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Comment: Models as (Deliberate)
Approximations
David Whitney, Ali Shojaie and Marco Carone

1. OVERVIEW

We applaud Buja and coauthors for drawing further
attention to the important problem of model misspec-
ification in regression and to the study of its ramifi-
cations. In their interesting piece, they advocate for
viewing model-based regression coefficients as non-
parametric functionals of the data-generating mecha-
nism. This viewpoint has the advantage of clarifying
the definition of the estimand and formalizing how to
perform model-robust inference based upon influence
functions. In our note, we would like to continue the
conversation along these lines. We wish to highlight
additional considerations that arise in the context of
model misspecification in a broader range of scenarios.
Our main points are as follows:

(i) the model-robust interpretation of model-based
estimands may not always be appealing, particularly
when there is significant model misspecification or the
sampling scheme includes some form of coarsening;

(ii) when the model fitting procedure involves data-
adaptive estimation of nuisances, valid model-robust
inference may be much more difficult to achieve;

(iii) these difficulties can be preempted by defining
deliberate projection parameters and using suitable non
or semiparametric techniques for inference.

2. MODEL-ROBUST INTERPRETATION

Framing regression coefficients as indices for the
‘projection’ of the true regression function onto the
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specified model is intuitively appealing. In our expe-
rience, most practitioners are aware that this is implic-
itly what they are doing when fitting regression mod-
els. However, it must be stressed that not all projec-
tions are useful projections. Below, we highlight that
model-based regression coefficients may have a poor
interpretation when (a) the model used is overly parsi-
monious, or (b) when the data are subject to some form
of coarsening.

2.1 Targeted Versus Indiscriminate Parsimony

A primary reason for the popularity of regression
models is their ability to summarize parsimoniously
key relationships. However, parsimony can have sev-
eral impacts on the interpretation of regression coeffi-
cients. For example, it can mask effect modification—
this occurs if the portion of the model pertaining to
the exposure of interest is parsimonious. This may
be desirable if the goal is to succinctly summarize
population-averaged relationships. This targeted form
of parsimony is what renders regression models attrac-
tive. However, parsimony could also result in poor con-
founding control—this occurs when the portion of the
model that involves potential confounders is too in-
flexible to allow sufficient deconfounding. This is an
example of indiscriminate parsimony, which is both
unnecessary—it can often be mitigated by the use of re-
gression models with parsimonious exposure involve-
ment but flexible confounding adjustment—and possi-
bly harmful.

As an illustration, we expand upon a simple example
stemming from the discussion of Section 10 in Part I.
There, the authors note that when the underlying as-
sociations exhibit symmetry, there may be little to no
linear trend. To be concrete, suppose that the data unit
consists of the triple (W,X,Y ), including a continuous
outcome Y , exposure of interest X, and confounder W ,
generated from data-generating distribution P . Ordi-
nary least-squares (OLS) regression may often be used
in this context, with exposure and confounder both in-
cluded as main terms, and reported upon with the ap-
propriate caveat that the model coefficients represent
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FIG. 1. Exposure-specific OLS regression functional value when the true regression model follows a partially linear additive model. The
line θOLS = 1 (black) denotes the exposure-specific regression coefficient for the true data-generating mechanism. The other lines represent
the value of the OLS regression functional for different strengths of the exposure-confounder relationship.

indices of the least-squares projection. We show with
a numerical example that the resulting estimand may
not be particularly useful. Specifically, we consider P

to be specified by W ∼ U(−2,2),

X | W ∼N
(
bXW 4,1

)
and

Y | (X,W) ∼N
(
X + bY W 2,1

)
.

