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Bipartite Causal Inference with Interference
Corwin M. Zigler and Georgia Papadogeorgou

Abstract. Statistical methods to evaluate the effectiveness of interventions
are increasingly challenged by the inherent interconnectedness of units.
Specifically, a recent flurry of methods research has addressed the problem
of interference between observations, which arises when one observational
unit’s outcome depends not only on its treatment but also the treatment as-
signed to other units. We introduce the setting of bipartite causal inference
with interference, which arises when (1) treatments are defined on observa-
tional units that are distinct from those at which outcomes are measured and
(2) there is interference between units in the sense that outcomes for some
units depend on the treatments assigned to many other units. The focus of this
work is to formulate definitions and several possible causal estimands for this
setting, highlighting similarities and differences with more commonly con-
sidered settings of causal inference with interference. Toward an empirical
illustration, an inverse probability of treatment weighted estimator is adapted
from existing literature to estimate a subset of simplified, but interesting, es-
timands. The estimators are deployed to evaluate how interventions to reduce
air pollution from 473 power plants in the U.S. causally affect cardiovascu-
lar hospitalization among Medicare beneficiaries residing at 18,807 zip code
locations.

Key words and phrases: Air pollution, causal inference, interference, net-
work dependence, power plants.

1. INTRODUCTION

Consider evaluating the causal effect of an intervention
in a context with the following features: (1) the interven-
tion is defined and measured on one type of observational
unit, but (2) outcomes of interest are defined and mea-
sured on a second, distinct type of unit. Common exam-
ples include educational interventions applied to teachers
with outcomes of interest defined on students, social inter-
ventions applied at neighborhoods with outcomes defined
at the level of the resident, or as will be the focus of the
present discussion, interventions applied at sources of air
pollution (e.g., power plants) and health outcomes mea-
sured among people at specific population locations (e.g.,
zip codes). We refer to such a setting as one of bipartite
causal inference, reminiscent of the two types of nodes in
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a bipartite graph. Such bipartite structures are common-
place in many fields where interest lies in evaluating the
causal effects of an intervention.

Consider a setting of bipartite causal inference aug-
mented with the complexity that interconnectedness
among the two types of units gives rise to what has
been termed in the causal inference literature interference,
where outcomes for a particular unit depend upon treat-
ments assigned to (possibly many) other units. We term
the combination of these two features as the setting of bi-
partite causal inference with interference, which has not,
to our knowledge, been previously considered.

Most existing work on causal inference with interfer-
ence is formalized in the familiar setting with one level
of observational unit [7, 8, 22, 9, 20, 10, 23, 26, 24, 15,
1, 4, 2, 13, 16, 19, 14]. The most well-studied examples
are studies of infectious diseases where vaccinating a per-
son will also reduce the infection risk of others who come
into contact with that person [8, 10, 13, 16, 19] and the
analysis of social networks where interventions can af-
fect a unit directly and also through impact on an indi-
viduals’ peers. Various estimands have been introduced
to describe the effect on a particular unit’s outcome due
to treatments applied to other units, with terminology in-
cluding indirect effects, spillover effects, contamination
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effects and peer effects, but the common theme is that
interference typically arises because unit-to-unit interac-
tions lead outcomes of some to depend on outcomes (and,
by extension, treatments) of others. Methods for estima-
tion and inference in such settings have considered both
randomized and observational settings, with emphasis on
settings of so-called partial interference that leverage as-
sumptions of interference within, but not between, distinct
and nonoverlapping clusters of units [22, 9, 10, 23, 13, 19,
11].

Similar formalization of interference problems in the
bipartite setting presents challenges that have not been
previously considered. One reason is the required techni-
cal distinctions relating to the two types of observational
unit; defining estimands and corresponding estimators re-
quires maintenance of the distinction between units where
interventions occur and those where outcomes are mea-
sured. What’s more, settings of bipartite causal inference
with interference likely arise due to underlying scientific
phenomena that cannot be described by the type of unit-
to-unit outcome dependencies common to the study of in-
fectious diseases or social networks. In the bipartite set-
ting, interference is more likely a consequence of complex
exposure dependencies that describe how the impact of a
particular treatment propagates across units. Settings of
interference due to complex exposure dependencies have
been considered in the setting of one observational unit,
albeit with much less focus than settings of unit-to-unit
outcome dependencies [20, 24, 6].

The goal of this paper is to formalize the development
of potential-outcomes methods relevant to settings of bi-
partite causal inference with interference. We define po-
tential outcomes in this setting and introduce interference
mappings describing the network of interconnectedness
between units. From here, we formalize alternatives to the
commonly-invoked stable unit treatment value assump-
tion and propose several causal estimands unique to the
bipartite setting. The discussion of estimands is intention-
ally general in order to introduce new types of causal
quantities that could potentially be of interest in the bi-
partite setting. Toward a simple empirical illustration, we
invoke several simplifying assumptions, including a bi-
partite version of partial interference, to focus on a subset
of relevant estimands for which corresponding estimators
can be derived from existing inverse probability weighted
estimators. Throughout, we highlight similarities and dif-
ferences with existing estimands and methods for causal
inference with interference in settings with one level of
observational unit.

For illustration, we frame the discussion in the context
of evaluating interventions designed to reduce pollution-
related health burden by limiting harmful emissions from
power plants in the U.S.. The features defining the bipar-
tite structure are that interventions are defined and imple-
mented at the level of the power plant, but key questions

for regulatory policy pertain to health outcomes (e.g., car-
diovascular hospitalizations) measured at population lo-
cations across the country. Unlike in most existing litera-
ture on causal inference with interference, the interference
in the power plant case is not due to dependent outcomes
among locations or people (e.g., one person’s hospitaliza-
tion does not affect another person’s risk). Rather, inter-
ference in this case is due to the nature of pollution expo-
sure, which derives from complex processes that render
an individual location subject to actions at many power
plants and many power plants impacting common sets of
locations.

Ultimately, the development in this paper is designed as
a framework for addressing problems and data structures
that have not been previously considered alongside the
formalization of causal inference with interference. Ex-
plicitly targeting the complexities of interference due to
air pollution transport presents the first step toward statis-
tical tools for evaluating air quality control policies that
have to date relied on deterministic physical-chemical air
quality models that are not validated with observed data.

2. MOTIVATING SETTING: POWER PLANT
REGULATORY POLICIES

Various compounds emitted from power plants undergo
complex chemical and physical processes to form harm-
ful air pollution that is transported across space. This phe-
nomenon is known as pollution transport. In light of this
phenomenon, existing regulatory assessments use deter-
ministic models of pollution transport to simulate reg-
ulatory impacts. From a statistical perspective, the phe-
nomenon of pollution transport manifests as interference
between units, since outcomes at one location are depen-
dent on treatments at many pollution sources located “up-
wind” (although note that pollution transport is generally
more complex than just the direction of the wind). Devel-
opment of new methods for interference can enhance cur-
rent regulatory assessments by combining rigorous statis-
tical methodology with state-of-the-art knowledge of pol-
lution transport.

