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Abstract. We derive subordination functions for free additive and free multiplicative deconvolutions under mild moment conditions.
Our results include an algorithm to calculate these subordination functions, and thus the associated Cauchy transforms, for complex
numbers with imaginary part greater than a parameter depending on the measure to deconvolve. The existence of these subordination
functions on such domains reduces the problem of free deconvolutions to the problem of the classical additive deconvolution with a
Cauchy distribution. Thus, our results, combined with known methods for the deconvolution with a Cauchy distribution, allow us to
solve the free deconvolution problem. We also present extensions of these results to the case of operator-valued deconvolutions.

Résumé. Nous dérivons des fonctions de subordination pour la déconvolution libre additive et multiplicative sous des conditions de
moment faibles. Nos résultats incluent un algorithme pour calculer ces fonctions de subordination, et donc les transformées de Cauchy
associées, pour les nombres complexes ayant une partie imaginaire supérieure à un paramètre dépendant de la mesure à déconvoler.
L’existence des fonctions de subordination sur de tels domaines réduit le problème de la déconvolution libre au problème de la décon-
volution additive classique par une distribution de Cauchy. Ainsi, nos résultats, combinés à des méthodes connues de déconvolution
classique par une distribution de Cauchy, nous permettent de résoudre le problème de déconvolution libre. Nous présentons également
des extensions de ces résultats au cas des déconvolutions à valeur opérateur.
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1. Introduction

Voiculescu introduced free independence in [46] as a new special kind of non-commutative relation between collections
of operators, similar to the usual stochastic notion of independence, but inspired by free products, rather than by tensor
products. A few years later, in [49], he observed that free independence occurs naturally as a fundamental conceptual
relation describing the collective behavior of large random matrices appearing in pioneering (and modern) works on
asymptotic random matrix theory.

The free additive convolution μ1 �μ2 and the free multiplicative convolution μ1 �μ2 are binary operations of prob-
ability measures. They correspond to the distributions of the sum and the product of free non-commutative random
variables with distributions μ1 and μ2.

The approach for computing free convolutions using analytic subordination functions [5,13,50,52], has shown to be
very effective for concrete calculations.

In this work, we are concerned with the inverse problem known as free additive (resp. multiplicative) deconvolution,
which is just recovering μ2 from the knowledge of μ1 and μ1 �μ2 (resp. μ1 �μ2).

Our main contribution is to solve the problem of computing free deconvolutions of distributions by means of ana-
lytic subordination [5]. We include an algorithm to compute free deconvolutions numerically. Our methods cover free
deconvolutions in the broader context of operator-valued free independence.
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1.1. Basic framework and motivation

We recall here basic models in asymptotic random matrix theory. For each N ≥ 1, let XN be a self-adjoint N × N

Wigner matrix.1 In addition, let D
(N)
1 , D(N)

2 be self-adjoint N ×N deterministic matrices, such that their uniform spectral
probability distributions converge to fixed probability measures μ1, μ2.

Due to Wigner’s semicircle law [53], the eigenvalue distribution of XN converges to the semicircle distribution. As
further examples, consider the following three random matrix models:

PN = P
(
XN,D

(N)
1

) := XN + D
(N)
1 , (1)

QN = Q
(
XN,D

(N)
1

) := XND
(N)
1 XN, (2)

RN = R
(
XN,D

(N)
1 ,D

(N)
2

) = XND
(N)
1 XN + D

(N)
2 . (3)

Marčenko and Pastur described in [32] the asymptotic eigenvalue distributions of such combinations of matrices. For
example, they observed in particular, by studying the Stieltjes transform z �→ 1

N
Tr ◦ E((RN − zIN)−1), that in the limit

(as the matrix size grows), the limiting transform (and thus the limiting spectral distribution) depends on the deterministic
matrices D

(N)
1 , D

(N)
2 only through their limiting distributions μ1, μ2.

The relation between free probability and large random matrix theory begins with Voiculescu’s seminal paper [49],
showing that the asymptotic collective behavior of the involved random matrices XN , D

(N)
1 , D

(N)
2 , is exactly described

by free independence, which he defined a few years before [46].
More precisely, the limiting distributions of PN , QN , RN as N → ∞, are those of the abstract operators

P∞ = x + d1, Q∞ = xd1x, R∞ = xd1x + d2,

where x, d1 and d2 are free random variables in a non-commutative probability space (A, τ ), x has semicircular distri-
bution, and the distributions of (di)i are the (given) limiting distributions (μi)i , i ∈ {1,2}.

Thus, in terms of distributions

μP∞ = μs �μ1, μQ∞ = π1 �μ1, μR∞ = (π1 �μ1)�μ2,

where μs is the semicircle distribution and πλ is the Marčenko–Pastur distribution of parameter λ.
In early works Voiculescu also derived analytic transforms to compute these free additive [47] and multiplicative [48]

convolutions, based on the Cauchy–Stieltjes2 transform Gμ : C+ → C− and its reciprocal, the F-transfom, Fμ : C+ →
C+:

Gμ(z) =
∫
R

1

z − t
dμ(t), Fμ(z) = 1

Gμ(z)
, z ∈C+

where C+ (and C−) denote the upper (resp. lower) complex half-plane. A few years later, alternative combinatorial
methods [36,43] were derived to calculate free convolutions.

However, in order to obtain exact formulas for free convolutions, combinatorial methods require us to recognize distri-
butions from their moment sequences, and analytic methods require solving equations involving compositional inverses
of analytic maps. Thus, outside special situations, explicit descriptions of free convolutions are rare.

The subordination approach of [5] (which is based on the works [13,50,52]) has been quite successful. The idea is to
approximate free convolutions numerically, by deriving fixed point equations for analytic transforms of the convolutions,
from which the Cauchy–Stieltjes transform can be recovered with high precision. Thus, the associated probability measure
can be efficiently approximated using the Stieltjes inversion.

1.2. Statement of the results

We provide a similar subordination approach to the problem of computing free deconvolutions. Our method is mainly
based on the work of Belinschi and Bercovici [5]. To illustrate it, let us recall their main theorem for the additive case.

1XN = 2−1/2(ZN + Z∗
N

), where ZN = 1√
N

(zij ) is a Ginibre matrix (that is, the entries zij are centered i.i.d. random variables).
2The Stieltjes transform is just the negative of the Cauchy transform. The method of Stieltjes inversion to recover distributions may of course be per-
formed using the Cauchy transform, by simply adding a sign on the Stieltjes-inversion formula (see Section 2). The analytic theory of non-commutative
probability (free, boolean and monotone) heavily relies on the fact that the reciprocal of the Cauchy transform Fμ(z) is an analytic self-map on the
upper complex half-plane. We use both names since we work directly with Cauchy transforms and reciprocals but rely at the end on Stieltjes inversions.
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Theorem 1.1 ([5, Theorem 3.2]). Given probability measures μ1, μ2 on R, there exist unique functions ω1,ω2 : C+ →
C+ such that

(1) 
ωj (z) ≥ 
z for z ∈C+ and

lim
y→∞

ωj (iy)

iy
= 1, j = 1,2.

(2) Fμ1�μ2(z) = Fμ1(ω1(z)) = Fμ2(ω2(z)).
(3) ω1(z) + ω2(z) = z + Fμ1�μ2(z) for all z ∈ C+.
(4) Denote by h1(w) = w − Fμ1(w), h2(w) = w − Fμ2(w) and Tz(w) = z − h1(z − h2(w)).

Then for any w ∈ C+, the iterated function T ◦n
z (w) converges to w2(z).

The functions ω1 and ω2 are known as subordination functions. It is worth mentioning that because of their ana-
lytical properties ω1 and ω2 correspond to F -transforms (reciprocal Cauchy–Stieltjes transforms) of certain measures,
sometimes denoted by μ1 � μ2 and μ2 � μ1.

Apart from its theoretical importance, the above theorem allows to estimate the density of free convolutions: We may
implement numerical approximations for ω1 (similarly for ω2) by application of (4), and then use (2) to calculate the
F -transform of μ1 �μ2.

In this paper, we consider the inverse problem of recovering one of the factors of the free convolution, known as free
deconvolution (�). A first motivation is given by the following problem in random matrix theory. Suppose that we have
a large random matrix BN , perturbed by some additive noise which one knows statistically, say XN , and one is given the
information of the matrix

AN = BN + XN.

In view of Voiculescu’s results on asymptotic freeness, if we want to recover the eigenvalue distribution of Bn in terms
of the eigenvalue distributions of AN and of XN , we may replace the triplet (AN,BN,XN) by the system of operators
(a, b, x) in an abstract non-commutative probability space (A, τ ), where a = b + x and b, x are free.

The distribution of μb of b in terms of the distribution of a, μa , and the distribution of x, μx , is known as deconvolving
x from a, and the distribution of b is called the free additive deconvolution [40,41]. The probability measure μb can be
used as an approximation to the desired empirical distribution μBN

.
Our results deal only with the limiting distributions as the dimension of the matrices tends to infinity. However, the

convergence of spectral distributions (empirical or averaged) of random matrices to their limit is very strong, see [23]. For
example, models involving Gaussian or Unitary matrices are considered large enough already for N ≥ 10, in the sense
that the distribution of the desired operator is well-approximated by the distribution of the limit operator.

A combinatorial approach to free deconvolution has been considered in [11] and amounts to calculate the moments
of μa and μx up to a certain order, then calculating their free cumulants and substracting them. One finally chooses a
(non-unique) distribution with these free cumulants as a candidate for an approximation of b. The method has obvious
limitations such as moment conditions or non-uniqueness. In [17, ch. 17], the authors propose an analytic approach to
free deconvolution. Their method, albeit very efficient in certain situations, relies on a specific functional equation which
has strong practical limitations and holds only when μx is a Marčenko–Pastur distribution.

Our main results give general solutions to free additive and free multiplicative deconvolutions following the lines
of Theorem 1.1. For deconvolutions, we cannot get subordination functions in the whole upper half-plane C+. In-
deed, if μ1 � μ2 = μ3, then Gμ3(C

+) ⊂ Gμ1(C
+) ∩ Gμ2(C

+), which yields directly (at least at a set-theoretical level)
the existence of a subordination function w2 : C+ → C+ such that Gμ3 = Gμ2 ◦ w2. However, the same inequality
Gμ3(C

+) ⊂ Gμ2(C
+) prevents us from finding a subordination function w3 defined on C+ such that Gμ2 = Gμ3 ◦ w3.

Therefore, the purpose of our result is to build subordination functions in controlled sub-domains, wide enough to ulti-
mately allow the recovery of μ2 by classical deconvolution (see the discussion after Theorem 1.2).

For α > 0, let Cα = {z : 
z > α}. Our main result for free additive deconvolutions reads as follows:

Theorem 1.2. Let μ1 and μ3 be probability measures on R such that μ1 has finite variance σ 2
1 . There exist unique

functions ω1,ω3 : C2
√

2σ1
→ C+, such that

(1) 
ωj (z) ≥ 1
2
z for z ∈C2

√
2σ1

and

lim
y→∞

ωj (iy)

iy
= 1, j = 1,3.
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(2) If μ2 is such that μ1 �μ2 = μ3, then

Fμ2(z) = Fμ3

[
w3(z)

] = Fμ1

[
w1(z)

]
for z ∈C2

√
2σ1

.
(3) ω1(z) − ω3(z) = Fμ3[w3(z)] − z for all z ∈C2

√
2σ1

.

(4) Denote by h1(w) = w − Fμ1(w), h̃3(w) = Fμ3(w) + w and Tz(w) = h1(h̃3(w) − z) + z.

Then for any w with 
w > (3
z)/4, the iterated function T ◦n
z (w) converges to w3(z) ∈C+ independent of w.

