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In this work we introduce the concept of Bures–Wasserstein barycen-
ter Q∗, that is essentially a Fréchet mean of some distribution P supported
on a subspace of positive semi-definite d-dimensional Hermitian operators
H+(d). We allow a barycenter to be constrained to some affine subspace of
H+(d), and we provide conditions ensuring its existence and uniqueness.
We also investigate convergence and concentration properties of an empirical
counterpart of Q∗ in both Frobenius norm and Bures–Wasserstein distance,
and explain, how the obtained results are connected to optimal transportation
theory and can be applied to statistical inference in quantum mechanics.

1. Introduction. The space of finite-dimensional Hermitian operators is commonly ap-
plied for data representation. For instance, in quantum mechanics it is used for mathematical
description of physical properties of a quantum system: the real-valued spectrum is associ-
ated to measurements observed in a physical experiment. Real-valued symmetric matrices
are also widely used for description of systems in engineering applications, medical studies,
neural sciences, evolutionary biology etcetera. Usually, one assumes a sample to be random;
see, for example, Álvarez-Esteban et al. (2015), Calsbeek and Goodnight (2009), del Barrio
et al. (2019b), Gonzalez et al. (2017), Goodnight and Schwartz (1997). Statistical character-
istics of its distribution P, such as mean and variance, are of interest for experimental design,
and analysis of the results for further development of natural science models.

The current study focuses on the space of positive semi-definite Hermitian matrices H+(d)

and presents a theoretical analysis of aggregation methods of the relevant statistical informa-
tion from data sets, for which the hypothesis of linearity might be violated. In this case,
the widely-used Euclidean mean and variance are not sensitive enough to capture effects
of interest. For instance, some data sets are described by probability measures belonging to
some scale-location family, for example, Álvarez-Esteban et al. (2018), Muzellec and Cuturi
(2018). The nonlinearity assumption requires an adaptation of the tools of classical statistical
analysis. In order to capture nonlinear effects, we suggest to endow H+(d) with the Bures–
Wasserstein distance dBW, originally introduced by Bhatia, Jain and Lim (2019). For a pair
of positive semi-definite matrices Q,S ∈ H+(d) the distance is defined as

(1.1) d2
BW(Q,S) = trQ + trS − 2 tr

(
Q1/2SQ1/2)1/2

.

It is worth noting that being restricted to the sub-space of symmetric positive semidefinite
matrices Sym+(d), dBW turns into the 2-Wasserstein distance between two normal distri-
butions. Let N (0,Q) and N (0, S) be two centred Gaussians. The 2-Wasserstein distance
is

d2
W2

(
N (0,Q),N (0, S)

) = trQ + trS − 2 tr
(
Q1/2SQ1/2)1/2

.
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It is worth noting that a natural extension of the Gaussian case is the case of distributions
coming from the same scale-location family (see, e.g., Agueh and Carlier ((2011), Section 6)
or Álvarez-Esteban et al. (2018)).

In the last few years, the class of optimal transportation distances and in particular the 2-
Wasserstein distance attract a lot of attention of the both mathematical and machine learning
communities. The latter captures the geometrical similarities between objects coming from
nonlinear spaces, see, for example, Courty et al. (2017), Flamary et al. (2018), Montavon,
Müller and Cuturi (2016), while the recent advances in computations make the distance use-
ful for the real-world problems (Cuturi (2013), Gramfort, Peyré and Cuturi (2015), Uribe
et al. (2018)). For more information on the Wasserstein distance and optimal transportation
theory in general, we recommend the excellent monograph by Villani (2009). The book by
Peyré, Cuturi et al. (2019) provides a state-of-the-art survey of numerical methods and their
applications in data sciences.

This study focuses on the following statistical setting. Let P be a probability distribution
supported on the set of nonnegatively definite Hermitian matrices H+(d). Two important
characteristics of P are the Fréchet mean and variance. While the former is a “typical” rep-
resentative of a data set in hand, the latter appears in the analysis of data variability; see, for
example, Del Barrio, Lescornel and Loubes (2015). We briefly recall both concepts below.
For an arbitrary point Q ∈H+(d), the Fréchet variance of P is defined as

V(Q)
def=

∫
H+(d)

d2
BW(Q,S)d P(S).

The Fréchet mean of P is given by the set of global minimizers of the variance V(Q):

(1.2) Q∗ ∈ argmin
Q∈H+(d)

V(Q).

However, in some cases one might be interested in a minimizer belonging to an affine sub-
space of Hermitian operators H(d), A ⊂H(d):

(1.3) Q∗ ∈ argmin
Q∈H+(d)∩A

V(Q).

For instance, such a necessity arises when considering a random set of quantum density
operators. Section 3.2 discusses this example in more detail. Note that the setting (1.3) covers
the setting (1.2). So, without loss of generality, we further address only (1.3).

Obviously, the first crucial question concerns existence and uniqueness of Q∗. Theo-
rem 2.1 presents the positive answers to both issues. This immediately allows us to define
the global Fréchet variance of P:

V∗ def= V(Q∗).
Given an i.i.d. sample S1, . . . , Sn, Si ∼ P, one constructs an empirical version of V(Q), for
an arbitrary Q, as follows:

Vn(Q)
def= 1

n

n∑
i=1

d2
BW(Q,Si).

The empirical Fréchet mean and the global empirical variance also exist and unique:

(1.4) Qn = argmin
Q∈H+(d)∩A

Vn(Q), Vn
def= Vn(Qn).

Both facts follow from Theorem 2.1.
This work studies the convergence of the estimators Qn and Vn and investigates the con-

centration properties of both objects. A discussion of the practical applicability of the ob-
tained results is postponed to Section 3. There we explain the connection to optimal trans-
portation theory and present a possible application to statistical analysis in quantum mechan-
ics.
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1.1. Contribution of the present study.

The central limit theorems for Qn and Vn. From now on we use bold symbols (e.g., A, B)
to denote operators, whereas a classical font (e.g., A, B) stands for either matrices or vectors.

The first result of this study concerns the asymptotic normality of the approximation error
of the population Fréchet mean by its empirical counterpart:

√
n(Qn − Q∗)

w−→ N (0,�),

where “
w−→” stands for the weak convergence, and � is a covariance operator acting on a

linear subspace M ⊂ H(d) associated with the affine subspace A. The result is derived under
some suitable assumptions on the distribution P introduced later, in Section 2.

At this point it is worth mentioning that the asymptotic normality of Qn falls in the setting
of the asymptotic normality of parametric M-estimations with a smooth and convex loss
function dBW(·, ·) defined over the convex set A∩H+(d). The convexity and the smoothness
of dBW(·, ·) are validated by Lemma A.5 and Lemma A.6, respectively. However, the current
study uses the proof techniques different from a verification of the standard assumptions on
M-estimators. We discuss the issue in more detail in Section 2.4.

The above convergence result cannot be used directly for construction of asymptotic con-
fidence sets, as it relies on the unknown covariance matrix �. However, Theorem 2.2 ensures
that the covariance operator � can be replaced by an empirical counterpart �̂n:

√
n�̂n

−1/2
(Qn − Q∗)

w−→ N (0, I ),

where I denotes the identity operator. Along with the asymptotic normality of
√

n(Qn −Q∗),
we are interested in the limiting distribution of L(

√
ndBW(Qn,Q∗)), where L(X) denotes the

distribution of a random variable X. In what follows ‖A‖F denotes the Frobenius norm of
matrix A. Corollary 2.1 ensures

L
(√

ndBW(Qn,Q∗)
) w−→ L

(‖ξ‖F

)
,

where ξ is some normally distributed vector. The data-driven asymptotic confidence sets for√
ndBW(Qn,Q∗) are obtained by replacing ξ by its empirical counterpart ξn:

dw
(
L
(√

ndBW(Qn,Q∗)
)
,L

(‖ξn‖F

)) → 0,

where dw is some metric inducing the weak convergence of measures. We also show the
asymptotic normality of the approximation error of the variance V∗ by its empirical analogue
Vn (see Theorem 2.3):

√
n(Vn − V∗)

w−→ N
(
0,Vard2

BW(Q∗, S)
)
.

All above-mentioned results are closely connected to the convergence of empirical 2-
Wasserstein barycenters. For the sake of transparency we postpone a further discussion of
this topic to Section 3.1.

The concentration of Qn and Vn. The technique of the proof of the central limit theorem,
developed in the current study, appears to be suitable for an investigation of the concentration
properties of Qn and Vn. To validate the concentration, we suppose the distribution P to be
sub-Gaussian; see Assumption 3. This assumption ensures the following bounds which hold
with high probability:∥∥Q−1/2∗ QnQ

−1/2∗ − I
∥∥
F ≤ C(

√
m + t)√
n

, dBW(Qn,Q∗) ≤ C(
√

m + t)√
n

,

where m is the dimension of M, t ≥ 0, and C denotes a generic constant. For more details
see Theorem 2.4 and Corollary 2.2, respectively. To the best of our knowledge, these results
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appear to be novel. Along with concentration of the empirical barycenter, we investigate the
concentration of the empirical variance Vn, which holds with high probability:

|Vn − V∗| ≤ max
(

μt2

n
,

νt√
n

)
+ C(

√
m + t)2

n
,

where μ and ν are some parameters depending on the distribution of d2
BW(Q∗, S), m is the

dimension of M, C stands for a generic constant, and the parameter is t ≥ 0. The result is
presented in Theorem 2.5. We discuss its relation to the existing results in Section 3.1.

The paper is organized as follows. Section 2 presents the obtained results in more detail.
Section 3 illustrates the connection to other scientific problems. Finally, Section 4 suggests
to use barycenters for replacement of the lost data. It contains a description of the idea, and
experimental estimation of convergence rates for barycenters using both an artificial and a
real data set. The latter one is related to the climate modelling.

2. Results. Following Bhatia, Jain and Lim (2019), we continue to investigate properties
of dBW(Q,S). Further we present an alternative analytical expression for the distance. The
result is well known for the case of real-valued symmetric matrices Q,S ∈ Sym+(d); see
Olkin and Pukelsheim (1982). The proposition below extends it to the case of Hermitian
matrices H+(d).

PROPOSITION 2.1. Let Q,S ∈ H+(d) and Q � 0. Then (1.1) can be rewritten as

d2
BW(Q,S) = ∥∥(T S

Q − I
)
Q1/2∥∥2

F
= tr

(
T S

Q − I
)
Q
(
T S

Q − I
)
,

where the optimal map from Q to S is

T S
Q

def= argmin
T :T QT ∗=S

∥∥(T − I )Q1/2∥∥
F

= S1/2(S1/2QS1/2)−1/2
S1/2 = Q−1/2(Q1/2SQ1/2)1/2

Q−1/2.

(2.1)

By (S1/2QS1/2)−1/2 we denote the pseudo-inverse matrix ((S1/2QS1/2)1/2)+.

Note that being restricted to the sub-space Sym++(d), T S
Q coincides with the optimal push-

forward (also known as the optimal map) between two centred normal distributions N (0,Q)

and N (0, S): T S
Q#N (0,Q) = N (0, S). For more details on general optimal transportation

maps see Brenier (1991), for a particular case of scale-location families one may refer to
Álvarez-Esteban et al. (2018), Takatsu (2011). The differentiability of T S

Q is one of the key
ingredients in the proofs. It is validated in Lemma A.2. Note that for a particular choice of
A in (1.3), A= Sym++(d), the differentiability of optimal transportation maps are proved in
Rippl, Munk and Sturm (2016). Section A.2 is dedicated to the investigation of properties of
T S

Q and its differential dT S
Q. Section A.3 investigates properties of dBW. We highly recom-

mend to at least look through these two sections for a better understanding of the tools used
in the proofs of central limit theorems and concentrations.

