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For sufficiently smooth targets of product form it is known that the vari-
ance of a single coordinate of the proposal in RWM (random walk Metropo-
lis) and MALA (Metropolis adjusted Langevin algorithm) should optimally

scale as n−1 and as n− 1
3 with dimension n, and that the acceptance rates

should be tuned to 0.234 and 0.574. We establish counterexamples to demon-
strate that smoothness assumptions of the order of C1(R) for RWM and
C3(R) for MALA are indeed required if these scaling rates are to hold. The
counterexamples identify classes of marginal targets for which these guide-
lines are violated, obtained by perturbing a standard normal density (at the
level of the potential for RWM and the second derivative of the potential
for MALA) using roughness generated by a path of fractional Brownian mo-
tion with Hurst exponent H . For such targets there is strong evidence that

RWM and MALA proposal variances should optimally be scaled as n− 1
H

and as n
− 1

2+H and will then obey anomalous acceptance rate guidelines.
Useful heuristics resulting from this theory are discussed. The paper devel-
ops a framework capable of tackling optimal scaling results for quite general
Metropolis–Hastings algorithms (possibly depending on a random environ-
ment).

1. Introduction. Probabilistic computation and optimisation are tools of widespread im-
portance in applied mathematical science, and are widely used in order to facilitate the use of
Bayesian statistics, especially in machine learning contexts. In particular, the use of Markov
chain Monte Carlo (MCMC) methods is now wide-spread. This greatly increases the value of
mathematical theory underlying these methods; many significant theoretical advances have
indeed been made but theory still lags behind the explosive growth of many varieties of appli-
cations. Theory typically provides significant help and guidance by studying basic building
blocks of these algorithms, applied to toy examples which are nevertheless representative of
applications [5, 31].

A remarkable example of theoretical guidance is provided by results on optimal scaling
of MCMC (Roberts, Gelman and Gilks [29], Roberts and Rosenthal [30], see also Gelfand
and Mitter [8] who establish diffusion limits for MCMC algorithms). Here the toy examples
are high-dimensional “product targets” (multivariate probability densities which render all n

coordinates independent and identically distributed). Optimal scaling results show that (un-
der suitable regularity conditions) as dimension n increases so the proposal variances of each
coordinate of the random walk Metropolis (RWM) and the Metropolis adjusted Langevin
algorithm (MALA) proposals should respectively be chosen proportional to n−1 and n−1/3.
Furthermore, it proves optimal as n → ∞ to choose the constant of proportionality so as
to obtain average acceptance rates of 0.234 of the proposed moves for RWM and 0.574 for
MALA. These results were originally proved only for the toy example of product targets
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given above; nevertheless simulation evidence suggests that they should hold in much greater
generality and notable progress has been made to generalise the theory towards more general
targets, especially in the case of RWM: see, for example, Yang, Roberts and Rosenthal [34].
Consequently the theory does indeed provide very practical and useful guidelines for practi-
tioners, and additionally provides an important context for motivating and assessing adaptive
MCMC methods.

The theoretical results require smoothness assumptions for the underlying marginal target
density function. Roberts, Gelman and Gilks [29] actually required three continuous deriva-
tives for their RWM result while Roberts and Rosenthal [30] needed 8 continuous derivatives
for their approach to MALA. These assumptions were necessitated by the methods of proof
but did not otherwise seem particularly natural and it was unclear to what extent they were
actually necessary. Recent work has used different methods of proof to establish, at least in
the case of RWM, that the original smoothness assumptions were indeed much stricter than
is really required [7, 35]. The main focus of our paper is to develop a class of counterexam-
ples to demonstrate the extent to which some kinds of smoothness assumption are genuinely
necessary for both RWM and MALA.

In summary, we show that a certain level of smoothness of the marginal target density
function is indeed required in order to deliver the original optimal scaling guidelines. To be
specific, RWM essentially requires 1 continuous derivative almost everywhere while MALA
requires three continuous derivatives almost everywhere. Note that no derivatives are required
in order for RWM to deliver the prescribed target probability measure as a large-time equilib-
rium, while MALA requires just one derivative. Nevertheless we show that some higher-order
smoothness is indeed necessary if the algorithms are to scale in a standard way. In the fol-
lowing it is shown that, in the absence of suitable smoothness, there exist classes of targets
for which the above optimality results do not apply, and indeed different, anomalous, tuning
guidelines appear to be optimal. Note in particular that failure of smoothness at isolated points
(as often occurs in applications) need not be sufficient to destroy standard smoothing [7]: our
counterexamples are necessarily nonsmooth over a substantial range. However, the coun-
terexamples tell us something fundamental about the way in which RWM and MALA really
do depend on regularity and are thus methodologically interesting. They quantifiably exhibit
another, often overlooked, way in which MCMC can perform badly, different for instance
from the target having multiple modes or being zero in large parts of space. A bottleneck
in MCMC mixing can also be caused by local roughness or oscillations and we believe the
results presented below do indicate useful aspects of scaling behaviour for MCMC methods
in such cases (see Section 8.3).

For RWM, for each 0 < H < 1 we use a probabilistic approach to construct a class of
product targets which lie in Cγ (R) (for γ < H ) but not in CH(R), and for which the RWM
algorithm does not scale optimally in the way indicated by the theory in [29]. Indeed an “ex-
pected squared jump distance” (ESJD) approach indicates a different and anomalous manner
of optimal scaling. For MALA, for each 0 < H < 1 we similarly use a probabilistic approach
to construct a class of product targets which lie in C2+γ (R) (for γ < H ) but not in C2+H (R)

and for which again the MALA algorithm does not scale optimally according to the regular-
case theory of Roberts and Rosenthal [30]; here an ESJD approach again indicates a different
and anomalous manner of optimal scaling.

Our method of approach is to generate random targets—in effect, random environments—
based on a random realisation of a two-sided H -fractional Brownian motion path. Indeed,
bearing in mind appropriate density theorems for Gaussian measures, in some sense our
counterexamples are generic! We use the generated path to construct a marginal probabil-
ity density function such that any possibility of optimal scaling could only arise by tuning
the coordinate variance of proposals for the associated n-dimensional product targets to be
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proportional to n−1/H for RWM and to n−1/(2+H) for MALA (instead of n−1 for RWM and
n−1/3 for MALA).

In addition the method of proof may be of independent interest. Section 3 provides a very
suitable framework for addressing optimal scaling questions for Metropolis-class MCMC
methods, particularly for identifying minimal required smoothness conditions. It is plausible
that similar frameworks can be obtained for other classes of MCMC algorithms. Indepen-
dently of that, an approach involving random targets, similar to Section 5, could be used to
construct other kinds of counterexamples in MCMC.

The rest of the paper is organised as follows. Section 2 states and discusses the main results
of the paper. Section 3 establishes conditions, nearly as general as possible, in the setting of
product targets under which an associated central limit theorem holds for the log Metropolis–
Hastings ratio and a non-trivial limiting acceptance rate exists. Section 4 states and proves
consequences of the celebrated Isserlis theorem which will later be used to control distribu-
tions of important quantities expressed in the context of a random environment. Section 5
introduces a general framework for showing when anomalous scaling can occur for general
Metropolis–Hastings algorithms applied to product targets in which the marginal product tar-
get density depends on a random environment which is a continuous Gaussian process. Sec-
tion 6 and Section 7 respectively verify that the general framework of Section 5 is satisfied in
cases of anomalously scaled RWM and MALA. Targets used for RWM (respectively MALA)
are perturbations, on the level of potential (respectively second derivative of the potential), of
the standard normal density. Finally, Section 8 discusses considerations concerning expected
square jump distance, open questions, potential extensions and how heuristics suggested by
these theoretical results could be useful in applications.

2. Main results of the paper. This section presents our main results in more detail. First
of all, recall the mathematical framework of optimal scaling for MCMC. The marginal prob-
ability density function for the product target measure (assumed here to be strictly positive)
is denoted by π . Thus the product target measure on R

n is given by

�n(dx) = �n(dx1, . . . ,dxn) =
n∏

i=1

(
π(xi)dxi

)
.

Our results concern asymptotic behaviour (as the dimension n grows to ∞) of MCMC al-
gorithms which deliver this target measure as large-time equilibrium. The relevant algo-
rithms, RWM and MALA, give rise to Markov chains (X

RWM,(n)
k : k = 1,2, . . .) for RWM

and (X
MALA,(n)
k : k = 1,2, . . .) for MALA (here the dummy index k is the discrete time

variable for the Markov chains). The chains are Metropolis–Hastings (MH) algorithms with
target probability measures �n based on multivariate normal proposals QRWM,(n)(x,dy) ∼
N(x, �2

n
· In) for RWM and QMALA,(n)(x,dy) ∼ N(x + �2

2n1/3 ∇(log�n(x)), �2

n1/3 · In) for
MALA, and we consider the stationary versions of all these chains (so initial distribution
is always �n). Here � > 0 is a parameter determining the asymptotic scale of the proposal.

The classic results of Roberts, Gelman and Gilks [29] and [30] state (respectively for
π ∈ C3(R) for RWM, and π ∈ C8(R) for MALA) that as n → ∞ there is weak convergence
of the first coordinate of the chain (under certain conditions on the decay of the tails and the
regularity of the marginal probability density of �n)

(1) X
RWM,(n)
�n·t�,1

w−→ Ut and X
MALA,(n)

�n1/3·t�,1
w−→ Ut

to a Langevin diffusion U , a solution of the continuous time stochastic differential equation

dUt = h(�)1/2 dBt + h(�)

2
∇(log

(
π(Ut)

)
dt.
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That is to say, the accelerated first coordinates X
RWM,(n)
�nt�,1 and X

MALA,(n)

�n1/3t�,1 , when considered as
piece-wise constant continuous time processes, converge weakly to the Langevin diffusion U

as the dimension n increases. The expressions for diffusion speeds h(�) are different in RWM
and MALA cases and optimising over the choice of � then leads to different (but appealingly
simple) acceptance ratio guidelines.

The computational heart of these results lies in the task of showing that the acceptance
ratio converges to a constant different to zero or one, and this follows by application of a
version of the central limit theorem (CLT) that applies to the coordinate-wise logarithms of
MH acceptance ratios for these algorithms. For instance, if X1, . . . ,Xn are the independent
and identically distributed (IID) coordinates of XRWM,(n) ∼ �n and Y1, . . . , Yn are the IID
coordinates of the RWM proposal Y RWM,(n) ∼ QRWM,(n)(XRWM,(n),dy) then the following
CLT

n∑
i=1

log
(
π(Yi)

) − log
(
π(Xi)

) w−→ N

(
−1

2
σ 2, σ 2

)

holds for an appropriate constant σ 2 = �2 ∫
R
((logπ)′(x)))2π(x)dx. This then identifies the

limiting average acceptance ratio via

α
(
XRWM,(n), Y RWM,(n)) = (1 ∧ exp)

(
n∑

i=1

log
(
π(Yi)

) − log
(
π(Xi)

))

w−→ (1 ∧ exp)

(
N

(
−1

2
σ 2, σ 2

))
,

where (1 ∧ exp)(x) denotes min(1, ex) for x ∈ R. Note that this identifies the optimal scaling
rate for the coordinates of the proposal: if a scaling rate is not asymptotic to the rate giving a
CLT (n−1 for RWM and n−1/3 for MALA) then either there is no limiting average acceptance
rate or the limit is necessarily 0 or 1.

We now construct classes of marginal probability density functions for which anomalous
scaling occurs at least at the level of ESJD. We do this by using a randomised construction
based on fractional Brownian motions. Recall that {B(H)

x , x ∈ R} is a two-sided fractional
Brownian motion (fBM) with Hurst parameter H ∈ (0,1) if it is a centred zero-mean Gaus-
sian process with covariance defined for arbitrary x, y ∈ R by

(2) �(H)(x, y) = E
[
B(H)

x B(H)
y

] = 1

2
|x|2H + 1

2
|y|2H − 1

2
|x − y|2H .

Here we refer to Nualart [24], Chapter 5, for fBM theory. This reference covers the single-
sided fBM with x ≥ 0: however extension to the double-sided case is immediate if one notes
that (2) remains nonnegative definite for all x, y. Revuz and Yor [28], Chapter I, Exer-
cise (3.9), gives an explicit and succinct construction for all x, y (see also [21]). The sample
paths of fBM with Hurst parameter H are almost surely Hölder continuous of exponent γ

whenever 0 < γ < H (though not for γ = H ). Let 	(H) denote the space of all two-sided
paths that are zero at time zero and are in Cγ (R) for all 0 < γ < H , so 	(H) is in fact a prob-
ability space equipped with a measure provided by two-sided fBM with Hurst parameter H .

The main result concerning RWM counterexamples can be summarised as follows (where
In denotes the n-dimensional identity matrix).

THEOREM 1 (Anomalous scaling for RWM). Consider the random function ξ
(H)
B de-

pending on the fractional Brownian motion B(H) and defined by

ξ
(
x|B(H)) = 1√

2π
exp

(
B(H)

x − x2

2

)
.
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Almost surely
∫ ∞
−∞ ξ(x|B(H))dx < ∞, so ξ(·|B(H)) can be renormalised to provide a (ran-

dom) target density

π
(
x|B(H)) = ξ(x|B(H))∫ ∞

−∞ ξ(u|B(H))du
.

Condition on B(H) and consider a stationary RWM chain with target �n(·|B(H)) =∏n
i=1 π(·|B(H)) and proposal QRWM,(n)(x,dy) ∼ N(x, �2n−1/H · In). Then there is a con-

stant σ 2 = �2H 2H√
π
�(H + 1

2) such that, as n → ∞, the probability of acceptance of the

proposal (conditional on the underlying B(H)) satisfies

α
(
XRWM,(n), Y RWM,(n)) w−→ (1 ∧ exp)

(
N

(
−1

2
σ 2, σ 2

))

almost surely (for almost all realisations of the fBM B(H)).

In effect B(H) is providing a random environment, XRWM,(n) is a Markov chain using this
random environment, and Theorem 1 refers to the quenched behaviour of this Markov chain
in a random environment.

We draw attention to the anomalous rate of scaling of the proposal variances. The reader
should keep in mind that substantially different rates of proposal scaling will yield either
a trivial limit or no limiting behaviour at all. In particular, the optimal scaling of Roberts,
Gelman and Gilks [29] cannot here apply. It is also possible to see that this rate of proposal
variance decay is optimal in terms of the ESJD. However, we have to pose it in a slightly
different way than classically: for any decay rate of proposal variances the ESJD (random,
because it depends on the environment) divided by the optimal ESJD rate converges to zero
in probability. We outline the proof and discuss this further in Section 8.1.

Given the Hurst parameter H and the rate �n−1/H of optimal proposal variance decay,
one can then optimise the ESJD decay rate over the choice of �. This gives us an optimal
acceptance rate for each H . The function cannot be expressed in closed form but can be
plotted numerically, see the left panel of Figure 1. Note that the optimal acceptance rate
converges to zero as H → 0 and, for example, it is optimal to accept approximately 7% of
the proposals for H = 1/2 and only 0.7% for H = 1/4.

The analogous result concerning MALA requires definition of a localisation function
ϕc(x) : R → [0,1] depending on a parameter c > 0 and defined for x ∈ R (with ϕc(0) = 1)
as follows

(3) ϕc(x) = 1 ∧ (
c

3
2H |x|−3) = min

{
1, c

3
2H |x|−3}

.

We will consider perturbations of a normal density by a fBM path at the level of the second
derivative of the potential and the localisation function is introduced to control fBM fluctua-
tions and ensure the resulting random target is integrable.

Anomalous scaling of MALA can then occur as follows.

THEOREM 2 (Anomalous scaling for MALA). Consider the random function ξ(·|
B(H); c) depending on the fractional Brownian motion B(H) and defined by

ξ
(
x|B(H); c) = 1√

2π
exp

(
−x2

2
+ x2

∫ 1

0
B(H)

xs ϕc(xs)(1 − s)ds

)
.

For every Hurst index H ∈ (0,1) there exists a small enough c > 0, such that almost surely∫ ∞
−∞ ξ(x|B(H); c)dx is finite, so ξ(·|B(H); c) can be renormalised to provide a (random)

target density

π
(
x|B(H); c) = ξ(x|B(H); c)∫ ∞

−∞ ξ(u|B(H); c)du
.
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FIG. 1. Optimal acceptance rates for RWM (left) for smoothness classes H ∈ (0,1) and MALA (right) for
smoothness classes 2 + H with H ∈ (0,1). The optimal acceptance rates are obtained by numerically solving the
same equation (in terms of smoothness class) in both cases.

Condition on B(H) and consider a stationary MALA chain with target �n(·|B(H); c) =∏n
i=1 π(·|B(H); c) and proposal QMALA,(n)(x,dy) ∼ N(x + 1

2�2n−1/(2+H)∇(log�n(x)),

�2n−1/(2+H) · In). Then there is a constant σ 2 > 0 such that, as n → ∞, the probability
of acceptance of the proposal (conditional on the underlying B(H)) satisfies

α
(
XMALA,(n), Y MALA,(n)) w−→ (1 ∧ exp)

(
N

(
−1

2
σ 2, σ 2

))

almost surely (for almost all realisations of the fBM B(H)). We may take

σ 2 = �4+2H × 21+H�(H + 5
2)√

π
× H

2 + 7H + 7H 2 + 2H 3 ×
∫ ∞
−∞

ϕc(x)2π
(
x|B(H); c)

dx.

We emphasise that here the log marginal target density is twice differentiable and H mea-
sures the roughness of the second derivative as noted below. (In the RWM case H measures
the roughness of the log marginal target density itself.)

Again, the anomalous rate means that the optimal scaling of [30] cannot here apply, more-
over that the rate of proposal variance decay is optimal. Again optimising over the choice of
� leads to different optimal acceptance rates for different values of H . As exhibited in the
right panel of Figure 1, and as in the RWM case, the optimal acceptance rate increases as
H increases. In the MALA case H measures the roughness of the second derivative of the
target (so π is “2 + H smooth”) and the optimal acceptance rate does not decay to zero as
H does. In fact both plots of Figure 1 are obtained by numerically solving the same equation
(see Section 8.1) over different ranges of smoothness parameter, (0,1) for RWM and (2,3)

MALA. The choice of optimal acceptance rate also seems to be much more robust in case of
MALA; this is supported by the numerical examples in Section 8.3.

