/|ẋs |, xs

)= σ(x∞).

The non flat cases with H 3 /∈ L
1. We treat here the case where the Riemannian fiber M is S

d or Hd . As before we
suppose that H 3 /∈ L

1 and I (α) < +∞ and recall that, by the above Proposition 4, this is equivalent to C∞ = +∞ and
D∞ < +∞ almost surely. The idea to establish the remaining cases of Theorem 6 is to apply the devissage method after
having lifted the dynamics of (xs, ẋs/|xs |) ∈ T 1M into the group G of isometries of M . As seen previously, recall that
T 1M = G/K where K = SO(d − 1), and the group G is SO(d + 1) or PSO(1, d) when M is S

d or Hd respectively.
Recall also that the projection of G onto T 1M is given by g �→ (g(e0), g(e1)). In order to lift the dynamics of the spatial
components of the relativistic diffusion to G let introduce the following matrices belonging to Lie(G),

H0 := e0e
∗
1 − κe1e

∗
0, and Vi := e1e

∗
i − eie

∗
1, i = 2, . . . , d,

where κ = ±1 denotes again the curvature of the fiber M . Then consider a (d − 1)-dimensional Brownian motion
(Bi

s)i=2,...d independent of the martingale Mṫ and define the process (gs)s≥0 with values in G as the solution of the
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stochastic differential equation

dgs = ḊsgsH0 ds + σ

√
Ċs

∑
i=2

gsVi ◦ dBi
s . (13)

Setting (xs, ẋs/|ẋs |) := (gs(e0), gs(e1)), one can easily check that (xs, ẋs/|ẋs |)s≥0 has indeed the dynamics given by
equation (12). This means that the relativistic diffusion (ts , ṫs , ẋs/|ẋs |, xs)s≥0 can be obtained by projecting a diffusion
(ts , ṫs , gs)s≥0 with values in R × [1,+∞[×G. The idea behind the proof is now to split the dynamics of (gs)s≥0 into a
converging part and an ergodic one. For that, let us define an auxiliary process (bs)s≥0 as the solution of the stochastic
differential equation

dbs = σ

√
Ċs

d∑
i=2

bsVi ◦ dBi
s . (14)

By definition the process (bs)s≥0 stabilizes e0 and so belongs to SO(d) = {g ∈ G;g(e0) = e0}. Define now us := gsb
−1
s ,

so that gs = usbs . Using Equations (13) and (14), it follows that

dus = ḊsusbsH0b
−1
s ds. (15)

The relativistic diffusion (ts , ṫs , ẋs/|ẋs |, xs)s≥0 can thus be obtained as the projection of the diffusion (ts , ṫs , bs, us)s≥0,
which takes values in R× [1,+∞[×SO(d) × G. The projection map is given by

π̂ : R× [1,+∞[×SO(d) × G �−→ R× [1,+∞[×T 1M

(t, ṫ , u, b) �−→ (
t, ṫ , u(e0), ub(e1)

)
.

In order to apply the devissage scheme for the new diffusion (ts , ṫs , bs, us)s≥0, let us first show the following result.

Proposition 6. Under the condition C∞ = +∞ and D∞ < +∞ the two following points occur

1. The process us converges almost surely to a random point u∞ ∈ G.
2. The Poisson boundary of (ts , ṫs , bs)s≥0 is trivial.