2.1. Existence and uniqueness of Q∗ and Qn. Along with investigation of properties of
the distance in hand, and before moving to more general questions, one should ask her- or
himself, whether the Fréchet mean Q∗ exists and, if so, is it unique or not. We further assume
that A has a nonempty intersection with the space of positive definite operators:

ASSUMPTION 1. Given the setting (1.3), we suppose an affine subspace A ⊂ H(d) to be
s.t. H++(d) ∩ A 
= ∅. By M we denote the linear subspace of H(d) associated with A, that
is, the following representation holds: A= {Q0} +M for some Q0 ∈H(d).
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Without loss of generality we assume that P assigns positive probability to the space of
positive definite Hermitian matrices H++(d). We also suppose P to be s.t. the spectrum of S

is on average bounded away from infinity:

ASSUMPTION 2. Let data distribution P, S ∼ P, be s.t.

P
(
H++(d)

)
> 0, E trS < +∞.

The next theorem ensures existence and uniqueness of the Fréchet mean introduced in
(1.3).

THEOREM 2.1 (Existence and uniqueness of Fréchet mean Q∗). Under Assumptions 1
and 2, there exists unique positive-definite barycenter Q∗ of P, Q∗ � 0. Moreover, it is char-
acterised as the unique solution of the equation

(2.2) ΠMET S
Q = ΠMI, Q ∈ H++(d),

where ΠM is the orthogonal projector onto M.

Note that for any fixed Q ∈ H++(d), T S
Q is a random variable because it is a continuous

function of the random variable S. The equation (2.2) generalises the result for scale-location
families in 2-Wasserstein space, presented in Álvarez-Esteban et al. ((2015), Theorem 3.10),
and originally obtained for the Gaussian case in the seminal work Agueh and Carlier ((2011),
Theorem 6.1). Namely, if A = Sym++(d), then Q∗ exists and is the unique solution of a
fixed-point equation:

Q = E
(
Q1/2SQ1/2)1/2

.

Note that it is similar to (2.2), as by multiplying the above equation from both sides by Q−1/2

one obtains ET S
Q = I . Existence, uniqueness, and measurability of the estimator Qn defined

in (1.4) are a direct corollary of the above theorem. The proof of Theorem 2.1 is presented in
Section A.4.

2.2. Limiting distributions of
√

n(Qn − Q∗),
√

ndBW(Qn,Q∗), and
√

n(Vn − V∗).
Armed with the knowledge about properties of dBW(·, ·), Q∗, and Qn, we are now equipped
enough to introduce the first main result of the current study. In what follows we denote the
variance of optimal transportation map from the population barycenter Q∗ to any S ∼ P as

(2.3) Var
(
T S

Q∗
) = E

(
T S

Q∗ − I
)⊗ (

T S
Q∗ − I

)
with ET S

Q∗ = I,

where ⊗ stands for the tensor product. Theorem 2.2 presents the asymptotic convergence of
Qn to Q∗.

THEOREM 2.2 (Central limit theorem for the Fréchet mean). Under Assumptions 1 and 2
the approximation error rate of the Fréchet mean Q∗ by its empirical counterpart Qn is

(A)
√

n(Qn − Q∗)
w−→ N (0,�),

where � is a self-adjoint linear operator acting from M to M defined in (A.7). Moreover, if
Var(T S

Q∗) is nondegenerated, then

(B)
√

n�̂
−1/2
n (Qn − Q∗)

w−→ N
(
0, (I )M

)
,

where �̂n is a data-driven empirical counterpart of � defined in (A.8).
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REMARK 1. The notations (A)M denote a linear operator associated to the restriction of
a quadratic form A to the subspace M:

(A)M : M →M, X �→ ΠMA(X).

We intentionally postpone the explicit definitions of � and �̂n, because they require an in-
troduction of many technical details. This would make the description of the main results less
transparent. It is worth noting that the result (B) enables construction of data-driven asymp-
totic confidence sets. However, inversion of the empirical covariance might be a problem.
For instance, numerical simulations show that �̂n might be degenerated if P is supported on
a set of diagonal matrices. This immediately raises a question concerning introduction of a
resampling approach which would make the computations tractable. We consider this as a
subject for the further research.

The proof of the central limit theorem relies on the Fréchet differentiablilty of T S
Q by the

lower argument Q at the point Q∗:

T S
Qn

= S1/2(S1/2QnS
1/2)−1/2

S1/2, T S
Qn

≈ T S
Q∗ + dT S

Q∗(Qn − Q∗),

where dT S
Q∗ is a differential of T S

Q at the point Q∗.
Since H+(d) is endowed with the Bures–Wasserstein distance, the convergence properties

of dBW(Qn,Q∗) are also of great interest. The result is a corollary of the above theorem.

COROLLARY 2.1 (Asymptotic distribution of dBW(Qn,Q∗)). Under conditions of The-
orem 2.2 it holds

L
(√

ndBW(Qn,Q∗)
) w−→ L

(∥∥Q1/2∗ dT
Q∗
Q∗(Z)

∥∥
F

)
,

where Z ∈ M ⊂H(d) is a random matrix, Z ∼ N (0,�).
Moreover, replacing in the limiting distribution Q∗ and Z by their empirical counterparts

Qn and Zn ∼ N (0, �̂n), Zn ∈M, respectively, one obtains the following convergence

dw
(
L
(√

ndBW(Qn,Q∗)
)
,L

(∥∥Q1/2
n dT

Qn

Qn
(Zn)

∥∥
F

)) → 0,

where dw is some metric inducing the weak convergence.

To illustrate the result, we consider the case of a diagonal Q∗ = diag(q1, . . . , qd). This
setting admits the explicit form of the limiting distribution:

L
(√

ndBW(Qn,Q∗)
) w−→ L

(√√√√√ d∑
i,j=1

Z2
ij

2(qi + qj )

)
,

where Z = (Zij )
d
i,j=1. This representation of the limiting distribution is derived in the proof

of Corollary 2.1 which is based on the fact that

d2
BW(Qn,Q∗) = −1 + oP (1)

2

〈
dT

Q∗
Q∗(Qn − Q∗),Qn − Q∗

〉
,

with oP (·) being o-small in probability, and an explicit formula for dT S
Q from Lemma A.2.

We discuss the above approximation of d2
BW(Qn,Q∗) in more detail later in Section 2.4.

The last result concerning convergence of empirical barycenter is the central limit theorem
for the empirical variance Vn.



1270 A. KROSHNIN, V. SPOKOINY AND A. SUVORIKOVA

THEOREM 2.3 (Central limit theorem for Vn). Let Assumptions 1 and 2 be fulfilled and
E(trS)2 < ∞. Then

√
n(Vn − V∗)

w−→ N
(
0,Vard2

BW(Q∗, S)
)
.

All proofs are collected in Section A.4. Section 4.1 illustrates the asymptotic behaviour of
L(

√
n‖Qn − Q∗‖F ), L(

√
ndBW(Qn,Q∗)), and L(

√
n|V∗ − Vn|).

2.3. Concentration of Qn and Vn. This section discusses the concentration properties of
Qn under the assumption of sub-Gaussianity of P:

ASSUMPTION 3 (Sub-Gaussianity of
√

trS). Let
√

trS be sub-Gaussian:

P{√trS ≥ t} ≤ Be−bt2
for any t ≥ 0,

with some constants B,b > 0.

The first result concerns the concentration of Q
−1/2∗ QnQ

−1/2∗ in Frobenius norm. This
is a crucial step in the proof of concentration of dBW(Qn,Q∗). From now on we denote
the operator norm of a matrix A or an operator A as ‖A‖, ‖A‖, respectively. The notations
λmin(A), λmin(A) denote their smallest eigenvalues.

THEOREM 2.4 (Concentration of Q
−1/2∗ QnQ

−1/2∗ in F-norm). Let Assumptions 1, 2,
and 3 be fulfilled, then

P

{∥∥Q−1/2∗ QnQ
−1/2∗ − I

∥∥
F ≥ cQ√

n
(
√

m + t)

}
≤ 2me−ntF + e−t2/2 + (1 − p)n

for any t ≥ 0 and n ≥ c2
Q(

√
m + t)2, where

m
def= dim(M), p

def= P
(
H++(d)

)
,

cQ
def= 4‖Q∗‖σT

λmin(F
′)

, tF
def= Cmin

(
λmin(F

′)
U log1/2(U/σF )

,
λ2

min(F
′)

σ 2
F

)
,

where the operator F ′ is defined in (B.3), constant σT comes from auxiliary Proposition B.2,
constants σF and U are defined in auxiliary Proposition B.1, and C denotes a generic con-
stant.

To make the result more transparent, we further discuss it in a less formal way. The proof
is based on three steps, and each step yields a bounding term. The first step gives the term
2me−ntF . It deals with the concentration of some auxiliary empirical operator F ′

n defined in
(B.2) in the vicinity of its population counterpart F ′. These two operators are essentially a
price to pay for moving from the space of optimal transportation maps T S

Q to the space of
barycenters. The concentration of F ′

n is derived from a result by Koltchinskii (2011) which is
presented in Proposition B.1. The constants σF and U appear due to this concentration. Some
prior bounds on σF and U are obtained in Lemma B.3. The second step yields the term e−t2/2.
It ensures the concentration of ‖ 1

n

∑
i T

Si

Q∗ − I‖
F

, and relies on the result by Hsu, Kakade
and Zhang (2012). To make the text self-contained, we introduce it in Proposition B.2. The
constant σT comes from a bound on ‖ 1

n

∑
i T

Si

Q∗ − I‖
F

. The last step yields the term (1−p)n.
It comes from the requirement on nondegeneracy of Qn. In other words, a high degeneracy
leads to a smaller p and, thus, to worse bounds.

The next result deals with the concentration of dBW(Qn,Q∗). It is a corollary of the above
theorem.
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COROLLARY 2.2 (Concentration of Qn in dBW distance). Under the conditions of The-
orem 2.4 the following result holds:

P

{
dBW(Qn,Q∗) ≥ cQ‖Q∗‖1/2

√
n

(
√

m + t)

}
≤ 2me−ntF + e−t2/2 + (1 − p)n.

The last important result of the current study describes the concentration properties of the
empirical Fréchet variance Vn.

THEOREM 2.5 (Concentration of Vn). Let Assumptions 1, 2, and 3 be fulfilled, then, in
the notation of Theorem 2.4,

P
{|Vn − V∗| ≥ z(μ, ν, d,n, t)

}≤ 2me−ntF + 3e−t2/2 + (1 − p)n

with

z(b, ν, d, n, t)
def= max

(
μt2

n
,

νt√
n

)
+ 3

c2
Q‖F ′‖

n
(
√

m + t)2.

A pair (ν,μ) is the parameters of a subexponential r.v. d2
BW(Q∗, S).

All the proofs are collected in Section B.