The marginal target probability densities for these counterexamples are chosen to facilitate
simple proofs; many other constructions work equally well. The RWM choice is a fractional
Brownian perturbation of a normal density; the MALA choice is based on a fractional Brow-
nian perturbation at the level of the second derivative of the log-density, so(

d

dx

)2(
log

(
π

(
x|B(H); c))) = −1 + ϕc(x)B(H).

The proofs will work for other kinds of perturbation, and indeed it is an interesting question
what exactly are the analytical features of a marginal target probability density that would
lead to anomalous scaling.

In this paper we do not proceed to establish weak convergence to Langevin diffusion limits,
because the current results are sufficient to establish counterexamples. This and other related
questions are further discussed in Section 8.2. Section 8.3 discussed the question of what
useful heuristics can be learned from these results.
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3. Generalities concerning Metropolis–Hastings log acceptance rates. In this section
we describe a general framework for proving CLT-type results such as Theorems 1 and 2. The
treatment follows the style of Tierney [33], and applies to rather general Metropolis–Hastings
(MH) samplers.

Let (X ,F) be a measurable space, supporting a probability measure π (the “target proba-
bility distribution”) and a Markov kernel (Q(x, ·) : x ∈ X ) (the “proposal mechanism”). Re-
call that (Q(x, ·) : x ∈X ) is a Markov kernel if (i) x 
→ Q(x,A) is measurable for any A ∈ F
and (ii) B 
→ Q(x,B) is a probability measure on (X ,F) for any x ∈ X . As described by
Tierney [33], Proposition 1, let R ∈ F ⊗ F be the symmetric set such that π(dx)Q(x,dy)

and π(dy)Q(y,dx) are mutually absolutely continuous on R and mutually singular off R.
Tierney notes that R is unique up to differences of sets which are null with respect to both
these measures.

We define the log MH acceptance ratio (log-MH-ratio) ρ by

(4) ρ(x, y) =
⎧⎪⎨
⎪⎩

log
(

π(dy)Q(y,dx)

π(dx)Q(x,dy)

)
if (x, y) ∈ R,

0 otherwise.

We write ρ for the random variable ρ(X,Y ), where (X,Y ) has distribution given by
π(dx)Q(x,dy).

It is straightforward to verify that the definition of ρ and the reversibility of the MH algo-
rithm under π together imply the following computational relationships.

PROPOSITION 3. With ρ(x, y) defined as above:

3.(a) ρ(x, y) = −ρ(y, x) almost everywhere with respect to π(dx)Q(x,dy).
3.(b) Let f : R → R be a measurable function such that E[|f (ρ)|] < ∞, so that f ◦ ρ is

integrable with respect to π(dx)Q(x,dy). Then E[f (−ρ)eρ] = E[f (ρ)].
PROOF. By Radon–Nikodym theorem 3.(a) is immediate from (4) and the symmetry

of R.
To establish Proposition 3.(b), argue as follows. Using 3.(a), we know that f (−ρ)eρ

I[ρ ≤
κ] will be integrable against the probability measure π(dx)Q(x,dy) for each positive con-
stant κ , hence

E
[
f (−ρ)eρ;ρ ≤ κ

]
=

∫ ∫
ρ(x,y)≤κ

f
(−ρ(x, y)

)
eρ(x,y)π(dx)Q(x,dy)

=
∫ ∫

(x.y)∈R and ρ(x,y)≤κ
f

(−ρ(x, y)
)
eρ(x,y)π(dx)Q(x,dy) + f (0)

∫∫
Rc

π(dx)Q(x,dy)

=
∫ ∫

(x.y)∈R and ρ(x,y)≤κ
f

(−ρ(x, y)
)π(dy)Q(y,dx)

π(dx)Q(x,dy)
π(dx)Q(x,dy)

+ f (0)

∫∫
Rc

π(dx)Q(x,dy)

=
∫ ∫

(x.y)∈R and ρ(x,y)≤κ
f

(−ρ(x, y)
)
π(dy)Q(y,dx) + f (0)

∫∫
Rc

π(dy)Q(y,dx)

=
∫ ∫

ρ(y,x)≥−κ
f

(
ρ(y, x)

)
π(dy)Q(y,dx) = E

[
f (ρ);ρ ≥ −κ

]
.

The fact that R is a symmetric set is used for the fourth equality, while Proposition 3.(a) is
used for the fifth.
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Applying the above to the function |f |, and letting κ → ∞, yields E[|f (−ρ)|eρ] =
E[|f (ρ)|] < ∞ by monotone convergence. Hence E[f (−ρ)eρ;ρ ≤ κ] → E[f (−ρ)eρ], by
dominated convergence. Proposition 3.(b) then follows by letting κ → ∞ in the equation
above. �

REMARK 4. Useful identities following from Proposition 3 include:

4.(a) E[eρ] = 1;
4.(b) E[f (ρ)eρ/2] = E[f (−ρ)eρ/2] whenever f (ρ)eρ/2 is an integrable random variable;
4.(c) E[f (ρ)eρ/2] = 0 whenever f is an odd function and f (ρ)eρ/2 is an integrable ran-

dom variable.
4.(d) If f is an even function and f (ρ) is an integrable random variable then f (ρ)etρ is

an integrable random variable for all t ∈ (0,1).

Typically, when establishing optimal scaling results, a key task is to determine when it is
valid to assert asymptotically negligibility of half the variance of ρ plus its mean. The next
few results establish when this asymptotically negligibility holds for a rather general context.

PROPOSITION 5. Suppose that E[ρ2] < ∞. Then E[ρ]+ 1
2 E[ρ2] = E[ρ2 ∫ 1

2
0 (1−etρ)dt].

PROOF. Consider the exact Taylor expansion (valid for all values of ρ)

eρ = 1 + ρ + 1

2
ρ2 + ρ2

∫ 1

0
(1 − t)

(
etρ − 1

)
dt.

Taking expectations and using Remark 4.(a),

E
[
ρ + ρ2/2

] = E

[
ρ2

∫ 1

0
(1 − t)

(
1 − etρ)

dt

]
.

The proof is concluded by the following sequence of equalities. They are justified respectively
by applying the Fubini–Tonelli theorem for exchanging order of integral when the integrand
is bounded above, using Proposition 3.(b) for the function f (ρ) = ρ2etρ (which is integrable
by Remark 4.(d)), changing variables using u = 1− t , and finally applying the Fubini–Tonelli
theorem once more:

E

[
ρ2

∫ 1

1
2

(1 − t)
(
1 − etρ)

dt

]

=
∫ 1

1
2

(1 − t)E
[
ρ2(

1 − etρ)]
dt =

∫ 1

1
2

(1 − t)E
[
ρ2(

1 − e(1−t)ρ)]
dt

=
∫ 1

2

0
uE

[
ρ2(

1 − euρ)]
du = E

[
ρ2

∫ 1
2

0
u
(
1 − euρ)

du

]
. �

We now establish a bound on the right-hand side E[ρ2 ∫ 1
2

0 (1 − etρ)dt] of Proposition 5
which will be sufficient for our purposes.

LEMMA 6. Suppose that E[ρ2] < ∞. For every κ > 0 the following bound holds:
∣∣∣∣E

[
ρ2

∫ 1
2

0

(
1 − etρ)

dt

]∣∣∣∣ < sinh
(

1

2
κ

)
E

[
ρ2] +E

[
ρ2;ρ < −κ

]
.
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PROOF. Fix κ > 0 and split the above integral into parts according to whether ρ ∈
[−κ, κ], ρ < −κ or ρ > κ . If ρ ∈ [−κ, κ], then | ∫ 1

2
0 (1 − etρ)dt | ≤ 1

2 max{1 − e− 1
2 κ , e

1
2 κ −

1} = 1
2(e

1
2 κ − 1). Using 1

2(e
1
2 κ − 1) < sinh(1

2κ) for the sake of simplicity, we obtain∣∣∣∣E
[
ρ2

∫ 1
2

0

(
1 − etρ)

dt;−κ ≤ ρ2 ≤ κ

]∣∣∣∣ < sinh
(

1

2
κ

)
E

[
ρ2]

.

If ρ < −κ , then 1 − etρ < 1 so |E[ρ2 ∫ 1
2

0 (1 − etρ)dt;ρ < −κ]| < 1
2 E[ρ2;ρ < −κ]. Simi-

larly, if ρ > κ , then etρ −1 < eρ . Applying Proposition 3.(b) to the function f (ρ) = ρ2
I[κ <

ρ], this implies∣∣∣∣E
[
ρ2

∫ 1
2

0

(
1 − etρ)

dt;κ < ρ

]∣∣∣∣ <
1

2
E

[
ρ2eρ;κ < ρ

] = 1

2
E

[
ρ2;ρ < −κ

]
.

The result follows by adding these three terms. �

Now consider a sequence of log-MH-ratios ρn, possibly defined on different probability
spaces and associated with different target probability distributions πn, proposal kernels Qn

and derived log-MH-ratios ρn. Asymptotic negligibility of the second moment of ρn and
a technical condition weaker than the uniform integrability of the scaled random variables
ρ2

n/E[ρ2
n] on ρn < 0, imply that mean plus half variance of ρn is asymptotically negligible:

THEOREM 7 (“Half variance plus mean is asymptotically negligible”). Suppose that
E[ρ2

n] → 0 as n → ∞, and suppose moreover we can find positive constants κn → 0 such
that E[ρ2

n;ρn < −κn] = o(E[ρ2
n]) as n → ∞. Then E[ρn] + 1

2 E[ρ2
n] = o(E[ρ2

n]) as n → ∞;
indeed ∣∣∣∣E[ρn] + 1

2
E

[
ρ2

n

]∣∣∣∣ ≤ sinh
(

1

2
κn

)
E

[
ρ2

n

] +E
[
ρ2

n;ρn < −κn

] = o
(
E

[
ρ2

n

])
.

Moreover

E[ρn] + 1

2
Var[ρn] = o

(
E

[
ρ2

n

])
.

PROOF. The inequality follows directly from Proposition 5 and Lemma 6. The asymp-
totic negligibility of mean plus half variance follows from the observation that Var[ρn] =
E[ρ2

n] −E[ρn]2: we control E[ρn]2 by iterating the argument, since (E[ρn])2 = (o(E[ρ2
n]) −

1
2 E[ρ2

n])2 = o(E[ρ2
n]) (expanding the quadratic and using E[ρ2

n] → 0). �

We now establish a central limit theorem for suitable sums of independent log-Metropolis–
Hastings ratios (as would arise when considering suitable product-distribution targets). The
main requirement is simply a particular uniform integrability condition on the sequence of
scaled squares of the log-Metropolis–Hastings ratios, corresponding to a Lindeberg condi-
tion.

THEOREM 8. Consider a triangular array formed by ρn,j (for j = 1, . . . ,mn, n =
1,2, . . .), built out of row-wise independent log-Metropolis–Hastings-ratio random variables
for targets πnj and proposals qnj . Suppose that there exists a sequence of positive numbers
κn,j such that limn→∞ supj≤mn

κn,j = 0, and E[ρ2
n,j ;ρn,j < −κn,j ] = o(E[ρ2

n,j ]) uniformly,
in the sense that

(5) lim
n→∞ sup

j≤mn

E[ρ2
n,j ;ρn,j < −κn,j ]

E[ρ2
n,j ]

= 0.
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Suppose further that there exists a constant σ 2 < ∞ such that limn→∞
∑mn

j=1 E[ρ2
nj ] = σ 2.

Then
mn∑
j=1

ρn,j
w−→ N

(
−1

2
σ 2, σ 2

)
.

PROOF. The Lindeberg central limit theorem (see, e.g., [15], Theorem 4.15) follows from
the following conditions:

(i)
∑mn

j=1 P[|ρn,j | > ε] → 0 for any ε > 0,

(ii)
∑mn

j=1 E[ρn,j ; |ρn,j | ≤ 1] → −1
2σ 2,

(iii)
∑mn

j=1 Var[ρn,j ; |ρn,j | ≤ 1] → σ 2.

Note that Proposition 3.(b) implies that, for any nonnegative function f and for any n, j ,

E
[
f

(|ρn,j |);ρn,j > κn,j

] ≤ E
[
f

(|ρn,j |)eρn,j ;ρn,j > κn,j

] = E
[
f

(|ρn,j |);ρn,j < −κn,j

]
,

and hence

(6) E
[
f

(|ρn,j |); |ρn,j | > κn,j

] ≤ 2E
[
f

(|ρn,j |);ρn,j < −κn,j

]
.

Taking f (x) = x2 in (6) yields the following for fixed ε > 0 and for all sufficiently large
integers n:

mn∑
j=1

P
[
ρ2

n,j > ε2] ≤ 1

ε2

mn∑
j=1

E
[
ρ2

n,j ; |ρn,j | > ε
] ≤ 1

ε2

mn∑
j=1

E
[
ρ2

n,j ; |ρn,j | > κn,j

]

≤ 2

ε2

mn∑
j=1

E
[
ρ2

n,j ;ρn,j < −κn,j

]

≤ 2

ε2

(
mn∑
j=1

E
[
ρ2

n,j

]) × sup
j≤mn

E[ρ2
n,j ;ρn,j < −κn,j ]

E[ρ2
n,j ]

.

But we have supposed that
∑mn

j=1 E[ρ2
nj ] → σ 2 < ∞, so CLT requirement (i) follows from

(5).
Note E[ρn,j ; |ρn,j | > 1] ≤ E[ρ2

n,j ; |ρn,j | > 1]. It follows that
∑mn

j=1 E[ρn,j ; |ρn,j | > 1] →
0.

Note also Var[ρn,j ; |ρn,j | > 1] ≤ E[ρ2
n,j ; |ρn,j | > 1] and therefore it also follows that

(7)
mn∑
j=1

Var
[
ρn,j ; |ρn,j | > 1

] → 0.

Proposition 5 and Lemma 6 imply the asymptotic relationship
mn∑
j=1

∣∣∣∣E[ρn,j ] + 1

2
E

[
ρ2

n,j

]∣∣∣∣

≤
mn∑
j=1

(
sinh

(
1

2
κn,j

)
E

[
ρ2

n,j

] +E
[
ρ2

n,j ;ρn,j < −κn,j

])

≤
(

sinh
(

1

2
sup

j≤mn

κn,j

)
+ sup

j≤mn

E[ρ2
n,j ;ρn,j < −κn,j ]

E[ρ2
n,j ]

) mn∑
j=1

E
[
ρ2

n,j

]

→ 0.

(8)
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The combination of supj≤mn
κn,j → 0 and

∑mn

j=1 E[ρ2
nj ] → σ 2 and (5) together imply con-

vergence to 0.
Hence CLT requirement (ii) follows, since

∑mn

j=1 E[ρn,j ; |ρn,j | > 1] → 0, together with
the asymptotic relationship (8), implies that

lim
n→∞

mn∑
j=1

E
[
ρn,j ; |ρn,j | ≤ 1

] = lim
n→∞

mn∑
j=1

E[ρn,j ] = −1

2
lim

n→∞
mn∑
j=1

E
[
ρ2

n,j

] = −σ 2

2
.

Finally, we deal with CLT requirement (iii). First note that inequality (6) implies E[ρ2
n,j ] ≤

κ2
n,j + 2E[ρ2

n,j ;ρn,j < −κn,j ] for every n, j . Hence limn→∞ supj≤mn
κn,j = 0 and the uni-

form integrability together imply that

(9) lim
n→∞ sup

j≤mn

E
[
ρ2

n,j

] = 0.

Thus the asymptotic relationship (8) allows us to deduce that as n → ∞ so

lim
n→∞

mn∑
j=1

E[ρn,j ]2 = lim
n→∞

1

4

mn∑
j=1

E
[
ρ2

n,j

]2 ≤ lim
n→∞

1

4

mn∑
j ′=1

E
[
ρ2

n,j ′
] · sup

j≤mn

E
[
ρ2

n,j

]

= σ 2

4
lim

n→∞ sup
j≤mn

E
[
ρ2

n,j

] = 0.

This implies CLT requirement (iii) as follows: using (7),

lim
n→∞

mn∑
j=1

Var
[
ρn,j ; |ρn,j | ≤ 1

] = lim
n→∞

mn∑
j=1

Var[ρn,j ]

= lim
n→∞

((
mn∑
j=1

E
[
ρ2

n,j

]) −
(

mn∑
j=1

E[ρn,j ]2

))

= lim
n→∞

mn∑
j=1

E
[
ρ2

n,j

] = σ 2.
�

REMARK 9. Note that asymptotic as n → ∞ the second moment E[ρ2
n,j ] is uniformly

negligible (in j ). This is established by (9) as a consequence of the assumptions of Theorem 8.

REMARK 10. The fundamental difference between this central limit theorem and those
established in Roberts, Gelman and Gilks [29] and all subsequent optimal scaling results is
as follows. Our result is not conditional on a specific target location. It concerns random
variables that are simultaneously dependent on the target and the proposal draw, as opposed
to showing that for most fixed target draws the log Metropolis–Hastings ratios (viewed only
as functions of the proposal) satisfy a central limit theorem. This subtle difference allows the
use of weaker smoothness conditions.

4. Variations on Isserlis theorem. We seek an analysis of optimal scaling for RWM
and MALA when the marginal target probability density function depends on the Gaussian
random process given by the two-sided fBM B(H), as prescribed in Theorems 1 and 2. This
analysis requires a variation on the classical result of Isserlis [11], and consequent estimates
and computations, which we now describe.

First we introduce some preliminary combinatorial notation. Given a multiset S, a pairing
is a partition of S into pairs (each pair possibly containing the same element twice). A pairing
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is called proper if each of its pairs contains two distinct elements. Let P(S) denote the set
of all pairings of the multiset S, and let P∗(S) ⊆ P(S) denote the set of all proper pairings.
Isserlis’ theorem, sometimes also called Wick’s theorem runs as follows:

THEOREM 11 ([11]). Let X = (X1,X2, . . . ,Xn) be centred multivariate normal random
variable and consider a general multiset S = {s1, s2, . . . , sm}, with si ∈ {1,2, . . . , n} for i =
1, . . . ,m. Then

E[Xs1Xs2 · · ·Xsm] =
⎧⎪⎨
⎪⎩

∑
p∈P(S)

∏
�∈p

E[Xλ1Xλ2] if m is even,

0 if m is odd,

where the product is taken over all pairs � = {λ1, λ2} of a pairing p.

A proof can be found, for example, in Janson [12], Theorem 1.28.
Isserlis’ theorem leads to the following proposition.