Proof. Let us start with the first point. By definition and by Equation (15), the process (us)s≥0 is a C1 path in G and for
any left invariant metric ‖ · ‖ on G, the total length of (us)s≥0 is

∫ +∞
0 Ḋs‖bsH0b

−1
s ‖ds. But since the process (bs)s≥0

evolves in a compact set SO(d), one has the uniform estimate sups≥0 ‖bsH0b
−1
s ‖ < +∞. Then, since D∞ < +∞ almost

surely, it follows that the total length of (us)s≥0 is finite, and by completeness, us converges almost surely. Let us now
give the proof of the second point of the statement. The arguments are similar to those in the proof of Proposition 3.6.3
in [5], which we adapt here to our context. Let us denote by C−1

s the generalized inverse of the clock Cs and define the
process (b̂r )r≥0 in SO(d) as the solution of the stochastic differential equation

db̂r = σ

d∑
i=2

b̂rVi ◦ dB̂i
r , where B̂r :=

∫ C−1
r

0

√
Ċs dBs,

i.e. B̂r is a (d − 1)-dimensional Brownian motion independent of the martingale Mṫ . Then, by definition, one gets
that bs = b̂Cs or in other words, (bs)s≥0 is a time changed of the ergodic left invariant diffusion (b̂r ), taking values in
SO(d) and independent of the temporal process (ts , ṫs )s≥0. As in the proof of Proposition 5, following [12], recall that
to get the triviality of the Poisson boundary, it is sufficient to construct a shift coupling between any two versions of the
diffusion started from different initial conditions. So let (t1

s , ṫ1
s , b1

s )s≥0 and (t2
s , ṫ2

s , b2
s )s≥0 be two independent versions

of the (ts , ṫs , bs)-diffusion and starting from (t1
0 , ṫ1

0 , b1
0) and (t2

0 , ṫ2
0 , b2

0) respectively. We then know from Remark 11 that
there exists coupling times T1 and T2 that are finite P(t1

0 ,ṫ1
0 ,b1

0)-almost surely and P(t2
0 ,ṫ2

0 ,b2
0)-almost surely respectively, and

such that one can modify the process (t1
s , ṫ1

s , b1
s )s≥0 to get(

t1
T1+s , ṫ

1
T1+s

)= (t2
T2+s , ṫ

2
T2+s

)
, ∀s ≥ 0.
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In particular, for all s ≥ 0, we have∫ T1+s

T1

dr

|ṫ1
r |2 − 1

=
∫ T2+t

T2

dr

|ṫ2
r |2 − 1

.

Since the left invariant Brownian motion b̂s in SO(d − 1) is ergodic, one can find two Brownian motions (b̂1(s))s≥0 and
(b̂2(s))s≥0 on SO(d − 1), started from b1

T1
and b2

T2
respectively, which are independent of the temporal subdiffusions and

which couple almost surely in finite time. Then, the processes Zi
s , i = 1,2, defined by the formulas

Zi
s =
{

(t is , ṫ
i
s , b

i
s), for 0 ≤ s ≤ Ti,

(t is , ṫ
i
s , b̂

i (
∫ s

Ti

dr

|ṫ ir |2−1
)), for s ≥ Ti,

have the laws of (ts , ṫs , bs)-diffusions started from (t1
0 , ṫ1

0 , b1
0) and (t2

0 , ṫ2
0 , b2

0), respectively and will couple in finite time
almost surely, hence the result. �

Having established Proposition 6, we can apply the dévissage scheme to the hypoelliptic diffusion (ts , ṫs , bs, us)s≥0.
Namely, setting Xs := (ts , ṫs , bs) and Ys = us , Theorem 1 ensures that

Inv
(
(ts , ṫs , bs, us)s≥0

)= σ(u∞), P(t0,ṫ0,b0,u0)-a.s.

In other words, we have identified the Poisson boundary of the lifted diffusion. We need now to come back to the rel-
ativistic diffusion and check that, under the projection π̂ , the only invariant information remaining is u∞(e0), the first
column vector of the matrix u∞. For this, let us prove the following Lemma.

Lemma 2. Let k ∈ SO(d), the law of (us)s≥0 under P(t,ṫ ,uk,k−1) is the one of (usk)s≥0 under P(t,ṫ ,u,Id).