2.4. Central limit theorem and asymptotic normality of M-estimators. A possible ap-
proach to obtain the central limit theorem is to look at a more general result concerning the
asymptotic normality of M-estimators. To make the text self-contained, we briefly recall the
subject following Section 5.4 in the book by van de Geer (2006). Under the setting (1.4),
d2

BW(Q,S) might be considered as a loss function parametrized by elements of the affine
subspace, Q ∈ A∩H+(d). Thus, the proof of the CLT for an empirical barycenter is equiva-
lent to a validation of the following conditions.

(C1) There exists a function ψQ : H+(d) →H(d) which is L2(P)-integrable, s.t.

lim
Q→Q∗

|d2
BW(Q,S) − d2

BW(Q∗, S) − 〈ψQ∗(S),Q − Q∗〉|
‖Q − Q∗‖ = 0.

(C2) As Q → Q∗, it holds∫ (
d2

BW(Q,S) − d2
BW(Q∗, S)

)
d P(S)

= 1

2

〈
Q − Q∗,V (Q − Q∗)

〉+ o
(‖Q − Q∗‖),

where V is some positive definite operator.

(C3) Let Q 
= Q∗, and define gQ(S)
def= d2

BW(Q,S)−d2
BW(Q∗,S)

‖Q−Q∗‖ . Suppose that for some ε > 0,
the class {gQ(S),Q : ‖Q − Q∗‖ ≤ ε} has an envelope G ∈ L2(P) and that it is a Donsker
class.

Lemma A.6 presents differentiability of the Bures–Wasserstein distance and ensures the
following quadratic approximation. For any Q ∈H++(d) it holds

− 2

(1 + λ
1/2
max(Q

−1/2∗ QQ
−1/2∗ ))2

〈
dT S

Q∗(Q − Q∗),Q − Q∗
〉

≤ d2
BW(Q,S) − d2

BW(Q∗, S) + 〈
T S

Q∗ − I,Q − Q∗
〉

≤ − 2

(1 + λ
1/2
min(Q

−1/2∗ QQ
−1/2∗ ))2

〈
dT S

Q∗(Q − Q∗),Q − Q∗
〉
,
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where λmax(A) and λmin(A) stand for maximal and minimal eigenvalues of a matrix A,
respectively. This approximation ensures Condition (C1) and (C2) to be fulfilled with
ψQ∗(S) = I −T S

Q∗ , and V = −EdT S
Q∗ , respectively. However, it is not clear how one should

proceed with the validation of Condition (C3). On the other hand, the direct proof of CLT in-
troduced in the present study is suitable for the proof of the concentration results.

3. Connection to other problems. In this section we explain a connection of obtained
results to some other problems. Section 3.1 investigates the relation between the Bures–
Wasserstein barycenter and the 2-Wasserstein barycenter of some scale-location family. Sec-
tion 3.2 illustrates the idea of a barycenter restricted to an affine subspace A⊂ H(d).

3.1. Connection to scale-location families of measures. We first present the concept of a
scale-location family of absolutely continuous measures supported on Rd .

DEFINITION 3.1. Let X ∼ μ be a random variable following a law μ ∈ Pac
2 (Rd), where

Pac
2 (Rd) is the set of absolutely continuous measures with a finite second moment. A set of

all affine transformations of X is written as

SL(μ)
def= {

L(PX + p) : P ∈ Sym+(d),p ∈ Rd}.
It is referred to as a scale-location family.

Scale-location families play an important role in modern data analysis and appear in many
practical applications due to being user-friendly in terms of theoretical analysis and, at the
same time, possessing high modelling power. For example, it is widely used in medical imag-
ing Wassermann et al. (2010), modelling of molecular dynamic Gonzalez et al. (2017), clus-
tering procedures del Barrio et al. (2019b), climate modelling Mallasto and Feragen (2017),
embedding of complex objects in low-dimensional spaces Muzellec and Cuturi (2018), and
so on.

A possible metric that takes into account nonlinearity of the underlying data-set is the
2-Wasserstein distance, dW2 . Let μX , μY be elements of SL(μ), and let random variables
sampled from μX and μY be X ∼ μX , Y ∼ μY , respectively. We denote their first and second
moments as

(3.1) EX = mX, EY = mY , Var(X) = SX, Var(Y ) = SY .

It is a well-known fact that dW2 between measures coming from the same scale-location
family depends only on the first and second moments of the measures

d2
W2

(μX,μY ) = ‖mX − mY ‖2 + d2
BW(SX,SY ).

For more details on a general class of optimal transportation distances we recommend excel-
lent books Ambrosio and Gigli (2013), Villani (2009).

Distribution over a scale-location family. In many cases we are interested in data sets com-
ing from some scale-location family. Let P be a probability measure supported on some
SL(μ). And let (Ω,F,P) be a generic probability space, s.t. for any ω ∈ Ω there exists an

image μω
def= L(PωX + pω), where Pω ∈ Sym+(d) is a scaling parameter and pω ∈ Rd is a

shift parameter. A randomly sampled measure μω belongs to SL(μ) by construction, and its
first and second moments (mω,Sω) are written as

mω
def= Pωr + pω, Sω

def= PωQP �
ω ,
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where the pair (r,Q) denote the first and the second moments of the template measure μ.
The Fréchet variance of P at any arbitrary point μ′ is written as

V
(
μ′) def=

∫
supp(P)

d2
W2

(
μ′, νω

)
P(dω).

Given an i.i.d. sample ν1, . . . , νn from P, we define the empirical counterpart of V(μ′):

Vn

(
μ′) def= 1

n

n∑
i=1

d2
W2

(
μ′, νi

)
.

Then the population and the empirical barycenters μ∗ and μn are

μ∗ = argmin
μ∈P2(Rd )

V(μ), μn = argmin
μ∈P2(Rd )

Vn(μ).

Note that μ∗ and μn belong to SL(μ) and are uniquely characterised by their first and second
moments, (r∗,Q∗) and (rn,Qn), respectively; see Theorem 3.10 in Álvarez-Esteban et al.
(2015):

r∗ =
∫

supp(P)
mω P(dω), Q∗ =

∫
supp(P)

(
Q1/2∗ SωQ1/2∗

)1/2
P(dω),(3.2)

rn = 1

n

n∑
i=1

mi, Qn = 1

n

n∑
i=1

(
Q1/2

n SiQ
1/2
n

)1/2
.(3.3)

It is worth noting that the concept of Wasserstein barycenter presented originally in a sem-
inal work by Agueh and Carlier (2011) becomes a topic of extensive scientific interest in the
last few years. One of the main reasons is an introduction of computationally feasible proce-
dures; see, for example, Cuturi (2013), Dvurechensky et al. (2018), Kroshnin et al. (2019),
Peyré, Cuturi et al. (2019). There are also many works dedicated to investigation of theoretical
properties of barycenters. A work of Bigot and Klein (2012) focuses on the convergence of
a parametric class of barycenters, while Bigot, Cazelles and Papadakis (2016) investigate the
asymptotic properties of the regularised barycenters. The paper Le Gouic and Loubes (2017)
ensures the convergence of the Wasserstein barycenters. To the best of our knowledge, the
most state-of-the-art result concerning the rates of convergence of an empirical 2-Wasserstein
barycenter is obtained as a particular illustration of a more general result by Le Gouic et al.
(2019). Namely, this work establishes fast rates of convergence for empirical barycenters over
a large class of geodesic spaces with curvature bounds in the sense of Alexandrov. This work
extends and completes the results by Ahidar-Coutrix, Le Gouic and Paris (2018). The latter
paper provides the rates of convergence for empirical barycenters of the Borel probability
measure on a metric space either under assumptions on weak curvature constraint of the un-
derlying space or for a case of a nonnegatively curved space on which geodesics, emanating
from a barycenter, can be extended. Corollary 2.1 extends the above results for dW2(μn,μ∗)
for the case of barycenters constrained to an affine subspace for measures coming from some
scale-location family. The rate is of order n−1/2.

The paper Kroshnin (2018) obtains an analogue of the law of large numbers for the case
of an arbitrary cost function on some affine subspace A.

The paper Agueh and Carlier (2017) introduces the CLT for an empirical barycenter for P
supported on a finite set of Gaussian measures. It is worth noting that the idea of the proof
also relies on the differentiability of optimal transportation maps.

At this point, it is worth mentioning that there are some other works dealing with the cen-
tral limit theorem for the Wasserstein distance, for example, del Barrio and Loubes (2019),
Rippl, Munk and Sturm (2016). However, the setting in these works differs significantly from
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what is done in the present study. The paper Rippl, Munk and Sturm (2016) derives the central
limit theorems for the p-Wasserstein distance, p ≥ 1, between empirical distributions sam-
pled from Gaussians supported on Rd . The work del Barrio and Loubes (2019) establishes
the central limit theorem and the variance bounds for the 2-Wasserstein distance between an
empirical measure and its true underlying counterpart on Rd . A result, similar in spirit to
Theorem 2.5 is obtained in del Barrio et al. (2019a). However, the authors consider only the
space of probability measures supported on the real line, d = 1, endowed with 2-Wasserstein
distance. To the best of our knowledge, there are no results similar to the concentration The-
orem 2.4 and Corollary 2.2 in the case of 2-Wasserstein distance.

3.2. Connection to quantum mechanics. The original Bures metric appears in quantum
mechanics in relation to the fidelity measure between two quantum states and is used for
the measurement of quantum entanglement Dajka, Łuczka and Hänggi (2011), Marian and
Marian (2008). Let ρ and σ be two density operators. In essence a density matrix ρ is a
Hermitian positive semi-definite operator with the unit trace, ρ ∈ H+(d), trρ = 1. It is used
as a possible way of description of statistical state of a quantum system. For an introduction to
the density operators theory one may look Fano (1957). Let ρ and σ be two quantum states:

(3.4) ρ,σ ∈ H+(d), trρ = 1, trσ = 1.

Fidelity of these states is defined as F(ρ, σ ) = (tr
√

ρ1/2σρ1/2)2. It quantifies “closeness” of
ρ and σ ; see Jozsa (1994). It is obvious, that in case of (3.4) the Bures–Wasserstein distance
turns into Bures distance:

(3.5) d2
B(ρ,σ ) = 2

(
1 −F1/2(ρ, σ )

)
.

The rest of this section illustrates the idea of the barycenter restricted to some affine sub-
space A. Given a random ensemble of density matrices, one is able to recovery its mean
using averaging in the Euclidean sense. However, the Bures–Wasserstein barycenter suggests
an alternative way to define the barycenter in terms of fidelity measure (3.5). We consider
a following statistical setting. Let (Ω,F,P) be some mechanism which generates quantum
states ρω. Given an i.i.d. sample ρ1, . . . , ρn we write a population and an empirical variance
of P as

V(σ ) =
∫

supp(P)
d2

BW(σ, ρω)P(dω), Vn(σ ) = 1

n

n∑
i=1

d2
BW(σ, ρi).

Then the population and the empirical barycenters belonging the class of all d × d-
dimensional density operators are defined as

ρ∗ = argmin
σ :trσ=1

V(σ ), ρn = argmin
σ :trσ=1

Vn(σ ).

It can be easily shown, that by “taking the global Fréchet barycenter” or, in other
words neglecting the condition trσ = 1, we end up with the global barycenter, which
is the solution of the fixed point equation which is already mentioned in Section 2:
ρ = ∫

(ρ1/2ρωρ1/2)1/2 P(dω). However, this is a contraction mapping. Thus trρ∗ < 1, and
ρ∗ is not a density operator. In other words the condition trσ = 1 ensures, that ρ∗ and ρn also
belong to the class of density operators. Taking into account the results obtained in Section 2,
ρn is in some sense a natural consistent estimator of ρ∗ with the known rate of convergence
and known deviation properties.
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FIG. 1. Interpolation of the lost data.