PROPOSITION 12. Let X = (X1,X2, . . . ,Xn+k) be a centred multivariate normal ran-
dom variable with covariance matrix R and let S = 2 × {1,2, . . . , n} ∪ {n + 1, n + 2, . . . ,

n+ k}, using a compact multiset notation to signal that elements 1, . . . , n appear twice while
elements n + 1, . . . , n + k appear once only. Then

E
[(

X2
1 − R11

)(
X2

2 − R22
) · · · (X2

n − Rnn

)
Xn+1Xn+2 · · ·Xn+k

]

=
⎧⎪⎨
⎪⎩

∑
p∈P∗(S)

∏
�∈p

E[Xλ1Xλ2] for even k,

0 for odd k.

Note the crucial difference between expansions in Theorem 11 and Proposition 12: in the
proposition the sum is taken over the set P∗ of proper pairings.

PROOF. It suffices to consider the result when the covariance matrix R lies in the interior
of the set of all valid covariance matrices: the general result then follows by a continuity
argument. This allows us to argue algebraically, viewing relevant expectations as multivariate
polynomials in the entries of R.

First note that the result follows trivially if k is odd: apply inclusion-exclusion of
R11,R22, . . . ,Rnn to

E
[(

X2
1 − R11

)(
X2

2 − R2
22

) · · · (X2
n − Rnn

)
Xn+1Xn+2 · · ·Xn+k

]
.

In case of odd k, each term in the inclusion-exclusion expansion must vanish by Theorem 11.
So we need consider only the case of even k.

Consider the Isserlis expansion of I1 = E[X2
1X

2
2 · · ·X2

n · Xn+1Xn+2 · · ·Xn+k], viewed as
a sum of monomials in the entries of R. According to the combinatorial expression for this
given in Theorem 11, if we remove all monomials involving any of R11,R22, . . . ,Rnn then
the remaining sum is exactly

∑
p∈P∗(S)

∏
�∈p E[Xλ1Xλ2].

Now consider the Isserlis expansion of I2 = E[(X2
1 − R11)(X

2
2 − R22) · · · (X2

n − Rnn) ×
Xn+1 · · ·Xn+k], viewed as a linear combination of monomials of X1,X2, . . . ,Xn+k . This
agrees with the Isserlis expansion of I1 up to a difference of a linear combination of mono-
mials involving nonempty selections of R11,R22, . . . ,Rnn.

The result is therefore proved if we can establish that, after cancellation, the expansion of
I2 contains no terms involving any of the diagonal entries R11,R22, . . . ,Rnn.
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The joint moment generating function of the multivariate normal variable X equals
exp(1

2 t�Rt), for t ∈R
n+k . Hence

I2 =
[(

∂2

∂t2
1

− R11

)
. . .

(
∂2

∂t2
n

− Rnn

)
∂

∂tn+1
. . .

∂

∂tn+k

exp
(

1

2
t�Rt

)]
t1=0,...,tn+k=0

.

Viewing this as a smooth function of the vector t and the entries of R and denoting the
differential operator D = ( ∂2

∂t2
2

− R22) . . . ( ∂2

∂t2
n

− Rnn)
∂

∂tn+1
. . . ∂

∂tn+k
observe that

∂

∂R11
E

[(
X2

1 − R11
) · · · (X2

n − Rnn

)
Xn+1 · · ·Xn+k

]

= ∂

∂R11

[(
∂2

∂t2
1

− R11

)
D exp

(
1

2
t�Rt

)]
t1=0,...,tn+k=0

=
[
D

∂

∂R11

(
∂2

∂t2
1

− R11

)
exp

(
1

2
t�Rt

)]
t1=0,...,tn+k=0

=
[
D

∂

∂R11

(
n+k∑
i=1

R1i ti

)2

exp
(

1

2
t�Rt

)]
t1=0,...,tn+k=0

=
[
t1D exp

(
1

2
t�Rt

)(
t1

(
n+k∑
i=1

R1i ti

)2

+ 2
n+k∑
i=1

R1i ti

)]
t1=0,...,tn+k=0

= 0.

The second identity holds because we can swap the order of differentiation and interchange
differentiation with taking the limit ti → 0. This is justified since exp(1

2 t�Rt) and all its
derivatives are smooth and for a smooth function f the functions R11 
→ f (R11, t) converge
uniformly to R11 
→ f (R11,0) (as t → 0) in some compact neighbourhood of (R11,0).

The same argument applies for differentiation with respect to R22, . . . ,Rnn. Thus
it follows that I2 is free of all terms involving R11,R22, . . . ,Rnn, hence must equal∑

p∈P∗(S)

∏
�∈p E[Xλ1Xλ2] as required. �

LEMMA 13. Let X = (X0,X1,X2, . . . ,Xn) be a centred multivariate normal random
variable with covariance matrix R. Then

E

[
exp(X0) ×

n∏
i=1

(
X2

i − Rii

)]

= exp
(

1

2
R00

)
×E

[
n∏

i=1

(
(Xi + R0i )

2 − Rii

)]

= exp
(

1

2
R00

) ∑
A1�A2�A3={1,2,...,n}

|A2| is even

∑
p∈P∗(2A1∪A2)

2|A2| ∏
i∈A2

R0i × ∏
i∈A3

R2
0i × ∏

�∈p

Rλ1λ2,

where the inner sum ranges over P∗(2A1 ∪ A2), the set of all proper pairings of the multi-
set 2A1 ∪ A2 in which elements of A1 appear twice and elements of A2 appear once. The
outer sum ranges over all three-fold partitions A1, A2, A3 of the set {1,2, . . . , n} with A2
containing evenly many elements.

PROOF. We may suppose that X = C�Z, where Z is a k-dimensional standard normal
random variable and C is a k × (n + 1) matrix. Thus the covariance matrix of X is R =
E[XX�] = E[C�ZZ�C] = C�C, and Xi = e�

i C�Z where ei is an (n + 1)-vector with 1 as
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the ith entry and 0 elsewhere. Hence, using z for a (n+1)-vector of integration corresponding
to Z, and the translation invariance of Lebesgue measure,

E

[
exp(X0) ×

n∏
i=1

(
X2

i − Rii

)]

= E

[
exp

(
e�

0 C�Z
) n∏
i=1

(∣∣e�
i C�Z

∣∣2 − Rii

)]

= 1

(2π)(n+1)/2

∫
exp

(
e�

0 C�z
) n∏
i=1

(∣∣e�
i C�z

∣∣2 − Rii

)
exp

(
−1

2
|z|2

)
dz

= 1

(2π)(n+1)/2

∫
exp

(
e�

0 C�(z + Ce0)
)

×
n∏

i=1

(∣∣e�
i C�(z + Ce0)

∣∣2 − Rii

)
exp

(
−1

2
|z + Ce0|2

)
dz

= 1

(2π)(n+1)/2

∫
exp

(
e�

0 C�(z + Ce0) − 1

2
|z + Ce0|2 + 1

2
|z|2

)

×
n∏

i=1

(∣∣e�
i C�(z + Ce0)

∣∣2 − Rii

)
exp

(
−1

2
|z|2

)
dz

= 1

(2π)(n+1)/2

∫
exp

(
1

2
e�

0 C�Ce0

) n∏
i=1

(∣∣e�
i C�z + Ri0

∣∣2 − Rii

)
exp

(
−1

2
|z|2

)
dz

= E

[
exp

(
1

2
R00

) n∏
i=1

(
(Xi + Ri0)

2 − Rii

)]
.

Finally, rewrite each factor ((Xi +R0i )
2 −Rii) as (X2

i −Rii)+ 2R0iXi +R2
0i . Expanding

the product accordingly, we obtain

E

[
exp(X0) ×

n∏
i=1

(
X2

i − Rii

)]

= exp
(

R00

2

) ∑
A1�A2�A3={1,2,...,n}

2|A2|E
[ ∏
i∈A1

(
X2

i − Rii

) × ∏
i∈A2

Xi

]
× ∏

i∈A2

R0i × ∏
i∈A3

R2
0i .

The result follows by applying Proposition 12. �

We will also require the following combinatorial lemma in order to separate out groups of
integration variables.

LEMMA 14. Suppose that S = 2 × {1,2, . . . , n} ∪ {n + 1, n + 2, . . . , n + 2k} and p ∈
P∗(S) is a proper pairing. Then it is possible to partition p into three disjoint sets of pairs
p1, p2, p3 such that the pairs in each pi (i = 1,2,3) are pairwise disjoint and �n+k

3 � ≤
|pi | ≤ �n+k

3 �.
Furthermore, if X = (X1,X2, . . . ,Xn+2k) is a centred multivariate normal random vari-

able, then∏
�∈p

E[Xλ1Xλ2]2 ≤ 1

3

∏
�∈p1

E[Xλ1Xλ2]6 + 1

3

∏
�∈p2

∣∣∣∣E[Xλ1Xλ2]6 + 1

3

∏
�∈p3

∣∣∣∣E[Xλ1Xλ2]6.
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PROOF. The pairing p defines a graph on the set of its pairs {�1, . . . ,�n+k}, where �i

and �j are connected if and only if �i ∩ �j �= ∅. The maximal degree of this graph is
two, hence it is a disjoint union of paths and cycles (and isolated points). Each path or cycle
can be coloured with three colours (red, green and blue) so that no neighbouring vertexes
are of the same colour and the numbers of vertexes of different colours differ by at most
one. Finally colours are interchangeable within each cycle or path, so by careful selection of
excess colours for each cycle or path we can ensure that the numbers of vertexes of different
colours in the entire graph also differ by at most one.

The colours give us the partition. By definition all the pairs in each pi are disjoint, and by
construction �n+k

3 � ≤ |pi | ≤ �n+k
3 �. The bound follows by the inequality between geometric

and arithmetic means. �

5. Anomalous scaling for Metropolis–Hastings algorithms in a random environment.
In this section we develop a framework for proving anomalous scaling results for Metropolis–
Hastings algorithm for product targets which depend on random environments. The aim is
to establish sufficient conditions under which the algorithm will exhibit anomalous scaling
behaviour for almost all realisations of the random environment. Sections 6 and 7 will then
use this framework in the contexts of RWM and MALA algorithms to produce proofs of
Theorems 1 and 2.

For the sake of definiteness and computational convenience, we denote the random en-
vironment by B , and suppose this to be determined by a stationary continuous Gaussian
process. A (nonnormalised) random marginal target density is then produced by a map
ξ : R× 	 → [0,∞), required to deliver

∫
R

ξ(x|B)dx < ∞ for almost all realisations of the
random environment B . The normalisation of the random marginal target density is denoted
by π : R× 	 →R, so that∫

R

π(x|B)dx =
∫
R

(
ξ(x|B)∫

R
ξ(u|B)du

)
dx = 1.

Finally, let ρn(x, y|B) = log(
π(y|B)qn(y,x|B)
π(x|B)qn(x,y|B)

) = log(
ξ(y|B)qn(y,x|B)
ξ(x|B)qn(x,y|B)

) denote the logarithm of
the acceptance ratio of the Metropolis–Hastings algorithm with marginal target density
π(·|B) (equivalently ξ(·|B)) and proposal density qn : R2 × 	 → R. Note that qn(x, y|B)

may also depend on the random environment.
In light of Section 3, particularly the central limit Theorem 8, the crucial step is to identify

the decay rate of the second moments of the log acceptance ratio Eπ(·|B),qn(·|B)[ρ2
n|B] or

equivalently the decay rate of functionals (differing only by a normalising constant that does
not depend on n)

In(B) =
∫∫

R2
ρ2

n(x, y|B)ξ(x|B)qn(x, y|B)dx dy

=
∫∫

R2
ρ2

n(x, x + σnz|B)ξ(x|B)σnqn(x, x + σnz|B)dx dz,

(10)

for some positive sequence σ1 > σ2 > σ3 > · · · > 0.
Throughout the remainder of the paper, for two sequences a1, a2, . . . and b1, b2, . . . of

positive real numbers, the notation an � bn indicates that there is a positive constant C > 0
such that an ≤ Cbn holds for all n.

We consider the situation in which there is a product target with marginal target density de-
pending on a random environment and a product Metropolis–Hasting proposal. In this section
we consider the implications for optimal scaling if the following framework of assumptions
is valid.
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ANOMALOUS SCALING FRAMEWORK 15. Let ν1, ν2 be probability density functions
on R with all polynomial moments finite. Fix positive constants β , γ and �, and choose a
positive integer m such that m > 3 + 144β

min(24γ,1)
. Finally, set ν = ν1 × ν2 to be a joint density

function, and set σn = �n
− 1

2β . The sequence of assumptions (depending implicitly on β , γ ,
�, m) are as follows:

(A) Mixed Gaussian perturbation of log marginal target density:
For every real x, the (un-normalised) marginal target density is given by

ξ(x|B) = exp
(
K(x|B)

)
ν1(x),

where (K(x|B) : x ∈ R) is a centred Gaussian process such that K(x|B) has variance k(x).
Furthermore, we suppose K(x,B) has a particular unconditional exponential moment that
is finite:

E

[∫
R

exp
(
2m2K(x,B)

)
ν1(x)dx

]
=

∫
R

exp
(
2m2k(x)

)
ν1(x)dx < ∞

(with m chosen as above). Particularly, this moment condition implies ξ(x|B) is indeed a
target density for almost every realisation of the random environment B .

(B) Asymptotic behaviour of perturbation of marginal proposal:
For every real x, z and positive integer n, the marginal proposal density qn satisfies

σnqn(x, x + σnz|B) = Ln(x, z|B)ν2(z),

where the random variable Ln(x, z|B) is controlled by∫∫
R2

E
[∣∣Ln(x, z|B) − 1

∣∣4m]
ν(x, z)dx dz � σ 4mγ

n .

(C) Approximate normality of log Metropolis–Hastings ratio (LMHR):
For every real x, z and positive integer n

ρn(x, x + σnz|B) = Mn(x, z|B) + �n(x, z|B),

where (for each n) the random process (Mn(x, z|B) : x, z ∈R) is a centred Gaussian process
such that processes K and Mn are also jointly Gaussian. Furthermore, Mn(x, z|B) has vari-
ance h(x, z)σ

2β
n , for some function h exhibiting at most polynomial growth, and �n(x, z|B)

is a random variable satisfying∫∫
R2

E
[∣∣�n(x, z|B)

∣∣8m]
ν(x, z)dx dz � σ 8mβ+8mγ

n .

(D) Asymptotic Weak Dependence: There exist sets Sn ⊂R
4 taking up increasingly larger

parts of the space, specifically
∫
Sc

n
ν(x1, z1)ν(x2, z2)dx1 dz1 dx2 dz2 � σ

1/2
n , and fixed poly-

nomials g1, g2, such that for (x1, z1, x2, z2) ∈ Sn∣∣E[
Mn(x1, z1|B)Mn(x2, z2|B)

]∣∣ ≤ g1(x1, z1, x2, z2) × σ 2β+γ
n

while, for all real x1, z1, x2,∣∣E[
Mn(x1, z1|B)K(x2|B)

]∣∣ ≤ g2(x1, z1, x2) × σβ+γ
n .

Sections 6 and 7 respectively give concrete examples of anomalous RWM and MALA
algorithms in random environment that can be cast in terms of the above framework, that is,
they satisfy Assumptions 15.(A)–15.(D).
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Assumptions 15.(A)–15.(D) allow the approximation of functionals In(B) by progres-
sively simpler functionals. Initially, consider

(11) Ĩn(B) =
∫∫

R2
ρ2

n(x, x + σnz|B) exp
(
K(x|B)

)
ν(x, z)dx dz.

We prove a quantitative result which will imply almost sure decay at the same speed as In(B).

LEMMA 16. Let Assumptions 15.(A), 15.(B) and 15.(C) be satisfied. Then

E
[∣∣In(B) − Ĩn(B)

∣∣m]
� σ 2mβ+mγ

n .

PROOF. Writing ν(x, z) = ν1(x)ν2(z) for convenience, the expectation can be rewritten
using Assumptions 15.(A) and 15.(B) of Framework 15 and then bounded by a combination
of Jensen’s inequality and double usage of Cauchy–Schwarz inequality (all with respect to
ν(x, z)dx dz dP) to give

E
[∣∣In(B) − Ĩn(B)

∣∣m]
≤ E

[∫∫
R2

ρ2m
n (x, x + σnz|B) exp

(
mK(x|B)

)∣∣Ln(x, z|B) − 1
∣∣mν(x, z)dx dz

]

≤
(∫∫

R2
E

[
exp

(
2mK(x|B)

)]
ν(x, z)dx dz

)1/2

×
(∫∫

R2
E

[(
Ln(x, z|B) − 1

)4m]
ν(x, z)dx dz

)1/4

×
(∫∫

R2
E

[
ρ8m

n (x, x + σnz|B)
]
ν(x, z)dx dz

)1/4
.

The first factor is bounded by application of Assumption 15.(A) followed by marginalization
over z. The second factor decays at least as σ

mγ
n by Assumption 15.(B).

The proof will be concluded once we establish the last factor decays at least as σ
2mβ
n .

Indeed(∫∫
R2

E
[
ρ8m

n (x, x + σnz|B)
]
ν(x, z)dx dz

)1/4

=
(
E

[∫∫
R2

(
Mn(x, z|B) + �n(x, z|B)

)8m
ν(x, z)dx dz

])1/4

≤ 22m−1 ·
((

E

[∫∫
R2

Mn(x, z|B)8mν(x, z)dx dz

])1/4

+
(
E

[∫∫
R2

�n(x, z|B)8mν(x, z)dx dz

])1/4)

≤ 22m−1 ·
((

E
[
N(0,1)8m] ∫∫

R2
h(x, z)4mν(x, z)dx dz

)1/4
σ 2mβ

n + Cσ 2mβ+2mγ
n

)

� σ 2mβ
n ,

where C is some positive constant. The identity holds by Assumption 15.(C). The first in-
equality follows from the elementary bound (a + b)2m ≤ 22m−1(a2m + b2m) together with
application of a triangle inequality in L4(ν × P) norm. The remainder follows from the
Fubini–Tonelli theorem and the details of Assumption 15.(C). �
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The functionals Ĩn(B) can now be simplified further by approximating ρn(x, x +σnz|B) ≈
Mn(x, z|B), and controlling the approximation using Assumptions 15.(A) and 15.(C). Let

(12) În(B) =
∫∫

R2
M2

n(x, z|B) exp
(
K(x|B)

)
ν(x, z)dx dz.