Proof. Consider a trajectory (ts , ṫs , us, bs)s≥0 starting at (t, ṫ , uk, k−1). Set u′
s := usk

−1 and b′
s := kbs . Thus, u′

0 = u,
b′

0 = Id and

db′
s = σ

√
Ċs

d∑
i=2

b′
sVi ◦ dBi

s , du′
s = Dsu

′
sb

′
sH0
(
b′
s

)−1
ds.

Solving the same stochastic differential equation / martingale problem, (ts , ṫs , u
′
s , b

′
s)s≥0 has then the same law as

(ts , ṫs , us, bs)s≥0 under P(t,ṫ ,u,Id). �

Let us now show that the Poisson boundary of the relativistic diffusion coincides with σ(x∞) up to negligible sets.
Equivalently, we have to show that any bounded harmonic function can be written as the expectation of a bounded
measurable functional of x∞. So let us consider a function f :R×[1,+∞[×T 1M → R which is bounded and harmonic
function with respect to the generator of the relativistic diffusion (ts , ṫs , ẋs/|ẋs |, xs)s≥0. Then, f ◦π : R×[1,+∞[×G×
SO(d) →R is a bounded harmonic function with respect to the generator of the lifted diffusion (ts , ṫs , ẋs/|ẋs |, us, bs)s≥0.
Since the Poisson boundary of the lifted diffusion coincides with σ(u∞) almost surely, there exists a function F : G →R

measurable and bounded such that for all (t, ṫ , u, b) ∈R× [1,+∞[×G × SO(d)

f ◦ π(t, ṫ , u, b) = E(t,ṫ ,u,b)

[
F(u∞)

]
.

Fix now (t, ṫ , ẋ
|ẋ| , x) ∈ R× [1,+∞[×T 1M and u ∈ G such that

π(t, ṫ , u, Id) =
(

t, ṫ ,
ẋ

|ẋ| , x
)

.

Since for all k ∈ SO(d), π(t, ṫ , uk, k−1) = π(t, ṫ , u, Id) it goes,

f

(
t, ṫ ,

ẋ

|ẋ| , x
)

= E(t,ṫ ,uk,k−1)

[
F(u∞)

]
.
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By Lemma 2, u∞ has under P(t,ṫ ,uk,k−1) the same law as u∞k under P(t,ṫ ,u,Id) and so, for all k ∈ SO(d) it comes

f

(
t, ṫ ,

ẋ

|ẋ| , x
)

= E(t,ṫ ,u,Id)

[
F(u∞k)

]
.

Integrating k with respect to the Haar measure of SO(d), we get

f

(
t, ṫ ,

ẋ

|ẋ| , x
)

= E(t,ṫ ,u,Id)

[∫
SO(d)

F (u∞k) dk

]
.

Consider now a measurable section S : M = G/SO(d) → G such that S ◦ π = Id on G. Set, for x ∈ M

F̃(x) :=
∫

SO(d)

F
(
S(x)k

)
dk.

Then, defining x∞ := u∞(e0) one obtains finally,

f

(
t, ṫ ,

ẋ

|ẋ| , x
)

= E(t,ṫ ,u,Id)

[
F̃ (x∞)

]
,

hence the result.

3.2.2. Robertson–Walker space–times with infinite horizon
This last section is devoted to the proofs of Theorems 7, 8 and 9. We thus assume that the horizon is infinite, i.e I (α) =
+∞. In view of the hypotheses stated in Section 1.2.2, the non-integrability of its inverse implies that the torsion function
α has polynomial growth, i.e. we have limt→+∞ H(t) × t = c with c ∈ (0,1). This implies also that H 3 ∈ L

1, and
therefore by Proposition 4, we are dealing with a case where C∞ < +∞ and D∞ = +∞ almost surely. In this setting,
the process ṫs is transient almost surely and goes to infinity at an exponential rate.

Proposition 7 (Proposition 4.3 in [4]). If the torsion function α is such that its logarithmic derivative H = α′/α satisfies
limt→+∞ H(t) × t = c ∈ (0,1), then, almost surely as s goes to infinity, we have

1

s
log ṫs −→

s→+∞
d − 1

2

σ 2

1 + c
,

1

s
logα(ts) −→

s→+∞
d − 1

2

σ 2c

1 + c
.