4. Interpolation using empirical BW barycenters. We suggest to use the empirical
Bures–Wasserstein barycenters for filling in gaps in data sets consisting of either measures
coming from the same scale-location family, or from a family of Hermitian matrices. As a
motivation we consider a data set related to the climate dynamics collected in Siberia (Russia)
between 1930 and 2009, Bulygina and Razuvaev (2012), Tatusko (1974. 1990), where obser-
vations for the years 1934, 1938, 1942, 1948, and 1961 are lost. In this data set a behaviour
of some quantities, such as a min/max daily temperatures during a year etcetera, is modelled
using the Gaussian processes which parameters are estimated from the real measurements.
We propose to replace the gaps in data with an an empirical barycenter constructed from
available observations. To make the illustration more transparent, we consider a toy example
for the case of two-dimensional covariance matrices. Each observed matrix is represented
graphically by a two-dimensional ellipses. The upper panel at Figure 1 depicts a family of
i.i.d. covariance matrices sampled consecutively over the discrete time t . The eights observa-
tion is supposed to be missing. Three lower panels present a possible replacement constructed
from two (2-d panel), six (3-d panel), and all available observations (4th panel). The observa-
tions used for data reconstruction are coloured in the dark green. The red ellipses correspond
to the Bures–Wasserstein mean, while the blue ones depict the Euclidean mean. The differ-
ence in obtained results presented by three lower panels raises a question of a proper choice
of number of observations used for missing data completion. Though being very interest-
ing, this question is beyond the scope of the current study. Another question concerns the
construction of nonasymptotic confidence sets for the estimators. For instance the work by
Ebert, Spokoiny and Suvorikova (2017) suggests a suitable methodology based on multiplier
bootstrap. However it considers only the case of commuting covariance matrices. Thus we
consider this question as a matter for further research.

The next two sections provide some illustrations of the convergence rate of an empirical
barycenter to the true one. To make the presentation complete, we also provide an illustration
of the convergence of an empirical variance Vn to V∗.

4.1. Simulated data. In this section we consider a simulated data set. Covariance ma-
trices are generated as follows. A matrix S̃k = AkA

T
k is a d-dimensional matrix, where
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FIG. 2. Densities of L(
√

n‖Qn − Q∗‖F ).

Ak = (ak
ij ), ak

ij

iid∼ Unif[0,1] + 1 for all i, j . To ensure that S̃k is nondegenerated, we con-

sider the orthogonal decomposition S̃k = Ũ∗
k Λ̃kŨk , and replace Λ̃k by Λk = diag(λk

1, . . . , λ
k
d)

s.t. λk
i ∼ Unif[18,22]. Thus, an observed i.i.d. sample consists of matrices Sk = Ũ∗

k ΛkŨk ,
k = 1, . . . , n. In what follows, Qn is a barycenter of the sample S1, . . . , Sn.

Figure 2 illustrates the convergence of L(
√

n‖Qn − Q∗‖F ) to L(‖Z‖F ) with Z ∼
N (0,�) presented in Theorem 2.2. Figure 3 depicts the convergence of the distribution
L(

√
ndBW(Qn,Q∗)) to L(‖Q1/2∗ dT

Q∗
Q∗(Z)‖

F
) obtained in Corollary 2.1. Finally, Figure 4

illustrates the convergence of density of L(
√

n(V∗ − Vn)) to the density of the Gaussian
distribution N (0,Var(d2

BW(Q∗, S))) validated by Theorem 2.3. The numerical experiments

FIG. 3. Densities of L(
√

ndBW(Qn,Q∗)).
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FIG. 4. Densities of L(
√

n(Vn − V∗)).

are performed using R. The population barycenter Q∗ was computed using a sample of
20,000 observed covariance matrices. A solid line depicts the density of a respective lim-
iting distributions, while the dashed lines correspond to the densities of L(

√
n‖Qn −Q∗‖F ),

L(
√

ndBW(Qn,Q∗)), or L(
√

n(V∗ − Vn)), respectively. We consider different sample sizes
for calculation of an empirical Bures–Wasserstein barycenter Qn with n ∈ {3,10,100,1000}.
Simulations were carried out for the dimensions d = 5 and d = 10.

4.2. Data aggregation in climate modelling. In this section we demonstrate the conver-
gence rates for the climate-related data set. At first, we discuss the set in more detail. Fol-
lowing the original setting, we assume that the daily minimum temperatures within a year
are described by a class of Gaussian processes. The temperature is measured at a set of 30
randomly sampled meteorological stations located in Siberia. Each Gaussian curve is ob-
tained through the regression, and the maximum likelihood estimation, and is sampled in 50
points Mallasto and Feragen (2017). Thus, the observed data set D consists of 71 Gaussian
distributions:

D = {
N (mt , St ),mt ∈ R50, St ∈ Sym++(50), t = 1, . . . ,71

}
,

where N (mt , St ) is a Gaussian distribution related to a Gaussian process describing a t th
year, t = 1933, . . . ,2009. The missing years in this data set are 1934, 1938, 1942, 1948 and
1961. This distribution is specified by a mean mt and a covariance St . A Gaussian distribution
N (r∗,Q∗) is the population Wasserstein barycenter of D. It is characterised by the first and
the second moments written as (r∗,Q∗)

r∗ = 1

71

71∑
t=1

mt, Q∗ = 1

71

71∑
t=1

(
Q1/2∗ StQ

1/2∗
)1/2

.

A family of empirical barycenters N (rn,Qn) with parameters (rn,Qn) coming from (3.3)
is constructed by means of re-sampling with replacement of the original data set.
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FIG. 5. L(
√

n‖Qn − Q∗‖F ).

Figure 5 and Figure 6 present the convergence of densities of L(
√

n‖Qn − Q∗‖F ) to
L(‖Z‖F ) with Z ∼ N (0,�), and L(

√
ndBW(Qn,Q∗)) to L(‖Q1/2∗ dT

Q∗
Q∗(Z)‖

F
), respec-

tively. The limiting distributions are depicted by solid lines, while the dashed ones stand for
the densities computed for barycenters of n covariance matrices with n ∈ {3,10,70}.

APPENDIX A: PROOF OF CENTRAL LIMIT THEOREM

A.1. List of accepted notations. To make the presentation more transparent, we intro-
duce a list of some used notations.

FIG. 6. L(
√

ndBW(Qn,Q∗)).
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A, B Matrices or vectors
A, B Operators
λmax(�), λmin(�) Largest and smallest eigenvalue of an operator or a matrix
(�)M Restriction of a quadratic form to a subspace M

‖�‖ Operator norm
‖�‖F Frobenius norm
‖�‖1 Schatten norm
‖�‖ψ1

ψ1 Orlicz norm
‖�‖ψ2

ψ2 Orlicz norm
κ(�) = ‖�‖ · ‖�−1‖ Condition number of an operator or a matrix
〈�,�〉 Inner product associated to Frobenius norm
⊗ Tensor product
L(X) Distribution of a r.v. X
w−→ Weak convergence
a.s.−→ A.s. convergence
dw(�,�) Metric inducing weak convergence
oP (�) O-small in probability
OP (�) O-big in probability

A.2. Properties of T S
Q. PROOF OF PROPOSITION 2.1. First, we prove that optimal T

is self-adjoint. Indeed, assume the opposite, then

Q1/2T QT ∗Q1/2 = (
Q1/2T Q1/2)(Q1/2T Q1/2)∗ = Q1/2SQ1/2

and thus trQ1/2T Q1/2 < tr(Q1/2SQ1/2)1/2. Therefore

tr(T − I )Q
(
T ∗ − I

) = trS + trQ − 2 trT Q = trS + trQ − 2 trQ1/2T Q1/2

> trS + trQ − 2 tr
(
Q1/2SQ1/2)1/2 = d2

BW(Q,S).

If T is Hermitian but not positive semi-definite, then Q1/2T Q1/2 � (Q1/2SQ1/2)1/2,
Q1/2T Q1/2 
= (Q1/2SQ1/2)1/2, hence again trQ1/2T Q1/2 < tr(Q1/2SQ1/2)1/2.

Finally, if T ∈ H+(d), then it is straightforward to check that T = T S
Q given by (2.1) and

tr(T − I )Q
(
T ∗ − I

) = trS + trQ − 2 tr
(
Q1/2SQ1/2)1/2 = d2

BW(Q,S). �

The proof of the central limit theorem mainly relies on the differentiability of the map
(2.1). Lemma A.2 shows that T S

Q can be linearised in the vicinity of Q:

T S
Q+X = T S

Q + dT S
Q(X) + o

(‖X‖),
where dT S

Q : H(d) → H(d) is a self-adjoint negative-definite operator and ‖X‖ stands for

an operator norm of X. Properties of dT S
Q are investigated in Lemma A.3. Let us introduce

some notation: if G(A) is a functional of a matrix A, then we denote its differential as odAG.

LEMMA A.1. Map Q �→ g(Q) = Q1/2 is differentiable on H++(d), and its differential
is given by

dQg(X) = U∗
(

(UXU∗)ij√
qi + √

qj

)d

i,j=1
U, X ∈ H(d),

where Q = U∗ diag(q)U is the eigenvalue decomposition.
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PROOF. First, let us consider the map P �→ f (P ) = P 2. It is smooth and its differential

dP f (X) = PX + XP, X ∈ H(d)

is nondegenerated: 〈
dP f (X),X

〉 = 2 trXPX > 0, X 
= 0,

whenever P ∈ H++(d). From now on 〈·, ·〉 denotes a scalar product associated to theFrobe-
nius norm.

Now applying the inverse function theorem we obtain that the inverse map g(·) is also
smooth and its differential enjoys the following equation

X = (dP f |P=Q1/2)
(
dQg(X)

) = Q1/2dQg(X) + dQg(X)Q1/2,

thus

UXU∗ = (
diag(q)

)1/2
UdQg(X)U∗ + UdQg(X)U∗(diag(q)

)1/2
,(

UXU∗)
ij = (

√
qi + √

qj )
(
UdQg(X)U∗)

ij , 1 ≤ i, j ≤ d,

and

dQg(X) = U∗
(

(UXU∗)ij√
qi + √

qj

)d

i,j=1
U. �

LEMMA A.2 (Fréchet-differentiability of the map T S
Q). For any S ∈ H+(d) the map T S

Q

can be linearised in the vicinity of Q ∈ H++(d) as

T S
Q̃

= T S
Q + dT S

Q(Q̃ − Q) + o
(‖Q̃ − Q‖) as Q̃ → Q,

where

(A.1) dT S
Q(X)

def= −S1/2U∗Λ−1/2δΛ−1/2US1/2, X ∈ H(d),

U∗ΛU is an eigenvalue decomposition of S1/2QS1/2

U∗ΛU = S1/2QS1/2, U∗U = UU∗ = I, Λ = diag(λ1, . . . , λrank(S),0, . . . ,0),

Λ−1/2 = (
Λ1/2)+ = diag

(
λ

−1/2
1 , . . . , λ

−1/2
rank(S),0, . . . ,0

)
,

δ = (δij )
d
i,j=1, δij =

⎧⎪⎨⎪⎩
Δij√

λi +√
λj

i, j ≤ rank(S),

0 otherwise,
Δ = US1/2XS1/2U∗.