Again the functionals Ĩn(B) and În(B) can be shown to be close to each other.

LEMMA 17. Suppose Assumptions 15.(A) and 15.(C) are satisfied. Then

E
[∣∣Ĩn(B) − În(B)

∣∣m]
� σ 2mβ+mγ

n .

PROOF. Arguing as in Lemma 16, Jensen’s inequality yields

∣∣Ĩn(B) − În(B)
∣∣m ≤

∫∫
R2

∣∣ρ2
n(x, x + σnz|B) − M2

n(x, z|B)
∣∣m exp

(
mK(x|B)

)
ν(x, z)dx dz.

Recall that by Assumption 15.(C)

ρ2
n(x, x + σnz|B) − M2

n(x, z|B) = �n(x, z|B)
(
2M2

n(x, z|B) + �n(x, z|B)
)
.

Exchanging the expectation with the double integral using the Fubini–Tonelli theorem, and
then applying the Cauchy–Schwarz inequality twice over,

E
[∣∣Ĩn(B) − În(B)

∣∣m] ≤
(∫∫

R2
E

[
exp

(
2mK(x|B)

)]
ν(x, z)dx dz

)
)1/2

×
(∫∫

R2
E

[
�n(x, z|B)4m]

ν(x, z)dx dz

)1/4

×
(∫∫

R2
E

[(
2Mn(x, z|B) + �n(x, z|B)

)4m]
ν(x, z)dx dz

)1/4
.

As in the proof of Lemma 16, Assumption 15.(A) implies the first factor is bounded and
Assumption 15.(C) guarantees second factor decays at least as σ

mβ+mγ
n and the third as σ

mβ
n .

�

The final step is to consider the functional obtained from În(B) by replacing (Mn(x,

z|B))2 by its expectation (see Assumptions 15.(A) and 15.(C)):

Jn(B) =
∫∫

R2
E

[(
Mn(x, z|B)

)2]
exp

(
K(x|B)

)
ν(x, z)dx dz.

= σ 2β
n ·

∫∫
R2

h(x, z)ξ(x|B)ν2(z)dx dz

= σ 2β
n ·

∫∫
R2

h(x, z) exp
(
K(x|B)

)
ν1(x)ν2(z)dx dz.

(13)

Note that the double integral is almost surely finite: this follows from the polynomial growth
of h(x, z) (Assumption 15.(C)), Cauchy–Schwarz inequality, the fact that the densities ν1
and ν2 have finite polynomial moments (stipulated in the Framework 15), and the fact that
exp(k(x)) is integrable with respect to ν1 (Assumption 15.(A)).

Again we need to establish that the functionals În(B) and Jn(B) are close.

LEMMA 18. Let Assumptions 15.(A), 15.(C) and 15.(D) be satisfied. Then

E
[∣∣În(B) −Jn(B)

∣∣m]
� σ

2mβ+mmin(
γ
2 , 1

48 )
n .
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PROOF. It suffices to bound E[|În(B) −Jn(B)|2m], since by Jensen’s inequality

E
[∣∣În(B) −Jn(B)

∣∣m] ≤ E
[∣∣În(B) −Jn(B)

∣∣2m]1/2
.

Formulae (12) for În(B) and (13) for Jn(B) together imply

În(B) −Jn(B) =
∫∫

R2

(
Mn(x, z|B)2 −E

[
Mn(x, z|B)2])

exp
(
K(x|B)

)
ν(x, z)dx dz

and consequently(
În(B) −Jn(B)

)2m

=
∫

· · ·
∫
R4m

( 2m∏
i=1

(
Mn(xi, zi |B)2 −E

[
Mn(xi, zi |B)2])) × exp

( 2m∑
i=1

(
K(xi |B)

))

×
2m∏
i=1

(
ν(xi, zi)dxi dzi

)

=
∫

· · ·
∫
R4m

( 2m∏
i=1

(
M2

i − Rii

)) × exp(K̄) ×
( 2m∏

i=1

ν(xi, zi)dxi dzi

)
,

where we abbreviate notation by writing Mi = Mn(xi, zi |B), Rii = E[M2
i ] and K̄ =∑2m

i=1(K(xi |B)). Note that the various Mi and K(xj |B) are not necessarily independent,
and typically will not be so.

Using the Fubini–Tonelli theorem to exchange the expectation in E[(În(B) − Jn(B))2m]
with the implicit multiple integrals, we now obtain

(14) E
[(
În(B) −Jn(B)

)2m] =
∫

· · ·
∫
R4m

E

[
exp(K̄)

2m∏
i=1

(
M2

i − Rii

)] 2m∏
i=1

(
ν(xi, zi)dxi dzi

)
.

By Lemma 13 the expectation E[exp(K̄)
∏2m

i=1(M
2
i − Rii)] equals

exp
(

1

2
E

[
K̄2]) ∑

A1∪A2∪A3={1,2,...,2m}
A1∩A2=A1∩A3=A2∩A3=∅

|A2| is even

∑
p∈P∗(2A1∪A2)

2|A2| ∏
i∈A2

E[MiK̄]

× ∏
i∈A3

E[MiK̄]2 × ∏
�∈p

E[Mλ1Mλ2].

Inserting the above into (14), we obtain

E
[(
În(B) −Jn(B)

)2m] = ∑
A1∪A2∪A3={1,2,...,2m}

A1∩A2=A1∩A3=A2∩A3=∅

|A2| is even

∑
p∈P∗(2A1∪A2)

2|A2|

×
∫

· · ·
∫
R4m

∏
i∈A2

E[MiK̄] · ∏
i∈A3

E[MiK̄]2 · ∏
�∈p

E[Mλ1Mλ2]

× exp
(
E

[
1

2
K̄2

])
·

2m∏
i=1

(
ν(xi, zi)dxi dzi

)
.

(15)

Now focus attention on a typical summand in the above sum. This corresponds to fixing a
partition A1, A2, A3 with prescribed properties and a proper pairing p of 2A1 ∪A2. Applying
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the Cauchy–Schwarz inequality with respect to the measure
∏2m

i=1(ν(xi, zi)dxi dzi),∫
· · ·

∫
R4m

∏
i∈A2

E[MiK̄] · ∏
i∈A3

E[MiK̄]2 · ∏
�∈p

E[Mλ1Mλ2]

× exp
(

1

2
E

[
K̄2]) ·

2m∏
i=1

(
ν(xi, zi)dxi dzi

)

≤
(∫

· · ·
∫
R4m

∏
i∈A2

E[MiK̄]2 · ∏
i∈A3

E[MiK̄]4 · exp
(
E

[
K̄2]) ·

2m∏
i=1

(
ν(xi, zi)dxi dzi

))1/2

×
(∫

· · ·
∫
R4m

∏
�∈p

E[Mλ1Mλ2]2 ·
2m∏
i=1

(
ν(xi, zi)dxi dzi

))1/2

.

(16)

Consider the first factor. We can bound each |E[MiK̄]| by |E[MiK̄]| ≤ g(zi, x1, . . . ,

xn)σ
β+γ
n , using a polynomial g(zi, x1, . . . , xn) = ∑2m

j=1 g2(xi, zi, xj ), generated from the
second point of Assumption 15.(D).

By the Cauchy–Schwarz inequality,(
1

2m

)2
K̄2 =

(
1

2m

2m∑
i=1

K(xi |B)

)2

≤ 1

2m

2m∑
i=1

K(xi |B)2

and so ∏
i∈A2

E[MiK̄]2 · ∏
i∈A3

E[MiK̄]4 · exp
(
E

[
K̄2])

≤ ∏
i∈A2

E[MiK̄]2 · ∏
i∈A3

E[MiK̄]4 · exp

(
2m

2m∑
j=1

E
[
K(xj |B)2])

.

Hence, Assumptions 15.(A) and 15.(D) yield∏
i∈A2

E[MiK̄]2 · ∏
i∈A3

E[MiK̄]4 · exp
(
E

[
K̄2])

≤ exp

(
2m

2m∑
j=1

k(xj )

) ∏
i∈A2

g(zi, x1, . . . , xn)
2

∏
i∈A3

g(zi, x1, . . . , xn)
4

× σ (2|A2|+4|A3|)(β+γ )
n .

(17)

Application of the Cauchy–Schwarz inequality, and the exponential integrability of 2m2k(x)

(with respect to ν1(x)dx) assured by Assumption 15.(A), shows that this is integrable with
respect to the probability measure

∏2m
i=1(ν(xi, zi)dxi dzi). Consequently we obtain

(18)

(∫
· · ·

∫
R4m

∏
i∈A2

E[MiK̄]2 · ∏
i∈A3

E[MiK̄]4 · exp
(
E

[
K̄2]) ·

2m∏
i=1

ν(xi, zi)dxi dzi

)1/2

� σ (|A2|+2|A3|)(β+γ )
n .

Consider now the second factor in (16). As p is a proper pairing, Lemma 14 asserts there
is a partition of p into three sets of pairs p1, p2, p3 of size at least �|A1|/3 + |A2|/6� so that
all pairs within each pi are disjoint and moreover∏

�∈p

E[Mλ1Mλ2]2 ≤ 1

3

∏
�∈p1

E[Mλ1Mλ2]6 + 1

3

∏
�∈p2

E[Mλ1Mλ2]6 + 1

3

∏
�∈p3

E[Mλ1Mλ2]6.



992 J. VOGRINC AND W. S. KENDALL

This allows us to split the integral over R4m into a product of integrals over R4

∫
· · ·

∫
R4m

∏
�∈p

E[Mλ1Mλ2]2 ·
2m∏
i=1

ν(xi, zi)dxi dzi

≤ 1

3

3∑
j=1

∫
· · ·

∫
R4m

∏
�∈pj

E[Mλ1Mλ2]6
2m∏
i=1

ν(xi, zi)dxi dzi

= 1

3

3∑
j=1

∏
�∈pj

∫
R4

E[Mλ1Mλ2]6ν(xλ1, zλ1)ν(xλ2, zλ2)dxλ1 dzλ1 dxλ2 dzλ2 .

(19)

The last equality holds because pairs within each pj are by construction disjoint which im-
poses a product structure on the high-dimensional integral.

For each of the factors of (19), the first bound of Assumption 15.(D) yields∫
Sn

E[Mλ1Mλ2]6ν(xλ1, zλ1)ν(xλ2, zλ2)dxλ1 dzλ1 dxλ2 dzλ2 � σ 12β+6γ
n .

The Cauchy–Schwarz inequality, together with Assumptions 15.(C) and 15.(D) control the
integral of the set Sn,∫

Sc
n

E[Mλ1Mλ2]6ν(xλ1, zλ1)ν(xλ2, zλ2)dxλ1 dzλ1 dxλ2 dzλ2

≤
∫
R4

E
[
M2

λ1

]3
E

[
M2

λ2

]31Sc
n
(xλ1, zλ1, xλ2, zλ2)ν(xλ1, zλ1)ν(xλ2, zλ2)dxλ1 dzλ1 dxλ2 dzλ2

� σ 12β
n

(∫
Sc

n

ν(xλ1, zλ1)ν(xλ2, zλ2)dxλ1 dzλ1 dxλ2 dzλ2

)1/2
� σ

12β+ 1
4

n .

Together the above bounds give∫
R4

E[Mλ1Mλ2]6ν(xλ1, zλ1)ν(xλ2, zλ2)dxλ1 dzλ1 dxλ2 dzλ2 � σ
12β+6 min(γ, 1

24 )
n .

Since Lemma 14 asserts that each set of pairs pj contains at least �|A1|/3 +|A2|/6� pairs,
the above together with (19) gives

(20)

(∫
· · ·

∫
R4m

∏
�∈p

E[Mλ1Mλ2]2 ·
2m∏
i=1

ν(xi, zi)dxi dzi

)1/2

� σ
(6β+3 min(γ, 1

24 ))�|A1|/3+|A2|/6�
n .

Combining (20) with (16) and (18), we obtain the following bound for each fixed partition:∣∣∣∣∣
∫

· · ·
∫
R4m

∏
i∈A2

E[MiK̄] · ∏
i∈A3

E[MiK̄]2 · ∏
�∈p

E[Mλ1Mλ2]

× exp
(
E

[
1

2
K̄2

])
·

2m∏
i=1

ν(xi, zi)dxi dzi

∣∣∣∣∣.
� σ (|A2|+2|A3|)(β+γ )

n × σ
�|A1|/3+|A2|/6�×(6β+3 min(γ, 1

24 ))
n .

� σ 2β(|A1|+|A2|+|A3|)
n × σ

2γ |A3|+(γ+ 1
2 min(γ, 1

24 ))|A2|+min(γ, 1
24 )|A1|−6β−3 min(γ, 1

24 )
n

≤ σ 4mβ
n × σ

2mmin(γ, 1
24 )

n × σ
−6β−3 min(γ, 1

24 )
n ≤ σ 4mβ

n × σ
mmin(γ, 1

24 )
n .
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The argument for this uses |A1| + |A2| + |A3| = 2m together with crude bounds to reduce
coefficients of remaining A1, A2, A3 to min(γ, 1

24) and then employs m > 3 + 144β
min(24γ,1)

as
stipulated in the Framework 15.

The above bound no longer depends on the choice of partition A1, A2, A3 and so can be
used in (15) to achieve a bound of

(
În(B) −Jn(B)

)2m ≤ constant × σ
4mβ+mmin(γ, 1

24 )
n ,

where the constant depends on m but not on n. As noted at the start of the proof, this estab-
lishes the lemma. �

We now require the following application of the Borel–Cantelli lemma.

PROPOSITION 19. Let U1,U2, . . . and Ũ1, Ũ2, . . . be sequences of random variables, let
δ1, δ2, . . . be a positive sequence converging to zero, and suppose κ is a positive constant.
Assume there is a constant C > 0 and an integer m > 1

κ
such that the inequality E[|Un −

Ũn|m] ≤ Cδm
n n−mκ is satisfied for every n. Then P[δ−1

n (Un − Ũn)
n→∞−−−→ 0] = 1.

PROOF. Take an arbitrary ε > 0. By Markov’s inequality,

P
[|Un − Ũn| > εδn

] ≤ 1

εmδm
n

E
[|Un − Ũn|m] ≤ C

εm
n−mκ.

Summing over n = 1,2, . . . , and noting that mκ > 1,
∞∑

n=1

P
[|Un − Ũn| > εδn

] ≤ C

εm

∞∑
n=1

n−mκ < ∞.

It now follows from the Borel–Cantelli lemma that P[|Un − Ũn| > εδn i.o.] = 0. Since ε > 0
was arbitrary, the result follows. �

This enables us to show that the functionals In(B), Ĩn(B), În(B) and Jn(B) indeed decay
with the same speed almost surely (for almost all realisations of the random environment B)
and thus identify the almost sure decay of In(B).

PROPOSITION 20. Let the assumptions of Framework 15 be satisfied. Then (almost
surely in the random environment B)

σ−2β
n In(B)

n→∞−−−→
∫∫

R2
h(x, z)ξ(x|B))ν2(z)dx dz.

So in this case In(B) almost surely decays as σ
2β
n .

PROOF. Note that the Framework 15 includes a stipulation that σn = �n
− 1

2β , as well as a
requirement that m > 3 + 144β

min(24γ,1)
.

Apply Proposition 19 together with Lemma 16 in the case that Un = In, Ũn = Ĩn, δn = σ
2β
n

and κ = γ
2β

. Since mκ = m
γ
2β

≥ 3 > 1, it follows that the difference |In(B) − Ĩn(B)| almost

surely decays faster than σ
2β
n .

Similarly, apply Proposition 19 together with Lemma 17 in the case that Un = Ĩn, Ũn =
În, δn = σ

2β
n and κ = γ

2β
. Since again mκ = m

γ
2β

≥ 3 > 1, it follows that the difference

|Ĩn(B) − În(B)| almost surely decays faster than σ
2β
n .
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Finally, apply Proposition 19 together with Lemma 18 in the case that Un = În, Ũn = Jn,
δn = σ

2β
n and κ = min(24γ,1)

96β
. Now mκ = m

min(24γ,1)
96β

>
144β

min(24γ,1)
min(24γ,1)

96β
= 3

2 > 1, and so

the difference |În(B) −Jn(B)| almost surely decays faster than σ
2β
n .

Consequently the difference |In(B) − Jn(B)| almost surely decays faster than σ
2β
n . But

Jn(B) is calculated exactly in (13), and demonstrably almost surely decays exactly as σ
2β
n .

Consequently the same must hold for In(B) and so the proposition follows. �

Since the random targets ξ(·|B)) are almost surely integrable and independent of n (As-
sumption 15.(A)), the following corollary follows by normalisation.

COROLLARY 21. Let the assumptions of Framework 15 be satisfied. Then (almost surely
in the random environment B)

σ−2β
n Eπ(·|B),qn(·|B)

[
ρ2

n|B] n→∞−−−→
∫∫

R2
h(x, z)π(x|B)ν2(z)dx dz.

Thus Eπ(·|B),qn(·|B)[ρ2
n|B] almost surely decays as σ

2β
n .

The final task is to show that a Lindeberg-type condition holds almost surely.

LEMMA 22. Let the assumptions of Framework 15 be satisfied. Then almost surely (for
almost every realisation of the random environment B)

E
[
Eπ(·|B),qn(·|B)

[
ρ2

n1
ρ2

n>σ
β
n
|B]m]

� σ 3mβ
n .

PROOF. By a combination of the Cauchy–Schwarz and Markov inequalities, for almost
every realisation of B ,

Eπ(·|B),qn(·|B)

[
ρ2

n1
ρ2

n>σ
β
n
|B] ≤ Eπ(·|B),qn(·|B)

[
ρ4

n|B]1/2 · Pπ(·|B),qn(·|B)

[
ρ2

n > σβ
n |B]1/2

≤ σ−β
n Eπ(·|B),qn(·|B)

[
ρ4

n|B]
.

Hence, by Jensen’s inequality,

E
[
Eπ(·|B),qn(·|B)

[
ρ2

n1
ρ2

n>σ
β
n
|B]m] ≤ σ−ma

n E
[
Eπ(·|B),qn(·|B)

[
ρ4m

n |B]]
.