Remark that the parameter 2
√

2σ1 only depends on the intensity of the noise, and this dependence is linear in the
standard deviation σ1. This parameter is not optimal for many cases, but there is also no hope to give subordination
functions for much lower imaginary parts (see Remark 3.2 more details). Thus, if asked to recover μ2 from the knowledge
of μ1 and μ3, Theorem 1.2 only recovers Fμ2(z+ i2

√
2σ1), which is actually the F -transform of the classical convolution

μ2 ∗ C of our desired distribution μ2 and a centered Cauchy distribution C with parameter 2
√

2σ1.
Hence, the problem of calculating free additive deconvolutions is reduced to the one of classically deconvolving a

Cauchy distribution, which amounts to solve a Fredholm equation of the first kind (see [21]) in our case. This can be
achieved using a regularization technique with convex optimization, as explained in Section 4. The simulations provided
in that section also show the efficiency of the method.

On the other hand, we notice that in Theorem 1.2 we only assumed the fact that μ1 � μ2 = μ3 in part (2), but (3)
is satisfied as long as we are 2

√
2σ1 above the real line. This has a nontrivial consequence in the arithmetic of free

probability; adding a large enough Cauchy distribution to any measure with finite variance automatically ensures the
existence of a free deconvolution. More precisely, we have the following result.

Theorem 1.3. The function F̃2(z) = Fμ3 ◦ w3(z + 2
√

2σ1i) is analytic on C+ and there exists a probability measure
μ̃2 ∈P(R) such that F̃2 = Fμ̃2 . Moreover, μ̃2 satisfies that

μ1 � μ̃2 = μ3 � C2
√

2σ1
,

where C2
√

2σ1
denotes the Cauchy distribution with parameter 2

√
2σ1.

We derive a similar theorem for free multiplicative deconvolutions, motivated by the analog problem in random matrix
theory, of reconstructing the distribution of BN from the distributions of ANBN (or B

1/2
N ANB

1/2
N ) and AN . In the limit,

this operation is exactly the free multiplicative deconvolution ( � ).
Our approach to the free multiplicative deconvolution follows the same ideas as in the additive case. At the end of

the process, we must perform a classical additive deconvolution with a Cauchy distribution. For the first step of the
deconvolution, instead of using Theorem 1.2, we use the following result (which also follows ideas of the multiplicative
case in [5, Theorem 3.3]).

Theorem 1.4. Let μ1,μ3 ∈ P(R) be such that μ1 has non-negative support and admits moments of order 4, and such
that μ3 admits moments of order 2 with non-zero first moment. Without loss of generality, suppose that the first moments
of μ1 and μ3 are equal to one. Then, there exists K > 0 and unique functions ω1,ω3 : CK → C+ such that:

(1) The constant K depends only on the respective variances σ 2
1 and σ 2

3 of μ1 and μ3 and on the Jacobi coefficients β1,
γ1 of μ1, and we can choose

K ≤ [
R +

√
5/4R2 + 5Rσ 2

3

]
,

with R = (2
√

γ1 ∨ β1 ∨ 20σ 2
1√

3
)

(2) If μ2 is such that μ1 �μ2 = μ3, then

Fμ2(z) = Fμ3

[
w3(z)

]
zw3(z)

−1.

(3) Denote by h1(w) = w − Fμ1(w), h̃3(w) = w−2[w − Fμ3(w)] and Tz(w) = zh1(h̃3(w)−1z−1). Then for z ∈ CK and
any w in D(z, 
z

5 ), the iterated function T ◦n
z (w) converges to ω3.

(4) ω1(z) = 1
zh̃3(w3(z))

for all z ∈CK .
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The parameter K in the latter theorem can be numerically computed by solving a system of two polynomial equations.
In the multiplicative case, this parameter is not optimal, and it would be very interesting to have further improvements of
its value. Indeed, the lower it is, the better is the precision of the recovery of the desired distribution.

Using our results for obtaining subordination functions, we implement in Section 4 an algorithm to compute free
deconvolutions, including the last step, which requires a classical deconvolution with a Cauchy distribution. We test our
method for both discrete and continuous distributions and compare it with random matrix simulations.

1.3. Applications and related works

Recovering the spectral distribution of a matrix from a noisy version is of central importance in the estimation of the
covariance matrix of a large random vector when the sampling is large. In general, one wants to estimate a positive semi-
definite matrix 
 ∈ Rp×p from the observation of M = X
X∗, where X ∈ Rn×p is a random matrix with i.i.d. entries.
When n and p go to infinity with n ≈ p, the estimation of 
 turns into a difficult problem. The shrinkage is a way
to solve this question by constructing an estimator 
̂ by keeping the eigenvectors of M unchanged while changing the
corresponding eigenvalues (see [15] for an overview of the method). In its simplest form this procedure is a linear shift
of all the eigenvalues by a constant (see [27] for a study of this estimator). In [26], Ledoit and Péché provided an optimal
shrinkage based on the knowledge of the spectral distribution of the original covariance matrix 
. The main lacking step
is thus the estimation of this spectral distribution.

Several methods have been proposed to recover the spectral distribution of the covariance matrix 
 when n and p are
large. They are either based on a moment approach [3,24,39], the use of the Marčenko–Pastur equation [20,33] or a mix
of both [30]. Ledoit and Wolf [28] successfully used these estimations to implement the shrinkage procedure of Ledoit
and Péché. Although the goal of the present paper is to provide a general formalism for the spectral deconvolution, it
would be interesting to apply our method to the shrinkage estimation of covariance matrices.

Our analytic deconvolution may also be used for finding outliers of large matrices from randomly perturbated versions.
In random matrix theory, an outlier is a large eigenvalue which is outside of the bulk of the spectral distribution. They
are of special importance in high-dimensional data analysis since they capture the typical dominant behavior of a linear
system: for example they are used in PCA of large random vectors. It is therefore important to estimate the exact value
of the outliers of a large matrix from the data of the matrix perturbated by a matricial noise. The first important result in
this direction is the seminal paper of Baik, Ben Arous and Péché [4] which gives the distribution of an outlier in M from
the value of the corresponding outlier in 
. The law of large numbers of [4] has been generalized to arbitrary models
in [8] by showing that one can determine the positions of outliers in free convolutions of spiked models in terms of the
subordination functions. This result together with our deconvolution procedure easily yields an estimator for the outlier,
as we show in Section 4. Our simulations show agreement between the outlier and our estimator.

The problem of efficiently computing free deconvolutions is also relevant in view of practical problems in random
matrix theory and wireless communications, as in [41]. In a more indirect way, free deconvolutions are also important
whenever free additive or multiplicative convolutions (or the relevant transforms) are main objects of study. For example,
the free multiplicative convolution and the S-transforms play important roles in applied works on quantum information
theory [2] and neural networks [37,45]. In those situations we are interested in certain features of the distribution of the
convolutions (e.g. weight of a certain atom, symmetry, positivity, concentration around a certain point, etc.). Consequently,
a better understanding of how free deconvolutions map classes of probability measures may help in those situations.

1.4. Generalization to operator-valued case

Voiculescu’s operator-valued free probability theory (or B-valued free probability) has greatly extended the applicability
of free probability. In particular, operator-valued independence (or B-independence) is a much broader relation which
may be observed more frequently between models in random matrices or operator theory. Thus, it has become relevant to
derive new tools to compute B-free convolutions.

In the B-valued case, explicit expressions for convolutions are hard to obtain (even harder than in the scalar situation),
and thus the approach using analytic subordination functions [6,7] is very important. It has led to a robust toolbox for
computing asymptotic distributions of random matrices [2,7,10,16,42], including a remarkable algorithm for computing
distributions of arbitrary, self-adjoint, non-commutative polynomials evaluated in free self-adjoint random variables [6].

Therefore, in the last section, we include extensions of our analytic subordinations methods to compute B-free decon-
volutions (for the case of bounded operators) on certain regions of the B-valued upper half-plane.
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1.5. Organization of the article

Apart from this introduction, the paper is organized in four more sections.
Section 2 includes preliminaries on transforms, free convolutions and fixed-point theorems required for proofs of our

main results. In Section 3 we deal with the case of scalar-valued free deconvolution (that is, we prove Theorems 1.2, 1.3
and 1.4). Section 4 gives concrete examples of the deconvolution procedure. We explain how to implement the algorithms
of Theorem 1.2, and 1.4, we show two applications to random matrices: first by considering the problem of recovering a
random matrix from its deformed version by adding noise, and second, we see how to approximate the outlier of a matrix
from the spike of the deformed model. The simulations show the efficiency of our algorithms. Finally, in Section 5 we
treat the operator valued case. First we give basic elements for operator-valued free probability, including some technical
lemmas used afterwards and finally we prove our theorems for computing B-valued Cauchy transforms of B-valued free
deconvolutions.

2. Preliminaries

2.1. Transforms

We denote by P2(R) the set of probability measures on R having a finite second moment (
∫

t2 dμ(t) < ∞) and by P∞ the
set of probability measures with bounded support. For σ ∈R, denote by Cσ the upper half-plane Cσ := {z ∈C,
z > σ }.

For μ ∈P2(R), let Gμ :C+ → C− denote its Cauchy transform, defined by

Gμ(z) =
∫
R

1

z − t
dμ(t).

The Stieltjes inversion formula recovers a measure from its Cauchy transform as follows:

μ
(]a, b[) = − 1

π
lim
y↓0

∫ b

a


[
Gμ(x + iy)

]
dx. (4)

The reciprocal Cauchy transform Fμ :C+ → C+ is defined by Fμ(z) = 1
Gμ(z)

. It satisfies the important relation


(
Fμ(z)

) ≥ 
z, z ∈C+. (5)

Let μ be a probability measure with 2n + 2-moments, that is
∫
R

x2n+2μ(dx) < ∞. Then the Cauchy transform can be
expressed in the form

Gμ(z) = 1

z − β0 − γ0

z−β1− γ1

...
z−βn−γnGν (z)

, (6)

where ν is a probability measure. The sequences βm = βm(μ) ∈ R, γm = γm(μ) ≥ 0 are respectively called the Jacobi
parameters of μ of first and second order. If μ ∈ P2(R), then β0 and γ0 are respectively the expected value and the
variance of μ. Notice that (6) at n = 0 gives Fμ(z) = z − β0 − γ0Gν for some probability measure ν, so that applying (5)
to Gν yields

∣∣hμ(z) − β0
∣∣ ≤ γ0/
z, (7)

where hμ(z) = z−Fμ(z). The latter inequality plays an important role in our proof. In particular, if β0 = 0 then |hμ(z)| ≤
γ0/
z.

Moreover, as a consequence of the analyticity of Gμ outside of the support of μ, Hasebe [22, Lemma 4.1] proved that
if μ has a positive support and admits enough moments to get the expansion (6), then ν has also a positive support and
each coefficient βm is non-negative.
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2.2. Free convolutions

Free additive convolution was defined by Voiculescu in [46] for probability measures with compact support and later
generalized by Maassen [31] for measures in P2(R) and in [12] for general probability measures. Here we will use the
analytic definition from [31] via Voiculescu’s transform φμ. For this we need the following lemma.

Lemma 2.1 ([31, Lemma 2.4]). Let μ be a probability measure on R with mean 0, variance σ 2, and reciprocal Cauchy
transform F . Then the restriction of F to Cσ takes every value in C2σ , precisely once. The inverse function F 〈−1〉 : C2σ →
Cσ thus defined satisfies

∣∣F 〈−1〉(u) − u
∣∣ <

2σ 2


u
.

The Voiculescu’s transfom, φμ :C2σ →Cσ , is defined by the formula φμ(z) = F
〈−1〉
μ (z)−z. The free additive convolu-

tion of two probability measures μ1,μ2 ∈ P2(R) with variance σ 2
1 and σ 2

2 is the unique probability measure μ3 = μ1�μ2

on R such that φμ3 = φμ1 + φμ2 on C2σ3 with σ3 =
√

σ 2
1 + σ 2

2 and it is denoted by μ1 �μ2.

For the multiplicative version of free convolution, let ημ :C+ → C+ denotes the η-transform of a distribution μ, which
is defined by the formula ημ(w) = [1 − wFμ(w−1)]. The inverse of ημ is well defined in a neighborhood of 0 as long as

the first moment of μ does not vanish. Define 
μ : �+
μ → C by 
μ(z) = η

〈−1〉
μ (z)/z, where �+

μ is a neighborhood of 0 in
C+. Then, for μ1,μ2 ∈ P2(R) such that μ1 is supported on the positive real line and μ2 has non-zero first moment, the
free multiplicative convolution of μ1 and μ2 is the unique probability measure μ3 such that 
μ1
μ2 = 
μ3 on �+

μ1
∩�+

μ2
.