PROOF. The proof mainly relies on the differentiation of the pseudo-inverse term
(S1/2QS1/2)−1/2, as long as

dT S
Q(X) = S1/2dQ

(
S1/2QS1/2)−1/2

(X)S1/2.

Obviously we can consider only restriction to range(S) and therefore assume w.l.o.g. S � 0.
As (S1/2(Q + X)S1/2)−1/2 = U∗(Λ + Δ)−1/2U , by Lemma A.1 and von Neumann series
expansion we obtain for infinitesimal X ∈H(d) and corresponding Δ that

(Λ + Δ)−1/2 = (
Λ1/2 + δ + o

(‖Δ‖))−1

= (
Λ1/4(I + Λ−1/4δΛ−1/4 + o

(‖Δ‖))Λ1/4)−1

= Λ−1/4(I − Λ−1/4δΛ−1/4 + o
(‖Δ‖))Λ−1/4

= Λ−1/2 − Λ−1/2δΛ−1/2 + o
(‖Δ‖).
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Then the differential dQ(S1/2QS1/2)−1/2(X) is written as

dQ
(
S1/2QS1/2)−1/2

(X) = −U∗Λ−1/2δΛ−1/2U.

Therefore,

T S
Q+X = T S

Q + dT S
Q(X) + o

(‖X‖),
where dT S

Q(X) is defined by (A.1). �

Lemmas A.3 and A.4 are technical and explore properties of dT S
Q.

LEMMA A.3. For any S ∈ H+(d), Q ∈ H++(d), the properties of operator dT S
Q defined

in (A.1) are following:

(I) it is self-adjoint;
(II) it is negative semi-definite;

(III) it enjoys the following bounds:

−〈
dT S

Q(X),X
〉 ≤ λ

1/2
max(S

1/2QS1/2)

2

∥∥Q−1/2XQ−1/2∥∥2
F ,

−〈
dT S

Q(X),X
〉 ≥ λ

1/2
min(S

1/2QS1/2)

2

∥∥Q−1/2XQ−1/2∥∥2
F ;

(IV) it is homogeneous w.r.t. Q with degree −3
2 and w.r.t. S with degree 1

2 , that is, dT S
aQ =

a−3/2dT S
Q and dT aS

Q = a1/2dT S
Q for any a > 0;

(V) it is monotone w.r.t. S1/2QS1/2 (once range S is fixed): dT
S0
Q0

� dT
S1
Q1

in the sense

of self-adjoint operators on H(d) whenever S
1/2
0 Q0S

1/2
0 � S

1/2
1 Q1S

1/2
1 and range(S0) =

range(S1); in particular, dT S
Q is monotone w.r.t. Q ∈ H++(d) for fixed S.

PROOF. Slightly changing notation, we rewrite (A.1) as

dT S
Q(X) = −S1/2U∗Λ−1/2δXΛ−1/2US1/2,

where matrices U and Λ come from Lemma A.2 and

δX = (
δX
ij

)d
i,j=1, δX

ij = ΔX
ij√

λi +√
λj

, ΔX = US1/2XS1/2U∗.

(I) Self-adjointness. Consider a scalar product〈
dT S

Q(X),Y
〉 = tr

(
dT S

Q(X)Y
) = − tr

(
S1/2U∗Λ−1/2δXΛ−1/2US1/2Y

)
= − tr

(
Λ−1/2δXΛ−1/2US1/2YS1/2U∗).

We now introduce the following notation:

ΔY def= US1/2YS1/2U∗.
Then the above equality can be continued as follows:

− tr
(
Λ−1/2δXΛ−1/2US1/2YS1/2U∗)

= − tr
(
Λ−1/2δXΛ−1/2ΔY )

= −
r∑

i,j=1

δX
ij√

λiλj

ΔY
ij = −

r∑
i,j=1

ΔX
ijΔ

Y
ij√

λiλj (
√

λi +√
λj )

= tr
(
dT S

Q(Y )X
) = tr

(
XdT S

Q(Y )
) = 〈

X,dT S
Q(Y )

〉
,
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where r = rank(S). Thus the operator is self-adjoint.

(II) Boundedness and (III) eigenvalues. Denoting ΔX by Δ (i.e., now Δ = US1/2X ×
S1/2U∗) and taking into account the above expansion of an inner product, one obtains

−〈
dT S

Q(X),X
〉 = r∑

i,j=1

Δ2
ij√

λiλj (
√

λi +√
λj )

=
r∑

i,j=1

(
Δij√
λiλj

)2 √
λiλj√

λi +√
λj

.(A.2)

Note that the function f (λi, λj )
def=

√
λiλj√

λi+
√

λj
is monotonously increasing in both argu-

ments λi and λj , thus

(A.3) max
i,j

f (λi, λj ) = λ
1/2
max(Λ)

2
, min

i,j
f (λi, λj ) = λ

1/2
min(Λ)

2
.

For the sake of simplicity we introduce a new variable

ζ
def= Q−1/2XQ−1/2,

its Frobenius norm is written as

‖ζ‖2
F = tr

(
XQ−1XQ−1).

Moreover, the following inequality for trace holds:

tr
(
XQ−1XQ−1) ≥ tr

(
ΠSXΠSQ−1ΠSXΠSQ−1ΠS

)
= tr

(
ΔΛ+ΔΛ+) = ∥∥Λ−1/2ΔΛ−1/2∥∥2

F =
r∑

i,j=1

Δ2
ij

λiλj

.

Here ΠS is the orthogonal projector onto the range of S.
Then combining (A.2) with (A.3), the upper and lower bounds can be obtained as follows:

−〈
dT S

Q(X),X
〉 ≤ max

i,j
f (λi, λj )

r∑
i,j=1

(
Δij√
λiλj

)2
≤ λ

1/2
max(Λ)

2
‖ζ‖2

F ,

−〈
dT S

Q(X),X
〉 ≥ min

i,j
f (λi, λj )

r∑
i,j=1

(
Δij√
λiλj

)2
= λ

1/2
min(Λ)

2
‖ζ‖2

F .

Note that if S is degenerated, the lower bound becomes trivial.

(IV) Homogeneity and (V) monotonicity. Homogeneity follows directly from definition
(A.1). Now we prove monotonicity. As the range of S1/2QS1/2 is fixed, we may assume
S � 0. Consider 〈

dT S
Q(X),X

〉 = tr
(
S1/2U∗Λ−1/2δΛ−1/2US1/2,X

)
= 〈

U∗Λ−1/2δΛ−1/2U,S1/2XS1/2〉
= 〈

dQ
(
S1/2QS1/2)−1/2

(X), S1/2XS1/2〉
= 〈

dMM−1/2(S1/2XS1/2), S1/2XS1/2〉,
with replacement M = S1/2QS1/2 to be change of variables. As long as X is supposed to be
fixed, it is enough to show that the differential dMM−1/2 is monotone in M . Notice that the
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operator (dMM−1/2)−1 at point M is equal to the differential of the inverse map P �→ P −2

at point P = M−1/2:

dMM−1/2 = (
dP P −2|P=M−1/2

)−1
.

In turn, dP P −2 can be expressed as

dP P −2(X) = −P −1(P −1X + XP −1)P −1,

the right part of the above equation is self-adjoint, negative-definite and〈−P −1(P −1X + XP −1)P −1,X
〉 = −2 trP −2XP −1X.

Choose M1 � M0 � 0 (thus M
1/2
1 � M

1/2
0 ) and let Pi = M

−1/2
i for i = 0,1. Then for any

fixed X ∈ H(d)

− trP −2
1 XP −1

1 X = − trM1XM
1/2
1 X ≤ − trM0XM

1/2
0 X = − trP −2

0 XP −1
0 X,

that is, dP P −2|P1 � dP P −2|P0 and hence for the differential of M �→ M−1/2 the inverse
inequality holds: dMM−1/2|M0 � dMM−1/2|M1 . This entails monotonicity of dT S

Q. �

COROLLARY A.1. Under conditions of Lemma A.3, it holds

λmax
(−dT S

Q

) ≤ λ
1/2
max(S

1/2QS1/2)

2λ2
min(Q)

, λmin
(−dT S

Q

) ≥ λ
1/2
min(S

1/2QS1/2)

2λ2
max(Q)

.

PROOF. Item (III) from the above lemma ensures that

−〈
dT S

Q(X),X
〉 ≤ λ

1/2
max(S

1/2QS1/2)

2

∥∥Q−1/2XQ−1/2∥∥2
F ≤ λ

1/2
max(S

1/2QS1/2)

2λ2
min(Q)

‖X‖2
F .

The second bound is proved in a similar way. �

COROLLARY A.2. We define a following rescaled operator

(A.4) dtS
Q(ζ )

def= Q1/2dT S
Q

(
Q1/2ζQ1/2)Q1/2, ζ ∈ H(d).

Then, a following bound on its eigenvalues holds:

λmin
(−dtS

Q

) = 1

2
λ

1/2
min

(
S1/2QS1/2),

λmax
(−dtS

Q

) = 1

2
λ1/2

max
(
S1/2QS1/2).

PROOF. Notice that inequalities

λmin
(−dtS

Q

) ≥ 1

2
λ

1/2
min

(
S1/2QS1/2),

λmax
(−dtS

Q

) ≤ 1

2
λ1/2

max
(
S1/2QS1/2),

are a trivial consequence of Lemma A.3(III). Now defining for any 1 ≤ k ≤ rank(S)

Δk
ij =

{
1 i = j = k,

0 otherwise,
Xk = S−1/2UΔkU∗S−1/2, ζ k = Q−1/2XkQ−1/2

we obtain from (A.2) that

−〈
dtS

Q

(
ζ k), ζ k 〉 = −〈

dT S
Q

(
Xk),Xk 〉 = λ

1/2
k

2

∥∥ζ k
∥∥2
F .

Therefore, the above inequalities are sharp. �
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LEMMA A.4. For any Q0,Q1 ∈H++(d), S ∈ H+(d) consider

(A.5) Qt
def= (1 − t)Q0 + tQ1, Q′ def= Q

−1/2
0 Q1Q

−1/2
0 .

Then

2

λmin(Q′) + λ
1/2
min(Q

′)
dT S

Q0
�

∫ 1

0
dT S

Qt
dt(I)

� 2

λmax(Q′) + λ
1/2
max(Q′)

dT S
Q0

� 1

1 + 3‖Q′ − I‖/4
dT S

Q0
.

Moreover, if ‖Q′ − I‖ < 1, then

(II)
∫ 1

0
dT S

Qt
dt � 1

1 − ‖Q′ − I‖dT S
Q0

.

REMARK 2. The above inequality might seem confusing due to the fact that λmin(·) ≤
λmax(·), however this is explained by the fact that dT S

Q is negative definite.

PROOF. Notice that(
(1 − t) + tλmin

(
Q′))Q0 � Qt = Q

1/2
0

(
(1 − t)I + tQ′)Q1/2

0 �
(
(1 − t) + tλmax

(
Q′))Q0.

Monotonicity and homogeneity with degree −3
2 of dT S

Q (see Lemma A.3) yield

dT S
Qt

� dT S
((1−t)+tλmax(Q′))Q0

= (
(1 − t) + tλmax

(
Q′))−3/2

dT S
Q0

and

dT S
Qt

� dT S
((1−t)+tλmin(Q

′))Q0

= (
(1 − t) + tλmin

(
Q′))−3/2

dT S
Q0

.