As in the case of In(B) (see (10)) the random functional Eπ(·|B),qn(·|B)[ρ4m
n |B] differs

from ∫∫
R2

ρ4m
n (x, x + σnz|B)ξ(x|B)σnqn(x, x + σnz|B)dx dz

just by a normalising constant. Using Assumptions 15.(A) and 15.(B), the Fubini–Tonelli
theorem, and the Cauchy–Schwarz inequality twice over,

E
[
Eπ(·|B),qn(·|B)

[
ρ4m

n |B]]
= E

[∫∫
R2

ρ4m
n (x, x + σnz|B) exp(K(x|B)Ln(x, z|B)ν(x, z)dx dz

]

≤ E

[∫∫
R2

ρ8m
n (x, x + σnz|B)ν(x, z)dx dz

]1/2
×E

[∫∫
R2

exp(4K(x|B)ν(x, z)dx dz

]1/4

×E

[∫∫
R2

L4
n(x, z|B)ν(x, z)dx dz

]1/4
.

The first factor is finite and decays as σ
4βm
n by Assumption 15.(C), the second is bounded be-

cause of Assumption 15.(A) and the third is bounded because of Assumption 15.(B). Hence,
the result follows. �
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COROLLARY 23. Let the assumptions of Framework 15 be satisfied. Then almost surely
(for almost every realisation of the random environment B)

σ−2β
n Eπ(·|B),qn(·|B)

[
ρ2

n1
ρ2

n>σ
β
n
|B] n→∞−−−→ 0.

That is, Eπ(·|B),qn(·|B)[ρ2
n1

ρ2
n>σ

β
n
|B] almost surely decays faster than σ

2β
n .

PROOF. Note that all integrands are strictly positive and use Lemma 22 together with
Proposition 19 for Un = Eπ(·|B),qn(·|B)[ρ2

n1
ρ2

n>σ
β
n
|B], Ũn = 0, δn = σ

2β
n and κ := 1

2 . Note

that mκ = m
2 > 3

2 > 1 by Assumption 15. �

THEOREM 24. Let the assumptions of Framework 15 be satisfied. For n = 1,2, . . . ,
and for each x̄ = (x1, . . . , xn) ∈ R

n, let �n(x̄|B) = ∏n
i=1 π(xi |B) and Qn(x̄,dȳ|B) =∏n

i=1 qn(xi, yi |B)dyi be respectively a target and a proposal on R
n, both depending on a

random environment B . If X(n)(B) ∼ �n(·|B) and Y (n)(B) ∼ Qn(X
(n),dȳ|B) then there is

σ 2 > 0 such that the Metropolis–Hastings acceptance probabilities (conditional on the un-
derlying B) satisfy

α
(
X(n)(B),Y (n)(B)

) w−→ (1 ∧ exp)

(
N

(
−1

2
σ 2, σ 2

))
as n → ∞,

almost surely (almost surely in the random environment B). Moreover, we may take

σ 2 = �2β
∫∫

R2
h(x, z)π(x|B)ν2(z)dx dz.

PROOF. We restrict ourselves to the almost sure event of realisations of the random envi-
ronment such that the conclusions of Corollary 21 and Corollary 23 both hold simultaneously.
For notational convenience we fix an arbitrary realisation of the random environment B sat-
isfying this event and condition on this realization, and in the remainder of the proof we omit
all reference to the random environment.

The i-th coordinates X
(n)
i and Y

(n)
i of X(n) and Y (n) are jointly distributed according to

the product probability measure π(x)qn(x, y)dx dy. The product structure implies

�
(
X(n), Y (n)) := log

(
�n(Y

(n))Qn(Y
(n),X(n))

�n(X(n))Qn(X(n), Y (n))

)
=

n∑
i=1

ρn

(
X

(n)
i , Y

(n)
i

)
.

Because of Corollary 21, if we set σn = �n
− 1

2β then

Eπqn

[
n∑

i=1

ρ2
n

(
X

(n)
i , Y

(n)
i

)] = nEπqn

[
ρ2

n

]

= �2βσ−2β
n Eπqn

[
ρ2

n

]
n→∞−−−→ σ 2 = �2β

∫∫
R2

h(x, z)π(x)ν2(z)dx dz.

Moreover Corollary 21 and Corollary 23 imply that for each coordinate Eπqn[ρ2
n(X

(n)
i ,

Y
(n)
i )] = Eπqn[ρ2

n] decays as σ
2β
n , and Eπqn[ρ2

n(X
(n)
i , Y

(n)
i )1

ρ2
n(X

(n)
i ,Y (n))i>σ

β
n
] = Eπqn[ρ2

n ×
1
ρ2

n>σ
β
n
] decays faster than σ

2β
n .

It is therefore a consequence of Theorem 8 that, as n → ∞,

�
(
X(n), Y (n)) w−→ N

(
−1

2
σ 2, σ 2

)
.
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It is immediate from the definition of weak convergence that the desired result for acceptance
probabilities follows, since 1 ∧ exp is a bounded Lipschitz (hence continuous) function. �

6. Application to random walk Metropolis algorithms. In this section we show that
the anomalous scaling framework 15 of Section 5 holds for the Random walk Metropolis
algorithm based on centered normal proposals when applied to a suitably perturbed product
target. The perturbation is applied to the marginal log-density and corresponds to addition of
a typical fBM path.

The random environment is given by a typical path of a two-sided fBM B(H) path with
Hurst index H ∈ (0,1). This is a stationary centred Gaussian process with covariance func-
tion given by equation (2) and with paths that are almost surely γ -Hölder continuous every-
where, for 0 < γ < H . In particular B(H) is a continuous Gaussian process with stationary
increments.

As stipulated by Theorem 1, the RWM proposal is symmetric multivariate normal, with

marginal probability density given by the kernel qn(x, dz) = 1√
2πσ 2

n

exp(−|z−x|2
2σ 2

n
)dz, where

σ 2
n = �2n− 1

2H for some positive constant �. The reference measures ν1(x) and ν2(z) of the
Framework 15 are both taken to be standard normal densities, so that ν(x, z) = ν1(x)ν2(z) =
1

2π
e− 1

2 (x2+z2). We will also take β = H and γ = min(H,1 − H). If it can be established that
the assumptions listed in the Framework 15 all hold, then Theorem 1 will be an immediate
consequence of Theorem 24.

The first task is to control the fluctuations of the potential given by the random environment
B(H). As indicated above, we consider

(21) K
(
x|B(H)) = B(H)

x .

LEMMA 25. Assumption 15.(A) is satisfied.

PROOF. Evidently, (K(x|B(H)) : x ∈ R) is a centered Gaussian process, since it is sim-
ply fractional Brownian motion. Moreover its variance function is k(x) = |x|2H (defined for
every real x). Assumption 15.(A) requires finiteness of E[exp(mK(x|B(H)))] for some suit-
able m.

In fact for every real m, for any real x,

E
[
exp

(
mK

(
x|B(H)))] = 1√

2π |x|2H

∫
R

exp
(
− y2

2|x|2H
+ my

)
dy = e

m2|x|2H

2 ,

and ∫
R

e
m2|x|2H

2 ν1(x)dx = 1√
2π

∫
R

e
m2|x|2H

2 − x2
2 dx < ∞. �

For the RWM case the “asymptotic behaviour of proposal” property follows directly.

LEMMA 26. Assumption 15.(B) is satisfied.

PROOF. The RWM proposal is given by

qn(x, dz) = 1√
2πσ 2

n

exp
(
−(z − x)2

2σ 2
n

)
dz,
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so σnqn(x, x + σnz) = ν2(z) identically. Accordingly Ln(x, z|B(H)) = 1, and thus, for all m,∫∫
R2

E
[∣∣Ln(x, z|B) − 1

∣∣4m]
ν(x, z)dx dz ≡ 0. �

To establish the “approximate normality of LMHR” property we need to define

(22) Mn

(
x, z|B(H)) = B

(H)
x+σnz − B(H)

x .

LEMMA 27. Assumption 15.(C) is satisfied if Mn is defined using equation (22).

PROOF. It is immediate that (Mn(x, z|B(H)) : x ∈ R) is a centred Gaussian process, since
it is a linear transformation of fBM. Moreover it follows directly from the fBM covariance
as given in Equation (2) that the variance of Mn(x, z|B(H)) is given by |z|2Hσ

2β
n (bearing in

mind that we have chosen β = H ); and certainly |z|2H is a function of polynomial growth.
Consider �n(x, z|B(H)) determined for all real x, z and all positive integers n by

ρn

(
x, x + σnz|B(H)) = Mn

(
x, z|B(H)) + �n

(
x, z|B(H)).

Since

ρn

(
x, x + σnz|B(H)) = log

(
ξ(x + z|B(H))

ξ(x|B(H))

)
= B

(H)
x+σnz + (x + σnz)

2

2
− B(H)

x − x2

2
,

we obtain

�n

(
x, z|B(H)) = 1

2

(
x2 − (x + σnz)

2) = −σnz

(
x + 1

2
σnz

)
.

Accordingly it follows that, for some constant Cm depending only on m,∫∫
R2

E
[∣∣�n(x, z|B)

∣∣8m]
ν(x, z)dx dz = 1

2π

∫∫
R2

∣∣∣∣σnz

(
x + 1

2
σnz

)∣∣∣∣8m

e− 1
2 (x2+z2) dx dz

≤ Cm × σ 8m
n � σ 8mβ+8mγ

n ,

since β + γ = H + min(H,1 − H) ≤ 1 for H ∈ (0,1). �

Finally, to demonstrate the “asymptotic weak dependence” property we define the follow-
ing subsets of R4:

(23) Sn := {
(x1, z1, x2, z2) ∈ R

4 : |x1 − x2| > 2σ
1
2
n

(|z1| + |z2|)}.
LEMMA 28. Assumption 15.(D) is satisfied using the sets Sn:

(i)
∫
Sc

n
ν(x1, z1)ν(x2, z2)dx1 dz1 dx2 dz2 � σ

1
2
n .

(ii) For any (x1, x2, z1, z2) ∈ Sn, noting that 2β + γ = 2H + min(H,1 − H) ≤ 1 + H if
H ∈ (0,1),

∣∣E[
Mn(x1, z1)Mn(x2, z2)

]∣∣ ≤ H |2H − 1|
22−2H

|z1|H |z2|Hσ 1+H
n ≤ H |2H − 1|

22−2H
|z1|H |z2|Hσ 2β+γ

n .

(iii) Noting again that β + γ = H + min(H,1 − H) for H ∈ (0,1), there exists a polyno-
mial g2(x1, z1, x2) such that∣∣E[

Mn

(
x1, z1|B(H))K(

x2|B(H))]∣∣ ≤ g2(x1, z1, x2)σ
H
n · σmin(H,1−H)

n = g2(x1, z1, x2)σ
β+γ
n .
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PROOF. Property (i) follows by applying Lemma A.3 in the Appendix, using the se-

quence an = σ
1
2
n .

For (ii) first note that by (2) the expectation E[Mn(x1, z1)Mn(x2, z2)] can be rewritten as

−1

2

(|x1 − x2 + σnz1 − σnz2|2H − |x1 − x2 − σnz2|2H − |x1 − x2 + σnz1|2H + |x1 − x2|2H )
.

Consider (x1, x2, z1, z2) ∈ Sn, and apply Lemma A.3 with u = v = σ
1
2
n (assuming n large

enough that σn ≤ 1). It follows that

max
(|σnz1 − σnz2|, |σnz1|, |σnz2

)|) <
|x1 − x2|

2
and

min
(|x1 − x2 + σnz1 − σnz2|, |x1 − x2 + σnz1|, |x1 − x2 − σnz2|, |x1 − x2|) >

|x1 − x2|
2

.

Hence, x1 −x2 +σnz1 −σnz2, x1 −x2 +σnz1, x1 −x2 −σnz2 and x1 −x2 are either all positive
or all negative. Consequently the function x 
→ |x|2H is smooth over any of the bounded
intervals with endpoints drawn from these four points, and so we may apply Lemma A.1 to
argue∣∣E[

Mn

(
x1, z1|B(H))Mn

(
x2, z2|B(H))]∣∣

≤ H × |2H − 1| × |z1||z2|σ 2
n

∫ 1

0

∫ 1

0
|x1 − x2 + uσnz1 − vσnz2|2H−2 dudv

≤ H × |2H − 1| × |z1z2|
∣∣∣∣x1 − x2

2

∣∣∣∣2H−2
σ 2

n

= H × |2H − 1| × |z1|H |z2|H
(

2
√|z1||z2|
|x1 − x2|

)2−2H

σ 2
n

≤ H × |2H − 1| × |z1|H |z2|H
( |z1| + |z2|

|x1 − x2|
)2−2H

σ 2
n ≤ H × |2H − 1|

22−2H
|z1|H |z2|Hσ 1+H

n .

Here the last step follows because of the definition of Sn: if (x1, x2, z1, z2) ∈ Sn then

2σ
1
2
n (|z1| + |z2|) < |x1 − x2|.
For (iii), first observe that by (2)

E
[
Mn

(
x1, z1|B(H))K(

x2|B(H))]
= E

[(
B

(H)
x1+σnz1

− B(H)
x1

)
B(H)

x2

]
= 1

2

(|x1 + σnz1|2H − |x1|2H − |x1 − x2 + σnz1|2H + |x1 − x2|2H )
.

We now need to distinguish between the cases H � 1
2 . First, consider the case H ≤ 1/2,

so that 2H ≤ 1, H + min(H,1 − H) = 2H , and ||a|2H − |b|2H | ≤ |a − b|2H holds for real
a, b. Consequently,∣∣E[

Mn

(
x1, z1|B(H))K(

x2|B(H))]∣∣ ≤ σ 2H
n |z1|2H = |z1|2HσH+min(H,1−H)

n = |z1|2Hσβ+γ
n .

Second, consider the case H > 1/2, so that 1 < 2H < 2 and the function x 
→ |x|2H is in
C1(R). Then for any real a, b, using |a|2H−1 < 1 + |a|,

∣∣|a + b|2H − |a|2H
∣∣ = 2H

∣∣∣∣b
∫ 1

0
|a + ub|2H−1 sign(a + ub)du

∣∣∣∣
≤ 2H |b|

∫ 1

0
|a + ub|2H−1 du ≤ 2H |b|(2 + |a| + |b|),
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and hence∣∣E[
Mn

(
x1, z1|B(H))K(

x2|B(H))]∣∣ ≤ Hσn|z1|(4 + |x1| + |x1 − x2| + 2σn|z1|). �

The proof of Theorem 1 is now immediate.

PROOF OF THEOREM 1. Lemmas 25, 26, 27 and 28 together show that the anomalous
scaling framework 15 holds for the RWM algorithm as described at the head of this sec-
tion and as stipulated by Theorem 1. Consequently Theorem 1 is a direct consequence of
Theorem 24. �

7. Application to Metropolis adjusted Langevin algorithms. In this section we show
that the anomalous scaling framework 15 of Section 5 holds for the Metropolis adjusted
Langevin algorithm based on normal proposals when applied to a suitably perturbed product
target. The perturbation is applied at the level of the second derivative of the log-density of
the marginal target, adding a typical fBM path multiplied by a nonrandom localization term.

Again the random environment is given by a typical path of a two-sided fBM B(H) process
with Hurst index H ∈ (0,1), a continuous Gaussian process with stationary increments.

As stipulated by Theorem 2, the MALA proposal has probability density qn(x, dy|B(H), c)

given by the multivariate normal density

(24) N

(
x + σ 2

n

2
∇(

logπ
(
x|B(H); c))

, σ 2
n · In

)
,

where σ 2
n = �2n− 1

4+2H for some positive constant �. Here c refers to the constant used for the
definition of localization in equation (3). Again the reference measures ν1(x) and ν2(z) of the
Framework 15 are both taken to be standard normal densities, so that ν(x, z) = ν1(x)ν2(z) =
1

2π
e− 1

2 (x2+z2). For MALA we take β = 2 + H and γ = min(H,1 − H). Once again we need
to establish that the anomalous scaling framework 15 holds; Theorem 2 will then follow using
Theorem 24.

We begin by showing that the log-target density has normal fluctuations. To that end define

(25) K
(
x|B(H); c) = x2

∫ 1

0
B(H)

xs ϕc(xs)(1 − s)ds =
∫ x

0
B(H)

u ϕc(u)(x − u)du,

where ϕc(x) = min{1, c
3

2H |x|−3} is the localisation function introduced in Section 2 by equa-
tion (3). (The last expression above is obtained by using the substitution u = sx.) It is con-
venient to focus on potentials (the log-marginal target probability densities), which are given
by

(26)

V
(
x|B(H); c) = log

(
π

(
x|B(H); c))

= − log
(∫

R

ξ
(
u|B(H); c)

du

)
− x2

2
+

∫ x

0
B(H)

u ϕc(u)(x − u)du.

Repeated differentiation yields formulae for first and second derivatives of the potential:

V̇
(
x|B(H); c) = −x +

∫ x

0
B(H)

u ϕc(u)du,(27)

V̈
(
x|B(H); c) = −1 + B(H)

x ϕc(x).(28)

We first establish some basic properties for the localisation function ϕc(x).

LEMMA 29. The localisation function ϕc(x) = min{1, c
3

2H |x|−3} satisfies the following:
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(i) ϕc(x) ≤ 1 for all x ∈ R.
(ii) |x|2Hϕc(x) ≤ c for all x ∈ R.

(iii) ϕc is Lipschitz with constant 3c− 1
2H .

PROOF. Property (i) follows immediately from the definition. Property (ii) follows by

arguing separately for |x| ≤ c
1

2H , when |x|2Hϕc(x) = |x|2H ≤ c, and |x| > c
1

2H , when

|x|2Hϕc(x) < |x|2H−3c
3

2H < c1−3/(2H)c
3

2H = c (note that H ∈ (0,1)). Property (iii) follows
from considering the derivative of the continuous function ϕc(x) away from the gradient

discontinuities at x = ±c
1

2H . �

We first consider the “mixed Gaussian perturbation” property.

LEMMA 30. For any positive integer m, Assumption 15.(A) is satisfied for all sufficiently
small localisation parameters c > 0:

(i) For every real x, set

ξ
(
x|B(H); c) = exp

(
K

(
x|B(H); c))

ν1(x).

Then K(x|B(H); c) is a centred normal random variable with variance k(x) ≤ 3(1 +
1

2−2H
)c1+ 1

H · x2.

(ii) For any real x it is the case that exp(2m2k(x)) ≤ e6m2(1+ 1
2−2H

)c
1+ 1

H ·x2
and this is

integrable with respect to ν1 for all sufficiently small c > 0.