For example, consider a specific intervention that may
or may not be implemented at a power plant, namely,
the installation of selective catalytic reduction or selec-
tive noncatalytic reduction (SnCR) system, a technology
known to reduce emissions of nitrous oxides (NOx), im-
portant precursors to the formation of various types of air
pollution known to be associated with adverse health out-
comes [17, 3]. We aim to characterize the extent to which
installation of such a SnCR system causally impacts hos-
pitalization rates for cardiovascular disease (CVD) among
Medicare beneficiaries. This setting fits the description
of bipartite causal inference with interference because:
(1) SnCR systems are installed (or not) at individual
power plants; (2) CVD hospitalizations are measured at
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zip codes; (3) CVD hospitalizations at a given zip code
depend on the constellation of SnCR systems installed
at many upwind power plants and; (4) a given power
plant may impact the CVD hospitalizations at multiple zip
codes.

3. POTENTIAL OUTCOMES FOR BIPARTITE CAUSAL
INFERENCE WITH INTERFERENCE

The defining feature of the bipartite structure is the
presence of two distinct types of observational units. First,
define the set of interventional units, P = {p1,p2, . . . ,

pP } to be the available observational units upon which
interventions either occur or not. In the motivating exam-
ple, P is a set of P = 473 power plants located across
the U.S. For each pi ∈ P , let Ai = 1,0 denote the pres-
ence, absence of an intervention at the ith interventional
unit, for example, an indicator of whether a power plant
installs a SnCR system. Let A = (A1,A2, . . . ,AP ) denote
a vector of possible treatment assignments to each of the
interventional units in P , with a ∈ A(P ) representing one
vector of 2P possible treatment allocations. Denote co-
variates measured at the level of the interventional units
with Wi , for i = 1,2, . . . ,P .

Let M = {m1,m2, . . . ,mM}, denote a set of M units
of a second type, termed outcome units. In the motivating
example, M consists of M = 18,807 zip codes located
across the U.S. Let Yj denote a measured outcome at each
of the j = 1,2, . . . ,M outcome units, for example, the
number of CVD hospitalizations among Medicare bene-
ficiaries residing at zip code mj . Similarly, Xj could de-
note covariates measured at the outcome units, for exam-
ple, zip code level population demographics. The salient
feature of the bipartite structure is that, without further
restrictions or assumptions, interventions are not defined
on the outcome units (e.g., a zip code cannot be “treated”
with a SnCR system), yet outcomes of interest are not de-
fined on the interventional units (e.g., a power plant does
not have a hospitalization count).

Defining potential outcomes for the bipartite setting is
notationally analogous to settings of one level of obser-
vational unit. Let Yj (a) denote the potential outcome that
would be observed at outcome unit mj under treatment
allocation a, for example, the number of CVD hospital-
izations that would occur at the j th zip code under a spe-
cific allocation of SnCR systems on power plants. In the
most general setting, a unique Yj (a) is defined for every
possible a ∈ A(P ). The unique feature of these defini-
tions in the bipartite setting is that Yj (a) are defined for
j = 1,2, . . . ,M , but a is a vector of length P .

3.1 Distinction with Clustered Experiments and
Common Simplifications to Bipartite Structures

Many conventional instances of data structures with
different levels of observational unit and interference can

be appropriately cast in terms of (approximate) clustered
experiments, where interventions are applied directly to
outcome units, with a second type of “clustering unit”
available to hierarchically cluster outcome units. One
classical example appears in [9], where interventions and
outcomes defined on students are available within clus-
ters defined by schools. The key distinctions between this
clustering setting and the bipartite setting considered here
are: (1) distinct interventional and outcome units; (2) the
possibility of a clustering unit that is distinct from the in-
terventional unit and (3) the possibility that each cluster
may consist of more than one interventional unit. One
example of bipartite causal inference with interference
within a clustered experiment would be investigation of
a teacher intervention (interventional units) for its effect
on student outcomes (outcome units) with both students
and teachers clustered within schools (clustering units).
A similar such clustered instance of bipartite causal in-
ference with interference will be motivated in the power
plant example in Section 6.

Furthermore, many bipartite settings permit simplifica-
tion of the bipartite structure of the data by projecting onto
the space of one type of observational unit. Projecting to
the space of M could follow from linking each mj ∈ M
to exactly one pi ∈ P by, for example, assuming that each
mj adopts the treatment status of the closest pi . Such a re-
duction would extend the definition of the treatment (orig-
inally defined on P) to the level of M, and subsequent
development could proceed as though M were the only
observational units. A similar projection to the space of P
could follow by aggregating measures originally defined
at the level of M. For example, one could consider the
CVD hospitalizations among all zip codes within a certain
distance of each pi ∈ P , and proceed as though P were
the only observational units [17, 18, 12]. Such simplifica-
tions might be appropriate in settings for which it is self-
evident which single interventional unit corresponds to a
given outcome unit, such as the students-within-schools
example where observations are hierarchically clustered.

Other simplifications to the bipartite structure could fol-
low from changing the definition of the intervention (and
the subsequent question of interest). For example, the in-
tervention could be redefined to pertain to each mj as
some function of the interventions on P . One such pos-
sibility in the power plant example would be defining a
zip-code level treatment as a function of the treatment sta-
tuses of several power plants, such as the proportion of
upwind power plants that installed a SnCR system. This
would be similar to a so-called “exposure mapping,” [2]
which in this case would transform the goal of estimating
causal effects of the intervention inherently defined at the
level of P to estimating effects of the new redefined treat-
ment at the level of M, which may not correspond to any
practicable intervention.
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The development herein is designed to formulate causal
estimands when no such simplification is appropriate, as
in the power plant example where assigning each zip code
to one power plant (or vice versa) would be too simplis-
tic in light of the realities of air pollution transport and
interest lies in the effects of specific interventions on in-
dividual power plants.

3.2 Extending to the Bipartite Setting: Interference
Mappings and Structured SUTVA

Formalizing potential outcomes and causal estimands
in the bipartite setting requires a reformulation of com-
mon assumptions about potential outcomes. In particu-
lar, we consider settings that constitute interference in
the sense that the stable unit treatment value assumption
(SUTVA), which is typically formalized to state that a
unit’s potential outcome depends only on that unit’s treat-
ment, no longer holds [21]. Toward this goal, we cast
the bipartite data structure as a network with two differ-
ent types of nodes, pi ∈ P and mj ∈ M, where edges
between pi and mj denote that interventions applied at
pi have some bearing on outcomes measured at mj . We
use the term interference mapping to denote such a net-
work structure. In the power plant setting, this structure
is governed by atmospheric and climatological conditions
that transport power plant emissions across space as they
transform into population pollution exposure.

