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Discussion: Models as Approximations
Dalia Ghanem and Todd A. Kuffner

We congratulate the authors on these illuminating
and thought-provoking articles.

1. SCORING RULES AND WELL-SPECIFICATION
IN PREDICTIVE MODELING

In the context of prediction, the objective is often to
minimize a particular criterion or scoring rule. If the
conditional distribution is known and correctly spec-
ified, then maximum likelihood is the criterion that
should be used for estimation, even if the Kullback–
Leibler divergence is not the scoring rule that the
forecaster has chosen to minimize. In the more likely
case of misspecification, it is not clear which criterion
should be used for estimation. In the context of fore-
casting conditional probabilities of binary outcomes,
Elliott, Ghanem and Krüger (2016) examine this ques-
tion and illustrate that the choice of scoring rule yields
different best approximations to the true conditional
probability function of the outcome of interest un-
der misspecification, except under restrictive condi-
tions. Interestingly, these conditions under which the
choice of objective function used for estimation does
not change the best approximation to the true condi-
tional probability function imposes symmetry condi-
tions on the regressor distribution as well as the condi-
tional mean.

2. CAUSAL INFERENCE, WELL-SPECIFICATION
AND EXTERNAL VALIDITY

In causal inference, we often consider fully nonsepa-
rable models. For simplicity, we will consider the case
where �X = T , where T is a scalar binary variable,
which we refer to as the treatment variable. The model
equation is specified as

Y = m(T , �U).(1)
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In this simple example, the structural function could
be written in terms of potential outcomes (Imbens and
Rubin, 2015),

Y = (1 − T )Y0 + T Y1,(2)

where Y0 = m(0, �U) and Y1 = m(1, �U). We can also
write the conditional distribution of Y given T in terms
of the potential outcomes,

FY |T (y|t) =
∫

1
{
m(t, �u) ≤ y

}
dF �U |T =t

= FYt |T (y|t), for t = 0,1.

(3)

Due to potential selection, �U may not be independent
of T in general. In this case, we cannot identify the
average treatment effect (ATE), that is,

�(P ) = EP [Y1 − Y0]
=

∫ (
m(1, �u) − m(0, �u)

)
dF �U,

(4)

from the observed difference in mean outcomes,

EP [Y |T = 1] − EP [Y |T = 0]
(5)

=
∫

m(1, �u)dF �U |T =1 −
∫

m(0, �u)dF �U |T =0.

Hence, the independence of U and T are critical, that
is, F �U |T = F �U , for the identification of the ATE in (4)
from the difference in mean outcomes in (5).

Randomized experiments or randomly assigned in-
terventions ensure this independence assumption holds
and thereby allow us to learn about internally valid es-
timands of causal impact, such as the ATE. In general,
these estimands may not be externally valid (for fur-
ther discussion of the distinction between internal and
external validity, see Athey and Imbens, 2017). For in-
stance, the ATE in a given experiment can depend on
the environment. To allow for this dependence in our
notation, let e ∈ E denote an environment, then

Y e = me(T e, �Ue),
�e(P e) = EP e

[
Y e

1 − Y e
0
]

=
∫ (

me(1, �ue
) − me(0, �ue

))
dF �Ue,

(6)
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where �e(P e) denotes the ATE for the environment e.
Note that every function in the above may vary with e.
The above notation also clarifies that while the inde-
pendence between T and �Ue ensures that we identify
the ATE for the environment e, that is, an internally
valid estimand, it is not sufficient for �e(P e) = �0 for
all e ∈ E , a non-singleton set.

The authors point to an interesting connection be-
tween well-specification in the context of causal infer-
ence and invariance to regressor distributions (Peters,
Bühlmann and Meinshausen, 2016). We conjecture
that this connection relates to external validity. We pro-
vide a simple example to support our conjecture. To do
so, we present the assumptions maintained in Peters,
Bühlmann and Meinshausen (2016), while adapting
their notation slightly to remain consistent with ours.
We observe i.i.d. realizations of (Xe,Y e) in each en-
vironment, where Xe ∈ R

p and Y e ∈ R is the target
variable. Peters, Bühlmann and Meinshausen (2016)
assume that if a subset S∗ ⊆ {1, . . . , p} is causal, then

Y e = g
( �Xe

S∗, �εe
)
, �εe ∼ F�ε, �εe ⊥ �Xe

S∗ .(7)

The goal of Peters, Bühlmann and Meinshausen (2016)
is to use different types of interventions in different en-
vironments for causal identification. Here we will ap-
ply their assumption to our treatment effect problem,
where we only consider interventions that randomly as-
sign T e within each environment, that is, T e ⊥ ( �Ze, �εe)

for all e ∈ E . To do so, we let �Xe = (T e, �Ze)′, assuming
(7) implies that

Y e = g
((

T e, �Ze)′, �εe
)
.(8)

We can identify the following:

EP e

[
Y e

1 − Y e
0 | �Ze = �z]

=
∫

(g
((

1, �z′)′, v) − g
((

0, �z′)′, v)
dF�ε(v)

= CATE(�z),
(9)

which is the conditional average treatment effect given
�Ze = �z. As we can see from the first equality, this ob-
ject does not vary across environments. Hence, it is not
only internally but also externally valid for e ∈ E . This
is not surprising, since (7) assumes that the function g,
the distribution of unobservables F�ε and the regressors
�Ze are the same across environments, even though the
distribution of �Ze can vary arbitrarily across environ-
ments.

Even though in the above example CATE(�z) is exter-
nally valid, we can easily show that this is not true for
the ATE. To see this, note that

�e(P e) =
∫

CATE(�z) dF �Ze(�z).(10)

It clearly varies across environments depending on the
distribution of �Ze. Hence, it is not externally valid.

This simple example supports our conjecture that
the relationship between the invariance principle intro-
duced in these papers is indeed related to the concept
of external validity. We thank the authors for this im-
portant insight.
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