PROOF. Normality in point (i) follows immediately from (25) and the observation that
B(H) is a zero-mean Gaussian process. The rest of property (i) is trivially true if x = 0, since

V
(
0|B(H); c) = − log

(∫
R

ξ
(
u|B(H); c)

du

)

is just the log of the normalising constant, so we need only deal with x �= 0. Note that the
inequality |�(H)(x, y)| ≤ |x|2H + |y|2H (see (2)) implies

E
[(

K
(
x|B(H); c))2] = x4

∫ 1

0

∫ 1

0
�(H)(sx, tx)ϕc(tx)ϕc(sx)(1 − s)(1 − t)ds dt

≤ 2x4 ·
∫ 1

0
ϕc(tx)(1 − t)dt ·

∫ 1

0
|sx|2Hϕc(sx)(1 − s)ds.

(29)

The definition (3) of the localisation function permits the bound

∫ 1

0
ϕc(tx)(1 − t)dt =

∫ c
1

2H |x|−1

0
ϕc(tx)(1 − t)dt +

∫ 1

c
1

2H |x|−1
ϕc(tx)(1 − t)dt

≤
∫ c

1
2H |x|−1

0
dt + c

3
2H |x|−3

∫ ∞
c

1
2H |x|−1

t−3 dt ≤ 3

2
c

1
2H |x|−1.

(30)
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Splitting the integral
∫ 1

0 |sx|2Hϕc(xs)(1 − s)ds and employing Lemma 29(ii) and (3) re-
spectively to the two parts (and noting again that H ∈ (0,1)), we obtain

∫ 1

0
|sx|2Hϕc(xs)(1 − s)ds =

∫ c
1

2H |x|−1

0
|sx|2Hϕc(sx)(1 − s)ds

+
∫ 1

c
1

2H |x|−1
|sx|2Hϕc(sx)(1 − s)ds

≤
(

1 + 1

2 − 2H

)
c1+ 1

2H |x|−1.

(31)

The remainder of property (i) is now established by substituting (30) and (31) into (29).
Finally, property (ii) is established by applying property (i) to bound

exp
(
2m2k(x)

) ≤ exp
(

6m2 ·
(

1 + 1

2 − 2H

)
c1+ 1

H x2
)
.

Thus property (ii) holds when 6m2(1+ 1
2−2H

)c1+ 1
H < 1

2 , which is to say when c < (12m2(1+
1

2−2H
))−

H
1+H . �

We now establish the “asymptotic behaviour of proposal” property. We begin by consider-
ing the variance and exponential moments of the first derivative of the potential.

LEMMA 31. The following statements hold:

(i) V̇ (x|B(H); c) + x is a centred normal random variable with variance controlled for
every real x by

E
[(

V̇
(
x|B(H); c) + x

)2] ≤ 3
(

1 + 1

2 − 2H

)
c1+ 1

H .

(ii) For every real x, z,

E
[
exp

(
8mσn

∣∣zV̇ (
x|B(H); c)∣∣)]

≤ 2 exp
(
4mσnx

2)
exp

(
4mσnz

2)
exp

(
32m2σ 2

n z2
E

[(
V̇

(
x|B(H); c) + x

)2])
.

Furthermore there is a convenient bound for all sufficiently large n:

E
[
exp

(
8mσn

∣∣zV̇ (
x|B(H); c)∣∣)] ≤ 2 exp

(
2x2

3

)
exp

(
4z2

3

)
.

(iii) For all sufficiently large n, E[exp(mσ 2
n V̇ (x|B(H); c)2)] ≤ √

2 exp(2x2

3 ) for all real x.

PROOF. Normality in property (i) follows immediately from (27) and the observation
that B(H) is a zero-mean Gaussian process. The proof of the bound is entirely analogous to
the proof of Lemma 30(i). Proof of property (ii): this uses property (i), the bounds e|au| ≤
e|a|u + e−|a|u and |zx| ≤ 1

2(x2 + z2), and the fact that V̇ (x|B(H); c) + x is a centred normal
random variable and therefore has zero mean:

E
[
exp

(
8mσn

∣∣zV̇ (
x|B(H); c)∣∣)]

≤ exp
(
8mσn|zx|)E[

exp
(
8mσn|z|

∣∣V̇ (
x|B(H); c) + x

∣∣)]
≤ 2 exp

(
8mσn|zx|)E[

exp
(
8mσn|z|(V̇ (

x|B(H); c) + x
))]

≤ 2 exp
(
4mσnx

2)
exp

(
4mσnz

2)
exp

(
32m2σ 2

n z2
E

[(
V̇

(
x|B(H); c) + x

)2])
.
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Here the second step uses e|au| ≤ e|a|u + e−|a|u and the symmetry of the random variable
V̇ (x|B(H); c) + x, while the last step also employs the formula for the moment generating
function of a centred Gaussian random variable.

The rest of property (ii) follows by using property (i) for sufficiently large n.
Proof of property (iii): Take n large enough (noting that σn → 0) so that 24mσ 2

n (1 +
1

2−2H
)c1+ 1

H ≤ 1
2 and also 4mσ 2

n < 2
3 . Using a2 ≤ 2b2 + 2(a − b)2, and bearing in mind the

bound of property (i),

E
[
exp

(
2mσ 2

n V̇
(
x|B(H); c)2)]

≤ exp
(
4mσ 2

n x2)
E

[
exp

(
4mσ 2

n

(
V̇

(
x|B(H); c) + x

)2)]
= exp

(
4mσ 2

n x2)(
1 − 8mσ 2

n E
[(

V̇
(
x|B(H); c) + x

)2])−1/2

≤ exp
(
4mσ 2

n x2)(
1 − 24mσ 2

n

(
1 + 1

2 − 2H

)
c1+ 1

H

)−1/2
≤ √

2 exp
(

2x2

3

)
,

where the last line uses the evaluation E[eλ2N2] = (1 − 2λ2)− 1
2 for 2λ2 < 1 when N is a

standard normal random variable. �

LEMMA 32. Assumption 15.(B) is satisfied.

(i) For every real x, z and every positive integer n,

σnqn(x, x + σnz) = Ln

(
x, z|B(H); c)

ν2(z),

where Ln(x, z|B(H); c) = exp( zσn

2 V̇ (x|B(H); c) − σ 2
n

8 V̇ (x|B(H); c)2).
(ii) Recall that we have stipulated γ = min(H,1 − H). The random variable Ln(x, z|

B(H); c) satisfies∫∫
R2

E
[∣∣Ln

(
x, z|B(H); c) − 1

∣∣4m]
ν(x, z)dx dz � σ 4m

n � σ 4mγ
n .

PROOF. Property (i) holds by definition, since

σnqn(x, x + σnz) = σn

σn

√
2π

exp
(
− 1

2σ 2
n

(
σnz − σ 2

n

2
V̇

(
x|B(H); c))2)

= 1√
2π

exp
(
−1

2

(
z − σn

2
V̇

(
x|B(H); c))2)

= 1√
2π

e− z2
2 · exp

(
zσn

2
V̇

(
x|B(H); c) − σ 2

n

8
V̇

(
x|B(H); c)2

)
.

To see (ii) note that |et − 1| ≤ |t |e|t | holds for all t ∈ R. Using this together with a repeated
application of the Cauchy–Schwarz inequality, note that for all large enough n

E
[∣∣Ln

(
x, z|B(H); c) − 1

∣∣4m] = E

[∣∣∣∣exp
(
z
σn

2
V̇

(
x|B(H); c) − σ 2

n

8
V̇

(
x|B(H); c)2

)
− 1

∣∣∣∣4m]

≤ E

[(
z
σn

2
V̇

(
x|B(H); c) − σ 2

n

8
V̇

(
x|B(H); c)2

)4m

× exp
(
2mσn

∣∣zV̇ (
x|B(H); c)∣∣) exp

(
mσ 2

n

2
V̇

(
x|B(H); c)2

)]
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≤ σ 4m
n ×E

[(
z

2
V̇

(
x|B(H); c) − σn

8
V̇

(
x|B(H); c)2

)8m]1/2

×E
[
exp

(
8mσn

∣∣zV̇ (
x|B(H); c)∣∣)]1/4

×E
[
exp

(
2mσ 2

n V̇
(
x|B(H); c)2)]1/4

.

By Lemma 31, V̇ (x|B(H); c) is a normal with mean x and bounded variance, hence the first
expectation can be controlled by a polynomial g(x, z). The second expectation is bounded

by 21/4e
x2
6 e

z2
3 by Lemma 31(ii), and the third is bounded by 21/8e

x2
6 by Lemma 31(iii). The

proof is completed by observing that g(x, z)e
x2
3 e

z2
3 is integrable with respect to the reference

density ν, since ν(x, z) = 1
2π

e− 1
2 (x2+z2). �

To establish the “approximate LMHR normality” property, set

(32) Mn

(
x, z|B(H); c) = σ 2

n z2
∫ 1

0
B

(H)
x+tσnzϕc(x)(1 − 2t)dt.

LEMMA 33. Assumption 15.(C) is satisfied:

(i) For all real x, z and positive integers n

ρn

(
x, x + σnz|B(H); c) = Mn

(
x, z|B(H); c) + �n

(
x, z|B(H); c)

for �n(x, z|B(H); c) = �
(1)
n (x, z|B(H); c) − �

(2)
n (x, z|B(H); c), where

�(1)
n

(
x, z|B(H); c) = σ 2

n z2

2

∫ 1

0
B

(H)
x+tσnz

(
ϕc(x + tσnz) − ϕc(x)

)
(1 − 2t)dt,

�(2)
n

(
x, z|B(H); c) = σ 3

n z

4

∫ 1

0
V̇

(
x + tσnz|B(H); c)

V̈
(
x + tσnz|B(H); c)

dt.

(ii) (Mn(x, z|B(H); c) : x, z ∈ R) is a centred Gaussian process with one-point variance
h(x, z)σ 4+2H

n where

h(x, z) = 1

2

H

2 + 7H + 7H 2 + 2H 3 ϕ2
c (x)|z|4+2H .

(iii) Finally, recall β = 2 + H and γ = min(H,1 − H) implying 8β + 8γ ≤ 24 and∫∫
R2

∣∣�(1)
n

(
x, z|B(H); c)∣∣8m

ν(x, z)dx dz � σ 24m
n � σ 8mβ+8mγ

and ∫∫
R2

∣∣�(2)
n

(
x, z|B(H); c)∣∣8m

ν(x, z)dx dz � σ 24m
n � σ 8mβ+8mγ .

PROOF. We know that by formulae (26), and (24) and a2 − b2 = (a + b)(a − b),

ρn

(
x, x + σnz|B(H); c)
= log

(
π

(
x + σnz|B(H); c)) − log

(
π

(
x|B(H); c))

+ log
(
qn

(
x + σnz, x|B(H); c)) − log

(
qn

(
x, x + σnz|B(H); c))

= V
(
x + σnz|B(H); c) − V

(
x|B(H); c)
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− 1

2σ 2
n

(
−σnz − σ 2

n

2
V̇

(
x + σnz|B(H); c))2

+ 1

2σ 2
n

(
σnz − σ 2

n

2
V̇

(
x|B(H); c))2

= V
(
x + σnz|B(H); c) − V

(
x|B(H); c)

− σnz

2

(
V̇

(
x|B(H); c) + V̇

(
x + σnz|B(H); c)) − σ 2

n

8

(
V̇

(
x + σnz|B(H); c)2

− V̇
(
x|B(H); c)2)

.

By Lemma A.2 from the Appendix (using δ = σnz), and (28), bearing in mind that
∫ 1

0 (1 −
2t)dt = 0,

V
(
x + σnz|B(H); c) − V

(
x|B(H); c) − σnz

2

(
V̇

(
x|B(H); c) + V̇

(
x + σnz|B(H); c))

= σ 2
n z2

2

∫ 1

0
(1 − 2t)V̈

(
x + tσnz|B(H); c)

dt = σ 2
n z2

2

∫ 1

0
ϕc(x + tσnz)B

(H)
x+tσnz(1 − 2t)dt

= Mn

(
x, z|B(H); c) + �(1)

n

(
x, z|B(H); c)

.

On the other hand, noting that ∂
∂t

(V̇ 2(t)) = 2V̇ (t)V̈ (t), by the fundamental theorem of cal-
culus

σ 2
n

8

(
V̇

(
x + σnz|B(H); c)2 − V̇

(
x|B(H); c)2)

= σ 3
n z

4

∫ 1

0
V̈

(
x + tσnz|B(H); c)

V̇
(
x + tσnz|B(H); c)

dt = �(2)
n

(
x, z|B(H); c)

.

Property (ii): the centred Gaussian distribution property follows from the fact that fBM is
a centred Gaussian process. Moreover,

E
[
Mn

(
x, z|B(H); c)2] = ϕc(x)2σ 4

n z4
∫ 1

0

∫ 1

0
�(H)(x + tσnz, x + sσnz)(1 − 2t)(1 − 2s)dt ds.

Recall the formula for the covariance of fBM in (2) and note that all the terms that do not
depend on both t and s must vanish when integrated with respect to (1 − 2t)(1 − 2s)dt ds.
Hence

E
[
Mn

(
x, z|B(H); c)2] = −ϕc(x)2

2
|z|4+2H σ 4+2H

n

∫ 1

0

∫ 1

0
|t − s|2H(1 − 2t)(1 − 2s)dt ds.

The result is now obtained by noting that the last integral equals − H
2+7H+7H 2+2H 3 (nonzero

and bounded for H ∈ (0,1)).
Property (iii): The random variable �

(1)
n (x, z|B(H); c) is centred normal: this again follows

from the fact that fBM is a centred Gaussian process. Also note that by the Cauchy–Schwarz
inequality, and the quantified Lipschitz property for ϕc described in Lemma 29(iii),

E
[
�(1)

n

(
x, z|B(H); c)2] ≤ σ 4

n z4

4

∫ 1

0
E

[(
B

(H)
x+tσnz

)2](
ϕc(x + tσnz) − ϕc(x)

)2 dt

≤ 9σ 6
n z6

4
c

1
H

∫ 1

0
E

[(
B

(H)
x+tσnz

)2]
t2 dt

≤ 9

4
c− 1

H z6(|x|H + |σnz|H )2 × σ 6
n .
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This yields the required control of
∫∫

R2 |�(1)
n (x, z|B(H); c)|8mν(x, z)dx dz, using the fact that

the summand �
(1)
n (x, z|B(H); c) is centred normal while the polynomial moments of ν are

all bounded.
For �

(2)
n (x, z|B(H); c) consider the bound

E
[
�(2)

n

(
x, z|B(H); c)8m]

≤ σ 24m
n z8m

48m

∫ 1

0
E

[(
V̇

(
x + tσnz|B(H); c)

V̈
(
x + tσnz|B(H); c))8m]

dt

≤ σ 24m
n z8m

48m

∫ 1

0
E

[
V̇

(
x + tσnz|B(H); c)16m]1/2

E
[
V̈

(
x + tσnz|B(H); c)16m]1/2 dt.

Both expectation can be bounded above with polynomials in x and z, since they are expecta-
tions of powers of normal random variables whose means and variances can be bounded by
polynomials (see Lemma 32 and equations (27), (28)). �

Finally, to demonstrate the “asymptotic weak dependence” property we need to define
suitable subsets of R4. The definition is based on that of (23) but using different proposal
variances σn)

(33) Sn := {
(x1, z1, x2, z2) ∈ R

4 : |x1 − x2| > 2σ 1/2
n

(|z1| + |z2|)}.
LEMMA 34. Assumption 15.(D) is satisfied:

(i)
∫
Sc

n
ν(x1, z1)ν(x2, z2)dx1 dz1 dx2 dz2 � σ

1/2
n .

(ii) For any (x1, x2, z1, z2) ∈ Sn we have

∣∣E[
Mn

(
x1, z1|B(H); c)

Mn

(
x2, z2|B(H); c)]∣∣ ≤ H |2H − 1|

22−2H
|z1|2+H |z2|2+Hσ 5+H

n

� |z1|2+H |z2|2+Hσ 2β+γ
n .

(iii) There exists a polynomial g2(x1, z1, x2) such that∣∣E[
Mn

(
x1, z1|B(H); c)

K
(
x2|B(H); c)]∣∣ ≤ g2(x1, z1, x2)σ

2+H+min(H,1−H)
n

= g2(x1, z1, x2)σ
β+γ
n .

PROOF. Property (i) follows by applying Lemma A.3 in the Appendix, using the se-
quence an = σ

1/2
n .

Property (ii): Using the formula (2) for the covariance function of fBM,

E
[
Mn

(
x1, z1|B(H); c)

Mn

(
x2, z2|B(H); c)]

= z2
1z

2
2σ

4
nϕc(x1)ϕc(x2)

∫ 1

0

∫ 1

0
�(H)(x1 + tσnz1, x2 + sσnz2)(1 − 2t)(1 − 2s)dt ds.

Again, all terms not depending on both t and s vanish when integrated with respect to (1 −
2t)(1 − 2s)dt ds. Hence, in the expression above we can swap �(H)(x1 + tσnz1, x2 + sσnz2)

for

−1

2

(|x1 −x2|2H −|x1 −x2 +σntz1|2H −|x1 −x2 −σnsz2|2H + ∣∣x1 −x2 +σn(tz1 − sz2)
∣∣2H )

.

Using Lemma A.3(ii) from the Appendix with u = σ
1/2
n t , v = σ

1/2
n s (assuming n large

enough that σn ≤ 1), and the details of construction of the set Sn in (33), if it is the case that
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(x1, z1, x2, z2) ∈ Sn then it must be the case that |x1 − x2 + σn(tz1 − sz2)| > |x1−x2|
2 > 0 and

|σn(tz1 − sz2)| < |x1−x2|
2 for each t, s ∈ (0,1). So x1 −x2 +σn(tz1 − sz2) is at least a positive

distance away from zero and of the same sign for all t, s ∈ [0,1]. Hence, since the function
x 
→ |x|2H is smooth away from zero, Lemma A.1 from the Appendix implies that

�(H)(x1 + tσnz1, x2 + sσnz2)

= H(2H − 1)tsσ 2
n z1z2

∫ 1

0

∫ 1

0

∣∣x1 − x2 + σn(utz1 − vsz2)
∣∣2H−2 dudv.