For each outcome unit, let the interference set be the set
of interventional units for which the presence or absence
of the intervention may affect outcomes [14], a notion
that will be made formal with a reformulated statement of
SUTVA. Let t�j = (tj1, tj2, . . . , tjP ), where tj i = 1(0) if
pi is in the interference set for mj . Define the interference
mapping as T = (t1, t2, . . . , tM)�, where T is a M × P

matrix denoting the interference sets for all mj ∈ M. This
definition of T essentially amounts to what is often con-
sidered as an “adjacency matrix,” even though the entries
of T in this case can encode more complex relationships
between the pi , mj than spatial adjacency. For notational
simplicity, we will let pi ∈ Tj denote all i such that tj i = 1
and use this to refer to all interventional units in the inter-
ference set for a given mj . In the power plant example, the

set of pi ∈ Tj can be thought of as the set of power plants
that are “upwind” from the j th location, and we will refer
to it as such. Similarly, we will let mj ∈ T �

i denote all j

such that tj i = 1 and use this to refer to all outcome units
that contain pi in their interference set. In the power plant
example, this can be thought of as all locations that are
“downwind” from the ith power plant.

Let A{Tj=1} denote the subvector of treatment assign-
ments for the interventional units in the interference set
for unit mj , that is, the elements Ai corresponding to
pi ∈ Tj . Let A{Tj �=1} be the treatment assignment subvec-
tor for interventional units not in the interference set for
mj . We reformulate the usual SUTVA as follows to for-
malize the meaning of the interference mapping:

ASSUMPTION (Structured SUTVA). For a specified
interference mapping, T :

(i) Yj (A) = Yj (A′) for all j if A = A′,
(ii) Yj (A) = Yj (A′) for all j when A{Tj=1} = A′{Tj=1}

or equivalently, Yj (A{Tj=1},A{Tj �=1}) = Yj (A{Tj=1}).

Part (ii) of structured SUTVA clarifies that potential out-
comes for unit mj need only be considered in terms of the
treatment assignment vector of the pi ∈ Tj . To simplify
notation in the subsequent, we will use the subscript (−i)

denoting “not i” to implicitly refer to all interventional
units in a given interference set except for pi . For exam-
ple, Yj (Ai = a,A(−i) = a(−i)) will refer to the potential
outcome at mj if pi receives treatment a and the remain-
der of interventional units in Tj , denoted with pk �=i ∈ Tj ,
receive treatment vector a(−i).

Several familiar settings can be formulated via T and
structured SUTVA. To aid illustration, Figure 1 schemat-
ically depicts three bipartite interference mappings for a
simple setting with M = 4 and P = 3, where ovals sur-
rounding units represent membership in interference sets.
A setting where outcome units are clustered hierarchically
such that each mj ∈ M is subject to exactly one Ai (e.g.,
students grouped within classrooms) and there is no in-
terference is pictured in Figure 1(a). The mapping in this

FIG. 1. Illustrations of interference mappings in simplified setting with (M = {m1,m2,m3,m4}) and (P = {p1,p2,p3}). Potential outcomes at
mj depend upon treatments at all pi in the same oval.
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setting is

T =

⎛
⎜⎜⎝

1 0 0
1 0 0
0 1 0
0 0 1

⎞
⎟⎟⎠ .

More generally, this type of setting corresponds to Tj hav-
ing exactly one element equal to 1, with every Tj = Tj ′
when mj and mj ′ are in the same cluster and, otherwise,
T �

j Tj ′ = 0. The structure depicted in Figure 1(b) corre-
sponds to a bipartite version of the so-called partial inter-
ference assumption [10, 22], where: (1) units are divided
into nonoverlapping clusters consisting of ≥ 1 outcome
unit and ≥ 1 interventional unit; and (2) outcome-unit po-
tential outcomes are allowed to depend only on the treat-
ments assigned to interventional units within the same
cluster. Figure 1(b) corresponds to

T =

⎛
⎜⎜⎝

1 1 0
1 1 0
0 0 1
0 0 1

⎞
⎟⎟⎠ ,

and this setting is generally defined by specifying Tj as
a P -vector with ith element equal to 1 only for pi in
the same cluster, maintaining the feature that T �

j Tj ′ = 0
when mj and mj ′ are not in the same cluster. Figure 1(c)
depicts a more general interference structure that cannot
be described by nonoverlapping clusters as in the partial
interference case, corresponding to

T =

⎛
⎜⎜⎝

1 1 0
1 1 0
0 1 0
0 1 1

⎞
⎟⎟⎠ .

Using Figure 1(c) as an example, the set of upwind power
plants for unit m1 is T1 = (1,1,0), and the set of down-
wind zip codes for unit p2 is T �

2 = (1,1,1,1). Note
that formulation of interference mappings in the stan-
dard single-unit setting could proceed analogously, but
with T as M × M (or P × P ). This would include the
most standard setting of no interference, corresponding to
T = diag{1}M×M .

4. ESTIMANDS FOR BIPARTITE CAUSAL INFERENCE
WITH INTERFERENCE

As with other settings of causal inference with inter-
ference, the interconnectedness between units may not
only complicate inference for familiar causal estimands,
but may also introduce new causal estimands of inter-
est. Among causal estimands of frequent interest in the
presence of interference with one level of observational
unit are so-called “total” and “overall” effects. We focus
in particular on other estimands akin to “direct effects,”
which capture the effect of changing the treatment status

of a given interventional unit while holding fixed the treat-
ment statuses of other interventional units in the interfer-
ence set, and “indirect” effects, which capture the effect
of holding one interventional unit’s treatment status fixed
but changing the treatment statuses of others. We focus on
these estimands in particular to explicate complications
arising in the bipartite setting due to the fact that treat-
ment is not directly applied or withheld from outcome
units, as in studies with one level of observational unit,
and notions of “direct” and “indirect” take on a somewhat
different meaning.

Recall that, for a specified interference mapping, T ,
the (−i) subscript denotes all interventional units but pi

within the interference set for a given mj , that is, pk �=i ∈
Tj . In principle, causal effects can be defined as compar-
isons between Yj (a), Yj (a′) for any two {a,a′} ∈ A(P ),
that is, any two intervention allocations in the space of
possible allocations. As a starting point for development,
denote the most primitive individual-level causal effects
as

(1)
Yj (Ai = a,A(−i) = a(−i))

− Yj

(
Ai = a′,A(−i) = a′

(−i)

)
,

which denotes the causal effect on outcome unit mj of
treatment allocation a with ai = a versus treatment allo-
cation a′ with a′

i = a′. A key feature of the bipartite set-
ting highlighted in (1) is the natural definition of individ-
ual effect for every (pi,mj ) pair for mj ∈ M and pi ∈ P .
For example, setting a = 0, a′ = 1 and a(−i) = a′

(−i) in
(1) yields a quantity akin to a “direct” effect on outcome
unit mj of treating (vs. not treating) interventional unit pi

while holding the treatment status of all other pk �=i ∈ Tj

fixed at a(−i). P such “direct” effects could be defined for
outcome unit mj .