Coefficients bX and bY control the strength of the
exposure-confounder and (nonlinear) outcome-
confounder relationships, respectively. In this example,
the deconfounded linear relationship between Y and X

is unambiguous: the regression slope equals one. How-
ever, the OLS estimand has explicit form

θOLS(bX, bY ) = 1 + 1

7

(
7680bXbY

225 + 4096b2
X

)
;

a range of numerical values are displayed in Fig-
ure 1 for various bX and bY values. Depending on the
strength of the underlying associations, the resulting
estimand can be stronger or weaker, and of possibly the
opposite sign as the true slope. This emphasizes that
not all projections are useful—in fact, when the postu-
lated regression model is strongly misspecified, there
is a risk of inadequate deconfounding, and the regres-
sion functional may not be reflective of the underlying
association of interest.

In the particular example considered, inclusion of
polynomial confounder terms of sufficient degree in

the linear model would have resolved the issue. How-
ever, this would likely not have been known a priori.
The issue may have been discovered in a post-fit diag-
nostic analysis, but model revisions based on diagnos-
tics are known to render calibrated inference difficult
to perform. As an alternative, it would have been pos-
sible to consider a model with more flexible confound-
ing control. In other words, a model without unnec-
essary (and possibly harmful) parsimony could have
been used instead. For instance, as a flexible alterna-
tive to the linear model-based regression functionals,
the partially linear additive model (PLAM) specifying
that EP (Y | X = x,W = w) = θx + g(w) for some
scalar θ and univariate real-valued function g could be
considered. The estimand would then be the index θ∗ of
the least-squares projection of the true regression func-
tion onto the PLAM.

This simple example underscores that more flexible
semiparametric models can lead to estimands with a
more useful interpretation than provided by restrictive
parametric models, without sacrificing parsimony rel-
ative to the association of interest. Nevertheless, this
improved model-robust interpretation can come at a
cost, as more involved procedures may be required to
achieve valid inference. Indeed, performing calibrated
model-robust inference requires additional considera-
tions when data-adaptive techniques are used in the
construction of the regression coefficient estimator. We
discuss these challenges in Section 3.
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2.2 The Impact of Coarsening in the Data
Collection Mechanism

In many applications, the observed data consist of a
coarsening of the full data, for instance, due to missing-
ness or censoring. Regression models are typically im-
posed on the full data distribution, since it is a feature
of this distribution that is generally of scientific inter-
est. Although in this context estimands resulting from
misspecified models can still be interpreted as projec-
tions, the latter generally involve the coarsening mech-
anism.

As an illustration, it is instructive to consider the
use of maximum likelihood (ML) with coarsened data.
When the full data are available, the ML approach is
known to yield consistent estimators of the index of
the model element closest to the true data-generating
distribution in a Kullback–Leibler sense. When instead
the data are subject to coarsening, we must distinguish
between the space of distributions for the observed ver-
sus full data. The ML approach in this case will iden-
tify the member of the model for the observed data (as
induced by the model for the full data and the coarsen-
ing mechanism) closest to the true distribution of the
observed data (as induced by the true distribution for
the full data and the coarsening mechanism). As such,
in these settings, model-based estimators often corre-
spond to regression functionals that depend not only on
the full data distribution but also the coarsening mech-
anism.

This phenomenon generalizes the notion of mis/
well-specification introduced by the authors to include
the distribution of coarsening variables in addition to
that of regressors. However, the coarsening mechanism
is usually a study-specific nuisance rather than an in-
herent feature of the population of interest. As such,
dependence of the regression functional on the coars-
ening mechanism is particularly troublesome. Indeed,
two investigators studying the same population and fit-
ting the same regression models may be estimating
very different quantities simply because of differences
in the coarsening affecting their study samples.

As a concrete illustration of this phenomenon, it is
informative to consider the case of proportional haz-
ards (PH) regression under right-censoring. In the sim-
plest of scenarios, where the full data consist of ob-
servations on the time-to-event variable T and a single
binary covariate X, the PH model stipulates that the
conditional hazard function hx of the distribution of T

given X = x satisfies

hx(t) = h0(t) exp(θx) for all t > 0,

where h0 is an unspecified baseline hazard and θ is the
scalar regression coefficient of interest. Instead of com-
plete observations, it is common to observe possibly
right-censored event times. When the censoring vari-
able is conditionally independent of T given X, and
the PH model indeed holds, the maximizer of the par-
tial likelihood is known to be a consistent estimator of
the true regression coefficient.