In this case we write μ3 as μ1 �μ2.

2.3. Fixed point theorems

In the proof of the main theorems we will use the following two theorems on convergence to fixed points of a function.
The first one, proved independently by Denjoy [18] and Wolff [55], considers holomorphic maps from the unit disc,
D = {z : |z| < 1}, to itself. Let f : D → D be an analytic function. A point w ∈ D is called a Denjoy–Wolff point for f if
either

(1) w ∈D and f (ω) = ω; or
(2) |w| = 1, limr↑1 f (rω) = ω and limr↑1

ω−f (rω)
(1−r)ω

≤ 1.

Except for the identity map of D every function f has a unique Denjoy–Wolff point. The theorem of Denjoy and Wolff
shows that for generic maps this point is the limit of the iterates of f .

Theorem 2.2 ([18,55]). Assume that f :D→ D is not a conformal automorphism of D and denote by ω its Denjoy–Wolff
point. Let f ◦n donote the n-fold composition of f . Then, for any z ∈ D the sequence (f ◦n(z))∞n=0 converges to ω.

The above theorem is obviously still valid for any open set comformally equivalent to the unit disc. For the operator
valued case we use a similar result for Banach spaces due to Earl and Hamilton [19]. In this case we need that f maps D

strictly inside D.

Theorem 2.3 ([19]). Let D be a connected open subset of a complex Banach space X and let f be a holomorphic
mapping of D into itself such that:

(1) the image f (D) is bounded in norm;
(2) the distance between points f (D) and points in the exterior of D is bounded from below by a positive constant.

Then the mapping f has a unique fixed point w in D and for any point z ∈ D, the sequence (f ◦n(z))∞n=0 converges to w.

3. Free deconvolutions

In this section we prove the main theorems, by first considering the free additive deconvolution and then the free multi-
plicative deconvolution. Our aim is to find suitable sets and suitable transforms so that we obtain a fixed point equation.
For this we will need to give some estimates of the image of these sets under the different transforms in order to be able
to use the above fixed point theorem.
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3.1. Additive deconvolution

Let μ1,μ3 ∈ P2(R), and suppose without loss of generality that μ1 is centered. We are looking to solve the equation
μ1 �μ2 = μ3. For this we will find subordinations function ω1, ω3 such that

Fμ2(z) = Fμ3

[
w3(z)

] = Fμ1

[
w1(z)

]
.

As described above we will use an iterative procedure. So, let us recall two particular functions used in in the statement
of Theorem 1.2:

• The h-transform of μ1 is the function h1 : C+ →C− defined by

h1(w) = w − Fμ1(w).

• The h̃-transform of μ3 is the function h̃3 : C+ →C+ defined by

h̃3(w) = Fμ3(w) + w.

We denote by σ 2
1 the variance of μ1. For z ∈C2

√
2σ1

, set α(z) = 3
(z)
4 .

Proposition 3.1. For z ∈ C2
√

2σ1
, the function Tz(w) = h1(h̃3(w) − z) + z is well defined and analytic on Cα(z).

For any w ∈ Cα(z), the iterated function T ◦n
z (w) converges to w3(z) ∈Cα(z) which is the unique fixed point of Tz.

Proof. Let z ∈ C2
√

2σ1
and simply write α instead of α(z). Let us prove first that Tz is well defined on Cα . Since h1 is

defined on C+, we just have to check that h̃3(w) − z ∈C+ for w ∈ Cα . Let w ∈ Cα . By the definition of α, 
(w) >
3
(z)

4
and thus


(
h̃3(w) − z

) = 
(
Fμ3(w) + w − z

) ≥ 2
3
(z)

4
− 
(z) >


(z)

2
, (8)

where we have used (5) in the second inequality.
In view of applying Denjoy–Wolff theorem, we prove now that Tz(Cα) ⊂ Cα . Let w ∈ Cα . Then, since Fμ1 is the

F -transform of a centered probability measure having variance σ 2
1 , applying (7) yields

∣∣Fμ1(x) − x
∣∣ ≤ σ 2

1


(x)
,

for x ∈C+, which implies


[
Fμ1(x)

] ≤ 
(x) + σ 2
1


(x)
. (9)

Applying (8) and (9) to x = h̃3(w) − z we obtain


[
Fμ1

(
h̃3(w) − z

)] ≤ 
[
h̃3(w) − z

] + σ 2
1


[h̃3(w) − z] < 
[
h̃3(w)

] − 
(z) + 2σ 2
1


(z)
.

Hence, for z ∈C2
√

2σ1
,


[
Tz(w)

] = 
[
h1

(
h̃3(w) − z

) + z
]

= 
[
h̃3(w) − Fμ1

(
h̃3(w) − z

)]
> 
(z) − 2σ 2

1


(z)
≥ 3
(z)

4
,

where we used the inequality t − 2σ 2
1

t
≥ 3t

4 , valid for t ≥ 2
√

2σ1. Thus we have proved that Tz(w) ∈Cα , as desired.
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Since Tz(Cα) ⊂ Cα , we just have to prove that Tz is not an automorphism of Cα in order to apply Denjoy–Wolff
Theorem. But, if w ∈ Cα ,

∣∣Tz(w) − z
∣∣ = ∣∣h1

(
h̃3(w) − z

) + z − z
∣∣ = ∣∣Fμ1

(
h̃3(w) − z

) − (
h̃3(w) − z

)∣∣ ≤ σ 2
1


(h̃3(w) − z)
.

Hence, by (8), |Tz(w) − z| < 2σ 2
1
(z)

and

Tz(Cα) ⊂ D

(
z,

2σ 2
1


(z)

)
, (10)

where the latter is the disk with center z and radius
2σ 2

1
(z)
. Therefore, Tz is not surjective and hence is not an automorphism

of Cα . By Denjoy–Wolff Theorem, there exists w3(z) ∈ Cα ∪ {∞} such that T ◦n
z (w) converges to w3(z) for all w ∈ Cα .

By (10), w3(z) ∈ D(z,
2σ 2

1
(z)
) ⊂Cα and thus w3(z) is a fixed point of Tz. �

Remark 3.2.

(1) Without any additional property on μ1 and μ3, the constant 2
√

2σ is sharp. Indeed, if we only assume the inequality

∣∣Fμ(z) − z
∣∣ ≤ σ 2


(z)

for distribution μ with finite variance σ , a computation yields that the stability condition Tz(Cα) ⊂ Cα implies that
α satisifies the inequality(

2α − 
(z)
)(
(z) − α

) − σ 2
1 > 0,

which is possible if and only if 
(z)2 > 8σ 2
1 .

(2) Notice that if we consider z ∈ Cβ , for some β = c2
√

2σ1 and c > 1, then the function Tz, satisfies

T

(
D

(
z,

1

4

(ζ )

))
⊂ T (Cα(z)) ⊂ D

(
z,

2σ 2
1


(ζ )

)
⊂ 1/c2T

(
D

(
z,

1

4

(ζ )

))
, (11)

Thus, for z ∈Cβ , Tz : D(z,1/4
(ζ )) → C is a contraction with Lipschitz constant smaller than 1/c2. In particular, if
we β = 3, then c2 = 9/8.

Proposition 3.3. The function w3 is analytic on C2
√

2σ1
and limn→∞ w3(iy)

iy
= 1. Moreover, we have

φμ3

[
Fμ3

(
w3(z)

)] − φμ1

[
Fμ3

(
w3(z)

)] = z − Fμ3

(
w3(z)

)
for z large enough.

Proof. The analiticity of w3 follows from Theorem 2.3 in [5]. Now, for z ∈ C2
√

2σ 2
1

, the fact that w3(z) is a fixed point

of Tz implies that it is in Cα(z) which yields that 
[w3(z)] > 3/4
(z). Therefore, (8) yields that


[
h̃3

(
w3(yi)

) − yi
] ≥ 3y/4

for y > 0. Hence, since w3(yi)) = Tyi(w3(yi)),

∣∣w3(yi) − yi
∣∣ = ∣∣Tyi

(
w3(yi)

) − yi
∣∣ = ∣∣h1

(
h̃3

(
w3(yi)

) − yi
)∣∣ ≤ σ 2

1

3y/4
,

and

lim
n→∞

w3(iy)

iy
= 1.
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By Section 2.2, φμ1 , φμ2 and φμ3 are well-defined on C2σ3 . Let z ∈ C4σ3 , so that 
[w3(z)] > 2σ3. Since 
[Fμ3(w)] ≥

(w) for w ∈C+, we thus also have


[
Fμ3

(
w3(z)

)] ≥ w3(z) > 2σ3

for z ∈ C4σ3 , so that φμ1 and φμ3 are well-defined on Fμ3(w3(z)) for z ∈ C4σ3 . For z ∈C4σ3 , set

w1(z) = h̃3
(
w3(z)

) − z = Fμ3

(
w3(z)

) + w3(z) − z. (12)

Since w3(z) is a fixed point of Tz, we have

Fμ1

(
w1(z)

) = −h1
(
w1(z)

) + w1(z)

= −h1
(
h̃3

(
w3(z)

) − z
) + h̃3

(
w3(z)

) − z

= −Tz

(
w3(z)

) + z + h̃3
(
w3(z)

) − z

= −w3(z) + Fμ3

(
w3(z)

) + w3(z) = Fμ3

(
w3(z)

)
,

so that[
w1(z) − Fμ1

(
w1(z)

)] + [
z − Fμ3

(
w3(z)

)] = h̃3
(
w3(z)

) − z + z − 2Fμ3

(
w3(z + iσ1)

)
= w3(z) − Fμ3

(
w3(z)

)
. (13)

Hence w3(z) ∈ C2σ3 , and by [34, Lemma 24] F
〈−1〉
μ3 [Fμ3(w3(z))] = w3(z). Therefore,

w3(z) − Fμ3

(
w3(z)

) = F 〈−1〉
μ3

[
Fμ3

(
w3(z)

)] − Fμ3

(
w3(z)

)
= φμ3

[
Fμ3

(
w3(z)

)]
.

Likewise, since w1(z) ∈C2σ3 ⊂C2σ1 ,

w1(z) − Fμ1

(
w1(z)

) = F 〈−1〉
μ1

[
Fμ1

(
w1(z)

)] − Fμ1

(
w1(z)

)
= φμ1

[
Fμ1

(
w1(z)

)] = φμ1

[
Fμ3

(
w3(z)

)]
.

Therefore,

φμ3

[
Fμ3

(
w3(z)

)] − φμ1

[
Fμ3

(
w3(z)

)] = z − Fμ3

(
w3(z)

)
. �

We can now turn to the proof of Theorem 1.2 and Theorem 1.3.

Proof of Theorem 1.2. By Proposition 3.1, 
ω3(z) ≥ 3
z/4. By (12), ω1(z) is defined as

ω1(z) = Fμ3

(
ω3(z)

) + ω3(z) − z.

Hence, the fact that 
Fμ3(w) ≥ 
w for w ∈ C+ yields that 
ω1(z) ≥ 
z/2. The last part of statement (1) is given by

Proposition 3.3 for ω3, and is deduced by (12) and the fact that limy→∞
Fμ3 (yi)

yi
= 1 for ω1.

For the second statement, suppose that there exists μ2 ∈ P2(R) such that μ1 �μ2 = μ3. Then, by the first statement,
Fμ3(w3(z)) goes to infinity when z goes to infinity along iR≥0. Hence, φμ2(Fμ3(w3(z)) is well-defined for z ∈ iR≥0
large enough. Moreover, by the equality μ1 �μ2 = μ3 and by Proposition 3.3,

φμ2

[
Fμ3

(
w3(z)

)] = φμ3

[
Fμ3

(
w3(z)

)] − φμ1

[
Fμ3

(
w3(z)

)] = z − Fμ3

(
w3(z)

)
.