The flat case. Let us first give the proof of Theorem 7 and determine the Poisson boundary of the relativistic Brownian
motion in the case where the fiber is Euclidean. We will proceed by using twice the devissage method. In virtue of
Proposition 4.7 and its proof in [4], the asymptotic behavior of the relativistic diffusion (ξs, ξ̇s) = (ts , ṫs , xs, ẋs) is then
the following:

• the temporal subdiffusion (ts , ṫs) is transient.
• the process (ts , ṫs , ẋs/|ẋs |) is also a subdiffusion of the whole process.
• there exists a Brownian motion �̃s with value in S

d−1, which is independent of the temporal subdiffusion and such
that normalized angular derivative writes ẋs/|ẋs | = �̃(Cs).

To simplify the expression let us write �s := ẋs/|ẋs |, i.e. �s = �̃(Cs). Since the clock Cs converges almost surely as
s goes to infinity, the process �s converges almost surely to a point �∞ in S

d−1. Moreover, since �̃ is independent
of (ṫs , ts), it comes that the law of �∞ is absolutely continuous with respect to the Riemannian volume of the sphere
S

d−1. The diffusion (ts , ṫs ,�s) belongs to (0,+∞) × [1,+∞) × S
d−1 which we identify with (0,+∞) × [1,+∞) ×

SO(d)/SO(d − 1). Being a time-changed spherical Brownian motion, the dynamics of �s is equivariant by the action of
SO(d) and applying Theorem 2 with Xs := (ts , ṫs) and Ys = �s , we thus get that almost surely

Inv
(
(ts , ṫs ,�s)s≥0

)= Inv
(
(ts , ṫs)s≥0

)∨ σ(�∞).

Since Inv((ts , ṫs)s≥0) is trivial by Proposition 3, we get that

Inv
(
(ts , ṫs ,�s)s≥0

)= σ(�∞).

Now define

δs := xs − �s

∫ ts

t0

du

α(u)
.
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Then, since xs = ∫ s

0 ẋu du = ∫ s

0 �uḊu du, one can decompose δs as

δs =
∫ s

0
(�u − �∞)Ḋu du + (�∞ − �s)

∫ s

0
Ḋu du + �s

(
Ds −

∫ ts

t0

du

α(u)

)
. (16)

By the asymptotics estimates of Proposition 7 (see also Proposition 4.3 of [4] for more details), one can check that each of
the three terms above converges almost surely as s goes to infinity, so that δs converges to a random δ∞ ∈ R

d . Moreover,
from Equation (16), since the dynamics of δs only depends on (ts , ṫs ,�s), it is clear that the generator of the diffusion
(ts , ṫs ,�s, δs) is equivariant under the action of (Rd,+) by translation on the variable δ. Therefore, we are in position
to apply the second point of Theorem 1 and Theorem 2 (recall that for any starting point the law of �∞ is absolutely
continuous with respect the volume measure on S

d−1) with this time Xs := (ts , ṫs ,�s) and Ys := δs . We thus get

Inv
(
(ts , ṫs ,�s, δs)s≥0

)= Inv
(
(ts , ṫs ,�s)s≥0

)∨ σ(δ∞) a.s.

and thus, from the first dévissage of the proof

Inv
(
(ts , ṫs ,�s, δs)s≥0

)= σ(�∞, δ∞).

Remark that this result could be directly obtained using Theorem 2 with Xs := (ts , ṫs ) and Ys := (�s, δs) ∈ S
d−1 × R

d ,
where S

d−1 × R
d is seen as the quotient (SO(d) � R

d)/SO(d − 1), since the dynamics of Ys is equivariant under the
action of SO(d)�R

d on S
d−1 ×R

d defined by (k0, δ0) · (�, δ) := (k0�,δ0 + k0δ).
To conclude, remark that the relativistic diffusion (ts , ṫs ,�s, xs) is in bijection with the process (ts, ṫs ,�s, δs) so that

Inv
(
(ts , ṫs ,�s, xs)s≥0

)= Inv
(
(ts , ṫs ,�s, δs)s≥0

)= σ(�∞, δ∞).