When instead the PH model is misspecified, one may
hope that the resulting regression functional perhaps
represents an average of the time-varying hazard ratio
(on a logarithmic scale). It has been shown that this
is indeed approximately true, though the limit in prob-
ability θ∗ of the maximum partial likelihood estima-
tor (MPLE) depends not only on the conditional time-
to-event and marginal covariate distributions but also
on the conditional censoring distribution (Struthers and
Kalbfleisch, 1986) in a complicated manner. The fact
that the censoring distribution defines the estimand
is particularly alarming. In commenting on this find-
ing, O’Quigley (2008) states that the partial likelihood-
based regression functional is not itself particularly
useful nor interpretable—we agree with this viewpoint.

To emphasize this point numerically, we may con-
sider the hazard functions h1(t) := αtα−1 for arbitrary
α ≥ 1 and h0(t) := 1. In such case, the PH model holds
if and only if α = 1. The further α is from this value,
the more time-varying the hazard ratio h1(t)/h0(t) be-
comes, thereby increasingly violating the PH model as-
sumption. In Figure 2, we display the value θ∗ of the
partial likelihood regression functional as a function
of α for various censoring distributions. For simplic-
ity, we have considered exponential distributions for
the conditional censoring distribution, with exposure-
specific rate parameters γ0, γ1 ∈ {0.2,1.1,2.0}. As is
readily apparent, the dependence of θ∗ on the censor-
ing distribution increases with α.

Noting this dependence, under differing indepen-
dence assumptions, Xu and O’Quigley (2000), Schem-
per, Wakounig and Heinze (2009) and Hattori and
Henmi (2012) have studied weighted partial likelihood-
based estimators whose corresponding estimands do
not depend on the censoring distribution. Nevertheless,
their estimands represent interpretable weighted aver-
ages of log-hazard ratios only in an approximate sense.
In Section 4, we propose a novel estimator exactly tar-
geting a weighted average log-hazard ratio.

3. VALID INFERENCE IN THE PRESENCE
OF IRREGULAR NUISANCES

In Part II, the authors define the regression functional
broadly as the solution of (a set of) population-level
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FIG. 2. The model-robust interpretation of the partial likelihood regression functional depends on the censoring distribution. For a binary
covariate, the population hazard ratio at time t is assumed to be αtα−1, with larger α values corresponding to greater departures from the
PH model. The exposure group-specific censoring distributions are exponential with rates γ0 and γ1.

model-derived estimating equation(s), possibly arising
from the minimization of a risk function. For the ex-
amples explicitly considered, the estimating function
is entirely parametric, being indexed by a vector in-
cluding the parameter of interest and possibly nuisance
parameters. In such cases, under regularity conditions,
the resulting estimator can be shown to be asymptot-
ically linear using a standard Taylor expansion; thus,
asymptotic normality at the parametric rate holds, even
when the model is misspecified. In contrast, in the con-
text of certain semi-parametric models, some of the in-
dexing nuisances may be infinite-dimensional and ir-
regular, in the sense that they are not estimable at the
parametric rate without strong (e.g., parametric) as-
sumptions. The asymptotic linearity of model-based
estimators may in such cases rely on correct specifica-
tion of the model. This happens because the nuisance
estimator may not contribute in first order to the be-
havior of the regression functional estimator when the
model is correctly specified, but indeed does so when
the model is misspecified. In the latter case, the re-
gression functional estimator may inherit the slow con-
vergence rate of the nuisance estimator, and fail to be
asymptotically normal at the parametric rate, thereby
rendering inference difficult.