Since φμ2(w) = F
〈−1〉
μ2 (w) − w on its domain of definition, the above equality yields

F 〈−1〉
μ2

(
Fμ3

(
w3(z)

)) = z,

and thus Fμ2(z) = Fμ3(w3(z)) for z ∈ iR≥0 large enough. By Proposition 3.3, Fμ3 ◦ w3 is analytic on its domain of
definition. Since Fμ2 is also analytic and coincides with Fμ3 ◦ w3 in a set which is not discrete, the two functions are
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equal on the intersection of their domains of definition, which is C2
√

2σ1
. Statement (3) is the definition of ω1 in (12), and

statement (4) is the content of Proposition 3.1. �

Proof of Theorem 1.3. Set F̃2(z) = Fμ3(w3(z+ 2
√

2σ1i)). Since w3 is defined on C2
√

2σ1
, F̃2 is a well-defined function

from C+ to C+. Moreover, by Proposition 3.3,

lim
n→∞

w3(iy)

iy
= 1,

which implies

lim
n→∞

w3(iy + 2
√

2σ1i)

iy
= 1.

Since Fμ3 satisfies also the asymptotic behavior limy→∞
Fμ3 (yi)

yi
= 1, we finally get

lim
n→∞

F̃2(iy)

iy
= 1,

so that by Nevanlinna representation theorem, there exists a probability measure μ̃ ∈ P(R) such that F̃2 = Fμ̃. By defini-
tion of F̃ , for z large enough,

F
〈−1〉
μ̃

(
Fμ3

(
w3(z)

)) = z − 2
√

2σ1i.

Hence, by Proposition 3.3, for z large enough we have

φμ3

(
Fμ3

(
w3(z)

)) − φμ1

(
Fμ3

(
w3(z)

)) = z − Fμ3

(
w3(z)

) = φμ̃

(
Fμ3

(
w3(z)

)) + 2
√

2σ1i.

Since FC2
√

2σ1
(z) = z + 2

√
2σ1, we have φC2

√
2σ1

= −2
√

2σ1i, so that

φμ3

(
Fμ3

(
w3(z)

)) + φC2
√

2σ1

(
Fμ3

(
w3(z)

)) = φμ1

(
Fμ3

(
w3(z)

)) + φμ̃

(
Fμ3

(
w3(z)

))
for z large enough. We deduce that

μ1 � μ̃ = μ3 + C2
√

2σ1
. �

3.2. Multiplicative deconvolution

Let μ1,μ2,μ3 ∈ P2(R) be such that μ1 admits moments of order four and has support on [0,+∞[ (with μ1 �= δ0), and
such that μ3 admits moments of order two and has non-zero first moment.

This subsection is dedicated to the free multiplicative convolution

μ1 �μ2 = μ3, (14)

and the objective is to recover the Cauchy transform of μ2 from the ones of μ1 and μ3. Up to a rescaling of μ1 and μ3,
we can assume that the first moment of μ1 and μ3 are equal to 1. Following (6), we denote by β1, γ1 the second Jacobi

parameters of μ1 of respectively first and second order, and we set R = (2
√

γ1 ∨ β1 ∨ 20σ 2
1√

3
). Set

K = [
R +

√
5/4R2 + 5Rσ 2

3

]
.

For z ∈CK , set rz = 
(z)
5|z| , and define the function

Tz(w) = h1
(
z(1 + w)2h3

[
z(1 + w)

]−1) − 1

on �z := D(0, rz).
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Proposition 3.4. The map Tz is well-defined on �z, and for all w ∈ �z we have

lim
n→∞T ◦n

z (w) = w̃3(z)

for some w̃3(z) independent of the original choice of w and such that Tz(w̃3(z)) = w̃3(z). Moreover, w̃3(z) goes to zero
as 
(z) goes to infinity.

Proof. Let us write rz = t
(z)
|z| with t < 1 varying for now; we will show below that the result holds for t = 1

5 .
Let us first prove that Tz is well-defined. Set I = 
(z). Since the support of μ1 is included in [0,∞[, h1 can be

analytically extended to C \ [0,∞[. On the one hand, for w ∈ �z


([
z(1 + w)

]) = I + 
(zw) > I (1 − t),

where we have used the fact that |w| ≤ tI
|z| in the last inequality. By the definition of h3 and (7), the latter inequality with

t < 1 yields that h3[z(1 + w)] ∈ C− and |h3[z(1 + w)] − 1| ≤ σ 2
3

(1−t)I
. Hence, we have

h3
[
z(1 + w)

]−1 = 1

1 + u
with u ∈C−, |u| ≤ σ 2

3

(1 − t)I
. (15)

On the other hand, for w ∈ �z, we have z(1 + w)2 = z + ũ with

|ũ| ≤ 2z|w| + |z| · |w|2 ≤ 2tI + t2I 2

|z| ≤ (
2t + t2)I.

Hence, we have∣∣z(1 + w)2
∣∣ ≥ (

1 − 2t − t2)|z|
and


(
z(1 + w)2) ≥ (

1 − 2t − t2)I.
In particular, z(1 + w)2 ∈ C+ for t small enough (smaller than 1/3 for example). Since h3[z(1 + w)]−1 ∈ C+ by (15),
we finally get that

z(1 + w)2h3
[
z(1 + w)

]−1 ∈C \ [0,∞[,
and Tz is well defined on �z.

Set δ = z(1 + w)2h3[z(1 + w)]−1. If �(δ) ≥ 0, d(δ, [0,+∞[) = |
(δ)|. Since h3[z(1 + w)]−1 ∈ C+, arg(δ) ≥
arg(z(1 + w)2)) and by (15),

∣∣
(δ)
∣∣ ≥ ∣∣h3

[
z(1 + w)

]−1∣∣
(
z(1 + w)2) ≥ (1 − 2t − t2)I

1 + σ 2
3 /[(1 − t)I ] ,

which yields

d
(
δ, [0,+∞[) ≥ I 2(1 − t)(1 − 2t − t2)

(1 − t)I + σ 2
3

:= F(t, I ).

If �(δ) ≤ 0, d(δ,∞) = |δ|. Moreover, using again (15) yields

|δ| ≥ |z|I (1 − t)(1 − 2t − t2)

(1 − t)I + σ 2
3

= |z|
I

F (t, I ) (16)

and, since |z| ≥ I , we get also d(δ, [0,+∞[) ≥ F(t, I ). Remark that (16) is also valid when �(δ) ≥ 0. We suppose now
that t , I are such that

F(t, I ) ≥
(

2
√

γ1 ∨ β1 ∨ 4σ 2
1√

3rt

)
(17)
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for some 0 < r < 1. By Section 2.1,

∣∣h1(δ) − 1
∣∣ =

∣∣∣∣ σ 2
1

δ − β1 − γ1Gν(δ)

∣∣∣∣ ≤
∣∣∣∣ σ 2

1

|δ − β1| − |γ1Gν(δ)|
∣∣∣∣,

with ν a probability measure supported on [0,∞[. On the one hand, since β1 ≥ 0 by [22, Lemma 4.1], |δ − β1| ≥
d(δ, [0,+∞[). On the other hand, since ν is supported on [0,∞[ (see Section 2.1), |γ1Gν(δ)| ≤ γ1

d(δ,[0,+∞[) . By (17),
d(δ, [0,+∞[) ≥ 2

√
γ1, and thus

∣∣γ1Gν(δ)
∣∣ ≤ d(δ, [0,+∞[)

4
≤ |δ − β1|

4
.

Hence,

∣∣h1(δ) − 1
∣∣ ≤ 4σ 2

1

3|δ − β1| = 4σ 2
1

3|z|
|z|
|δ|

|δ|
|δ − β1| .

Since d(δ, [0,+∞[) ≥ β1 by the first inequality of (17), a geometric argument yields that |δ|
|δ−β1| <

√
3. Hence, the second

inequality of (17) yields

∣∣h1(δ) − 1
∣∣ <

4σ 2
1√

3|z|
|z|
|δ| ≤ rtF (t, I )

|z|
|z|
|δ| ≤ r

tI

|z| ,

so that Tz(w) ∈ r�z for some 0 < r < 1. Hence, conditioned on the fact that t , I satisfy (17), Tz is an analytic map which
is a strict contraction of �z, and Denjoy–Wolff theorem yields that for all w ∈ �z, T ◦n

z (z) converges to the unique fixed
point of Tz in �z. Let t = 1

5 . Then, I satisfies (17) if

I 2
(

4

5
.
14

25

)
−

(
4

5
I + σ3

)
R ≥ 0

with R = (2
√

γ1 ∨ β1 ∨ 20σ 2
1√

3
). The two roots of the above second degree polynomials are

x± = 25

28
R ± 125

112

√
(4/5)R2 + 4

112

125
Rσ 2

3 .

Since K ≥ [R +
√

5/4R2 + 5Rσ 2
3 ], for I ≥ K we have I ≥ x+ and the inequality of (17) is satisfied.

Finally, for any 0 < t < 1 fixed, for I large enough (t, I ) satisfies (17). Hence, for all small 0 < t < 1 and 
(z) large
enough,

∣∣w̃3(z)
∣∣ ≤ t
(z)

|z| ≤ t,

and w̃3(z) goes to zero as 
(z) goes to infinity. �

Remark 3.5. The choice the constant K could be certainly improved, depending on the value of σ1, σ2, β1 and γ1. One
of the way to improve K is to find the set K of values I in the above proof such that the inequalities in (17) is satisfied
for some 0 < t <

√
2 − 1 (the restriction on t is given by the condition 1 − 2t − t2 ≥ 0). This involves a polynomial in

R[t, I ] of degree 4 in t and 2 in I , and it can be easily seen that K is an interval [K0,∞[. The constant K0, which can be
obtained numerically, is a better constant than K . We chose to give the above explicit constant K , since our simulations
showed that K does not differ much from K0.

Set w3(z) = (1 + w̃3(z))z, and for z ∈CK , set

F(z) = Fμ3

(
w3(z)

)
zw3(z)

−1.

Proposition 3.6. The function F is analytic on CK and coincides with Fμ2 on its domain of definition.
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In the following proof, recall that the η-transform of a distribution μ is defined by ημ(w) = w[w−1 − Fμ(w−1)]. We
have in particular ημ(w) = whμ(w−1) on C+.

Proof. By Denjoy–Wolff Theorem, |Tz[w̃3(z)]| < 1, thus the implicit function theorem applied to the analytic function
g(w, z) = Tz(w) − w on {(w, z)|z ∈CK , w ∈ �z} yields the analyticity of w̃3 and w3. For all z ∈CK , w̃3(z) ≤ 
(z)

5|z| , thus

w3(z) = z(1 + w̃3(z)) ∈ C+, and F is well-defined and analytic on CK .

Set w1(z) = w3(z)
2z−1

h3(w3(z))
. Since w̃3(z) = Tz(w̃3(z)) = h1(z(1 + w̃3(z))

2h3[z(1 + w̃3(z))]−1) − 1,

w3(z) = z
(
1 + w̃3(z)

) = zh1
(
w3(z)

2z−1h3
[
w3(z)

]−1) = zh1
(
w1(z)

)
.

Hence,

ημ3

(
w3(z)

−1) = w3(z)
−1h3

(
w3(z)

) = w1(z)
−1w3(z)z

−1 = w1(z)
−1h1

(
w1(z)

) = ημ1

(
w1(z)

−1).
Set η2(w) = 1 − wF(w−1) for z ∈CK . Then, for w such that w−1 ∈ CK ,

η2(w) = 1 − wF
(
w−1) = 1 − w3

(
w−1)−1

Fμ3

(
w3

(
w−1)) = ημ3

(
w3

(
w−1)−1) = ημ1

(
w1

(
w−1)−1)

.