The spherical case. We now give the proof of Theorem 8 for a warped product with spherical fiber. We proceed as
before, i.e. we lift the relativistic diffusion (ts , ṫs , xs, ẋs/|ẋs |)s≥0 to a diffusion (ts , ṫs , gs)s≥0 where gs ∈ SO(d + 1) has
the following dynamics

dgs = ḊsgsH0 ds + σ

√
Ċs

d∑
i=2

gsVi ◦ dBi
s,

with H0 := e0e
∗
1 − e1e

∗
0 , Vi = e1e

∗
i − eie

∗
1 . Then by definition xs := gs(e0) and ẋs/|ẋs | := gs(e1). Under the hypotheses of

Theorem 8, we have C∞ < +∞ and D∞ = +∞ almost surely. The idea is then again to split the converging components
from the diverging ones in the dynamics of gs . As previously, the diverging clock Ds is a function of the all trajectory
(ṫu, tu)0≤u≤s but not only of (ṫs , ts). To skip this difficulty, one defines the new clock A(t) := ∫ t

t0
du/α(u) and, thanks to

Lemma 4.6 of [4], we know that A(ts) − Ds converges almost surely as s goes to infinity. Let us now define

ûs := exp
(
A(ts)H0

)=
⎛⎝cos(A(ts)) − sin(A(ts)) 0

sin(A(ts)) cos(A(ts)) 0
0 0 Id

⎞⎠ .

Next we set b̂s := gsû
−1
s , and doing so we get rid of the diverging part in the dynamics of gs . Precisely we have the

following lemma.

Lemma 3. The process (b̂s)s≥0 converges almost surely to an asymptotic random variable b̂∞.

Proof. Let us introduce the process

us := exp(DsH0) =
⎛⎝cos(Ds) − sin(Ds) 0

sin(Ds) cos(Ds) 0
0 0 Id

⎞⎠ .

By definition we have then usû
−1
s = exp((Ds − A(ts))H0) and as recalled above, by Lemma 4.6 of [4], the difference

Ds − A(ts) converges almost surely and so does usû
−1
s . Now, we can define bs := gsu

−1
s which then solves de stochastic

differential equation

dbs = σ

√
Ċs

d∑
i=2

bsusViu
−1
s ◦ dBi

s .
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Since us ∈ SO(d + 1) the term usViu
−1
s is bounded. Therefore, since the clock Cs converges almost surely, one deduce

that bs converges almost surely as s goes to infinity to a random variable b∞ ∈ G. Finally, since b̂s = gsû
−1
s = bsusû

−1
s ,

one deduces that b̂s also converges almost surely to some b̂∞ ∈ G. �

Note that since ûs is a only function of ts , the diffusion process (ts, ṫs , gs)s≥0 is in fact in bijection with the diffusion
process (ts, ṫs , gs û

−1
s )s≥0 = (ts , ṫs , b̂s)s≥0, and so they have the same invariant sigma field. Moreover, the process b̂s

solves the stochastic differential equation

db̂s =
(

Ḋs − ṫs

α(ts)

)
b̂s ûsH0û

−1
s ds + σ

√
Ċs

d∑
i=2

b̂s ûsVi û
−1
s ◦ dBi

s ,

whose dynamics only depends on (ṫs , ts). Therefore, the generator of the diffusion (ts , ṫs , b̂s)s≥0 is equivariant under the
action of G by translation and one can apply the devissage Theorem 1 with Xs := (ts , ṫs ) and Ys := b̂s , associated with
Proposition 3, to conclude that almost surely

Inv
(
(ts , ṫs , gs)s≥0

)= Inv
(
(ts, ṫs , b̂s)s≥0

)= Inv
(
(ts , ṫs)s≥0

)∨ σ(b̂∞) = σ(b̂∞).