For concreteness, suppose that an estimating func-
tion ψ is available for the parametric index θ of
a semiparametric regression model. Suppose further
that this estimating function is indexed by an infinite-
dimensional nuisance η. To simplify notation, we con-
sider θ to be scalar. Suppose that ηN is a consistent

estimator of the true nuisance value η0, defined unam-
biguously when the semi-parametric model holds, and
that ηN tends to some η∗(P ) in general, where P de-
notes the data-generating distribution. If P is in the
model, then η∗(P ) = η0. In this case, the model-robust
regression functional is the solution θ∗(P ) of the pop-
ulation equation EP {ψ(θ, η∗(P );Z)} = 0. In practice,
any solution θN of the empirical equation

1

N

N∑
i=1

ψ(θ, ηN ;Zi) = 0

may be taken as estimator of θ∗(P ). In what follows,
we will simply write θ∗ and η∗, dropping the explicit
dependence on P for convenience. As before, under
regularity conditions, a Taylor expansion results in the
first-order approximation

θN − θ∗ ≈ −
[

∂

∂θ
EP

{
ψ(θ, η∗;Z)

}∣∣∣∣
θ=θ∗

]−1

×
[

1

N

N∑
i=1

ψ(θ∗, η∗;Zi) + �(ηN)

]
,

where � is the functional η �→ ∫
ψ(θ∗, η; z) dP (z). If

�(ηN) is asymptotically negligible in the sense that
�(ηN) = oP (N−1/2), then θN is an asymptotically lin-
ear estimator with influence function proportional to
the estimating function. Otherwise, N1/2(θN −θ∗) may
fail to converge in law to a nondegenerate limit.

If � is sufficiently smooth, we may use the first-
order approximation

�(ηN) = �(ηN) − �(η∗) ≈ �̇(η∗;ηN − η∗),
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where the expression on the right-hand side denotes
the Gâteaux derivative of � at η∗ in the direction of
ηN −η∗. If h �→ �̇(η∗;h) is identically zero for h rang-
ing in a set in which ηN −η∗ concentrates, then �(ηN)

can be expected to be oP (N−1/2) provided ηN − η∗
vanishes quickly enough, as may be needed to guar-
antee the asymptotic linearity of θN . In such case, the
estimating function is said to be orthogonalized with
respect to the nuisance η. In contrast, if the estimat-
ing function is not orthogonalized, then �̇(η∗;ηN −η∗)
will generally contribute in first-order to the behavior
of θN − θ∗. Since estimators of irregular parameters
have a rate of convergence that is slower than the para-
metric rate, convergence of N1/2(θN − θ∗) to a nonde-
generate limit distribution cannot be expected, at least
with standard tuning of the involved data-adaptive nui-
sance estimators.

The above discussion relates to key ideas in effi-
ciency theory. In that literature, influence functions
often serve as estimating functions, in part because
they are typically pre-orthogonalized relative to the
nuisances involved; see, for example, Lemma 1.3 of
van der Laan and Robins (2003) for results in the
finite-dimensional case. However, this orthogonaliza-
tion generally only holds in the model under which
the influence function is derived. As such, it may well
be that �(ηN) is a higher-order term when the semi-
parametric regression model holds but is a first-order
term otherwise.

We highlight the above phenomenon in the context
of an example. Suppose that we wish to evaluate the
association between outcome Y and binary exposure
X adjusting for W , and we denote the data unit by
Z := (W,X,Y ). We focus on the coefficient θ0 in the
PLAM EP (Y | X = x,W = w) = θ0x + g0(w) men-
tioned in Section 2.1. Defining π0(w) := EP (X | W =
w), we consider model-based estimation approaches
built upon two candidate estimating functions

ψ0(θ,π; z) := {
x − π(w)

}
(y − θx)

and

ψ(θ, g,π; z) := {
x − π(w)

}{
y − θx − g(w)

}
.