Therefore, ∫ 1

0
dT S

Qt
dt � dT S

Q0

∫ 1

0

(
(1 − t) + tλmax

(
Q′))−3/2

dt

= 2

λmax(Q′) + λ
1/2
max(Q′)

dT S
Q0

and respectively, ∫ 1

0
dT S

Qt
dt � 2

λmin(Q′) + λ
1/2
min(Q

′)
dT S

Q0
.

The inequality (II) follows from the fact that

λmin
(
Q′) ≥ 1 − ∥∥Q′ − I

∥∥, λmax
(
Q′) ≤ 1 + ∥∥Q′ − I

∥∥,
and inequalities

√
1 + x ≤ 1 + x

2
for x ≥ 0,

√
1 − x ≥ 1 − x for 0 ≤ x ≤ 1. �
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A.3. Properties of dBW(Q,S). The next lemma ensures strict convexity of dBW(Q,S).
In essence, the proof mainly relies on Theorem 7 in Bhatia, Jain and Lim (2019).

LEMMA A.5. For any S ∈ H+(d) a function Q �→ d2
BW(Q,S) is convex on H+(d).

Moreover, if S � 0, then it is strictly convex.

PROOF. According to Bhatia, Jain and Lim ((2019), Theorem 7) a function h(X) =
trX1/2 is strictly concave on H+(d), hence the function

Q �→ d2
BW(Q,S) = trS + trQ − 2 tr

(
S1/2QS1/2)1/2

is convex on H+(d) for any positive semi-definite S. Moreover, if S � 0, then Q �→
S1/2QS1/2 is an injective linear map, and therefore d2

BW(Q,S) is strictly convex. �

Further we introduce differentiability of d2
BW(Q,S) and provides its quadratic approxima-

tion.

LEMMA A.6. For any Q ∈ H++(d), S ∈ H+(d) the function d2
BW(Q,S) is twice differ-

entiable in Q with

dQd2
BW(Q,S)(X) = 〈

I − T S
Q,X

〉
, X ∈ H(d),

d2
Qd2

BW(Q,S)(X,Y ) = −〈
X,dT S

Q(Y )
〉
, X,Y ∈ H(d).

Moreover, the following quadratic approximation holds: for any Q0,Q1 ∈ H++(d),

− 2

(1 + λ
1/2
max(Q′))2

〈
dT S

Q0
(Q1 − Q0),Q1 − Q0

〉
≤ d2

BW(Q1, S) − d2
BW(Q0, S) + 〈

T S
Q0

− I,Q1 − Q0
〉

≤ − 2

(1 + λ
1/2
min(Q

′))2

〈
dT S

Q0
(Q1 − Q0),Q1 − Q0

〉
with Q′ defined in (A.5).

PROOF. Note that

dQ
(
S1/2QS1/2)1/2

(X) = U∗δU,

where δ comes from Lemma A.2. Furthermore, Lemma A.1 implies that

dQ tr
(
S1/2QS1/2)1/2

(X) = trdQ
(
S1/2QS1/2)1/2

(X) = tr δ

=
rank(S)∑

i=1

Δii

2
√

λi

= 1

2
trΔΛ−1/2

= 1

2
trS1/2XS1/2(S1/2QS1/2)−1/2 = 1

2

〈
T S

Q,X
〉
.

Consequently, d2
BW(Q,S) is differentiable, and

dQd2
BW(Q,S)(X) = trX − 2dQ tr

(
S1/2QS1/2)1/2

(X) = 〈
I − T S

Q,X
〉
.

Applying Lemma A.2 one obtains

d2
Qd2

BW(Q,S)(X,Y ) = dQ
〈
I − T S

Q,X
〉 = −〈

dT S
Q(Y ),X

〉
(Y ).
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Quadratic approximation. Let Q0,Q1 ∈ H++(d), Qt
def= (1 − t)Q0 + tQ1, t ∈ [0,1]. The

Taylor expansion in the integral form applied to d2
BW(Qt , S) implies

d2
BW(Q1, S) = d2

BW(Q0, S) + 〈
I − T S

Q0
,Q1 − Q0

〉
+
∫ 1

0
(1 − t)

〈−dT S
Qt

(Q1 − Q0),Q1 − Q0
〉
dt

= d2
BW(Q0, S) − 〈

T S
Q0

− I,Q1 − Q0
〉

−
〈[∫ 1

0
(1 − t)dT S

Qt
dt

]
(Q1 − Q0),Q1 − Q0

〉
.

Following the same ideas as in the proof of Lemma A.4 one obtains that∫ 1

0
(1 − t)dT S

Qt
dt �

∫ 1

0
(1 − t)

(
(1 − t) + tλmax

(
Q′))−3/2

dT S
Q0

dt

= 2

(1 + λ
1/2
max(Q′))2

dT S
Q0

and ∫ 1

0
(1 − t)dT S

Qt
dt � 2

(1 + λ
1/2
min(Q

′))2
dT S

Q0
.

Thus

− 2

(1 + λ
1/2
max(Q′))2

〈
dT S

Q0
(Q1 − Q0),Q1 − Q0

〉
≤ d2

BW(Q1, S) − d2
BW(Q0, S) + 〈

T S
Q0

− I,Q1 − Q0
〉

≤ − 2

(1 + λ
1/2
min(Q

′))2

〈
dT S

Q0
(Q1 − Q0),Q1 − Q0

〉
.

�

A.4. Central limit theorem for Qn and Vn. First let us prove uniqueness and positive-
definiteness of Bures–Wasserstein barycenter.

PROOF OF THEOREM 2.1. By Assumption 2, V(0) is bounded:

V(0) = Ed2
BW(0, S) = E trS < ∞.

Moreover, dBW(Q,S) → ∞ as ‖Q‖ → ∞. This implies V(Q) → ∞ as ‖Q‖ → ∞. Thus,
any minimizing sequence for V(·) is bounded. This observation allows us to use the com-
pactness argument. As V(·) is continuous, this implies existence of a barycenter Q∗ by the
compactness argument.

In the case of P(H++(d)) > 0 applying Lemma A.5 we obtain strict convexity of the
integral

Q �→ Ed2
BW(Q,S) = V(Q), Q ∈ H+(d),

and therefore, uniqueness of the minimizer Q∗.
To prove that Q∗ � 0 consider arbitrary degenerated Q0 ∈ H+(d) ∩A, Q1 ∈ H++(d) ∩A

(which exists by Assumption 1) and S ∈ H++(d). Let us define Qt = (1 − t)Q0 + tQ1 ∈ A.
We are going to show, that

d

dt
d2

BW(Qt , S) = 〈
I − T S

Qt
,Q1 − Q0

〉 → −∞ as t → 0.
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To prove this convergence, we consider the following eigen-decomposition S1/2Q0S
1/2 =

U∗ΛU , Λ = diag(λ1, . . . , λr ,0, . . . ,0), where r = rank(Q0). We denote as C = US1/2Q1 ×
S1/2U∗, and write it in a block form:

C =
(
C11 C12
C21 C22

)
, C11 ∈ H++(r),C12 = C∗

21 ∈ Cr×(d−r),C22 ∈H++(d − r).

Thus, for all Qt the following representation holds (see Section A.5.5, paragraph Inverse of
block matrix in Boyd and Vandenberghe (2004)):

U
(
S1/2QtS

1/2)−1
U∗ = (

(1 − t)Λ + tC
)−1

=
(
E−1

t + t2E−1
t C12S

−1
t C21E

−1
t −tE−1

t C12S
−1
t

−tS−1
t C21E

−1
t S−1

t

)
,

where Et = (1 − t)Λ11 + tC11, St = tC22 − t2C21E
−1
t C12, with Λ11 = diag(λ1, . . . , λr).

When t → 0, Et → Λ11 � 0, St

t
→ C22 � 0. This yields

tU
(
S1/2QtS

1/2)−1
U∗ →

(
0 0
0 C−1

22

)
,

and
√

tU
(
S1/2QtS

1/2)−1/2
U∗ →

(
0 0
0 C

−1/2
22

)
.

Therefore, √
t
〈
T S

Qt
,Q0

〉 = √
t
〈(
S1/2QtS

1/2)−1/2
, S1/2Q0S

1/2〉
= 〈√

tU
(
S1/2QtS

1/2)−1/2
U∗,US1/2Q0S

1/2U∗〉
→

〈(
0 0
0 C

−1/2
22

)
,

(
Λ11 0

0 0

)〉
= 0.

In the same way one can obtain

√
t
〈
T S

Qt
,Q1

〉 → 〈(
0 0
0 C

−1/2
22

)
,

(
C11 C12
C21 C22

)〉
= trC1/2

22 > 0 as t → 0.

Consequently,

d

dt
d2

BW(Qt , S) = 〈
I − T S

Qt
,Q1 − Q0

〉 = trQ1 − trQ0 − trC1/2
22 + o(1)√

t
→ −∞.

By Assumption 1 it holds P(H++(d)) > 0. Further, since d2
BW(Q,S) is convex, its directional

derivatives are bounded by difference quotients, thus one can apply the Leibniz integral rule
for a Lebesgue-integrable function. This yields the following equality:

d

dt
V(Qt) = E

d

dt
d2

BW(Qt , S) → −∞ as t → 0,

thus Q0 cannot be a barycenter of P. This yields Q∗ � 0.
Since V(·) is convex and barycenter of P is positive-definite and unique, it is characterized

as a stationary point of Fréchet variation on subspace A, that is, as a solution to equation

ΠM∇V(Q) = ΠM

(
I −ET S

Q

) = 0, Q ∈ A∩H++(d),

as required. The first equality follows from Lemma A.6. �

The proof of CLT relies on covariance operators on the space of optimal transportation
maps and on the space of covariance matrices.
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Covariance operator on the space of optimal maps. Consider Ti
def= T

Si

Q∗ with ETi = I , and

T n
i

def= T
Si

Qn
. We define a covariance Σ of Ti , its empirical counterpart Σn, and its data-driven

estimator Σ̂n as follows:

Σ
def= E(Ti − I ) ⊗ (Ti − I ), Σn

def= 1

n

n∑
i=1

(Ti − I ) ⊗ (Ti − I ),

Σ̂n
def= 1

n

n∑
i=1

(
T n

i − I
)⊗ (

T n
i − I

)
.

(A.6)

Covariance operators on the space of covariance matrices. Let Qn be an empirical barycen-
ter. The covariance of Qn and its empirical counterpart are defined as

�
def= F−1(Σ)MF−1, � : M →M,(A.7)

�̂n
def= F̂n

−1
(Σ̂n)MF̂n

−1
, �̂n : M →M,(A.8)

where

F
def= −E

(
dT S

Q∗
)
M, Fn

def= −1

n

n∑
i=1

(
dT

Si

Q∗
)
M,(A.9)

F̂n
def= −1

n

n∑
i=1

(
dT

Si

Qn

)
M.(A.10)

Now we are almost ready to prove the central limit theorem for the empirical barycenter
Qn (Theorem 2.2). Another key object which appears in the proofs quite often is a rescaled
empirical barycenter:

(A.11) Q′
n

def= Q−1/2∗ QnQ
−1/2∗ .

For the sake of transparency we provide below a complete statement.

THEOREM (Central limit theorem for the covariance of empirical barycenter). The ap-
proximation error rate of the Fréchet mean Q∗ by its empirical counterpart Qn is

(A)
√

n(Qn − Q∗)
w−→ N (0,�).