4.1 Individual-Level Estimands Based on Average
Potential Outcomes Under Classes of
Treatment Allocations

While development of causal estimands with interfer-
ence has followed along several lines of development,
we adopt a perspective analogous to [10, 18], where es-
timands are defined based on average individual-level po-
tential outcomes, averaged over many possible treatment
allocations. For example, much work has focused on “al-
location strategies” representing values of a that adhere to
a certain probability (or proportion) of treated units, typi-
cally denoted with α [23, 13, 18, 19].

We extend this convention and define α to denote
a counterfactual treatment allocation strategy where the
propensity of interventional units in an interference set to
receive treatment Ai = 1 is set to α. In the bipartite set-
ting, we refer to the definition of α as “M-centric” in that
it refers to the allocation to all units in the interference
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set for a particular mj , for example, all power plants “up-
wind” from a specific zip code. The set of possible treat-
ment allocations adhering to α is denoted with A(|Tj |),
where |Tj | denotes the number of interventional units in
the interference set for mj .

In the bipartite setting, individual average potential out-
comes that average over all treatment allocations fixing
Ai = a for a pi ∈ Tj and having treatment propensity of
the interference set fixed to α are defined as

(2)

Y j (Ai = a,α) = ∑
s∈A(|Tj |−1)

Yj (Ai = a,A(−i) = s)

× π(s|Ai = a;α),

where s ∈ A(|Tj | − 1) } denotes the set of possible a(−i)

that, along with ai = a, lie in A(|Tj |). Here, π(s|Ai =
a;α) denotes the probability of each such allocation,
conditional on Ai being fixed at a, which is specified
by the researcher to, for example, represent independent
Bernoulli allocation of treatments to units or realistic in-
terventions dependent on covariates [23, 18]. Average po-
tential outcomes of the form (2) will be used to construct
causal estimands of interest.

Using (2), we define a bipartite version of an individual-
level “direct effect,” where “direct” is used to refer to the
effect of treating (vs. not) a specific pi ∈ Tj , while hold-
ing the treatment allocation strategy fixed at α:

(3) DE(i,j)(α) = Y j (Ai = 1;α) − Y j (Ai = 0;α).

For example, DE(i,j)(α) would be the direct effect on
outcome unit mj of treating (vs. not) the ith power plant,
when all upwind plants are assigned treatment according
to α.

Similarly, we define a bipartite version of an individual-
level “indirect effect,” where “indirect” is used to refer to
the effect of holding the treatment status of a specific pi

fixed, while changing the allocation to other pk �=i ∈ Tj :

(4) IEa
(i,j)

(
α,α′) = Y j (Ai = a;α) − Y j

(
Ai = a;α′).

For example, IEa
(i,j)(α,α′) would be the indirect effect on

outcome unit mj of holding the treatment status of power
plant pi to Ai = a and changing treatment allocations of
other upwind power plants from α to α′.

In addition to expanded notation relative to settings
with one level of unit, the salient feature of individual-
level effects such as (3) and (4) is that they are defined,
in full generality, for every (pi,mj ) pair of pi ∈ P and
mj ∈ M. This is because, unlike in the single-unit setting,
there is no automatic or self-evident notion of which treat-
ment “directly” applies to each unit; interest could lie, at
least in principle, in the effect of intervening at any power
plant on any zip code location. This introduces different
strategies for defining the types of average causal effects
that will be discussed in Section 4.2.

4.2 M-Indexed Average Causal Effects

Recall that, unlike in standard settings of interference
where treatments are given directly to one level of unit,
the bipartite setting entails no automatic or self-evident
notion of which treatment applies directly to which unit.
Thus, it may be of interest to average individual-average
potential outcomes for each outcome unit over all inter-
ventional units in the interference set. We introduce the
term M-indexed average potential outcomes to refer to
average potential outcomes for a given mj ∈M, averaged
over pi ∈ Tj :

(5) Y j (a,α) = 1

|Tj |
∑
i∈Tj

Y j (Ai = a,α),

which are defined to represent the average potential out-
come under Ai = a and allocation program α across all
interventional units in the interference set for mj .

The M-indexed average potential outcomes in (5) can
be used to define average causal effects paralleling those
defined in Section 4.1. Define the M-indexed average di-
rect effect as

(6)

DEj(α) = Y j (1, α) − Y j (0, α)

= 1

|Tj |
∑
i∈Tj

DE(i,j)(α)

to denote the average effect on outcome unit mj of treat-
ing a single pi ∈ Tj while holding fixed the treatment
propensities for all pk �=i ∈ Tj , averaged over all pi ∈ Tj .
The population-average M-indexed direct effect could be
defined as DEM = 1

M

∑
DEj(α) representing, for exam-

ple, the average effect on hospitalizations of installing (vs.
not) SnCR on a single upwind power plant while holding
the treatment probability of all upwind plants fixed at α.

Similarly, the M-indexed indirect effect is defined as

(7)

IEa
j

(
α,α′) = Y j (a,α) − Y j

(
a,α′)

= 1

|Tj |
∑
i∈Tj

IEa
(i,j)

(
α,α′)

to represent the average effect on outcome unit mj of
holding treatment at a single pi ∈ Tj fixed at a while
changing the treatment allocation for the interference set
from α to α′, averaged over all pi ∈ Tj . The population-
average M-indexed indirect effect could be defined as
IEM = 1

M

∑
IEj (α) representing, for example, the av-

erage effect of holding the SnCR status fixed at an up-
wind power plant while changing the SnCR allocation of
all other upwind plants from α to α′.

4.3 P -Indexed Average Causal Effects

The indexing of individual-level potential outcomes in
(2) (and their corresponding individual-level estimands in
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(3) and (4)) by both the outcome unit j and interventional
unit i invites averaging potential outcomes over pi ∈ Tj ,
as in the M-indexed quantities in Section 4.2, or aver-
aging potential outcomes over mj ∈ T �

i , which might
be referred to as “P-indexed” quantities. P-indexed ef-
fects analogous to (5), (6) and (7) could be defined for a
particular pi based on averaging potential outcomes over
mj ∈ T �

i representing, for example, the average impact of
a treatment decision at a particular power plant, averaged
across all downwind zip codes. A main complication with
such quantities under the present framework relates to α

which, recall, is inherently M-centric in that it refers to
the allocation of treatments to interventional units in the
interference set for mj , pi ∈ Tj . Thus, while calculating
M-centric average potential outcomes involves fixing α

to a single interference set (Tj ), calculating a P-indexed
average potential outcome would correspond to averaging
over potential outcomes for outcome units mj ∈ T �

i with
potentially different interference sets, that is, to fixing the
treatment allocation of pi ∈ Tj for all mj ∈ T �

i . For ex-
ample, one could define a P-indexed direct effect analo-
gous to (6) to characterize how installing an SnCR system
at power plant pi affects hospitalization outcomes, on av-
erage across all downwind zip codes, with each downwind
zip code having propensity of SnCR installation among its
respective upwind plants fixed to α. Such P-indexed ef-
fects, while potentially of interest and an important topic
for future work, are not pursued here in favor of explo-
ration of a subset of M-indexed effects for which estima-
tors can be derived from existing work.