It can be shown that ψ is proportional to the effi-
cient influence function for θ0 in the PLAM under ho-
moscedasticity, but that ψ0 is not even an influence
function (Yu and van der Laan, 2003). These estimat-
ing functions require estimation of π0 and g0. The nui-
sance π0 is defined irrespective of whether the PLAM

holds and can be estimated using a non-parametric es-
timator πN . This allows us to define the model-based
estimator θ0,N based on ψ0 and πN , namely

θ0,N :=
∑N

i=1 Yi{Xi − πN(Wi)}∑N
i=1 Xi{Xi − πN(Wi)}

,

with corresponding model-robust estimand θ∗ :=
EP [Y {X − π0(W)}]/EP [X{X − π0(W)}]. The nui-
sance g0 is only well-defined under the PLAM. Two
different estimators of g0 consistent under the PLAM,
say g1,N and g2,N , may each converge to distinct
limits g1,∗ and g2,∗ outside the PLAM. Noting that
g1,∗(w) := EP (Y | X = 0,W = w) = g0(w) under
the PLAM, any nonparametric estimator g1,N (w) of
g1,∗(w) could be used as estimator of g0(w). Alter-
natively, we may consider the more elaborate back-
fitting approach of Buja, Hastie and Tibshirani (1989),
setting g2,N (w) to be a nonparametric estimator of
the regression of Y − θ0,NX onto W evaluated at w.
We note that g2,N (w) is then a consistent estima-
tor of g2,∗(w) := EP (Y | W = w) − θ∗π0(w), which
also coincides with g0(w) under the PLAM. The re-
sulting model-based estimators of θ0 based on ψ and
(πN,gj,N) are then

θj,N :=
∑N

i=1{Yi − gj,N(Wi)}{Xi − πN(Wi)}∑N
i=1 Xi{Xi − πN(Wi)}

for j = 1,2. Both θ1,N and θ2,N also tend to θ∗ outside
the PLAM.

The respective (first-order) nuisance contributions
of (πN,gj,N) when using ψ0 and ψ are �0(πN) ≈
− ∫ {πN(w) − π0(w)}EP (Y − θ∗X | W = w)dP (z)

and

�(πN,gj,N)

≈
∫ {

πN(w) − π0(w)
}

× {
gj,∗(w) − EP (Y − θ∗X | W = w)

}
dP (z).

It is clear that, whether the PLAM holds or not,
�0(πN) makes a first-order contribution to the be-
havior of θ0,N − θ∗. This fact is not surprising since
ψ0 is not orthogonalized relative to π . If the PLAM
holds, then EP (Y − θ∗X | W = w) = EP (Y − θ0X |
W = w) = g0(w) and the first-order approximation of
�(πN,gN) is zero with gN taken to be either g1,N or
g2,N . If instead the PLAM does not hold, the situation
is more complex. In general, g1,∗(w) − EP (Y − θ∗X |
W = w) 	= 0, whereas g2,∗(w) − EP (Y − θ∗X |
W = w) = 0 for each w. Thus, when the PLAM does
not hold, the nuisance estimator will make a first-order
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FIG. 3. Empirical bias and standard error of model-based estimators θ0,N , θ1,N and θ2,N scaled by N1/2 for sample sizes
N ∈ {500,1000,2000,3000,5000} computed using 5000 simulated datasets for each sample size under correct and incorrect model specifi-
cations.

contribution to the behavior of θ1,N − θ∗ but not to that
of θ2,N − θ∗. In other words, valid model-robust infer-
ence can be easily carried out using θ2,N but not θ1,N .