Moreover, if (Σ)M is nondegenerated, then

(B)
√

n�̂
−1/2
n (Qn − Q∗)

w−→ N
(
0, (I )M

)
.

PROOF OF THEOREM 2.2. The proof consists of two parts: proofs of (A) and (B).

Proof of (A). As Vn(·) are convex functions, they a.s. uniformly converge to a strictly con-
vex function V(·) on any compact set by the uniform law of large numbers. Therefore, their
minimizers also converge Qn

a.s.−→ Q∗; see, for example, van de Geer ((2006), Lemma 5.2.2).
In particular, P(Qn � 0) → 1, with n → ∞. The expansion from Lemma A.2 at Q∗ implies

(A.12) T n
i = Ti +

∫ 1

0
dT

Si

Qt
(Qn − Q∗) dt,

where Qt = (1 − t)Q∗ + tQn. Note that the condition for Qn being a barycenter is
ΠM( 1

n

∑
i T

n
i − I ) = 0. This fact together with averaging of (A.12) over i give

(A.13) ΠMI = ΠMT n − αn(Qn − Q∗),
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where

(A.14) T n
def= 1

n

n∑
i=1

Ti, αn
def= −1

n

∑
i

∫ 1

0

(
dT

Si

Qt

)
M dt.

According to Lemma A.4

2

λmax(Q′
n) + λ

1/2
max(Q′

n)
F n � αn � 2

λmin(Q′
n) + λ

1/2
min(Q

′
n)

F n,

where F n is defined in (A.9), and Q′
n comes from (A.11). Recall that F introduced in (A.9)

is a population counterpart of Fn. This operator is correctly defined since by Lemma A.3 one
can show that it is self-adjoint, positive definite and bounded:

‖F‖ ≤ E
∥∥dT S

Q∗
∥∥ ≤ E

‖S1/2Q∗S1/2‖
2λ2

min(Q∗)
< ∞.

This bound follows directly from Corollary A.1.
Since by the law of large numbers F n

a.s.−→ F and Q′
n

a.s.−→ I , it holds that λmin(Q
′
n)

a.s.−→ 1

and λmax(Q
′
n)

a.s.−→ 1, thus αn
a.s.−→ F . Therefore we obtain from (A.13)

Qn = Q∗ + α−1
n ΠM(T n − I )(A.15)

= Q∗ + F−1ΠM(T n − I ) + oP

(∥∥ΠM(T n − I )
∥∥),(A.16)

where F−1 is a bounded linear operator, because dT S
Q∗ is negative definite for any S � 0 by

Lemma A.3. The result (A) follows immediately from the CLT for ΠMT n.

Proof of (B). Note that result (A) is equivalent to the fact, that
√

n�−1/2(Qn − Q∗)
w−→ N

(
0, (I )M

)
.

To ensure convergence of �̂n
a.s.−→ � we need to show that:

(a) Σ̂n
a.s.−→ Σ (follows from Lemma B.2, a.s. consistency of Q′

n, and the LLN);

(b) F̂n
a.s.−→ F .

Consider

dT S
Qn

� dT S
λmax(Q′

n)Q∗ = (
λmax

(
Q′

n

))−3/2
dT S

Q∗,

dT S
Qn

� dT S
λmin(Q

′
n)Q∗ = (

λmin
(
Q′

n

))−3/2
dT S

Q∗,

where the inequalities come from monotonicity of dT S
Q (see (V) in Lemma A.3), and the fact

that and bounds λmin(Q
′
n)Q∗ � Qn � λmax(Q

′
n)Q∗. The equalities hold due to homogeneity

of dT S
Q with degree −3

2 (see (IV) in Lemma A.3). This naturally leads to the following
bounds:

1

λ
3/2
max(Q′

n)
Fn � F̂n � 1

λ
3/2
min(Q

′
n)

Fn.

Since Q′
n

a.s.−→ I and Fn
a.s.−→ F , this implies F̂n

a.s.−→ F due to the following continuity prop-
erty: λmax(Q

′
n) ≤ 1 + ‖Q′

n − I‖ and λmin(Q
′
n) ≥ 1 − ‖Q′

n − I‖.
The above results ensure the validity of substitution � by �̂n. This yields (B). �
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The asymptotic convergence results for dBW(Qn,Q∗) is a straightforward corollary of the
above theorem. Here is the proof.

PROOF OF COROLLARY 2.1. Since Qn
a.s.−→ Q∗, Lemma A.6 implies

d2
BW(Qn,Q∗) = −1 + oP (1)

2

〈
dT

Q∗
Q∗(Qn − Q∗),Qn − Q∗

〉
.

Without loss of generality we can consider case Q∗ = diag(q1, . . . , qd), thus Lemma A.3
implies (notice that Λ = Q2∗ and Δ = Q

1/2∗ XQ
1/2∗ )

−〈
dT

Q∗
Q∗(X),X

〉 = d∑
i,j=1

Xij

qi + qj

Xij =
d∑

i,j=1

(qi + qj )

(
Xij

qi + qj

)2

= 2
d∑

i,j=1

(√
qi

Xij

qi + qj

)2
= 2

∥∥Q1/2∗ dT
Q∗
Q∗(X)

∥∥2

F
.

By Theorem 2.2
√

n(Qn − Q∗) is asymptotically normal and centred, therefore

L
(√

ndBW(Qn,Q∗)
) w−→ L

(∥∥Q1/2∗ dT
Q∗
Q∗(Z)

∥∥
F

)
,

where Z ∈ M⊂ H(d) and Z ∼ N (0,�).
Note, that Qn

a.s.−→ Q∗, �̂n
a.s.−→ �, and dT

Qn

Qn

a.s.−→ dT
Q∗
Q∗ . The last result follows from

Lemma A.3(IV, V), and can be validated using the same framework as in the proof of (B) in
Theorem 2.2. Note, that λmin(Q

′
n)Q∗ � Qn � λmax(Q

′
n)Q∗, with Q′

n coming from (A.11).
Then

dT
Qn

Qn
� dT

λmax(Q
′
n)Q∗

λmax(Q′
n)Q∗ = 1

λmax(Q′
n)

dT
Q∗
Q∗ → dT

Q∗
Q∗,

dT
Qn

Qn
� dT

λmin(Q
′
n)Q∗

λmin(Q
′
n)Q∗ = 1

λmin(Q′
n)

dT
Q∗
Q∗ → dT

Q∗
Q∗,

where the inequalities comes from monotonicity (see (V) in Lemma A.3). The equalities hold
due to homogeneity (see (IV) in Lemma A.3). Furthermore, λmax(Q

′
n) ≤ 1 + ‖Q′

n − I‖ and
λmin(Q

′
n) ≥ 1 − ‖Q′

n − I‖. This yields

L
(∥∥Q1/2

n dT
Qn

Qn
(Zn)

∥∥
F

) w−→ L
(∥∥Q1/2∗ dT

Q∗
Q∗(Z)

∥∥
F

)
,

where Zn ∼ N (0, �̂n). This, in turn, entails

dw
(
L
(√

ndBW(Qn,Q∗)
)
,L

(∥∥Q1/2
n dT

Qn

Qn
(Zn)

∥∥
F

)) → 0,

where dw is some metric inducing the weak convergence of the measures. �

Finally, we are ready to prove Theorem 2.3.

PROOF OF THEOREM 2.3. By definition the empirical Fréchet variance is

Vn(Q) = 1

n

n∑
i=1

d2
BW(Q,Si).

Lemma A.6 ensures the following bound on Vn(Q∗) − Vn(Qn):

0 ≤ Vn(Q∗) − Vn(Qn) ≤ 2

(1 + λ
1/2
min(Q

′
n))

2

〈
F n(Qn − Q∗),Qn − Q∗

〉
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with Q′
n

def= Q
−1/2∗ QnQ

−1/2∗ . The above quadratic bound together with Qn → Q∗, F n → F

and
√

n(Qn − Q∗)
w−→ N (0,�) yield

Vn(Qn) − V(Q∗) = Vn(Q∗) − V(Q∗) + OP

(
1

n

)
.

On the other hand, by the classical central limit theorem we obtain

√
n
(
Vn(Q∗) − V(Q∗)

) = √
n

(
1

n

∑
i

d2
BW(Q∗, Si) −Ed2

BW(Q∗, S)

)
w−→ N

(
0,Vard2

BW(Q∗, S)
)
. �

APPENDIX B: CONCENTRATIONS OF Qn AND Vn

B.1. Concentration of Qn. The next lemma is a key ingredient in the proof of the con-
centration result for Qn.

LEMMA B.1. Consider

(B.1) ηn
def= 1

λmin(F
′
n)

∥∥Q1/2∗ ΠM(T n − I )Q1/2∗
∥∥
F ,

where

(B.2) F ′
n(X)

def= Q1/2∗ F n

(
Q1/2∗ XQ1/2∗

)
Q1/2∗ , X ∈ {

Q−1/2∗ YQ−1/2∗ | Y ∈ M
}
.

Then ∥∥Q−1/2∗ QnQ
−1/2∗ − I

∥∥
F ≤ ηn

1 − 3
4ηn

whenever ηn < 4
3 and Qn � 0.

PROOF. Let us define Qt
def= tQn + (1 − t)Q∗ for t ∈ [0,1], and Q′

n defined in (A.11).
Due to Lemmas A.3 and A.4 we have for any S ∈H+(d)〈

ΠM

(
T S

Q∗ − T S
Qn

)
,Qn − Q∗

〉 = 〈
T S

Q∗ − T S
Qn

,Qn − Q∗
〉

=
∫ 1

0

〈−dT S
Qt

(Qn − Q∗),Qn − Q∗
〉
dt

≥ 1

1 + 3
4‖Q′

n − I‖
〈−dT S

Q∗(Qn − Q∗),Qn − Q∗
〉
.

Therefore, 〈
ΠM(T n − I ),Qn − Q∗

〉 ≥ 1

1 + 3
4‖Q′

n − I‖
〈
F n(Qn − Q∗),Qn − Q∗

〉
= 1

1 + 3
4‖Q′

n − I‖
〈
F ′

n

(
Q′

n − I
)
,Q′

n − I
〉

≥ λmin(F
′
n)

1 + 3
4‖Q′

n − I‖
∥∥Q′

n − I
∥∥2
F .
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At the same time,〈
ΠM(T n − I ),Qn − Q∗

〉 = 〈
Q1/2∗ ΠM(T n − I )Q1/2∗ ,Q′

n − I
〉

≤ ∥∥Q1/2∗ ΠM(T n − I )Q1/2∗
∥∥
F

∥∥Q′
n − I

∥∥
F .

Hence

∥∥Q′
n − I

∥∥
F ≤ 1 + 3

4‖Q′
n − I‖

λmin(F
′
n)

∥∥Q1/2∗ ΠM(T n − I )Q1/2∗
∥∥
F =

(
1 + 3

4

∥∥Q′
n − I

∥∥)ηn.

Rewriting the inequality above we obtain∥∥Q′
n − I

∥∥
F ≤ ηn

1 − 3
4ηn

provided that ηn < 4
3 . �

Before proving concentration results, we define operator F ′(X) as follows:

(B.3) F ′(X)
def= Q1/2∗ F

(
Q1/2∗ XQ1/2∗

)
Q1/2∗ for X ∈ {

Q−1/2∗ YQ−1/2∗ | Y ∈ M
}
.