We now need to come back to the process (ẋs/|ẋs |, xs). Recall that

xs = gs(e0) = b̂s ûs(e0) = cos
(
A(ts)

)
b̂s(e0) + sin

(
A(ts)

)
b̂s(e1),

ẋs

|xs | = gs(e1) = b̂s ûs(e1) = − sin
(
A(ts)

)
b̂s(e0) + cos

(
A(ts)

)
b̂s(e1).

But we also have the representation

b̂s(e0) = cos
(
A(ts)

)
xs − sin

(
A(ts)

) ẋs

|xs | ,

b̂s(e1) = sin
(
A(ts)

)
xs + cos

(
A(ts)

) ẋs

|xs |
so that the relativistic diffusion (ts , ṫs , ẋs/|ẋs |, xs)s≥0 is in bijection with (ts , ṫs , b̂s(e0), b̂s(e1))s≥0. Therefore, we deduce
that

Inv
((

ts , ṫs , ẋs/|ẋs |, xs

)
s≥0

)= Inv
((

ts , ṫs , b̂s(e0), b̂s(e1)
)
s≥0

)
.

Finally, viewing the unitary tangent space T 1
S

d as the homogeneous space SO(d + 1)/SO(d − 1), one concludes, invok-
ing Theorem 2 that Inv((ts , ṫs , b̂s(e0), b̂s(e1))s≥0) = σ(b̂∞(e0), b̂∞(e1)). And thus almost surely, we have

Inv
((

ts , ṫs , ẋs/|ẋs |, xs

)
s≥0

)= σ
(
b∞(e0), b∞(e1)

)
,

hence the result. Note that b∞(e0) and b∞(e1) are two orthogonal vectors of norm one, which generate a random plan.
This intersection of this plan with we sphere is precisely the random big circle to which the process (xs)s≥0 is asymptotic,
as illustrated in Figure 6.

The hyperbolic case. Finally, let us give the proof of Theorem 9 dealing with the case of an hyperbolic fiber. To do so,
we lift again the relativistic diffusion to the orthonormal frame bundle. Recall that Hd is equivalently seen as the half
pseudo-sphere of R1,d and the homogeneous space PSO(1, d)/SO(d) and the relativistic diffusion (ṫs , ts , ẋs/|ẋs |, xs)s≥0
can again be obtained as a projection, namely we can represent the spatial components as xs := gs(e0), ẋs/|ẋs | := gs(e1)

where the diffusion (ṫs , ts , gs) now takes values in TR
∗+ × PSO(1, d) and solves the stochastic differential equation

dgs = ḊsgsH1 ds + σ

√
Ċs

d∑
i=2

gsVi ◦ dBi
s ,

with this time H1 := e0e
∗
1 + e1e

∗
0 and Vi := eie

∗
1 − e1e

∗
i , i = 2, . . . , d . As above, under the hypotheses of Theorem 9, we

have C∞ < +∞ and D∞ = +∞ almost surely. The idea is again to separate the converging part and the diverging part in
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the dynamics of gs . For that, we introduce the process (us)s≥0 with values in K := SO(d), such that u0 = Id and solving

dus = σ

√
Ċs

d∑
i=2

usVi ◦ dBi
s .

Since C∞ < +∞, the process us converges almost surely as s goes to infinity to a random point u∞ ∈ K . Then define
(g̃s)s≥0 by g̃s := gsu

−1
s , for s ≥ 0. Using the dynamics of (gs)s≥0 and (us)s≥0 it comes that (g̃s)s≥0 solves the following

differential equation

dg̃s = Ḋs g̃susH1u
−1
s ds.