Since w3(z) = z(1 + w̃3(z)) with |w̃3(z)| ≤ 
(z)
5|z| , 
(w3(z)) ≥ 4/5
(z) and 
[w3(z)] goes to infinity when 
(z) goes to

infinity. Hence, by (7), h3(w3(z)) converges to 1 as 
(z) goes to infinity, so that |w1(z)| = |w3(z)
2z−1

h3(w3(z))
| goes to infinity

when 
(z) goes to infinity. For i ∈ {1,3}, ηi(z) ∼ z for z going to zero; hence, for 
(z) large enough, w3(z)
−1, w1(z)

−1

are respectively in the image of η
〈−1〉
μ3 , η

〈−1〉
μ1 , and η2(z

−1) = ημ3(w3(z)
−1) is in the domain of η

〈−1〉
μ2 . This implies in

particular that

η〈−1〉
μ3

(
ημ3

(
w3(z)

−1)) = w3(z)
−1, η〈−1〉

μ1

(
ημ1

(
w1(z)

−1)) = w1(z)
−1.

Therefore, since ημ1(w1(z)
−1) = ημ3(w3(z)

−1) = η2(z
−1), for 
(z) large enough we have


3(η2(z
−1))


1(η2(z−1))
= η

〈−1〉
μ3 (ημ3(w3(z)

−1)ημ1(w1(z)
−1)

ημ3(w3(z)−1)η
〈−1〉
μ1 (ημ1(w1(z)−1))

= w3(z)
−1ημ1(w1(z)

−1)

ημ3(w3(z)−1)w1(z)−1
= w1(z)

w3(z)

= w3(z)

zh3(w3(z))
= z−1

η2(z−1)
.

On the other hand, by the relation μ1 �μ2 = μ3, for 
(z) large enough we have


3(η2(z
−1))


1(η2(z−1))
= 
2

(
η2

(
z−1)) = η

〈−1〉
μ2 (η2(z

−1))

η2(z−1)
.

Hence, η
〈−1〉
μ2 (η2(z

−1)) = z−1, which yields, after applying ημ2 on both sides,

ημ2

(
z−1) = η2

(
z−1).

Therefore, η2 and ημ2 coincide in a neighborhood of zero. Since both maps are analytic, ημ2(z
−1) = η2(z

−1) for z ∈ CK ,
which yields

F = Fμ2

on CK . �

The proof of Theorem 1.4 is given by Proposition 3.4 and Proposition 3.6.
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4. Implementation of free deconvolution

As explained in the introduction, the subordination techniques developed in Theorem 1.2 and Theorem 1.4 provide a first
step towards recovering the unknown distribution μ2, by obtaining the distribution of μ2 ∗ Cλ, where Cλ is a Cauchy
distribution with a parameter λ depending on the first moments of μ1 and μ3. Thus, we need to solve the classical
deconvolution by the Cauchy distribution in order to complete the algorithm for free deconvolution. In this section we
describe how to implement both steps.

4.1. Free subordination functions

One very useful consequence about Theorem 1.2 and Theorem 1.4 is that they provide a very direct method to calculate the
subordination functions. We describe briefly this method for the additive convolution; the multiplicative case is identical,
by choosing the correct function Tz to iterate.

First we choose a small ε > 0 which will be our level of approximation. Given Gμ1 and Gμ3 , we can easily calculate
the functions Tz from part (4) of Theorem 1.2.

Let z ∈ CK for K given by Theorem 1.2. We start with an arbitrary point w0(z) in some proper domain D = D(z,
2σ 2

1
(z)
)

(for example take w0(z) = z) and define w(n+1)(z) = Tz(w
(n)(z)). Theorem 1.2 ensures the existence of N > 0 such that

w(N+1)(z) − w(N)(z) < ε and we call w(N+1)(z) = w∞(z). Our approximation for Fμ2(z) is given by F3(w∞(z)). Here

we note that (10) implies that for D = D(z,
2σ 2

1
(z)
), Tz : D → D has a fixed point inside D. Moreover, the speed of

convergence to the fixed point is exponential because Tz is a contractive map with respect to the Schwartz distance in D.
For specific Lipschitz constats see Remark 3.2.

Let us choose a discretization (x(i))1≤i≤n of an interval I ⊂ R large enough. We are given the functions F1
and F3, and we start with a vector [z(1), z(2), . . . , z(n)] ∈ Cn

2
√

2σ1
where z(i) = x(i) + 2

√
2σ1. We obtain a vector

[F2(z(1)), . . . ,F2(z(n))] as follows.

I. 1. Set an approximation threshold ε > 0.
2. Define the functions h1(w) := w − F1(w), and h3(w) := w + F3(w).

II. For (i = 1 to n)
1. Set wnow := z(i).
2. Set wpast := wnow.
3. Set wnow := h1(h3(wpast − z)) + z.
4. If (|wpast(z(i)) − wnow| > ε), go to 2.

else set w∞ := wnow.
5. Set F2(z(i)) := F3(w∞).

Applying the latter procedure and then Stieltjes inversion formula yields an approximation V ∈Rn of the density f̃ of
μ2 ∗ C2

√
2σ1

on I .

4.2. Classical deconvolution with the Cauchy distribution

In order to recover μ2, one needs to perform afterwards the classical deconvolution of f̃ by the Cauchy distribution of
paramter 2

√
2σ1. Deconvolving with a Cauchy kernel amounts to solve the Fredholm equation of the first kind (see [21]

for more details on this class of equations)∫
R

K(x,y) d2μ(y) = f̃ (x), x ∈R,

with K(x,y) = 1
π

λ

(x−y)2+λ2 , f̃ given by the previous step and μ2 unknown. The latter is known to be a severely ill-
posed problem and thus requires regularization. The natural procedure is given by a Tychonov regularization using jointly
quadratic programming, which we now explain briefly.

After having discretized the problem and done the first step of the deconvolution, we end up with the linear equation

KU = V, (18)

with K ∈ Mn×m(R), V ∈ Rn and U ∈ Rn are respectively a discrete version of the Cauchy kernel, the discrete approx-
imation of f̃ we obtained in the first step, and a discrete version of the unknown density dμ2. The ill-possedness of
the problem comes from the fact that K is singular (or has very small non-zero eigenvalues), which makes the solution
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U unstable with respect to small perturbations of V . The goal of Tychonov regularization is to replace the negligible
eigenvalues of K by small ones in order to make the linear problem stable. Namely, instead of solving (18), we will look
for a solution which minimizes the convex function ‖KU − V ‖2 + α2‖U‖2, where α > 0 is a parameter to be chosen.
Moreover, we want to ensure that the solution is a probability distribution, which results in the minimization problem

U = argmin
Ui≥0∑
Ui∗δ=1

(‖KU − V ‖2 + α2‖V ‖2), (19)

where δ is the step of the discretization. In general, the choice of the parameter α is crucial in the success of the Tychonov
regularization, and we refer to [21, Section 3.3] for a possible strategy for the choice of such a parameter. In our case of
study, we noticed that in all case we get good approximation of μ in Levy distance by simply setting α = 0 in (19). This
means that regularization could be avoided when we are only interested in approximation of μ2 in the Levy distance:
this important simplification should be the subject of further investigation. In order to achieve the minimization of (19),
we used the quadratic programming package CVXOPT [1] with Python (see also [14] for theoretical background on the
subject). For all examples listed below, the result is obtained in few seconds.

4.3. Application: Recovering spikes in deformed model

As we mentioned in the introduction, a possible interesting application of free deconvolutions is the recovery of outliers
from a deformed matrix model. Namely, assume that A ∈ Mn(R) is a Hermitian matrix with an outlier λ, and suppose that
we know the deformed matrix M = A+X or M = X1/2AX1/2, where X is a noise matrix whose spectral distribution μ1
is known. We denote as usual by μ2 (resp. μ3) the spectral distribution of A (resp. M). Let us assume that λ is the unique
outlier of A, and that this outlier yields an outlier λM on the deformed matrix M . The first hypothesis is only given to
simplify the results, and the same results hold for several outliers. The main result of [8] relates the value of λ to the one
of λM as follows:

• Additive case: Let w̃2 be the subordination function from the additive convolution of μ1 with μ2, then

λ = w̃2(λM). (20)

• Multiplicative case: Let w̃2 be the subordination function from the multiplicative convolution of μ1 with μ2, then

λ = w̃2
(
λ−1

M

)−1
. (21)

These results together with our method for free deconvolution provide a way to recover spikes of deformed models, as
follows:

(1) Compute the distribution μ2 using the given subordination methods.
(2) Compute the subordination w̃2 of the additive (resp. multiplicative) convolution of μ1 and μ2.
(3) Apply the relation (20) (resp. (21)) to recover the original spike λ.

Two examples showing the efficiency of such procedure are displayed in Example 4.5 and Example 4.6.

4.4. Simulations

We include simulations for additive and multiplicative deconvolutions of two situations: one example where the unknown
distribution is atomic and one example where the unknown distribution has a density.

We compare our results with actual simulations of large (however finite dimensional and thus only approximately free)
random matrices. The distributions obtained by our free deconvolution method are close to the true distributions. All
simulations are done with Python.

Additive case
Let us consider a (possibly random) matrix A ∈ Mn(R) with limiting spectral distribution μA and a Wigner matrix
W ∈ Mn(R), whose spectral distribution is known to converge to a semicircular distribution s.

We simulate A + W and want to recover an approximation for μA. Free probability theory states that the distribution
of A + W should be close to the free convolution s �μA.

Example 4.1 (Discrete distribution). A is a diagonal matrix of size 1200 with eigenvalues −1, 0 and 1 with respective
weights 1/2, 1/6 and 1/3. Figure 1 shows the results of our method.
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Fig. 1. Histogram of the spectral distribution of A + W (left), result after first step of the deconvolution (center), and the final result compared with the
original atomic distribution in orange (right). We did not use Tychonov regularization in this example.

Fig. 2. Histogram of the spectral distribution of A + W (left), result of the first step of the deconvolution (center), and result after Tychonov regulariza-
tion compared with the histogram of eigenvalues of the original Wishart matrix.

Fig. 3. Histogram of the spectral distribution of WAW∗ of size n = 1200 (left), result of the first step of the deconvolution (center) and result after the
second step compared with the original distribution in orange (right). We did not use Tychonov regularization in this example.

Example 4.2 (Marčenko–Pastur). A = XX∗, where X is a random rectangular matrix of size 800 × 1600 with inde-
pendent Gaussian entries of variance 1/n (with n = 800). Figure 2 shows the results of our method.

Multiplicative case
Consider now a matrix A ∈ Mn(R) and a Ginibre matrix W ∈ Mn(R). Let us recover the spectral distribution A from the
distribution of WAW ∗, as follows.

Since WW ∗ is a Wishart matrix whose spectral distribution approximates the Marčenko–Pastur distribution m1 (or
free Poisson) of parameter 1, the spectral distribution of WAW ∗ is approximately the free multiplicative convolution
m1 �μA.

To approximate the original spectral distribution of the matrix A, we must calculate the multiplicative free deconvolu-
tion of the spectral distribution of WAW ∗ with the Marčenko–Pastur distribution m1. In the first step of the deconvolution,
we found in these examples that we were able to use a lower parameter K than the one theoretically given by our theorem.
This improved the precision of the realization of the second step.

Example 4.3 (Discrete distribution). A is a diagonal matrix with eigenvalues −3, 1/2, 4 and 1 with respective weights
1/2, 1/6 and 1/3. Figure 3 shows the results of our method.

Example 4.4 (Modification of Marčenko–Pastur). A = 1/2(X2 + (X∗)2), where X is a random square matrix of size
n = 800 with independent Gaussian entries with variance 1/n. Figure 4 shows the results of our method.
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Fig. 4. Histogram of the spectral distribution of WAW∗ (left), result of the first step of the deconvolution (center), result after Tychonov regularization
and quadratic programming (with n = 800) and comparison with the histogram of eigenvalues of the original random matrix (right).

Fig. 5. Spectral distribution of A + W , computation of the spectral distribution μA by the subordination technique, histogram of the measured value of
the outlier λM of A + W and of the value after deconvolution (50 trials). The true value λ is in orange.