We illustrate this phenomenon in a simulation study.
We set W ∼ U(−2,2), X | W ∼ Bernoulli(π0(W))

with π0(w) = expit(0.5 + 2w − w2), and Y |(W,X) ∼
N(μ(X,W),1), where μ(x,w) = 0.2x + w2 or
μ(x,w) = (2x − 1)w to simulate a valid versus mis-
specified PLAM, respectively. We generated 5000
datasets for each sample size N ∈ {500,1000,2000,

3000,5000} and computed estimators θ0,N , θ1,N and
θ2,N with Nadaraya–Watson kernel estimator (with
cross-validated bandwidth selection) used for nuisance
estimation whenever nonparametric regression was re-
quired. Results are depicted in Figure 3.

This simulation study confirms the expected behav-
ior of the estimators considered. The bias of θ0,N does
not tend to zero sufficiently fast to allow convergence
of N1/2(θ0,N − θ∗) to a nondegenerate distribution re-
gardless of whether the PLAM holds—this occurs be-
cause ψ0 is not orthogonalized, and so, the behavior of
the kernel regression estimator dominates. When the
PLAM holds, the bias of both θ1,N and θ2,N tends
to zero faster than N−1/2. However, only the bias of
θ2,N remains small when the PLAM is misspecified.
These results demonstrate the importance of estimat-
ing function orthogonality when evaluating the model-
agnostic sampling behavior of regression model-based
estimators. Additionally, they highlight that if a model-
based procedure is not suitably orthogonalized, it does
not suffice to devise an improved variance estimator—
bias that does not vanish quickly enough results in the
lack of a nondegenerate distribution at the parametric
rate.

4. DELIBERATE MODEL-AGNOSTIC
PARAMETER EXTENSIONS

In their article, the authors focus on regression
functionals that arise as the limit of model-based
procedures, and propose strategies for model-robust
inference. As an alternative, it may be fruitful to first
define a model-agnostic parameter extension (or pro-
jection) based on the considered regression model, and
then develop robust inferential procedures for this es-
timand. By deliberately defining the projection of in-
terest rather than letting it be dictated by some model-
based estimator, issues pertaining to parameter inter-
pretation, as highlighted in Section 2, can largely be
circumvented. Furthermore, by using non or semipara-
metric tools, valid inference can be performed for this
projection parameter while avoiding the potentially
poor behavior of model-based procedures in the pres-
ence of irregular nuisances and model misspecification,
as discussed in Section 3.

To illustrate what we mean by model-agnostic pa-
rameter extension, we return to the proportional haz-
ards model—we refer interested readers to Chambaz,
Neuvial and van der Laan (2012), Graham and Pinto
(2018) and references therein for a treatment of pro-
jections onto the PLAM. Under proportional hazards,
the regression coefficient θ0 is the (constant) hazard ra-
tio value. A natural summary of a time-varying hazard
ratio is

θ∗∗ :=
∫

log
{
h1(t)

h0(t)

}
ν(dt),

where hx is the true hazard function corresponding to
X = x, and ν represents a weight function, possibly
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dependent on components of the data-generating dis-
tribution. If the PH model holds, θ∗∗ coincides with the
usual PH regression coefficient θ0. If the PH model
does not hold, θ∗∗ remains a transparent and inter-
pretable estimand. While the usual Cox estimand is of-
ten claimed to represent a quantity such as θ∗∗ when
the PH model fails to hold, we see from Figure 2 that
the weight function depends to a large extent on the in-
terplay between the censoring distribution and degree
of model misspecification.

Consider N independent triples Zi := (Yi,�i,Xi),
where Yi is the follow-up time, �i the event indica-
tor, and Xi the exposure group indicator for study par-
ticipant i. Suppose that the right-censoring mechanism
is uninformative within exposure groups. In that case,
under identification conditions, θ∗∗ represents a path-
wise differentiable parameter of the data-generating
distribution. A regular and asymptotically linear esti-
mator of θ∗∗ can thus be constructed. For example, for
the important case in which ν is the marginal time-to-
event distribution, we may consider the one-step bias-
corrected estimator