4.4 Key-Associated Average M-Indexed
Causal Effects

The fundamental feature that individual-level causal ef-
fects can be naturally defined for every (pi,mj ) pair in the
bipartite setting may be simplified in settings where each
outcome unit can be associated with a single pi ∈ Tj at
which intervening is of particular interest. Denote such an
interventional unit with p∗

i(j), defined for every mj ∈ P .
We will refer to p∗

i(j) as the “key associated” interven-
tional unit for outcome unit mj . In practice, criteria for
determining the relevant p∗

i(j) for every mj ∈ M will un-
doubtedly vary, but examples in the power plant setting
include the closest or largest power plant located upwind
from a given location. When indexing other quantities de-
fined for p∗

i(j), we will simplify notation and use the sub-
script i∗. For example, Ai∗ will be used to denote the treat-
ment assignment of p∗

i(j).
The potential outcomes and estimands in Section 4.2

averaged over all interventional units for each mj , owing
to the fact that the bipartite setting does not inherently
contain a notion of which pi corresponds “directly” to
each mj . However, definition of a p∗

i(j) for every mj ∈
M, invites focus on only a subset of the individual-level

causal effects of types (3) and (4), specifically those cor-
responding to the intrinsic interest in the key-associated
interventional unit. Rather than consider every (pi,mj )

pair, interest is confined to exactly one individual-level di-
rect effect (DE(i∗,j)(α)) and exactly one individual-level
indirect effect (IEa

(i∗,j)(α,α′)) for each mj ∈ M.
Population-average analogs of these effects can be de-

fined as

DE
∗
(α) = 1

M

M∑
j=1

DE(i∗,j)(α),(8)

IE
∗a(

α,α′) = 1

M

M∑
j=1

IEa
(i∗,j)

(
α,α′).(9)

The estimand (8) corresponds to the average effect on out-
come units of treating (vs. not) the key-associated unit
while holding fixed the allocation program to other inter-
ventional units in the interference set. In the power plant
example, this could correspond, for example, to the aver-
age effect on hospitalizations of installing an SnCR sys-
tem on the closest power plant while holding fixed the al-
location of SnCR systems to other upwind plants. The es-
timand (9) corresponds to the average effect on outcome
units of holding the treatment at the key-associated unit
fixed while varying the allocation program to other inter-
ventional units in the interference set from α to α′. In the
power plant example, this could correspond to the aver-
age effect on hospitalizations of holding the SnCR status
of the closest power plant fixed while changing the allo-
cation to other upwind plants.

5. ESTIMATORS UNDER BIPARTITE PARTIAL
INTERFERENCE IN OBSERVATIONAL STUDIES

While the development in Section 4 pertains to a gen-
eral form of interference mappings, T , we illustrate the
development of bipartite estimators for the simplified set-
ting of partial interference, for which existing estimators
in the one unit setting extend in a relatively straightfor-
ward way. Consider a partition of P into K nonoverlap-
ping clusters of interventional units: {P 1,P 2, . . . ,P K},
each of size |P k|. For example, power plants could be
clustered according to geographic proximity. Consider a
corresponding grouping of M into exactly K nonover-
lapping clusters {M1,M2, . . . ,MK}, where each Mk con-
sists of |Mk| outcome units that are linked in some fashion
to the interventional units in P k . For example, Mk could
consist of all of zip code locations within a certain dis-
tance of at least one of the power plants in P k . Partial
interference in this case assumes that potential outcomes
at mj ∈ Mk depend only on the treatments assigned to
pi ∈ P k . In the terminology of Section 3.2, this amounts
to an interference mapping where T has a block struc-
ture such that, for k = 1,2, . . . ,K , Tj is the same for all
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FIG. 2. (a) Grouping of power plants in interference clusters and assignment of zip codes to clusters. Each cluster is depicted with two polygons,
the inner polygon corresponds to the convex hull of the power plants, and the outer polygon corresponds to the convex hull of zip code centroids in
that cluster. (b) One cluster of power plants and corresponding zip codes with zip codes’ centroids depicted in blue.

mj ∈ Mk , with tj i = 1 for all pi ∈ P k and tj i = 0 other-
wise. Recall that this implies T �

j Tl = 0 for all mj ∈ Mk ,
ml ∈ Mk′

, denoting no common interventional units in the
interference sets for two outcome units in different clus-
ters. For simplicity, assume that for each k = 1,2, . . . ,K ,
both Mk and P k contain at least one unit of their respec-
tive type. Figure 2 illustrates one such clustering in the
power plant example.

5.1 Cluster-Level Average Potential Outcomes Under
Partial Interference

The partial interference assumption invites definition of
cluster-specific analogs to the average effects proposed in
Section 4.2. The expressions pi ∈ Tj and mj ∈ T �

i be-
come equivalent to pi ∈ P k and mj ∈ Mk , and α takes
on the familiar meaning of the cluster-level treatment
propensity referring to all pi ∈ P k . M-indexed effects
such as those in (6) and (7) could be averaged over all
j ∈ Mk for all k = 1,2, . . . ,K to create cluster aver-
ages. However, we focus on developing estimators for the
power plant setting that correspond to analogs to the key-
associated M-indexed estimands defined in Section 4.4.

Specifically, based on (2) we define cluster-level aver-
age potential outcomes of the form:

(10) Y
k
(Ai∗ = a,α) = 1

|Mk|
∑

j∈Mk

Y j (Ai∗ = a,α)

to denote the cluster-level average potential outcome
when p∗

i(j) receives treatment a and all other pi in the
cluster receive allocation program α, averaged over all
outcome units in the cluster. Population average poten-
tial outcomes can be subsequently defined with Y(Ai∗ =
a,α) = ∑

k Y
k
(Ai∗ = a,α)/K .

Formulation of cluster-average potential outcomes leads
to the following expressions for cluster-level average di-

rect and indirect effects:

DEk∗(α) = Y
k
(Ai∗ = 1, α) − Y

k
(Ai∗ = 0, α)

(11)
= 1

|Mk|
∑

j∈Mk

DE(i∗,j)(α),

IEk∗a(
α,α′) = Y

k
(Ai∗ = a,α) − Y

k(
Ai∗ = a,α′)

(12)
= 1

|Mk|
∑

j∈Mk

IEa
(i∗,j)(α).