PROOF OF THEOREM 2.4. Let tn be s.t. the following upper bound on γn(tn) from Propo-
sition B.1 holds:

(B.4) γn(tn) ≤ 1

2
λmin

(
F ′).

It is easy to see that this condition is fulfilled for tn = ntF − log(m) under a proper choice of
generic constant in definition of tF . Then with probability at least 1 − 2me−ntF the following
bound holds:

λmin
(
F ′

n

) ≥ λmin
(
F ′)− ∥∥F ′

n − F ′∥∥ ≥ 1

2
λmin

(
F ′),

with F ′
n to be defined in (B.2). The above facts together with definition of ηn (B.1) yield

ηn
def= ‖Q1/2∗ ΠM(T n − I )Q

1/2∗ ‖F

λmin(F
′
n)

≤ 2‖Q∗‖
λmin(F

′)
∥∥ΠM(T n − I )

∥∥
F = cQ

2σT

∥∥ΠM(T n − I )
∥∥
F .

Combining the above bounds with Proposition B.2, we obtain

P

{
ηn ≥ cQ

2
√

n
(
√

m + t)

}
≤ 2me−ntF + e−t2/2.

Now it follows from Lemma B.1 that

P

{∥∥Q′
n − I

∥∥
F ≥ cQ√

n
(
√

m + t)

}
≤ P

{
2ηn ≥ cQ√

n
(
√

m + t)

}
+ P{Qn � 0}

≤ 2me−ntF + e−t2/2 + (1 − p)n,

whenever cQ

2
√

n
(
√

m + t) ≤ 2
3 . Here we used that Qn � 0 if at least one of matrices S1, . . . , Sn

is nondegenerated. Here Q� 0 means that a matrix Q is not positive definite. �
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PROOF OF COROLLARY 2.2. To prove this result we use Lemma A.6 and choose Q0 =
S = Q∗, Q1 = Qn. Thus we obtain

d2
BW(Qn,Q∗) ≤ − 2

(1 + λ
1/2
min(Q

′
n))

2

〈
dT

Q∗
Q∗(Qn − Q∗),Qn − Q∗

〉
Def. (A.4)= 2

(1 + λ
1/2
min(Q

′
n))

2

〈−dt
Q∗
Q∗

(
Q′

n − I
)
,Q′

n − I
〉

≤ 2λmax
(−dt

Q∗
Q∗

)∥∥Q′
n − I

∥∥2
F

C. A.2= λmax(Q∗)
∥∥Q′

n − I
∥∥2
F ,

with Q′
n coming from (A.11). Hence by Theorem 2.4

dBW(Qn,Q∗) ≤ ‖Q∗‖1/2 cQ√
n
(
√

m + t)

with probability at least 1 − 2me−ntF − e−t2/2 − (1 − p)n. �

B.2. Concentration of Vn.

PROOF OF THEOREM 2.5. Following the proof of Theorem 2.3 we consider Vn(Q∗) −
Vn(Qn):

0 ≤ Vn(Q∗) − Vn(Qn) ≤ 2

(1 + λ
1/2
min(Q

′
n))

2

〈
F n(Qn − Q∗),Qn − Q∗

〉
= 2

(1 + λ
1/2
min(Q

′
n))

2

〈
F ′

n

(
Q′

n − I
)
,Q′

n − I
〉

(B.5)

≤ 2
∥∥F ′

n

∥∥ · ∥∥Q′
n − I

∥∥2
F ,

with F ′
n to be defined in (B.2), and Q′

n in (A.11). Following the proof of Theorem 2.4, we

obtain that with P ≥ 1 − 2me−tF n − e−t2/2 − (1 − p)n the following upper bounds hold:∥∥Q′
n − I

∥∥
F ≤ cQ√

n
(
√

m + t),
∥∥F ′

n − F ′∥∥ ≤ 1

2
λmin

(
F ′),

with F ′ coming from (B.3). Thus∥∥F ′
n

∥∥ ≤ ∥∥F ′∥∥+ ∥∥F ′
n − F ′∥∥ ≤ 3

2

∥∥F ′∥∥
and consequently

0 ≤ Vn(Q∗) − Vn(Qn) ≤ 3
∥∥F ′∥∥c2

Q

n
(
√

m + t)2.

Now we consider a difference Vn(Q∗)−V(Q∗). According to Assumption 3 S, and there-
fore d2

BW(Q∗, S), are subexponential r.v. with some parameters (ν,μ). Then Lemma B.4
ensures ∣∣Vn(Q∗) − V(Q∗)

∣∣ ≤ max
(

2μt ′

n
, ν

(
2t ′

n

)1/2)
with probability 1 − 2e−t ′ . Combining two above bounds we obtain

∣∣Vn(Qn) − V(Q∗)
∣∣ ≤ max

(
2μt ′

n
, ν

√
2t ′
n

)
+ 3

∥∥F ′∥∥c2
Q

n
(
√

m + t)2
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with probability

P ≥ 1 − 2e−t ′ − 2me−ntF − e−t2/2 − (1 − p)n.

Choosing t ′ = t2/2, we get

P

{∣∣Vn(Qn) − V(Q∗)
∣∣ ≥ max

(
μt2

n
,

νt√
n

)
+ 3

∥∥F ′∥∥c2
Q

n
(
√

m + t)2
}

≤ 2me−ntF + 3e−t2/2 + (1 − p)n. �

B.3. Auxiliary results.

LEMMA B.2. Let ‖Q′
n − I‖ ≤ 1

2 , with Q′
n coming from (A.11); then

‖Σ̂n − Σn‖1 ≤ βn

[
2
(

1

n

∑
i

‖Ti − I‖2
F

)1/2
+ βn

]
,

where

βn
def= κ(Q∗)

( 1
n

∑
i‖Si‖

‖Q∗‖
)1/2∥∥Q′

n − I
∥∥
F ,

where κ(Q∗) = ‖Q∗‖ · ‖Q−1∗ ‖ is the condition number of matrix Q∗ and ‖A‖1 is 1-Schatten
(nuclear) norm of an operator A.

PROOF. Note, that for any (T n
i − I ) ⊗ (T n

i − I ) the following decomposition holds(
T n

i − I
)⊗ (

T n
i − I

)
= (Ti − I ) ⊗ (Ti − I ) + (

T n
i − Ti

)⊗ (Ti − I )

+ (Ti − I ) ⊗ (
T n

i − Ti

)+ (
T n

i − Ti

)⊗ (
T n

i − Ti

)
.

Summing over i yields

Σ̂n − Σn = 1

n

∑
i

(
T n

i − Ti

)⊗ (Ti − I )

+ 1

n

∑
i

(Ti − I ) ⊗ (
T n

i − Ti

)+ 1

n

∑
i

(
T n

i − Ti

)⊗ (
T n

i − Ti

)
.

(B.6)

Note, that each ∥∥(T n
i − Ti

)⊗ (Ti − I )
∥∥

1 ≤ ∥∥T n
i − Ti

∥∥
F ‖Ti − I‖F .

Lemmas A.3(III) and A.4 yield∥∥T n
i − Ti

∥∥
F ≤ 1

1 − ‖Q′
n − I‖

∥∥dT
Si

Q∗(Qn − Q∗)
∥∥
F

≤ 2
∥∥Q−1/2∗ dt

Si

Q∗
(
Q′

n − I
)
Q−1/2∗

∥∥
F

≤ 2
λmax(dt

Si

Q∗)

λmin(Q∗)
∥∥Q′

n − I
∥∥
F

≤ λ
1/2
max(S

1/2
i Q∗S1/2

i )

λmin(Q∗)
∥∥Q′

n − I
∥∥
F ≤ κ(Q∗)

( ‖Si‖
‖Q∗‖

)1/2∥∥Q′
n − I

∥∥
F ,
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where dtS
Q is defined in (A.4). Hence 1

n

∑
i‖T n

i − Ti‖2
F

≤ β2
n . The above expression together

with (B.6) and the Cauchy–Schwarz inequality lead to the upper bound on ‖Σ̂n − Σn‖1:

‖Σ̂n − Σn‖1 ≤ 2

n

∑
i

‖Ti − I‖F

∥∥T n
i − Ti

∥∥
F + 1

n

∑
i

∥∥T n
i − Ti

∥∥2
F

≤ 2βn

(
1

n

∑
i

‖Ti − I‖2
F

)1/2
+ β2

n.
�

Further we present concentration of F n around F . Denote as ‖X‖ψ2
an Orlicz norm with

Young function ψ2(x) = ex2 − 1, that is,

‖X‖ψ2

def= inf
{
c > 0 : Eψ2

(|X|/c) ≤ 1
}
.

Then sub-Gaussianity of a r.v. X is equivalent to ‖X‖ψ2
< ∞ and it ensures

Var(X) ≤ √
2‖X‖ψ2

.

PROPOSITION B.1 (Concentration of F ′
n, Proposition 2 in Koltchinskii (2011)). Let F ′

n,
F ′, and dtS

Q be defined as (B.2), (B.3) and (A.4), respectively. There exists a constant C> 0,
s.t. for all t > 0 it holds with probability at least 1 − e−t

∥∥F ′
n − F ′∥∥ ≤ γn(t), γn(t)

def= Cmax
(
σF

√
t + log(2m)

n
,U

√
log

(
U

σF

)
t + log(2m)

n

)
,

where σ 2
F

def= ‖E(dtS
Q∗ − F ′)2‖, U

def= ‖‖dtS
Q∗ − F ′‖‖ψ2

.

LEMMA B.3. The size of the above constants can be estimated as follows:

σF ≤ ‖Q∗‖1/2

2

(
E‖S‖)1/2

, U ≤ 3

2
‖Q∗‖1/2∥∥‖S‖∥∥1/2

ψ1
,

where ψ1(x) = ex − 1 is a Young function.

PROOF. By Corollary A.2 we obtain

σ 2
F

def= ∥∥E(dtS
Q∗ − F ′)2∥∥ ≤ E

∥∥dtS
Q∗

∥∥2 ≤ ‖Q∗‖
4

E‖S‖
and (due to properties of Orlicz norm)

U
def= ∥∥∥∥dtS

Q∗ − F ′∥∥∥∥
ψ2

≤ ‖F ′‖√
ln 2

+ ∥∥∥∥dtS
Q∗

∥∥∥∥
ψ2

≤ ‖Q∗‖1/2

2

[
2E‖S‖1/2 + ∥∥‖S‖1/2∥∥

ψ2

]
≤ ‖Q∗‖1/2

2

[
2
(
E‖S‖)1/2 + ∥∥‖S‖∥∥1/2

ψ1

]
≤ 3

2
‖Q∗‖1/2∥∥‖S‖∥∥1/2

ψ1
. �

The next proposition ensures the concentration of T n.
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PROPOSITION B.2 (Concentration of T n; Hsu, Kakade and Zhang (2012), Theorem 1).
Under Assumption 3 it holds

P

{∥∥ΠM(T n − I )
∥∥
F ≥ σT√

n
(
√

m + t)

}
≤ e−t2/2 for any t ≥ 0.

LEMMA B.4 (Subexponential tail bounds). Suppose that X is subexponential with pa-
rameters ν, b. Then

P{X ≥ EX + t} ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
exp

(
− t2

2ν2

)
if 0 ≤ t ≤ ν2

b
,

exp
(
− t

2b

)
if t ≥ ν2

b
.
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