Recovery of spikes
We consider again Example 4.2 and Example 4.4, but we add this time a shift δ > 0 to the largest eigenvalue of A, in
order to get an outlier λ. The shift δ must be large enough to ensure that the outlier still exists after adding the matricial
noise, resulting in an outlier λM (see [4] for more details on this phenomenon). The minimal value of the shift can be
computed from the spectral distribution of A and the one of the matricial noise. We then apply the procedure given in
Section 4.3 to recover λ from λM and the estimated spectral distribution μA of A.

Example 4.5. In the additive case, A = (XX∗), where X is a random square matrix of size 800 × 1600 with independent
Gaussian entries with variance 1/800; then we added 5 to the largest eigenvalue (outlier at 10.75). The noise is a Wigner
additive noise as in Example 4.2. Figure 5 shows the results of our method.

Example 4.6. In the multiplicative case, A = (XX∗)2, X is random square matrix of size n = 800 with independent
Gaussian entries with variance 1/n; then we added 4 to the largest eigenvalue (outlier at 6.9). The noise is a Marčenko–
Pastur distributed, as in Example 4.4. Figure 6 shows the results of our method.

4.4.1. Comparison with previous methods
We now compare our results with the methods of Ledoit and Wolf [27–29]. For this, we consider the matrix ZZ∗ with
Z = YT , where Y is a Wishart matrix of size (2p,p) and T is a diagonal matrix that we want to recover. Following
the example of the QuEST method (see [29] for details) the spectral distribution of T is given by discretization of the
distribution function

H4(x) =
{

1
2 (1 − [1 − (2x)3]1/3), x ∈ [0,1/2],
1
2 (1 + [1 − (2 − 2x)3]1/3), x ∈ [1/2,1].
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Fig. 6. Spectral distribution of WAW∗ , computation of the spectral distribution μA by the subordination technique, histogram of the measured value
of the outlier λM of WAW∗ and of the value after deconvolution (50 trials of the noise W ). The true value λ is in orange.

Fig. 7. Accuracy in terms of mean squared error in the subordination method compared to Ledoit–Wolf method.

For each p between 30 and 500 we made 100 simulations of the deconvolution both with the proposed method and with
the method of Ledoit and Wolf, and then calculated the mean square error 1

p

∑
i ((λ̂i − λi)

2)). Since we were interested
in the population of eigenvalues rather than the density of the spectral distribution, we chose to modify the second step of
our algorithm described in Section 4.2: instead of minimizing the regularized distance (19) over all possible probability
distributions, we are only minimizing it on the set of probability distributions with p atoms of mass 1/p, and we set the
regularizing parameter α to zero. Then we took the average over the 100 simulations for each value of p. The result is
shown in Figure 7.

Similary, for each p as above between 30 and 500 we calculated the running time for calculating the deconvolution
and took the average over the 100 simulations for each value of p. The result is shown in Figure 8. Both methods seem
to have running times of similar order.

We see that both methods seem to provide the same accuracy; this should not be a surprise, since both methods rely
on the relation between the spectral distribution of the average matrix E(ZZ∗) and the one of T (although concrete
implementions differ from one method to the other). Our method should therefore be seen as a generalization of Ledoit–
Wolf’s viewpoint to the case of arbitrary multiplicative noise.



2584 O. Arizmendi, P. Tarrago and C. Vargas

Fig. 8. Speed of the subordination method compared to the speed in the Ledoit–Wolf method.

5. Operator-valued free deconvolutions

In [51], Voiculescu provided generalizations of most concepts and tools from free probability theory to a broader theory of
operator-valued (or B-valued) free probability. The fundamental concept of a non-commutative probability space (A, τ),
consisting of a ∗-algebra with unit and a state τ : A → C, is replaced by a triple (A,B,E), where E : A → B is a
conditional expectation onto a smaller algebra B ⊆ A (to be thought as the algebra of constants).

These theoretical generalizations found immediate applications to the description of more general models in random
matrix theory. For example Shlyaktenko [42] used this framework to study band random matrices and block-random
matrices, and provided at the same time a general pipeline for applications of B-free probability. In particular, these
works showed the need to study how B-distributions of operators behave as we consider different choices of algebra B

[35].
Indeed, in order to compute or approximate a desired B0-valued distribution of a certain operator x, it has been often

useful to rephrase the problem in terms of a B1-distribution of an auxiliary operator y, where B1 is an auxiliary algebra
usually larger than B0, in such a way that y is built-up by B1-free pieces that we understand. As the algebra B1 becomes
larger, the notion of B1-freeness becomes less meaningful or practical, up-to the extreme situation where B contains
the relevant operators, and their B-freeness thus follows tautologically, as the corresponding conditional expectation
restricted to the relevant operator algebras is the identity.

For non-trivial scenarios where B1 is minimal, the machinery of B1-free probability theory is used to compute the
B1-distribution or B1-Cauchy transform of y, from which x is then extracted, typically by simple means. For example, if
B0 ⊆ B1 are compatible expectations (i.e. the corresponding conditional expectations E0, E1 satisfy E0 ◦ E1 = E0), then
the B0-Cauchy transform is just the projected, restricted B1-transform,

GB0
x (b0) = E0

(
GB1

x (b0)
)
, b0 ∈ B0.

Along with the theoretical developments in B-valued free probability theory, the notion of B-free independence has
been more frequently observed in applied models. Thus, the problems of computing B-free additive and multiplicative
convolutions gained more interest, and the methods via analytic subordination have been particularly useful and effective.

In this section, we find the B-Cauchy–Stieltjes transform GB
x of the B-free deconvolutions through subordination

functions in a certain region of the B-upper half-plane. For simplicity, we only consider the case of B-independent
bounded operators.

Unlike the scalar-valued case, in the B-valued case is not obvious what should be used in the second step of the
algorithm for replacement of the Cauchy distribution, which allowed us to transfer the analytic distributions (with some
small error), from a region away from the real line to a close neighborhoods of the real line in the upper half-plane, from
which we obtain the deconvolved distribution (with a small error). Thus, for the moment, our algorithm deals only with
the first part of the deconvolution process, which computes the B-Cauchy transform in a region away from the self-adjoint
space Bsa .

We should warn the reader that, for our method to be useful for practical situations, we should find operator models
where the desired B0 distribution and the auxiliary B1 distributions either coincide or are not too distant. For example, in
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the context of the block-modified random matrices studied in [2], the authors give a general numerical method, using a
certain auxiliary algebra B1 and a more restrictive but more explicit method, using a simpler algebra B ′

1.
Before stating our results on B-free deconvolutions, let us recall some basic elements of B-valued probability.

5.1. Elements of operator-valued free probability

We refer to [44] for a basic introduction to operator-valued non-commutative spaces. In this section, we consider unital
inclusions B ⊂ A of C∗-algebras, and we denote by E : A → B a unit-preserving conditional expectation. Moreover,
we denote by B(X ) the ∗-algebra of non-commutative polynomials in a self-adjoint variable X with coefficients in B .
Following [38], we define a B-valued non-commutative distribution as a unital B-module map μ : B(X ) → B such that[

μ
(
fi(X )∗fj (X )

)]
1≤i,j≤n

≥ 0 in Mn(B)

for all subsets {fi(x)}1≤i≤n of B(X ). The distribution μ is said bounded by M > 0 if

μ(Xb1X · · ·XbnX ) < Mn+1‖b1‖ · · · ‖bn‖
for b1, . . . , bn ∈ B .

Note that for a ∈ A self-adjoint, the map φa : B(X ) → B defined by φa(P ) = E(P (a)) is a non-commutative dis-
tribution. For any non-commutative distribution μ, there exists a unital inclusion of C∗-algebras B ⊂ A, a conditional
expectation E : A → B and an element a ∈ A such that μ = φa (see [38, Proposition 1.2] and [54, Theorem 2.8]).

In this section, every non-commutative distribution is assumed to be B-valued.

5.2. Statement of new results

Let us introduce first several operator-valued versions of the transforms considered in Section 2.1. Let us denote by B+
the subset of B consisting of elements with positive imaginary part. Namely, b ∈ B+ if b is written b = b1 + ib2 with
b1 self-adjoint and b2 > 0. Likewise, we define B− as the set of elements of B with negative imaginary part. Given a
bounded non-commutative distribution μ, we introduce the following maps:

• Gμ : B+ → B− its Cauchy transform, defined by

Gμ(b) = μ
[
(b −X )−1].

In the case that μ = φa , the Cauchy transform of μ can also be written as Gμ = E[(b − a)−1].
• Fμ : B+ → B+ its reciprocal Cauchy transform Fμ = G−1

μ .
• ημ : B+ → B its η-transform defined by ημ(b) = b[b−1 − Fμ(b−1)].
• φμ : B+ → B+, the operator-valued Voiculescu trasform φμ(b) = F 〈−1〉(b) − b.

• 
μ(b) = b−1η
〈−1〉
μ (b), defined on B+ in a neighborhood of 0.

As in the scalar case, additive and multiplicative B-free convolutions may be defined at the level of the transforms on
suitable domains: φμ1�μ2(b) = φμ1(b) + φμ2(b) and 
μ1�μ2(b) = 
μ1(b)
μ2((
μ1(b))−1b
μ1(b)).

Although these definitions imply considering non-commutative series in X instead of polynomials, we can show that
all these maps are well-defined and analytic by a limit argument (see [51] for a rigorous proof). Finally, we denote by
σ 2 := ‖μ(X 2) − μ(X )2‖ the norm of the variance of μ, and as in the scalar case we set hμ(b) = b − Fμ(b) for b ∈ B+.

Our method for computing additive B-free deconvolutions reads as follows:

Theorem 5.1. Suppose that μ1 �μ2 = μ3, with μ1, μ2 and μ3 bounded B-valued distributions, and let σ 2
1 = ‖E(X 2

1 )−
E(X1)

2‖ be the variance of μ1. For b ∈ B such that 
b > 4
√

2σ1, set �b = {r ∈ B+, 
r > 3
b/4} and define Tb : �b →
B to be

Tb(w) = hB
μ1

(
hB

μ3
(w) + 2w − b

) + b,

Then, Tb is well-defined and for any w ∈ �b , the sequence T ◦n
b (w) converges to an element w3(b) independent of the

initial choice of w. Moreover,

FB
μ2

(b) = FB
μ3

(
w3(b)

)
.
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For the multiplicative case, let us first introduce some notations. Given μ1, μ3 two bounded B-valued distributions,

• Ri is the bound of the distribution μi ,
• αi := ‖E(Xi )‖ is the norm of the first moment of μi , and
• α∗

i := inf SpecE(Xi ) is the minimum of the spectrum of E(Xi ).

Then the result is the following.

Theorem 5.2. Suppose that μ1 �μ2 = μ3, with μ1 ≥ 0. Set

• K := 2
α∗

μ1
max( 2

α∗
μ1

(σ3 + αμ3)(‖μ1‖ + 2
σ 2

μ1
α∗

μ1
),‖μ3‖ + σμ3),

• for b invertible such that ‖b‖ ≤ K−1, set �b = bD(0, 2
α∗

μ1
) and define Tb : �b → B by

Tb(w) = bHμ1

(
b−1wHμ3(w)w

)−1
,

where Hμ(b) = hμ(b−1).

Then, for any b such that ‖b−1‖ ≤ K , Tb−1 is well-defined, and for any w ∈ �b−1 the sequence T ◦n
b−1(w) converges to an

element w3(b) ∈ B independent of the initial choice of w. Moreover,

Fμ2(b) = bw3(b)Fμ3

(
w3(b)−1).

5.3. Auxiliary lemmas

We give three lemmas of independent interest that will be used in the proofs of Theorems 5.1 and 5.2.
Let us first slightly improve a bound of [38, Proposition 1.2] for later purposes.

Lemma 5.3. Let P ∈ B(X ). Then,

μ
(
P ∗b∗bP

) ≤ ∥∥b∗b
∥∥μ

(
P ∗P

)
and μ

(
P ∗X 2P

) ≤ M2μ
(
P ∗P

)
,

where M is any constant bounding μ.