Population-level effects defined in (8) and (9) can be con-
structed from (11) and (12) as

DE∗(α) = 1

K

∑
k

DEk∗(α), and(13)

IEa∗(
α,α′) = 1

K

∑
k

IEka∗(α).(14)

5.2 IPTW Estimator for Average Potential Outcomes

Here we illustrate that, among all the estimands defined
for the bipartie setting in Section 4, existing estimators
in [23, 19, 14, 18] are essentially directly applicable to
estimands that rely on: (1) clusters of units and partial
interference and (2) a relevant key-associated p∗

i(j) de-
fined for each mj ∈ M. Technical development follows
from previous work, ensuring that population (cluster)
quantities related to treatment assignment are confined to
i = 1,2, . . . ,P (P k) while population (cluster) quantities
related to outcomes are confined to j = 1,2, . . . ,M(Mk).
Otherwise, theoretical underpinnings of the estimators ex-
tend trivially.

Specifically, we propose a refinement (to reflect the bi-
partite setting) of the simple estimator proposed in [23]
for the cluster-level average potential outcomes in (10).
A corresponding estimator for the population-level aver-
age potential outcome follows immediately, with asymp-
totically normal distribution as the number of clusters K
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increases to infinity. This development follows existing
work in [18, 19, 14, 23], leading directly to estimators
for the population-level key-associated M-indexed direct
and indirect effects in (13) and (14) with known asymp-
totic distributions.

The estimator for the cluster-level average potential
outcome has the familiar form:

(15)

Ŷ k(Ai∗ = a;α)

= 1

|Mk|
∑

j∈Mk

π(Ak
(−i∗)|Ai∗ = a,α)

fA|W,X,k(Ak|Wk,Xk)

× I (Ai∗ = a)Yj ,

with corresponding estimator for the population-average
potential outcome:

(16) Ŷ (Ai∗ = a;α) = 1

K

K∑
k=1

Ŷ k(Ai∗ = a;α).

The term fA|W,X,k(Ak|Wk,Xk) in the denominator of
(15) represents the cluster-level propensity score for the
probability that the pi ∈ P k receive the observed treat-
ment vector Ak , conditional on the interventional-unit and
outcome unit covariates in the cluster, Wk and Xk . The
term π(Ak

(−i∗)|Ai∗ = a,α) in the numerator of (15) rep-
resents the user-specified probability distribution of dif-
ferent cluster-level treatment allocations adhering to the
program α (specified in accordance with (2)).

Under the following assumptions and following work
in [23, 14, 18]: Ŷ k(Ai∗ = a;α) in (15) is unbiased for
Y

k
(Ai∗ = a,α) in (10) for the known cluster propensity

score; unbiasedness of Ŷ (Ai∗ = a;α) in (16) for Y(Ai∗ =
a,α) follows trivially.

ASSUMPTION 1 (Positivity). For k ∈ {1,2, . . . ,K},
the probability of observing cluster treatment vector
Ak = ak given cluster covariates Wk , Xk is denoted by
fA|W,X,k(Ak = ak|Wk,Xk) and is positive for all ak ∈
A(|P k|).

ASSUMPTION 2 (Ignorability). For k ∈ {1,2, . . . ,K},
the observed cluster treatment Ak is conditionally inde-
pendent of the set of cluster potential outcomes Yk(·)
given the cluster covariates Wk , Xk , denoted as Ak ⊥⊥
Yk(·)|Wk , Xk .

Under superpopulation (of clusters) versions of As-
sumption 1 and Assumption 2 as stated in [18], Ŷ (Ai∗ =
a,α) is consistent and asymptotically normal for the
superpopulation counterpart to the above estimands for
a known or correctly specified and estimated paramet-
ric propensity score model (fA|W,X,k(Ak|Wk,Xk)). Ap-
pendix A presents a simulation study evaluating the per-
formance of the above estimators for the bipartite setting.

6. EVALUATING SNCR SYSTEMS ON MEDICARE
HOSPITALIZATIONS IN THE PRESENCE OF

POLLUTION TRANSPORT

A previous analysis that simplified the bipartite struc-
ture by projecting to the level of P showed that SnCR
systems at coal- or gas-fired power plants reduce ambient
air pollution in the areas immediately surrounding power
plants and in other “downwind” areas [18]. Here, we con-
duct an analysis of SnCR on hospitalizations with a more
complete regard for the bipartite structure of the problem.
Specifically, we estimate direct and indirect effects (13)
and (14) of SnCR installation on zip code hospitalizations
for CVD among Medicare beneficiaries.

The set of interventional units consists of 473 coal or
natural gas burning power plants operating in the con-
tinental U.S. during the summer months (June–August)
of 2004. These power plants, with their characteristics
and important aggregate area-level characteristics (i.e.,
W) have been previously described in detail [17]. Power
plants are partitioned into 50 clusters as in [18] using
Ward’s agglomerative hierarchical clustering [25] with an
objective function based solely on geographic closeness
of power plants within a cluster. Clustering nearby power
plants is meant to be a rough approximation to the phe-
nomenon of pollution transport that dictates interference
in this setting.

The initial set of outcome units considered for this anal-
ysis corresponds to 37,240 U.S. zip codes, each with a
measured number of hospitalizations for cardiovascular
disease (codes ICD-9 390 to 459) among Medicare fee-
for-service beneficiaries in 2005 (no outcome-unit covari-
ates, X, are included in the analysis). Zip codes were as-
signed to a cluster of power plants if the zip code centroid
was located within the area defined by the power plant
locations’ convex hull and a buffer zone of 30 km. If a
zip code belonged to more than one cluster based on this
definition, it was assigned to the cluster that included the
closest power plant. If a zip code was not within 30 km of
the buffer zone of any power plant cluster, it was excluded
from the analysis. This resulted in a total of 18,807 zip
codes representing the population of interest of areas of
the U.S. that are considered likely to be impacted by in-
terventions at power plants (See Figure 2). Figure 3 shows
the observed distribution of the hospitalization outcome
over the 18,807 zip codes.

For each zip code, mj , the key-associated power plant,
p∗

i(j), is defined to be the power plant located closest to
the centroid of the zip code. Corresponding key-indexed
direct and indirect effects thus cohere to notions of in-
tervening to control local pollution (e.g., from the closest
plant) versus those to control long-range transported pol-
lution from more distant upwind plants, which are impor-
tant distinctions for development of local and interstate
(or regional) regulatory policies. Key-indexed direct and
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FIG. 3. Distribution of observed 2005 number of cardiovascular hospitalizations for the 18,807 zip codes included in the analysis.

indirect effects were estimated using the IPW estimator
defined in Section 5.2 for values of α ranging from the
20th to the 80th percentile of the observed proportion of
treated power plants across the clusters. The propensity
score model was specified as a logistic regression adjust-
ing linearly for power plant, weather and demographic co-
variates and including a cluster-specific random effect to
match the previous analysis of [18]. Power plant charac-
teristics include the percent of total capacity at which a
plant typically operates, the amount of fuel energy burned,
an indicator of Phase 2 participation in the Acid Rain
Program, an indicator for whether a plant burns mostly
gas fuel, and indicators for the size of the plant in terms
of number of generating units. Area-level characteristics
include ambient temperature, median household income,
median house value, population per square mile and pop-
ulation percentages of high school graduates, residence in
urban areas, white, black and hispanic populations, hous-
ing occupancy, poverty and migration to the area within 5
years.