θOS,N :=
∫

θN(t)FN(dt) + 1

N

N∑
i=1

φN(Zi),

where θN(t) := logh1,N (t) − logh0,N (t) with hx,N a
nonparametric estimator of hx , FN := (1−πN)F0,N +
πNF1,N is a nonparametric estimator of the marginal
time-to-event distribution function, Fx,N is the
Kaplan–Meier estimator of the distribution function
corresponding to X = x, and πN is the proportion of
study participants with X = 1. Here, φN is a plug-
in estimator of the (nonparametric) efficient influence
function of θ∗∗ when the weight function is considered

fixed:

φN(z) :=
(

x

πN

)
γ1,N (y, δ)

−
(

1 − x

1 − πN

)
γ0,N (y, δ),

γx,N(y, δ) := δ exp{−xθN(y)}QN(y)

Rx,N(y)

−
∫
u≤y

1

Rx,N(u)
FN(du)

with

QN(y) := (1 − πN)
{
1 − F0,N (y)

}
+ πN

{
1 − F1,N (y)

}
exp

{
θN(y)

}
and

Rx,N(y) := N−1
N∑

i=1

I (Yi ≥ y).

It can be shown that N1/2(θOS,N − θ∗∗) tends to a
mean-zero Gaussian variable under regularity condi-
tions and rate conditions on hx,N .

A simulation study was conducted to evaluate the
finite-sample behavior of this estimator. We gener-
ated exposure X ∼ Bernoulli(2/3) and time-to-event
T | X ∼ Weibull(1,1+αX/2), with α ∈ {0,1} yielding
correct and incorrect PH specifications. Censoring time
C ∼ exponential(0.2) was generated independently of
(T ,X). For each scenario, we generated 5000 datasets
of size N ∈ {500,1000,2000,3000,5000}, and evalu-
ated the empirical bias (relative to the projection esti-
mand) and standard error of θOS,N and of the maximum
partial likelihood estimator θMPLE,N . Hazard functions
were estimated with kernel regression. Results are dis-
played in Figure 4. Under correct PH specification,

FIG. 4. Empirical bias and standard error of estimators θMPLE,N and θOS,N scaled by N1/2 for sample sizes N ∈ {500,1000,

2000,3000,5000} computed using 5000 simulated datasets for each sample size under correct and incorrect model specifications.
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both estimators have negligible bias; interestingly, they
also have similar standard errors. When the PH as-
sumption fails, only θOS,N tends to the projection pa-
rameter. It also has bias tending to zero faster than
N−1/2 and variance stabilizing at rate N−1. In contrast
to the Cox estimand, the projection parameter is an in-
terpretable summary of the hazard ratio invariant to the
censoring distribution.

This simple example highlights that it is possible to
define deliberate model-agnostic extensions of regres-
sion coefficients, and to construct (nonparametric effi-
cient) estimators that minimize the need for unrealis-
tic assumptions about the data-generating mechanism.
We emphasize that if knowledge on the data-generating
distribution is available (e.g., known moment condi-
tions or conditional independences), it should be in-
corporated into the inferential process. In such case,
the efficient influence function used to construct the
estimator of the regression functional should be rela-
tive to this greater state of knowledge. While we used
the simple one-step construction in our illustration,
more recent strategies with possibly improved perfor-
mance also exist; see, for example, van der Laan and
Rose (2011). These strategies naturally allow the use
of flexible, data-adaptive tools (e.g., machine learn-
ing) for nuisance estimation yet allow valid inference
for the deliberate target of scientific interest. A po-
tential challenge is the reliance of these strategies on
analytic objects whose derivation requires specialized
skills, though there have been recent efforts to over-
come this difficulty using computational tools (Carone,
Luedtke and van der Laan, 2019). In addition to bet-
ter understanding the ramifications of regression model
misspecification, and devising model-robust inferential
procedures for available estimators, as Buja and co-
authors have done, we hope to see further efforts to
develop and vet estimators of natural model-agnostic
parameter extensions based upon common regression
models.
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