Proof. The first inequality is already proven in the proof of [38, Proposition 1.2]. In the same paragraph, the authors have
also proven that

μ
(
P ∗X 2P

) ≤ 4M2μ
(
P ∗P

)
.

We will adapt their proof to give our result: define for each monomial f = b0Xb1 · · ·Xbn ∈ B(X ) the quantity p(f ) =
Mn‖b0‖ · · · ‖bn‖, and denote by B̂(X ) the ∗-algebra

B̂(X ) =
{ ∞∑

n=0

fn

∣∣∣∣ fn monomial in B(X ) such that
∞∑

n=0

p(fn) < ∞
}

.

Let μ̃ be the positive B-valued linear map extending μ from B(X ) to B̂(X ) with the formula

μ̃

( ∞∑
n=0

fn

)
=

∞∑
n=0

μ(fn).

For T > M and n ≥ 0, let gn,T = (2n)![(1 − 2n)(n!)2T 2n4n]−1X 2n. Then, gn,T = g∗
n,T and p(gn,T ) ≤ (M/T )n. Thus,

gT = ∑∞
n=0 gn,T ∈ B̂(X ). Since g2

T = 1 − [X /T ]2, we have

0 ≤ μ̃
(
P ∗g2

T P
) = μ̃

(
P ∗(1 − [X /T ]2)P ) = μ

(
P ∗P

) − T −2μ
(
P ∗X 2P

)
.

Hence, μ(P ∗X 2P) ≤ T 2μ(P ∗P). Since this holds for all T > M , we finally get

μ
(
P ∗X 2P

) ≤ M2μ
(
P ∗P

)
. �

We give then in the operator valued context an estimate of hμ similar to (7).
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Lemma 5.4. Denote by σinf(v) the minimum of the spectrum of a self-adjoint operator v ∈ B . For b ∈ B+, we have

∥∥hμ(b) − μ(X )
∥∥ ≤ 4‖μ(X 2) − μ(X )2‖

σinf
(b)
.

Proof. The proof follows the method of [9, Remark 2.5] and [6, Lemma 2.3]. Let b = u + iv, with v > 0 and let φ ∈ B∗
be a positive functional. Set

fφ(z) = φ
(
hμ(u + zv) − μ(X )

)
for z ∈C+. By [9, Remark 2.5], fφ : C+ →C+, and by [6, Lemma 2.3] we have asymptotically

lim
z→∞fφ(z) = 0, lim

z→∞ zfφ(z) = φ
(
μ(X )v−1μ(X ) − μ

(
X v−1X

))
.

Thus, by the Nevanlinna representation, there exists a probability measure ρ on R such that

fφ(z) = φ
(
μ

(
X v−1X

) − μ(X )v−1μ(X )
)∫

R

1

t − z
dρ(t),

and then, by (5), |fφ(z)| ≤ φ(μ(X v−1X ) − μ(X )v−1μ(X ))/
z.
Now, note that �(b) := μ(XbX ) − μ(X )bμ(X ) = μ([X − μ(X )]b[X − μ(X )]) is a positive map, so that

�
(
v−1) ≤ �

(∥∥v−1
∥∥) = ∥∥v−1

∥∥(
μ

(
X 2) − μ(X )2).

Therefore,

φ
(
μ

(
X v−1X

) − μ(X )v−1μ(X )
) ≤ ∥∥v−1

∥∥φ
(
μ

(
X 2) − μ(X )2) ≤ ∥∥v−1

∥∥∥∥μ
(
X 2) − μ(X )2

∥∥.

In particular,

φ
(
hμ(b) − μ(X )

) = fφ(i) ≤ ∥∥v−1
∥∥∥∥μ

(
X 2) − μ(X )2

∥∥.

Hence, since any functional on B is the sum of four positive functionals and since B is isometrically embedded in its
bidual,

∥∥hμ(b) − μ(X )
∥∥ ≤ 4

∥∥v−1
∥∥∥∥μ

(
X 2) − μ(X )2

∥∥ = 4
‖μ(X 2) − μ(X )2‖

σinf(v)
. �

We give now a strengthened inequality when μ is bounded. Let μ be a realizable non-commutative distribution, and
define Hμ : B+ → B by

Hμ(b) = hμ

(
b−1) = b−1 − F

(
b−1).

Lemma 5.5. If μ is bounded by M , then the map Hμ can be extended to an analytic function on the open disk DM−1 :=
{b ∈ B , ‖b‖ < (M)−1}. Moreover, Hμ satisfies the inequality

∥∥Hμ(b) − μ(X )
∥∥ ≤ ∥∥μ

(
X 2) − μ(X )2

∥∥ 1

‖b‖−1 − M
.

Proof. By [38], the Boolean cumulant transform of μ is defined by Bμ(b) = 1 − Fμ(b−1)b for b ∈ B+. Therefore,
Hμ(b) = Bμ(b)b−1 for b ∈ B+. The series expansion of Bμ holds for every b in DM−1 , and we have

Bμ(b) =
∑
n≥1

Bμ,n(b, . . . , b),

where Bμ,n : Bn → B are the non-commutative Boolean cumulants of μ, which satisfy the right B-module property
Bμ(b1, . . . , bn) = Bμ(b1, . . . , bn−1,1)b. Since Bμ,1(b) = μ(X )b, we have

Hμ(b) =
(∑

n≥1

Bμ,n(b, . . . , b)

)
b−1 =

(∑
n≥1

Bμ,n(b, . . . ,1)b

)
b−1 = μ(X ) +

∑
n≥2

Bμ,n(b, . . . , b,1),
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on B+ ∩ DM−1 , and by analytic continuation this equality holds on DM−1 . Following [38, Lemma 2.9], we introduce
on B(X ) the B-valued sesquilinear inner-product 〈P,Q〉 = μ(Q∗P). Note that 〈·, ·〉 satisfies the B-module condition
〈Pb,Q〉 = 〈P,Q〉b for b ∈ B . We equip B(X ) with the semi-norm ‖ · ‖ coming from this B-valued inner product and
from the norm of B: namely,

‖P‖ = ∥∥〈P,P 〉∥∥1/2
B

.

We recall the B-valued Cauchy–Schwartz inequality [25, p. 3] for B-valued sesquilinear inner-product,

〈x, y〉〈y, x〉 ≤ ∥∥〈y, y〉∥∥
B
〈x, x〉,

which yields the norm inequality∥∥〈x, y〉∥∥2
B

≤ ∥∥〈y, y〉∥∥
B

∥∥〈x, x〉∥∥
B
.

Denote by B(X )0 the complement of 1 in B(X ): remark that when P ∈ B(X )0, then 〈1,P 〉 = 0 and by the B-module
structure of the inner product, 〈b,P 〉 = 0 for all b ∈ B . By [38, Proof of Theorem 2.5], for n ≥ 2 we have

Bμ,n(b, . . . , b,1) = 〈
b(T b)n−2ξ, ξ

〉
,

where ξ = X − μ(X ) and T : B(X ) → B(X ) is defined by T (b) = 0 for b ∈ B and T (P ) = XP − μ(XP) for P ∈
B(X )0. By Lemma 5.3, we have

〈bP,bP 〉 ≤ ‖b‖2〈P,P 〉 and 〈XP,XP 〉 ≤ M2〈P,P 〉, (22)

for all b ∈ B and P ∈ B(X ), and where the inequality is understood in the lattice of selfadjoint elements of B . Let
P ∈ B(X ).

Hence, the left multiplication by b is a bounded linear map with bound ‖b‖. Likewise, by the second inequality of
(22), the left multiplication by X is a bounded linear map on B(X ) with bound M . Let P ∈ B(X ) and write P = b + P ′
with b ∈ B and P ′ ∈ B(X )0. Then,

〈T P,T P 〉 = 〈
XP ′ − μ

(
XP ′),XP ′ − μ

(
XP ′)〉 = 〈

XP ′,XP ′〉 − μ
(
XP ′)∗

μ
(
XP ′) ≤ 〈

XP ′,XP ′〉.
Thus, ∥∥〈T P,T P 〉∥∥

B
≤ ∥∥〈

XP ′,XP ′〉∥∥
B

≤ M2
∥∥〈

P ′,P ′〉∥∥
B

≤ M2
∥∥〈P,P 〉∥∥

B
.

Therefore, T is also bounded by M . By the B-valued Cauchy–Schwartz inequality and by the above bounds,∥∥Bμ,n(b, . . . , b,1)
∥∥ = ∥∥〈

b(T b)n−2ξ, ξ
〉∥∥ ≤ ∥∥b(T b)n−2ξ

∥∥‖ξ‖ ≤ ‖b‖n−1(M)n−2‖ξ‖2.

Since ‖〈ξ, ξ 〉‖ = ‖μ(X 2) − μ(X )2‖, we conclude that for ‖b‖ < M−1,

∥∥Hμ(b) − μ(X )
∥∥ ≤

∑
n≥2

‖b‖n−1Mn−2
∥∥μ

(
X 2) − μ(X )2

∥∥ ≤ ‖b‖
1 − M‖b‖

∥∥μ
(
X 2) − μ(X )2

∥∥.
�

5.4. Proof of the additive case

In this subsection, we are given three B-valued distributions μ1, μ2 and μ3 such that

μ1 �μ2 = μ3,

and we want to recover the distribution of μ2. We suppose without loss of generality that μ1(X ) = 0, and that all distri-
butions are bounded. Note that the latter condition could be weakened to unbounded distributions admitting moments of
order 2 without changing the proof. Since we did not want to introduce affiliated operators, we only are considering the
bounded case.

This section is very similar to the scalar case, only the constant K differs. We set K = 4
√

2σ1, and we define

BK := {b ∈ B | 
b > K}.
Define moreover the function h̃3(b) = Fμ3(b) + b on B , which is the operator valued version of h̃3. Recall that for
a, b ∈ B self-adjoint, we write b > a when b − a > 0.
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Proposition 5.6. For b ∈ BK , the function Tb(w) = h1(h̃3(r) − b) + b is well defined and analytic on �b = {r ∈ B+,

r > 3
b/4}.

For any r ∈ �b , the iterated function T ◦n
b (r) converges to the unique fixed point w3(b) of �b .

Proof. Let b ∈ BK . Let r ∈ �b . Then, 
(r) >
3
(b)

4 , which yields


(
h̃3(r) − b

) = 
(
Fμ3(r) + r − b

)
> 2

3
b

4
− 
b >


(b)

2
, (23)

where we have used in the first inequality that 
[Fμ3(r)] ≥ 
(r) for r ∈ B+ (see [9]). Since h1 is defined on B+, Tb is in
particular well-defined.

Since μ1(X ) = 0 by hypothesis, Lemma 5.4 together with 23 yield

∥∥hμ1

(
h̃3(r) − b

)∥∥ ≤ 4σ 2
1

σinf
(h̃3(r) − b)
≤ 8σ 2

1

σinf
(b)
(24)

for r ∈ �b . Hence,


[
Tb(r)

] = 
[
hμ1

(
h̃3(r) − b

) + b
]

≥ 
b − 8σ 2
1

σinf
(b)
.

Since σinf
(b) > 4
√

2σ1,


[
Tb(r)

] − 3
(b)/4 ≥ 
b/4 − 8σ 2
1

σinf
(b)
≥ σinf
(b)/4 − 8σ 2

1

σinf
(b)
> ε

for some constant ε > 0. Hence, Tb(�b) ⊂ �b . Moreover, if s /∈ �b , then 
s � 3
b/4. Hence, there exists a positive
functional φ with ‖φ‖ = 1 such that φ(
s) ≤ 3φ(
b)/4, which yields

φ
(
[

Tb(r)
]) − φ(
s) > ε

for r ∈ �b , and∣∣φ(
Tb(r) − s

)∣∣ ≥ ∣∣
φ
(
Tb(r) − s

)∣∣ = ∣∣φ(
Tb(r)
) − φ(
s)

∣∣ > ε.

Hence, by the isometric embedding of B in the bidual B∗,

‖Tb(r)] − s‖ = sup
φ∈B ′

‖φ‖B′=1

∣∣φ(
Tb(r) − s

)∣∣ > ε.