The numerator specifying counterfactual treatment
allocation probabilities was specified as independent
Bernoulli assignments to treatment π(Ak

(−i∗)|Ai∗ = a,

α) = ∏
pk �=i∈Tj

αAk(1 − α)1−Ak as in [23]. Results are de-
picted in Figure 4. The direct effect is estimated to be
negative for all values of α (achieving statistical signif-
icance at the 0.05 level for all α ≥ 0.1), implying that

installation of SnCR at a zip code’s closest power plant
leads to a significant reduction in number of cardiovas-
cular hospitalizations at that location. Note that the direct
effect becomes less pronounced as α increases, indicating
that installing SnCR on a zip code’s closest power plant
has a smaller impact on CVD hospitalizations when more
upwind power plants also have SnCR installed. The other
two plots in Figure 4 depict estimates of the indirect ef-
fect IE0∗(α1, α2) for values α1 ∈ {0.1,0.4}. These results
represent expected changes in hospitalizations when the
closest power plant does not have SnCR and the propen-
sity of upwind power plants to install SnCR shifts from α1
to α2. The decreasing trend in both plots indicates that a
higher proportion of SnCR among upwind plants leads to
decreased CVD hospitalizations when the closest power
plant remains without SnCR. For example, a change in
the propensity of upwind units to install SnCR from 10%
to 45.8% would lead to 56.4 (95% CI: 25.8–87.1) fewer
hospitalizations on average per zip code when the closest
plant remains without SnCR.

Overall, the results of the analysis indicate the ben-
efit of installing SnCR for reducing CVD hospitaliza-
tions among Medicare beneficiaries with a careful account
of how the effectiveness of controls installed at nearby
power plants interacts with interventions at upwind plants.
For illustration, Appendix B presents alternative analyses

FIG. 4. Direct effect and indirect effect estimates and confidence intervals. For the indirect effects (IE(α1, α2)), values of α1 are fixed to 0.1
(middle panel) and 0.4 (right panel) and the x-axis corresponds to varying values for α2.
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of SnCR for reducing CVD hospitalizations, intention-
ally simplified to reduce the bipartite structure and rely
on more familiar estimation estimation strategies.

7. DISCUSSION

We have introduced the new setting of bipartite causal
inference with interference, which arises in a variety of
settings where interventions are enacted at one type of
observational unit, outcomes of interest are defined and
measured at a distinct type of unit, and the complexities
of exposure patterns lead outcomes to depend on the treat-
ments of many interventional units. The setting is partic-
ularly relevant to the study of air pollution regulatory pol-
icy, where interventions occur at pollution sources (e.g.,
power plants), health outcomes are measured at popula-
tion locations (e.g., zip codes) and complex atmospheric
processes and long-range pollution transport lead to in-
terference. Formalization of this setting represents an im-
portant added dimension to recent work on interference
that extends the formality of potential outcomes meth-
ods to settings that do not cohere to the oft-considered
setting of one level of observational unit and unit-to-unit
outcome dependencies (e.g., infectious diseases or social
networks).

Potential outcomes and causal estimands were formu-
lated generally, drawing commonalities and distinctions
with existing work for interference. While the general de-
velopment of estimands was designed to introduce the
possibilities of formalizing the bipartite interference prob-
lem, estimators were developed for only a subset of pos-
sible estimands. For illustration and to motivate the use
of the bipartite framework in an applied problem, we ul-
timately employed estimators that rely on the assumption
of partial interference and require that interest lies in a sin-
gle key-associated interventional unit for each outcome
unit. The proposed estimators relied heavily on existing
work developed in the one-unit setting, and made use of
simplistic clustering methods to form partial interference
clusters based only on a rough approximation of the true
interference process. Future research to expand beyond
these simplified estimators is clearly warranted, includ-
ing formulations that acknowledge much richer structures
of interference beyond simple clustering and those that
go beyond the perspective of individual-average poten-
tial outcomes averaged over specified allocation programs
(e.g., as in [5, 11]).

Even with the simplifications that led to the proposed
estimators, the formalization of bipartite interference and
application of the simplified estimators in the context of
the power plant evaluation represents an important step
in air pollution policy research that, to our knowledge,
has only previously been considered in [18]. Long-range
pollution transport according to atmospheric processes is
ubiquitous to the study of pollution interventions at point

sources (e.g., power plants or factories), and formal meth-
ods for statistical evaluation are lacking for such interven-
tions. Despite the progress herein, the clustering and par-
tial interference assumption employed in the analysis of
SnCR systems is a nontrivial simplification of actual pol-
lution transport, and produces only an approximate anal-
ysis of the effect of SnCR on Medicare CVD hospitaliza-
tions. Extensions to more general interference patterns are
essential, and a topic of ongoing work.

APPENDIX A: SIMULATION STUDY

Here, we provide a simulation study to evaluate the
operating characteristics of the inverse probability of
treatment weighting estimator in (15) and (16), with
π(Ak

(−i∗)|Ai∗ = a,α) specified to denote independent
Bernoulli assignments to treatment among units within
a cluster. Note that this simulation study closely resem-
bles a bipartite version of the simulation studies in [18]
and [19].

A.1 Data Generation

2000 clusters were simulated to represent the superpop-
ulation of interest. Each cluster included 3, 4, 5 or 6 inter-
ventional units. The number of outcome units per cluster
was simulated from a Poisson distribution with mean 20.
The key-associated interventional unit for each outcome
unit was chosen randomly over the interventional units in
the cluster.

For each interventional unit, we assumed the presence
of two covariates W = (W1,W2) generated as indepen-
dent N(0,0.22) random variables. For each outcome unit,
we simulated potential outcomes Yj (Ai = a,A(−i) =
a(−i)) from Bernoulli(p(a)) for

(17)
logitp(a) = 0.5 − 0.6a − 1.4α − 0.098W1i

− 0.145W2i + 0.351aα,

where α = 1′a/1′1 is the proportion of treated interven-
tional units in the cluster. This way of generating poten-
tial outcomes assumes that, when a = a′ and 1′a(−i) =
1′a′

(−i), then Yj (Ai = a,A(−i) = a(−i)) = Yj (Ai = a′,
A(−i) = a′

(−i)). Note that the IPW estimator is agnostic
with regard to the model for generating potential out-
comes, and for that reason we would expect that the
performance of the IPW estimator would be comparable
under different and more complicated potential outcome
generative models (17).