Therefore, by Lemma A.3(ii) from the Appendix, and construction of Sn in (33):

∣∣E[
Mn

(
x1, z1|B(H); c)

Mn

(
x2, z2|B(H); c)]∣∣

≤ H |2H − 1||z1z2|3
∣∣∣∣x1 − x2

2

∣∣∣∣2H−2
σ 6

n

= H |2H − 1||z1|2+H |z2|2+H

(
2
√|z1||z2|
|x1 − x2|

)2−2H

σ 6
n

≤ H |2H − 1||z1|2+H |z2|2+H

( |z1| + |z2|
|x1 − x2|

)2−2H

σ 6
n

≤ H |2H − 1|
22−2H

|z1|2+H |z2|2+Hσ 5+H
n .

Property (iii): We now need to distinguish between the cases H � 1
2 . First, consider the

case H ≤ 1/2, so that 2H ≤ 1 Observe that by (25) and (32)

E
[
Mn

(
x1, z1|B(H); c)

K
(
x2|B(H); c)]

= σ 2
n z2

1x
2
2

∫ 1

0

∫ 1

0
ϕc(x1)ϕc(sx2)�

(H)(x1 + tσnz1, sx2)(1 − 2t)(1 − s)dt ds

= 1

2
σ 2

n z2
1x

2
2

∫ 1

0

∫ 1

0
ϕc(x1)ϕc(sx2)

× (|x1 + tσnz1|2H − |x1|2H − |x1 − sx2 + tσnz1|2H + |x1 − sx2|2H )
× (1 − 2t)(1 − s)dt ds.

The second equality holds since the difference of integrands does not depend on t and thus
integrates to zero. Since 2H ≤ 1 and ||x1 + tσnz1|2H − |x1|2H | ≤ σ 2H

n |z1|2H (similarly for
the other term), we obtain |E[Mn(x1, z1|B(H); c)K(x2|B(H); c)]| ≤ σ 2+2H

n |z1|2+2Hx2
2 .

Second, consider the case H > 1/2, so that 0 < 2H − 1 < 1 and the function x 
→ |x|2H

has a continuous derivative x 
→ 2H sign(x)|x|2H−1. The Fundamental theorem of calculus
then implies

∣∣|x1 + tσnz1|2H − |x1|2H
∣∣ ≤ 2H

∣∣∣∣tσnz1

∫ 1

0
sign(x1 + utσnz1)|x1 + utσnz1|2H−1 du

∣∣∣∣
≤ 2Hσn|z1|

∫ 1

0
|x1 + utσnz1|2H−1 du

≤ 2Hσn|z1|(|x1|2H−1 + σ 2H−1
n |z1|2H−1)

.
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An analogous bound holds for ||x1 − sx2 + tσnz1|2H − |x1 − sx2|2H | and together∣∣E[
Mn

(
x1, z1|B(H); c)

K
(
x2|B(H); c)]∣∣

≤ H |z1|3x2
2
(
2|x1|2H−1 + |x2| + 2σ 2H−1

n |z1|2H−1) × σ 3
n . �

Now we are in a position to prove Theorem 2.

PROOF OF THEOREM 2. Lemmas 30, 32, 33 and 34 together show that the anomalous
scaling framework 15 holds for the MALA algorithm as described at the head of this sec-
tion and as stipulated by Theorem 2. Consequently Theorem 2 is a direct consequence of
Theorem 24. �

8. Discussion. In this concluding section we discuss how our results relate to consider-
ations of expected squared jump distance, further research possibilities, and some practical
considerations concerning how our results might relate to questions of practical Markov chain
Monte Carlo.

8.1. Expected squared jump distance. In the setting of either Theorem 1 or Theorem 2, in
particular when the Xi ∼ π(·|B(H)) are conditionally independent and identically distributed

and σn = �n
− 1

2β , and given a positive sequence ϑ1, ϑ2, . . . decaying to zero, we define pro-
posals Y

(n),ϑ
i ∼ qϑ

n (Xi, dy) ∼ N(Xi,ϑ
2
n · In) in the RWM case and Y

(n),ϑ
i ∼ qϑ

n (Xi, dy) ∼
N(Xi + ϑ2

n

2 V̇ (Xi |B(H); c),ϑ2
n ·In) in the MALA case. We also define random variables which

measure the growth/decay rate of the expected squared jump distance (ESJD) relative to σ 2
n

for different scalings of proposal variance; these are conditional expectations given B(H) as
follows:

ESJDn

(
B(H),ϑn

) = n
1
β ×E

[(
Y

(n),ϑ
1 − X1

)2
(1 ∧ exp)

(
n∑

i=1

ρ
(
Xi,Y

(n),ϑ
i

))|B(H)

]
.

From either Theorem 1 or Theorem 2 we can deduce that almost surely (when conditioned
on B(H))

(34) ESJDn

(
B(H), σn

) B(H) a.s.−−−−−→ W(�) := 2�2�

(
−�βθ

2

)

for an appropriate positive random variable θ that is B(H)-measurable (see Theorem 1 or
Theorem 2 and Roberts, Gelman and Gilks [29], Proposition 2.4). This can be shown by
adopting the method of proof of Corollary 18 in [35], where we realise all the Xi , Y

(n)
i on the

same probability space and use the tower property.
We seek to show that the rate of ESJDn(B

(H),ϑn) is optimal when ϑn ∼ σn. More pre-
cisely, we must show that the rate converges to zero almost surely for ϑn with decay rate
differing asymptotically from the decay rate of σn. If ϑn

σn
→ 0, it is straightforward to show

ESJDn(B
(H),ϑn) → 0 almost surely. Indeed, we simply note the acceptance rate is bounded

above (by 1) and argue that

lim sup
n→∞

n
1
β ×E

[(
Y

(n),ϑ
1 − X1

)2
(1 ∧ exp)

(
n∑

i=1

ρ
(
Xi,Y

(n),ϑ
i

))|B(H)

]

� lim
n→∞σ−2

n ×E
[(

Y
(n),ϑ
1 − X1

)2|B(H)] = lim
n→∞

ϑ2
n

σ 2
n

→ 0.
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Unfortunately, when ϑn

σn
→ ∞ we can only show convergence in probability

(35) ESJDn

(
B(H),ϑn

) P−→ 0.

The reason is that, even though Lemmas 16, 17 and 18, as well as Lemma 22, all remain
valid even if we use proposal variances ϑ2

n instead of σ 2
n (we only require ϑn → 0), we cannot

recover a result analogous to the Borel–Cantelli argument of Proposition 19 for arbitrary de-
cay rates of proposal variances, only for rates ϑn “close” to σn. In effect, it can thus be shown
that the decay rate is “locally optimal”, but not necessarily “globally optimal”. This is an
intrinsic issue for the anomalous scaling framework method 15 described in Section 5: even
with better bounds or a different random environment construction it will always be possible
to construct decay rates ϑn that are slow enough to ensure that Borel–Cantelli arguments fail,
as a result of certain series not being summable.

The need to restrict to convergence in probability suggests that the setting of [29] will not
apply to the setting of Theorems 1 and 2, since of course subsequence arguments will then
imply existence of subsequences of increasing dimension along which classical scaling is not
optimal. It seems unlikely that almost sure convergence would ever not hold, but a proof of
this in the case ϑn

σn
→ ∞ would have to deal with varying and very different decay rates of

the proposal variance ϑ2
n .

Nevertheless, for any ϑn

σn
→ ∞ we can recover weaker versions of Corollaries 21 and 23:

(36) ϑ−2β
n E

[
ρ2

n

(
X,Y

(n),ϑ
i |B(H))|B(H)] P−→ θ

and

(37) ϑ−2β
n E

[
ρ2

n

(
X,Y (n),ϑ |B(H))1

ρ2
n(X,Y (n),ϑ )>ϑ

β
n
|B(H)] P−→ 0.

This is enough to establish our objective, equation (35). And for this it suffices to show that
the almost sure versions of (36) and (37) imply ESJDn(B

(H),ϑn) → 0 almost surely. Proof
of convergence in probability then follows using the celebrated characterisation of conver-
gence in probability as holding whenever subsequences all have almost surely convergent
sub-subsequences.

LEMMA 35. Assume ϑn

σn
→ ∞. Almost sure versions of (36) and (37) imply ESJDn(B

(H),

ϑn) → 0 almost surely.

PROOF. Theorem 7 (“mean plus half-variance is asymptotically negligible”) together
with almost sure versions of (36) and (37) implies

(38) ϑ−2β
n

(
E

[
ρn

(
X,Y (n),ϑ |B(H))] + 1

2
Var

[
ρn

(
X,Y (n),ϑ |B(H))|B(H)]) a.s.−→ 0.

Write ρ
(n),ϑ
i = ρn(Xi, Y

(n),ϑ
i |B(H)). The ρ

(n),ϑ
i are independent given B(H), and so (38)

yields

(39)
1

nϑ
2β
n

Var

[
n∑

i=1

ρ
(n),ϑ
i |B(H)

]
= ϑ−2β

n Var
[
ρ

(n),ϑ
1 |B(H)] a.s.−→ θ

and

1

nϑ
2β
n

E

[
n∑

i=1

ρ
(n),ϑ
i |B(H)

]
= ϑ−2β

n E
[
ρ

(n),ϑ
1 |B(H)] a.s.−→ −θ

2
.
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Consequently, for all large enough n,

P

[
n∑

i=1

ρ
(n),ϑ
i > −1

4
Var

[
n∑

i=1

ρ
(n),ϑ
i |B(H)

]
|B(H)

]

≤ P

[∣∣∣∣∣
n∑

i=1

(
ρ

(n),ϑ
i −E

[
ρ

(n),ϑ
i |B(H)])∣∣∣∣∣ >

1

5
Var

[
n∑

i=1

ρn,i |B(H)

]
|B(H)

]

= P

[(
n∑

i=1

(
ρ

(n),ϑ
i −E

[
ρ

(n),ϑ
i |B(H)]))4m

>
1

54m
Var

[
n∑

i=1

ρn,i |B(H)

]4m

|B(H)

]
,

(40)

for m chosen to satisfy the requirements of Framework 15. From the proof of Lemma 22 we
may conclude

(41) E
[(

ρ
(n),ϑ
i −E

[
ρ

(n),ϑ
i |B(H)])4m|B(H)] ≤ E

[(
ρ

(n),ϑ
i

)4m|B(H)] � ϑ4mβ
n .

Following the argument of Mijatović and Vogrinc ([22], Proposition 26), given centred IID
random variables A1, . . . ,An ∼ A satisfying E[A4m] < ∞ we have

E
[
(A1 + · · · + An)

4m] = ∑ · · ·∑
s1+···+sn=4m
si∈{0,2,3,...}

E
[
A

s1
1 · · ·Asn

n

]

≤ ∑ · · ·∑
s1+···+sn=4m
si∈{0,2,3,...}

E
[|A1|s1

] · · ·E[|An|sn]

≤ ∑ · · ·∑
s1+···+sn=4m
si∈{0,2,3,...}

E
[|A1|4m] s1

4m · · ·E[|An|4m] sn
4m

=
( ∑ · · ·∑
s1+···+sn=4m
si∈{0,2,3,...}

1
)
E

[|A1|4m] ≤ 32m
( ∑ · · ·∑
t1+···+tn=2m

1
)
E

[|A1|4m]

= 32mn2m
E

[|A1|4m]
.

(42)

Here the first equality holds because all the terms containing exactly one copy of any of the
Ai vanish due to Ai being centred and independent; the third inequality arises from Jensen’s
inequality; the fourth inequality is obtained by mapping each tuple (s1, . . . , sn) to (t1, . . . , tn)

by dividing si by 2 if si is even, otherwise alternately increasing or decreasing si by 1 then
dividing by 2. Each resulting tuple (t1, . . . , tn) sums to 2m and derives from no more than
32m of the (s1, . . . , sn) tuples.

Using Markov’s inequality on (40) and then using (41) together with (42) shows

P

[
n∑

i=1

ρ
(n),ϑ
i > −1

4
Var

[
n∑

i=1

ρ
(n),ϑ
i |B(H)

]
|B(H)

]

� n2m × ϑ
4mβ
n

Var[∑n
i=1 ρ

(n),ϑ
i |B(H)]4m

� n2m × ϑ
4mβ
n

n4mϑ
8mβ
n θ4m

= σ
4mβ
n

ϑ
4mβ
n �4mβθ4m

,

(43)

where we have used (39) (changing the constant) for the second bound and have used nσ
2β
n =

�2β (as stipulated in Framework 15) for the final equality.
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In both the RWM and MALA case we have

(44) E
[(

Y
(n),ϑ
1 − X1

)4|B(H)] � ϑ4
n.

The RWM case is trivial, while in the MALA case

E
[(

Y
(n),ϑ
1 − X1

)4|B(H)] = ϑ4
n

∫∫
R2

(
z + ϑn

2
V̇

(
x|B(H); c))4

π
(
x|B(H); c)

ν1(z)dx dz

equals 3ϑ4
n plus a sum of higher powers of ϑn multiplied by random variables that depend

only on B(H) and are almost surely finite by Assumption 15.(A) and Lemma 31(i).
So now consider: under the constraint

∑n
i=1 ρ

(n),ϑ
i ≤ −1

4 Var[∑n
i=1 ρ

(n),ϑ
i |B(H)] the re-

sulting upper bound on the acceptance rate leads, together with (44) and (39), to

n
1
β ×E

[(
Y

(n),ϑ
1 − X1

)2
(1 ∧ exp)

(
n∑

i=1

ρ
(
Xi,Y

(n),ϑ
i |B(H)));

n∑
i=1

ρ
(n),ϑ
i ≤ −1

4
Var

[
n∑

i=1

ρ
(n),ϑ
i |B(H)

]
|B(H)

]

� ϑ2
n

σ 2
n

exp

(
−1

4
Var

[
n∑

i=1

ρ
(n),ϑ
i |B(H)

])
� ϑ2

n

σ 2
n

exp
(
−�2βθ

3

ϑ
2β
n

σ
2β
n

)
a.s.−→ 0.

Here we reduce the denominator in the final exponent from 4 to 3 to control fluctuations in
the limit for the scaled variance expressed by equation (39).

Alternatively, under the constraint
∑n

i=1 ρ
(n),ϑ
i > −1

4 Var[∑n
i=1 ρ

(n),ϑ
i |B(H)] we can apply

the Cauchy–Schwarz inequality together with the limits (43) and (44). Using nσ
2β
n = �2β

again,

n
1
β ×E

[(
Y

(n),ϑ
1 − X1

)2
(1 ∧ exp)

(
n∑

i=1

ρ
(
Xi,Y

(n),ϑ
i |B(H)));

n∑
i=1

ρ
(n),ϑ
i > −1

4
Var

[
n∑

i=1

ρ
(n),ϑ
i |B(H)

]
|B(H)

]

� σ−2
n ×E

[(
Y

(n),ϑ
1 − X1

)4|B(H)]1/2

× P

[
n∑

i=1

ρ
(n),ϑ
i > −1

4
Var

[
n∑

i=1

ρ
(n),ϑ
i |B(H)

]
|B(H)

]1/2

� ϑ2
n

σ 2
n

× 1

�2mβθ2m
× σ

2mβ
n

ϑ
2mβ
n

= 1

�2mβθ2m
× σ

2mβ−2
n

ϑ
2mβ−2
n

which almost surely converges to zero provided mβ > 1, since ϑn

σn
→ ∞. In the case of

MALA β = 2 + H we need only use m = 1; however in the RWM case β = H , so we
need to choose m to be sufficiently large (recall that all polynomial moments of ρ

(n),ϑ
i are

finite). Together the above bounds give

ESJD
(
B(H),ϑn

) a.s.−→ 0. �

Accepting that σ 2
n is the optimal decay rate for proposal variances, we turn our attention

to choosing the � that maximises the ESJD, equivalently (as it will turn out) determining the



COUNTEREXAMPLES FOR OPTIMAL SCALING OF MH CHAINS 1011

optimal average acceptance rate. Revisiting (34), W(�) takes the form

W(�) = 2�2 × �

(
−σ(�)

2

)
= 2�2 × �

(
−�βθ

2

)

for σ(�) as in Theorems 1 and 2, for θ a positive constant that depends only on B(H) and
for � the cumulative distribution function of a standard normal random variable. (To obtain
the first equality integrate 1 ∧ exp with respect to the standard normal density as in [29],
Proposition 2.4.)

Clearly, W(�) is smooth, positive and converges to zero when either � → 0 or � → ∞.
Its maximum is therefore achieved at a stationary point. Taking derivatives and substituting
a = �2βθ

2 leads to the equation

2�(−a) − βaϕ(−a) = 0,

where ϕ is the standard normal density function. This equation has a unique solution for
positive a (because a 
→ a

ϕ(−a)
�(−a)

is strictly increasing) and the average acceptance rate at the

optimal a (and optimal �) is then given by 2�(−a) = 2�(− �βθ
2 ). We can solve the above

equation numerically for various β(H) = H for RWM and β(H) = 2 + H for MALA to
obtain the associated optimal acceptance rates. The numerical results for both RWM and
MALA are presented in Figure 1. Since the left and right side of Figure 1 are both obtained
by numerically solving the same equation over different disjoint ranges of parameter β , it
is tempting to speculate that when using MALA for targets of smoothness class between 1
and 2 the optimal acceptance rates interpolate between the plots of Figure 1 and attain values
between 23% and 45%.

8.2. Further work and open questions.

(a) The following question remains: does there exist a “Langevin diffusion” limit result
analogous to the main weak convergence results in [29] (see (1)) and [30]? We do not pursue
this question here as it does not fundamentally contribute to the force of the counterexamples.
Note that it is not a trivial question as the gradient of the marginal does not exist in the RWM
case. Hence, we can talk about an associated Langevin diffusion in terms of its Dirichlet form
but not as a strong solution of an SDE with Lipschitz coefficients.

However, we expect soon to be able to obtain a positive answer, namely that it will prove
possible to show that RWM and MALA chains (with targets and proposals as specified re-
spectively in Theorems 1 and 2) converge weakly

X
RWM,(n)

�n1/H ·t�,1
w−→ Ut and X

MALA,(n)

�n1/(2+H)·t�,1
w−→ Ut

to a “Langevin diffusion” U with a speed parameter

h(�) = W(�) = 2�2 × �

(
−σ(�)

2

)
= 2�2 × �

(
−�βθ

2

)

where σ(�) and θ are compatible with Section 8.1 above and determined by Theorems 1
and 2. (Of course, this also leads to the optimal acceptance rate heuristics as noted above at
the end of Section 8.1.)