Therefore, d(∂�b,Tb(�b)) > 0, and we can apply Earl-Hamilton theorem to the map Tb : �b → �b. This implies that
for all r ∈ �b , T ◦n

b (r) converges to the unique fixed point w3(b) of Tb in �b . �

Proposition 5.7. The function w3 is Gateaux analytic on BK and we have

Fμ2(b) = Fμ3

(
w3(b)

)
for z ∈ BK .

Proof. Let a ∈ Bk and b ∈ B . Since BK is open, there exists a bounded open set U ⊂ B such that 0 ∈ U and a + rb ∈ BK

for r ∈ U . We denote by M the bound on U . For φ ∈ B ′, define the function f (r) = φ(w3(a + rb)) for r ∈ U . By
Proposition 5.7, f is the pointwise limit of fn(r) = φ(T ◦n

a+rb(a + rb)). By the definition of Tb , Tb(b) is analytic, which

yields that fn is analytic on U . Moreover, by (24), ‖Tb(w) − b‖ ⊂ 8σ 2
1

K
for b ∈ Bk , w ∈ �b , which implies that

∥∥T ◦n
a+rb(a + rb)

∥∥ ≤ ‖a‖ + M‖b‖ + 8σ 2
1

K
.
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Hence, (fn)n≥1 a family of uniformly bounded analytic functions which converges pointwise to f , and Montel’s theorem
implies that f = φ ◦ w3 is analytic. Since this holds for all φ ∈ B ′, w3 is Gateaux analytic.

Since (24) implies that

∥∥w3(b) − b
∥∥ = ∥∥Tb

(
w3(b)

) − b
∥∥ ≤ 8σ 2

1

K
,

for b large enough, Fμ3(w3(b)) is in the domain of definition of φμ1 and φμ3 . The same reasoning as in the proof of
Proposition 3.1 yields that for b large enough,

φμ3

(
Fμ3

(
w3(b)

)) − φμ1

(
Fμ3

(
w3(b)

)) = b − Fμ3

(
w3(b)

)
.

On the other hand, since μ1 �μ2 = μ3, φμ1 + φμ2 = φμ3 on the intersection of their domain of definition. Therefore, for
b large enough,

φμ2

(
Fμ3

(
w3(b)

)) = b − Fμ3

(
w3(b)

)
,

which yields

Fμ2(b) = Fμ3

(
w3(b)

)
. �

5.5. Proof of the multiplicative case

Given two realizable bounded non-commutative distributions μ1 and μ3 we are interested in finding a realizable distri-
bution μ2 such that

μ1 �μ2 = μ3. (25)

We first recall some notations of Theorem 5.2:

• Ri is the bound of the distribution μi ,
• αi := ‖μi(X )‖ is the norm of the first moment of μi , and
• α∗

i := inf Specμi(X ) is the minimum of the spectrum of μi(X ).
• σ 2

i := ‖μ(X 2) − μ(X )2‖ is the variance of μi .

Since we assumed μ1(X ) > 0, we have α∗
1 > 0. We introduce the constants

• K1 := (R1 + 2
σ 2

1
α∗

1
),

• K3 := sup( 2
α∗

1
(σ3 + α3)K1,R3 + σ3), and

• K := 2
α∗

1
K3.

Lemma 5.8. Let κ < 1. For all w ∈ D
κK−1

1
, H1(w) is well-defined, invertible and

∥∥H1(w)−1
∥∥ ≤ 2

(2 − κ)α∗
1
.

Proof. Since κK−1
1 ≤ R−1

1 , H1 is well-defined on D
κK−1

1
by Lemma 5.5. Let w ∈ D

κK−1
1

. Then, Lemma 5.5 yields that

∥∥H1(w) − μ(X )
∥∥ ≤ σ 2

1

‖w‖−1 − R1
.

Since ‖w‖−1 ≥ κ−1K1 and K1 = R1 + 2
σ 2

1
α∗

1
,

∥∥H1(w) − μ(X )
∥∥ ≤ σ 2

1

2κ−1σ 2
1 /α∗

1

≤ κα∗
1

2
.



Subordination methods for free deconvolution 2591

Thus, there exists d ∈ B such that ‖d‖ ≤ κα∗
1

2 and H1(w) = μ(X ) + d = μ(X )(1 + μ(X )−1d). By definition of α∗
1 , we

have ‖μ(X )−1‖ = (α∗
1)−1, and thus ‖dμ(X )−1‖ ≤ ‖d‖(α∗

1)−1 ≤ κ/2. Hence, (1 + μ(X )−1d) is invertible and

∥∥(
1 + dμ(X )−1)−1∥∥ ≤ 1

1 − κ/2
≤ 2/(2 − κ).

Therefore, H1(w) is also invertible and

∥∥H1(w)−1
∥∥ ≤ ∥∥μ(X )−1

∥∥∥∥(
1 + dμ(X )−1)−1∥∥ ≤ 2

(2 − κ)α∗
1
. �

We denote by � the open set {b ∈ DK−1, b invertible}. For b ∈ �, we denote by �b the open set bD2(α∗
1 )−1 . Remark

that �b always contains the point bμ1(X )−1, because ‖μ1(X )−1‖ = (α∗
1)−1 < 2(α∗

1)−1.
For b ∈ �, let Tb : �b → B be the function

Tb(w) = bH1
(
b−1H̃3(w)

)−1
,

where we recall that H̃3(w) = wH3(w)w for ‖z‖ ≤ R−1
3 .

Lemma 5.9. The map Tb is well-defined on �b , and there is a unique fixed point w3(b) of Tb in �b . Moreover, for all
w ∈ �b , T ◦n

b (w) converges to w3(b) as n goes to infinity.

Proof. Let b ∈ �, so that there exists κ < 1 such that ‖b‖ = κK−1. Let w ∈ �b . Then, w = bw′ with w′ ∈ D2(α∗
1 )−1 , and

thus

‖w‖ ≤ ‖b‖∥∥w′∥∥ < K−12
(
α∗

1

)−1 ≤ κK−1
3 .

Since K3 = sup( 2
α∗

1
(σ3 + α3)K1,R3 + σ3) > R3, H3(w) is well-defined and by Lemma 5.5,

∥∥H3(w) − μ3(X )
∥∥ ≤ σ 2

3

K3 − R3
≤ σ3.

Hence, ‖H3(w)‖ ≤ α3 + σ3 and thus

∥∥b−1wH3(w)w
∥∥ ≤ ∥∥w′∥∥∥∥H3(w)

∥∥‖w‖ ≤ 2

α∗
1
(α3 + σ3)κK−1

3 .

Since K3 ≥ 2
α∗

1
(σ3 + α3)K1,

∥∥b−1wH3(w)w
∥∥ ≤ κK−1

1 ,

Hence, by Lemma 5.8, H1(b
−1wH3(w)w) is invertible and ‖H1(b

−1wH3(w)w)−1‖ ≤ 2
(2−κ)α∗

1
, which implies that

Tb(w) ∈ �̃b := bD2((2−κ)α∗
1 )−1 . Remark that �̃b ⊂ �b . In order to apply Earle–Hamilton’s theorem it remains to show

that d(�̃b, ∂�b) > 0. Let u /∈ �b and v ∈ �̃b , and set u′ = b−1u and v′ = b−1v. Then, ‖u′‖ ≥ 2
α∗

1
because bu′ /∈ bD2(α∗

1 )−1

and ‖v′‖ < 2((2 − κ)α∗
1)−1. Thus,

∥∥u′ − v′∥∥ ≥ ∣∣∥∥u′∥∥ − ∥∥v′∥∥∣∣ ≥ 2

α∗
1

− 2

(2 − κ)α∗
1

= 2(1 − κ)

(2 − κ)α∗
1
.

Since ∥∥u′ − v′∥∥ = ∥∥b−1(u − v)
∥∥ ≤ ∥∥b−1

∥∥‖u − v‖,
we deduce that

‖u − v‖ ≥ 2(1 − κ)

α∗
1‖b−1‖ ,
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which yields

d(�̃b, ∂�b) ≥ 2(2 − 1 − κ)

α∗
1‖b−1‖ > 0.

Hence, d(Tb(�b),�
c
b) > 0 and Tb satisfies the hypothesis of Earl-Hamilton theorem. There exists thus a unique fixed

point w3(b) of Tb in �b , and for all w ∈ �b , K◦n(w) converges to w3(b) when n goes to infinity. �

We can now turn to the actual computation of the Cauchy transform of Fμ2 .

Proposition 5.10. If (25) has a solution, then Fμ2 is defined by

Fμ2(b) = bw3
(
b−1)Fμ3

(
w3

(
b−1)−1)

,

for b ∈ B such that inf Specb > K .

Proof. Let us show first that w3 : � → B is Gateaux holomorphic and invertible. Let φ ∈ B∗ and let a ∈ � and c ∈ B .
Since � is open, there exist U ⊂ C such that for z ∈ U , a + zc ∈ �. Define fn : U → C by fn(z) = φ(T ◦n

a+zc(0)). Since
0 ∈ �b for all b ∈ �, fn is well-defined on U . Moreover, H1 and H̃3 are analytic, thus b �→ T ◦n

b (0) is analytic on � for
all n ≥ 1. Therefore, each map fn is analytic on U . Since T n

b (w) ∈ �b for all n ≥ 1,

∥∥T ◦n
b (w)

∥∥ ≤ 2‖b‖/α∗
1 ≤ 2K−1

α∗
1

,

for all b ∈ �, w ∈ �b and n ≥ 1. Hence, the family (fn)n≥1 is uniformly bounded and converges pointwise, which yields
by Montel’s theorem that (fn)n≥1 converges uniformly to a holomorphic function f . By Lemma 5.9, we already now that
f (z) = φ(w3(a + zb)) which yields the Gateaux holomorphicity of w3.

For b small enough, set w(b) = η
〈−1〉
μ3 ημ2(b) = w

〈−1〉
2 (b), where w2(b) is the function introduced in [7, Theorem 2.2].

By Lemma 5.5 and the definition of ημ, we have ημ(b) ∼ bμ(X ) as b goes to zero. Therefore, w(b) ∼ bμ2(X )μ3(X )−1

as b goes to zero. Moreover, by [7, Theorem 2.2 (3)],

w2(b) = bH1
(
Hμ2

(
w2(b)

)
b
)
, (26)

and by definition of w2, ημ3(b) = ημ2(w2(b)). Hence, since we have also ημ2(b) = ημ3(w(b)), evaluating (26) on w(b)

yields

b = w(b)H1
(
Hμ2(b)w(b)

)
.

By Lemma 5.5, Hμ2(b) converges to μ2(X ) as b goes to zero; hence, by Lemma 5.8, for b small enough H1(Hμ2(b)w(b))

is invertible with ‖H1(Hμ2(b)w(b))−1‖ < α∗
1/2, which yields

w(b) = bH1
(
Hμ2(b)w(b)

)−1 ∈ �b.

Since Hμ2(b) = b−1ημ2(b) = b−1ημ3(w(b)), the latter equation yields

w(b) = bH1
(
b−1ημ3

(
w(b)

)
w(b)

)−1 = bH1
(
b−1H̃3

(
w(b)

))−1 = Tb

(
w(b)

)
. (27)

Therefore, w(b) is a fixed point of Tb . Since w(b) ∈ �b , we must have w(b) = w3(b) by Lemma 5.9. Since ημ2(b) =
ημ3(w(b)), this yields ημ2(b) = ημ3(w3(b)) for b small enough. The functions ημ2 and ημ3 ◦ w3 are two Gateaux holo-
morphic maps defined on the connected domain � and they coincide on an open subset of �, thus they are equal on �,
and we have

ημ2(b) = ημ3

(
w3(b)

)
for b ∈ �. Let b ∈ B be such that inf Specb > K . Then, b is invertible and b−1 ∈ �. Therefore,

Fμ2(b) = b
(
1 − ημ2

(
b−1))

= b(1 − ημ3

(
w3

(
b−1))

= bw3
(
b−1)Fμ3

(
w3

(
b−1)−1)

. �
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