Potential outcomes generated according to (17) are
fixed across replicated data sets. These potential outcomes
are used to calculate the superpopulation average poten-
tial outcomes, direct and indirect effects. These quantities
are the target for estimation and used to evaluate oper-
ating characteristics of the estimator applied to samples
from this superpopulation.
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FIG. 5. Mean estimate of the population average potential outcome as a function of α, direct effect as a function of α and indirect effect IE(α1, α2)

as a function of α2 for α1 ∈ {0.3,0.6}.

To evaluate the estimator, we simulated draws from
the superpopulation for various values of N , the number
of clusters. For each N ∈ {200,400,600,800,1000}, we
simulated 200 data sets, and for each data set N clus-
ters were sampled randomly from the superpopulation.
When a cluster was sampled, all of its units (interven-
tional and outcome) are observed. For each simulated data
set, we generate the observed treatment assignment from
a Bernoulli(p) for

logitp = −0.2 + bk + 0.3W1 − 0.15W2,

where bk ∼ N(0,0.22) is a cluster-specific random effect.
The observed outcome for each outcome unit corresponds

to the potential outcome for the observed level of the treat-
ment.

A.2 Simulation Results

For each simulated data set, we calculate the IPW es-
timator in (15) and (16), direct and indirect effects and
variance estimates based on asymptotic approximations,
using both true and estimated propensity scores.

We present detailed results for N = 200 clusters, but
results for other values of N were similar. In Figure 5,
we show the mean estimate over 200 simulated data sets
of the population average potential outcome for a = 1,

FIG. 6. Coverage of 95% confidence intervals for the IPW estimator based on the true and estimated propensity score.
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FIG. 7. Absolute bias as a function of the number of clusters for the potential outcome and direct effect estimator employing the true or the
correctly specified and estimated propensity score.

the direct effect and indirect effect for a = 0 and α1 ∈
{0.3,0.6}. Results for different values of a and α1 are
similar. Note that that the estimators are closed to unbi-
ased for all quantities. The correctly specified and esti-
mated propensity score estimator returns direct effect es-
timates slightly closer to the truth in comparison to the
IPW estimator using the true propensity score. In Fig-
ure 6, we show that the IPW estimator using the true or the
correctly-specified estimated propensity score achieves
nominal coverage of the 95% confidence intervals.

Lastly, in Figure 7 we show the absolute bias of the
IPW estimator for the true and the estimated propensity
score as a function of the number of clusters. We see that
the estimator employing the estimated propensity score
has smaller bias compared to the estimator using the true
propensity score. As expected, the bias of both estimators
is declining in the number of clusters.

APPENDIX B: ALTERNATIVE SIMPLIFIED
EVALUATIONS OF SNCR SYSTEMS ON

MEDICARE HOSPITALIZATIONS

For comparison with the results analysis of Section 6,
we performed two alternative analyses for illustration that
maintain the same cluster structure as in Section 6, but
simplify the bipartite structure of the data as described
in Section 3.1 and rely on more familiar estimands and
estimation procedures:

1. Projection to interventional units: We projected all
data to the space of interventional units by linking each
zip code to its closest power plant and then assigning

each power plant an outcome defined as the total num-
ber of cardiovascular hospitalizations among linked zip
codes. Covariates used for adjustment (W ) are exactly the
same as those in Section 6, which were only measured at
the interventional units. The resulting data set consists of
clusters of power plants, with each power plant having a
single treatment, a set of observed covariates and a sin-
gle outcome representing health outcomes at nearby zip
codes. Then the analysis was performed as in the more
familiar setting of one level of observational unit (power
plants) using a cluster propensity score model identical to
that in Section 6 with the estimands and estimators in [23]
and asymptotic variances in [19]. Note that this approach
is the same as one employed in Web Appendix B of [18],
but using hospitalizations (instead of ambient pollution)
as the outcome.

2. Projection to outcome units with outcome model-
ing: We projected all data to the space of outcome units
by assigning to each zip code two “treatment” quanti-
ties: (1) the treatment assigned to the closest power plant
(the “key associated” treatment) and (2) the proportion
of power plants within the zip code’s cluster that were
treated (the “neighborhood” treatment). Then we fit a
Poisson model predicting the total number of hospital-
izations as a function of the key associated treatment,
the neighborhood treatment (linear, quadratic and cubic
term), interaction between the two treatments (with neigh-
borhood treatment linear and quadratic term) and aggre-
gate cluster covariates defined as the average of covariates
in W over power plants in the cluster. We used these mod-
els to predict potential outcomes under alternative speci-
fications of (a,α), averaged within groups to estimate a
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FIG. 8. Direct and indirect effect estimates and 95% confidence intervals from Alternative Analysis 1 based on projection to the level of power
plants. Estimates correspond to expected changes in the number of hospitalizations in the area surrounding a power plant.

quantity resembling the group average potential outcome,
and averaged over clusters to estimate a quantity resem-
bling the population average potential outcome. Inference
was acquired by employing the bootstrap over clusters,
similarly as in [18]. Note that this analysis represents a
simplified parametric version of methods outlined in [5,
11].

Figures 8 and 9 show the estimated direct and indirect
effects based on these analyses. In Figure 8, describing
the analysis of the data projected to the level of power
plants, we see similar patterns as in the analysis in Fig-
ure 4, but with a smaller region of values for (α1, α2)

for which indirect effects are estimated to be significantly
different from zero. Note too the difference in interpre-
tation (and scale) between the estimates in Figure 8 and
those in Section 6, owing to the fact that the results in
Figure 8 represent effects on cardiovascular hospitaliza-
tions across all zip codes linked to a power plant, whereas
those in Figure 4 represent average effects in cardiovascu-
lar hospitalizations within a single zip code. The similar

patterns in results from the analysis projected to power
plants and those from the genuine bipartite analysis in
Section 6 derive in part from the specific strategies for
linking zip codes and defining the “key associated” inter-
ventional units, as well both analyses’ reliance on only
power-plant level covariates. Such a correspondence is
not expected in general.

Results in Figure 9 from the analysis projecting to the
level of zip code are substantially different. Point esti-
mates are much closer to zero, and no indirect effect
IE(α1, α2) was identified as significantly different from
zero. In addition to the different definition and interpreta-
tion of estimands with only zip codes as the observational
unit, these differences in the effect estimates are likely
driven by the reliance on a (relatively simple) paramet-
ric model for cardiovascular outcomes, which is expected
to be more prone to model misspecification than analyses
relying on propensity score weighting. Thus, we particu-
larly stress the use of this alternative analysis as a simple

FIG. 9. Direct and indirect effect estimates and 95% confidence intervals from Alternative Analysis 2 based on projection to the level of zip codes.
Estimates correspond to expected changes in the number of hospitalizations in a zip code for a change in the treatment of the closest power plant
or a change in the probability of treatment of other power plants in the cluster.
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illustration of what might occur in an analysis that simpli-
fied the bipartite structure in this way.
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