Let us now consider the Iwasawa decomposition NAK of G = PSO(1, d), see Section 3.1.2 before, and decompose
the process g̃s , which takes values in PSO(1, d), as g̃s = nsasks , where ns ∈ N , as ∈ A and ks ∈ K obey the following
dynamics

dks = −Ḋs

d∑
i=2

(
e∗
i ksuse1

)
Viks ds,

das = Ḋs

(
e∗

1ksuse1
)
asH1 ds,

dns = Ḋs exp

(
−
∫ s

0
Ḋr

(
e∗

1krure1
)
dr

) d∑
i=2

ns

(
e∗
i ksuse1

)
(Hi + Vi) ds.

Now consider the one dimensional process (vs)s≥0 with values in [−1,1], defined as vs := e∗
1ksuse1, and which solves

the stochastic differential equation

dvs = Ḋs

(
1 − v2

s

)
ds + σ

√
Ċs

√
1 − v2

s dWs − σ 2Ċs

d − 1

2
vs ds,

where Ws is the standard Brownian motion such that

√
1 − v2

s dWs =
d∑

i=2

e∗
1ksusei dBi

s .

Lemma 4. The process vs converges almost surely to 1 as s goes to infinity.

Proof. By definition, we have

vs = v0 +
∫ s

0
Ḋu

(
1 − v2

u

)
du + σ

∫ s

0

√
Ċu

√
1 − v2

u dWu − σ 2 d − 1

2

∫ s

0
Ċuvu du. (17)

Since the clock Cs converges almost surely as s goes to infinity, the two last terms of Equation (17) also converge almost
surely. Moreover, s �→ ∫ s

0 Ḋu(1 − v2
u) du is increasing and bounded (recall that |vs | ≤ 1), and thus also converges almost

surely as s goes to infinity. Therefore, all the terms on the right hand side of Equation (17) are converging, and so does
vs . But since the clock Ds diverges almost surely, the only possible limit of vs making the integral

∫ s

0 Ḋu(1 − v2
u) du

convergent is 1, hence the result. �

Let us now introduce the two other auxiliary processes (�s)s≥0 and (δ̃s)s≥0 defined as

�s := ksuse1 ∈ S
d−1, δ̃s := δ̃0 +

∫ s

0
Ḋuvu du − A(ts) ∈ R,

where as in the proof of the spherical case, we have set A(ts) = ∫ ts
t0

1
α(u)

du. Since, by Lemma 4, the process vs goes to 1
almost surely, then �s converges almost surely to a deterministic limit, namely the basis vector e1. Moreover, the process
(δ̃s)s≥0 is also convergent.

Lemma 5. The process δ̃s converges almost surely as s goes to infinity to a random δ̃∞.
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Proof. In the proof of Lemma 4, we have already shown that the integral
∫ s

0 Ḋu(1 − v2
u) du is almost surely convergent

as s goes to infinity. Since |vs | ≤ 1, and since vs tends to one, this implies that
∫ s

0 Ḋuvu du − Ds also converges almost
surely. As already used in the proof of the spherical case, the Lemma is proven invoking Lemma 4.6 in [4] where it is
shown that Ds − A(ts) converges almost surely. �

We now go back to the Iwaswa decomposition of the process g̃s and concentrate on the nilpotent component.

Lemma 6. The N -valued process (ns)s converges almost surely to some asymptotic random variable n∞ ∈ N .

Proof. By Proposition 7, we have almost surely Ḋs = exp(σ 2 d−1
2

1−c
1+c

s + o(s)), with c ∈ (0,1). Thus the integral∫ +∞
0 Ḋse

− ∫ s
0 Ḋr vr dr is finite almost surely and, from the stochastic differential equation satisfied by ns , one deduces

that
∫ +∞

0 |ṅu|du < +∞. By completeness of N , it follows that ns converges almost surely. �

We can finally describe the Poisson boundary of the relativistic diffusion using iteratively the dévissage method. First
recall that if x ∈ H

d and g,g′ ∈ PSO(1, d) such that g(e0) = g′(e0) = x then g and g′ have the same components n ∈ N

and a ∈ A in the Iwasawa decomposition. Since xs = gs(e0) = g̃s(e0) one deduces that there is a bijective map between
the relativistic diffusion (ṫs , ts , ẋs/|ẋs |, xs) and the process (ṫs , ts , ẋs/|ẋs |, ns, as). Now recall that ẋs/|ẋs | = gs(e1) =
g̃sus(e1) = nsasksus(e1) = nsas�s , so there is also a bijective map between (ṫs , ts , ẋs/|ẋs |, xs) and (ṫs , ts ,�s, ns, as).
Moreover as = a0 exp((

∫ s

0 Ḋuvu du)H1) and recalling the definition of δ̃s one easily obtains that there is a bijective map
between the relativistic diffusion (ṫs , ts , ẋs/|ẋs |, xs) and (ṫs , ts ,�s, δ̃s , ns) and we finally conclude that

Inv
((

ts , ṫs , ẋs/|ẋs |, xs

)
s≥0

)= Inv
(
(ts , ṫs ,�s, δ̃s , ns)s≥0

)
a.s.

So let us first consider the subdiffusion (ts , ṫs ,�s)s≥0. Using Proposition 3 and Theorem 2 with Xs = (ṫs , ts) and Ys =
�s ∈ S

d−1, the dynamics of (Xs,Ys) being equivariant under the action S
d−1 by rotation, we get that almost surely

Inv
(
(ts , ṫs ,�s)s≥0

)= Inv
(
(ts , ṫs)s≥0

)∨ σ(�∞) = σ(�∞).

But since �∞ = e1 is deterministic, we get in fact that Inv((ts , ṫs ,�s)s≥0) is trivial. Now consider the diffusion
(ṫs , ts ,�s, δ̃s , ns)s≥0 of which dynamics is equivariant under the action of R × N on the variable (δ̃, n) defined by
(δ̃0, n0) · (δ̃, n) := (δ̃0 + δ̃, n0n). Setting this time Xs = (ts , ṫs ,�s) and Ys = (δ̃s , ns) ∈ R× N , and applying Theorem 1,
we get that almost surely

Inv
(
(ts , ṫs ,�s, δ̃s , ns)s≥0

)= Inv
(
(ts, ṫs ,�s)s≥0

)∨ σ(δ̃∞, n∞) = σ(δ̃∞, n∞).

To conclude the proof of Theorem 9, we need to verify that the limit random variable (δ̃∞, n∞) is a measurable function
of (δ∞, θ∞) appearing in the statement. Recall that by definition,

δ∞ = lim
s→∞ δs, where δs := 1 + sinh−1(|�xs |

)− ∫ ts

t0

du

α(u)
, and θ∞ := lim

s→+∞ �xs/|�xs |

where �xs :=∑d
i=1 xi

sei is the R
d part (or spatial) part of xs ∈ R

1,d and |�xs | is its Euclidean norm. Then, one can check
that

θ∞ = n∞(e0 + e1)/
(
e∗

0n∞(e0 + e1)
)
.

The map n ∈ N �→ n(e0 + e1)/(e
∗
0n(e0 + e1)) is a bijection from N onto the set of point of the form e0 + �x, |�x| = 1 and

�x �= −e1. This ensure that n∞ is a function of θ∞. Moreover, we have

δ̃s =
∫ s

0
Ḋuvu du − sinh−1(|�xs |

)+ δs

and one can easily check that
∫ s

0 Ḋuvu du− sinh−1(|�xs |) converges almost surely to an asymptotic random variable which
depends only of θ∞ (this is because one passes from Iwasawa to polar coordinates in hyperbolic space). Thus δ̃∞ is a
measurable function of (θ∞, δ∞), and the invariant sigma field of the full relativistic diffusion is indeed generated by
(θ∞, δ∞).
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