To be specific, we plan to adapt the Dirichlet form methodology of Zanella, Bédard and
Kendall [35] to deliver these anomalous scaling results at the level of weak convergence. With
the same methodology we also expect to recover the MALA results of Roberts and Rosenthal
[30] with smoothness assumptions only slightly stronger than C3(R). We shall report on this
more general picture as part of an upcoming review paper that will demonstrate the use of
Dirichlet forms to provide a general framework for proving various results on optimal MCMC
scaling.
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(b) We note an obvious question that expands this line of thought, namely, how much the
random environment approach to optimal scaling can be generalised and can anything be
gained from doing so? For example, is it feasible to take a different realisation of B(H) in
each coordinate of the product structure? Can the realisations of the random environment be
sampled for each n? Can we instead deal with perturbing a deterministic product target by a
Gaussian process indexed by R

n? These questions are challenging but attractive for further
study, since this line of thinking offers a new way of expanding optimal scaling results beyond
the product case.

A possibly fruitful extension of the random environment approach might lie in the in-
vestigation of MCMC smoothness requirements for boundaries. We also note that random
environments could be used to generate further kinds of counterexamples in MCMC (not con-
nected to roughness of the target) or to study properties of MCMC methods when averaged
over a random environment in contexts where actual properties resist direct investigation.

(c) Despite presenting only very particular examples we conjecture that the type of
anomalous MCMC behaviour presented here happens in substantial generality and may in-
deed be typical when dealing with rough targets. One possible approach to support this con-
jecture would be to explore the actual analytical properties provided by the random environ-
ment when arguing for anomalous scaling results. In particular it would be most interesting if
one could establish that anomalous scaling was typical within a certain class of functions in
the sense of Baire category: compare the development of sparsity results for contours, moving
from Kendall [16] to Kendall [17].

(d) Another line of work that may be relevant is presented in Neal, Roberts and Kong Yuen
[23]. They also deal with badly behaved targets for RWM. They consider discontinuous prod-
uct targets, such that the one dimensional marginals are C2 on [0,1] and zero outside. They
establish optimal scaling rate for the proposal variance n−2 for dimension n, coinciding with
the case H = 1

2 in our setting. However optimal acceptance rates differ because of different
constructions of the Langevin diffusion. Is there a link between the behaviours captured in
their paper and in ours? It is natural to wonder whether both phenomena could be explained
within a common framework.

(e) Understanding the behaviour of MCMC methods not initiated in stationarity is very
important for practical applications. Theoretically this has been studied together with optimal
scaling results for instance in Christensen, Roberts and Rosenthal [4], Jourdain, Lelievre and
Miasojedow [13, 14], Kuntz, Ottobre and Stuart [18], Kuntz et al. [19]. It is demonstrated that
(for MALA) not starting in stationarity can worsen the optimal scaling rate for some initial
configurations, particularly some chosen close to the mode of the target.

We did not theoretically study this question in our setting. However, numerically the RWM
chains on rough targets introduced in Theorem 1 seem to behave as predicted by the theorem
despite not initiated in stationarity (see Section 8.3(a)).

Appropriate modification of the random environment approach could potentially be used to
identify further examples of MCMC in a nonstationary phase exhibiting worse than expected
scaling behaviour.

8.3. Heuristics for use in applications.

(a) Let us first numerically verify what theoretical results predict. Consider an n = 200
dimensional RWM example with H = 1

2 . We pre-simulate a Brownian motion path at a very
fine resolution (at 2 ·105 equally spaced points between −9 and 9) and use linear interpolation
in between grid points to evaluate the target. All computation below was done with the same
fixed pre-simulated Brownian motion path. Additionally, we start the RWM according to a
standard normal and use a large burn in to achieve approximate stationarity.
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TABLE 1
Average acceptance rates α and ESJD for different values of � for a RWM example with rough target

�

5.0 5.5 11.0 12.0 13.0 14.0

α 26.2% 23.7% 9.9% 7.9% 7.1% 5.9%
ESJD 3.26 ·10−2 3.57 ·10−2 5.69 ·10−2 5.66 ·10−2 5.89 ·10−2 5.69 ·10−2

Even with these numerical imperfections, the results still echo what the theory predicts.
Set the variance of the marginal proposal to be �2/n2 for different values of �. At � = 5.5 the
average acceptance rate is 23.7%, with ESJD of 3.57 · 10−2, while at � = 13.0 the average
acceptance rate is 7.1% with ESJD of 5.89 · 10−3, which appears to be near optimal. Some
other average acceptance rates and ESJD are reported in Table 1 (all numbers are based on
a single RWM run of length 105). The top left image of Figure 2 depicts the marginal target
density. The top right compares the autocorrelation of the first coordinate of RWM algorithms
for proposal variance tuned on the one hand to accept around 23% of the proposals (� = 5.5,
dashed line) and on the other hand to accept 7% of the proposals (� = 13, solid line) and to
attain near optimal ESJD value. The bottom picture depicts 104 steps of the first coordinate
of the same RWM algorithms.

The observations of the acceptance rates, autocorrelation and ESJD are somewhat noisy,
but it is clear that the ESJD values are the highest closer to the average acceptance rates of
7% rather than to 23%. The autocorrelation also decays faster at 7% than at 23% of accepted
proposals. Even the optimally tuned RWM exhibits slow mixing for the rough target.

An interesting feature we wish to note is the behaviour of the RWM path with near-optimal
ESJD. It tends to occasionally get trapped in local modes for long periods of time, not ac-
cepting any proposal out of hundreds (see bottom image of Figure 2 around step 2000).

FIG. 2. Marginal target density π on the top left. Autocorrelation (top right) and trace (bottom) plots of first
coordinate of RWM at � = 5.5 tuned to accept 23% of proposals (dashed) and at � = 13.0 with near optimal ESJD
(solid). The near optimal ESJD scaling leads to behaviour of getting trapped in local modes.
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(b) Consideration of the theoretical counterexamples presented in Section 8.3(a) suggests
that MCMC methods can get stuck in regions of high roughness in a manner similar to the
way in which they can get stuck in local modes. Furthermore according to the MALA coun-
terexample, these rough patches may only manifest at the level of the target derivatives, and
hence may not be immediately detectable from the plot of the target, while still slowing down
mixing. We would also expect problems in practice with application of RWM and MALA
methods to finite dimensional targets falling in the regimes described in [29] and [30], but
possessing regions of high local oscillations (at second order for MALA). In such cases one
might expect to need to tune acceptance rate to a lower value than conventionally indicated.

Indeed, consider the following toy numerical example. Take an n = 100 dimensional
RWM chain with a product target defined by the requirement that the potential of the one-
dimensional marginal is

log
(
π(x)

) = −x2

2
+ a cos(bx)

for constants a = 0.25, b = 30. Further take the proposal variance of marginal proposal to be
equal to �n−1. At � = 0.65 the average acceptance rate is 23.3%, with ESJD of 9.77 · 10−4,
while at � = 2.55 the average acceptance rate is 7.7% with ESJD of 4.88 ·10−3, which appears
to be close to optimal. Some other average acceptance rates and ESJD are reported in Table 2
(all numbers are based on a single RWM run of length 106 started in stationarity). Again the
top left image of Figure 3 depicts the marginal target density. The top right compares the
autocorrelation of the first coordinate of RWM algorithms for proposal variance tuned on the
one hand to accept around 23% of the proposals (� = 0.65, dashed line) and one the other
hand to attain near optimal ESJD value (� = 2.55, solid line). The bottom picture depicts 104

steps of the first coordinates of the same RWM algorithms.
Again the ESJD values and the autocorrelation plot suggest that RWM tuned to accept

7% of proposals outperforms the RWM tuned to accept 23% of proposals. The mixing is
considerably faster than in the rough example 8.3(a) but is still slow.

We observe the same phenomenon as in Section 8.3(a). The solid line graph, corresponding
to the optimally tuned proposal in terms of ESJD, has low acceptance rate and spends very
long periods of time in particular states with high target density value.

Is this behaviour simply due to apparent multi-modality of the target? We do agree it is
not unrelated, after all roughness and local oscillations are both in some sense extreme cases
of local multi-modality. Note however, that the work of [29] assures us that for considerably
larger n we will see standard optimal scaling, despite the distance between neighbouring
nodes relative to the proposal size not growing and modes becoming more pronounced due
to multiplication of the marginal densities.

A natural question arises: can fixed deterministic marginal target densities of this kind be
associated with an “appropriate” Hölder exponent? In this case we obtain the same acceptance
rate as in Theorem 1 for H ≈ 0.5, but it would be preferable to establish a link without having
to optimise ESJD beforehand. If such a link can be established, can it be used together with

TABLE 2
Average acceptance rates α and ESJD for different values of � for a smooth RWM example

�

0.5 0.65 1.5 2 2.55 3

α 29.3% 23.3% 14.7% 11.1% 7.7% 5.2%
ESJD 7.25 ·10−4 9.77 ·10−4 3.28 ·10−3 4.37 ·10−3 4.88 ·10−3 4.58 ·10−3
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FIG. 3. Marginal target density π on the top left. Autocorrelation (top right) and trace (bottom) plots of first
coordinate of RWM at � = 0.65 tuned to accept 23% of proposals (dashed) and at � = 2.55 with near optimal
ESJD (solid). Again the near-optimal ESJD option leads to behaviour of getting trapped in local modes.

the insights of Theorem 1 to develop heuristics on how to tune the proposal variance for
sampling from locally oscillatory or multi-modal targets?

Consider now a similar example for MALA instead of RWM. Take an n = 100 dimensional
MALA chain with the potential of the one-dimensional marginal equal to

log
(
π(x)

) = −x2

2
− a

b2 cos(bx)

for a = 0.9 and b = 5. This target is log concave and looks very much like the standard normal
density and the oscillations only happen at the level of the second derivative of log(π): we
therefore do not present a figure. Take the proposal variance of the marginal proposal to

be equal to �n− 1
3 . Again, we can detect that the algorithm does not behave according to

the theory [30] and has the best ESJD for lower acceptance rates. At � = 1.51 the average
acceptance rate is 57.4%, with ESJD of 0.315, while at � = 1.68 the average acceptance
rate is 47.5% with ESJD of 0.331, which appears to be near optimal. Some other average
acceptance rates and ESJD are reported in Table 3.

Results of Table 3 (each entry is again based on a single MALA run of length 106 started at
stationarity) are less precise then those of Table 2 as in the MALA case the ESJD do not vary
so much over the range of average acceptance rates 45.2% − 57.4% permitted by the con-
ditions of Theorem 2. Moreover the numerical results suggest that, while there is detectable

TABLE 3
Average acceptance rates α and ESJD for different values of � for the MALA example

�

1.4 1.51 1.6 1.67 1.68 1.7 1.72 1.73 1.8

α 62.9% 57.4% 52.4% 48.1% 47.5% 46.3% 45.2% 44.5% 40.0
ESJD 0.292 0.315 0.327 0.330 0.331 0.331 0.331 0.330 0.325
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deviation from classical results, nevertheless this does not have a significant impact on the
performance of the method. Put differently, MALA tuned to accept anywhere between 45.2%
and 57.4% of proposals works fine. Worrying about the roughness of the second derivative
does not seem fruitful in practice.

The above considerations and these numerical examples suggest it would be valuable to
conduct a thorough numerical study (using a variety of locally oscillating targets in different
dimensions) to investigate this further. A referee suggests that it would be very interesting
to compare (theoretically and numerically) the performance of an MCMC algorithm on a
rough target with the performance on an associated truncated Karhunen–Loève expansion of
the random part of the target. This might shed light on the way in which different levels of
oscillation and roughness affect performance of MCMC algorithms.

(c) Sampling from targets with local oscillations is a matter of current scientific discus-
sion, for instance, applications in disordered media and soft matter [3, 6, 10, 25, 27]. In light
of our theoretical and numerical results it is sensible to argue that classic MCMC algorithms
do not really work well for rough or oscillatory targets, and that one should seek appropriate
modifications. Suggestions for such modifications also already exist [26]. Such modifications
could usefully be assessed in terms of optimally tuned RWM and MALA algorithms provid-
ing benchmark MCMC methods.

It is also not impossible to imagine situations where one would want to sample rough
targets, such as those in Section 8.3(a). This could happen naturally if rough targets are in-
terpreted as noisy observations of a smooth target. This may be relevant for understanding
pseudo-marginal Metropolis–Hastings algorithms [1, 2]. It is interesting to compare our re-
sults to the optimal scaling results for pseudo-marginal RWM obtained in Sherlock et al.
[32], who in case of stationary Gaussian noise (Section 3.2) obtain the standard scaling of
proposal variance n−1 but the exact same optimal acceptance rate 7.001% as in our case for
H = 1

2 . Again it seems possible that one could develop a common framework for studying
noisy targets which would simultaneously explain both results.

Another more speculative usage of rough targets is when attempting to sample objects
of fractal-like nature. Take Bayesian inference of ancestral trees as an example. There are a
myriad ways in which an MCMC move on the space of trees can change the tree topology.
Combined with complex likelihood structure arising when modelling mutations this seems
capable of resulting in a setting that in the limit (of say growing number of tree leaves)
approaches a rough target. In fact MCMC algorithms on trees do indeed suffer from very low
acceptance rates when the proposal alters the tree topology, as reported for instance in Lakner
et al. [20] and Höhna and Drummond [9]. Further investigation is needed to determine if this
can be accounted for by some kind of effective roughness or local oscillations of the target.

APPENDIX: AUXILIARY CALCULUS RESULTS

This appendix establishes two simple lemmas concerning exact second-order Taylor ex-
pansions and a lemma establishing properties of a certain kind of set. All are used in the
paper.

LEMMA A.1. Let f ∈ C2(I) for an interval I⊂ R. The following identity holds, provided
that x, x + δ1, x + δ2, and x + δ1 + δ2 all belong to I:

f (x + δ1 + δ2) − f (x + δ1) − f (x + δ2) + f (x) = δ1δ2

∫ 1

0

∫ 1

0
f ′′(x + uδ1 + vδ2)dudv.

PROOF. The fundamental theorem of calculus implies that F(y) − F(x) = (y −
x)

∫ 1
0 F ′(x + u(y − x))du holds for every F ∈ C1(R) and all real x, y. This can be employed
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once for F1(x) = f (x + δ1) − f (x) and y = x + δ2, and then again for Fu(x) = f ′(x + uδ2)

and y = x + δ1, to yield

f (x + δ1 + δ2) − f (x + δ1) − f (x + δ2) + f (x)

= F1(x + δ2) − F1(x) = δ2

∫ 1

0
F ′

1(x + uδ2)du

= δ2

∫ 1

0
f ′(x + δ1 + uδ2) − f ′(x + uδ2)du = δ2

∫ 1

0
Fu(x + δ1) − Fu(x)du

= δ1δ2

∫ 1

0

∫ 1

0
F ′

u(x + vδ1)dv du

= δ1δ2

∫ 1

0

∫ 1

0
f ′′(x + uδ1 + vδ2)dudv. �

LEMMA A.2. Let f ∈ C2(R). The following holds for all real x, δ:

f (x + δ) − f (x) − δ

2

(
f ′(x) + f ′(x + δ)

) = δ2

2

∫ 1

0
(1 − 2t)f ′′(x + tδ)dt.

PROOF. Consider exact second-order Taylor expansions of f (x + δ) around x and of
f (x) around x + δ:

f (x + δ) = f (x) + δf ′(x) +
∫ x+δ

x
f ′′(u)(x + δ − u)du,

f (x) = f (x + δ) − δf ′(x + δ) +
∫ x

x+δ
f ′′(v)(x − v)dv.

These yield two different expansions for f (x + δ) − f (x). Averaging, we obtain

f (x + δ) − f (x) − δ

2

(
f ′(x) + f ′(x + δ)

)

= 1

2

∫ x+δ

x
f ′′(u)(x + δ − u)du − 1

2

∫ x

x+δ
f ′′(v)(x − v)dv

= δ2

2

(∫ 1

0
(1 − t)f ′′(x + tδ)dt −

∫ 1

0
tf ′′(x + tδ)dt

)
= δ2

2

∫ 1

0
(1 − 2t)f ′′(x + tδ)dt,

respectively using changes of variables t = (u − x)/δ and t = (v − x)/δ. �

LEMMA A.3. Let {an}n∈N be a strictly decreasing positive sequence and denote for each
n ∈N the set

Sn := {
(x1, z1, x2, z2) ∈ R

4 : |x1 − x2| > 2an

(|z1| + |z2|)}.
Then the following two statements hold:

(i) 1
4π2

∫
Sc

n
e− 1

2 (x2
1+z2

1+x2
2+z2

2) dx1 dx2 dz1 dz2 ≤ 4
π3/2 · an.

(ii) For all (x1, z1, x2, z2) ∈ Sn and u, v ∈ [0,1],

|uz1 − vz2|an <
1

2
|x1 − x2| <

∣∣x1 − x2 − (uz1 − vz2)an

∣∣.
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PROOF. Property (i): Consider the orthonormal change of variables given by y1 =
1√
2
(x1 − x2), y2 = 1√

2
(x1 + x2). This yields the following bound using the simple-minded

bound
∫ a
−a e−y2

1/2 dy1 ≤ 2a:

1

4π2

∫
Sc

n

e− 1
2 (x2

1+z2
1+x2

2+z2
2) dx1 dx2 dz1 dz2

= 1

2π

∫
R2

e− 1
2 (z2

1+z2
2)

(
1

2π

∫
|y1|≤

√
2an(|z1|+|z2|)

e− 1
2 (y2

1+y2
2 ) dy1 dy2

)
dz1 dz2

≤
√

2an

π
· 1

2π

∫∫
R2

(|z1| + |z2|)e− 1
2 (z2

1+z2
2) dz1 dz2

= 2
√

2an

π
· 1

2π

∫∫
R2

|z1|e− 1
2 (z2

1+z2
2) dz1 dz2 = 4

π3/2 · an.

Property (ii): Working with the definition of Sn, we deduce

|uz1 − vz2|an ≤ (|z1| + |z2|)an <
1

2
|x1 − x2|.

On the other hand,

1

2
|x1 − x2| = |x1 − x2| − 1

2
|x1 − x2| < |x1 − x2| − |uz1 − vz2|an

≤ ∣∣x1 − x2 − (uz1 − vz2)an

∣∣. �
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