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Abstract. When sharing data among researchers or releasing data for pub-
lic use, there is a risk of exposing sensitive information of individuals in the
data set. Data synthesis is a statistical disclosure limitation technique for re-
leasing synthetic data sets with pseudo individual records. Traditional data
synthesis techniques often rely on strong assumptions of a data intruder’s
behaviors and background knowledge to assess disclosure risk. Differential
privacy (DP) formulates a theoretical approach for a strong and robust pri-
vacy guarantee in data release without having to model intruders’ behaviors.
Efforts have been made aiming to incorporate the DP concept in the data syn-
thesis process. In this paper, we examine current DIfferentially Private Data
Synthesis (DIPS) techniques for releasing individual-level surrogate data for
the original data, compare the techniques conceptually and evaluate the sta-
tistical utility and inferential properties of the synthetic data via each DIPS
technique through extensive simulation studies. Our work sheds light on the
practical feasibility and utility of the various DIPS approaches, and suggests
future research directions for DIPS.

Key words and phrases: Differential privacy, DIPS, sufficient statistics,
parametric DIPS, nonparametric DIPS, statistical disclosure limitation.

1. INTRODUCTION

When sharing data among collaborators or releasing
data publicly, a big concern is the risk of exposing the
identification and personal information of the individuals
who contribute to the data. Even with key identifiers re-
moved, a data intruder may still identify an individual in
a data set via linkage with other public information. Some
notable examples on individual identification breach in
publicly released or restricted access data include the Net-
flix prize (Narayanan and Shmatikov, 2008), the genotype
and HapMap linkage effort (Homer et al., 2008), the AOL
search log release (Götz et al., 2012) and the Washington
State health record identification (Sweeney, 2013).

Statistical approaches to protecting data privacy are re-
ferred to as statistical disclosure limitation. These tech-
niques aim to provide protection for sensitive information
while releasing information and data to the public. Data
synthesis is a statistical disclosure limitation technique
that focuses on releasing individual-level data synthesized
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based on the information in the original data (Rubin,
1993, Little, 1993, Liu and Little, 2003, Raghunathan,
Reiter and Rubin, 2003, Reiter, 2003, 2009, Little, Liu
and Raghunathan, 2004, Drechsler, 2011). Multiple syn-
thetic sets of the identical structure are often released
as a way to propagate the uncertainty arising from the
synthesis process, a procedure referred to as multiple
synthesis (MS). Methods have been developed to com-
bine the results from multiple synthetic data sets to yield
valid statistical inferences (Raghunathan, Reiter and Ru-
bin, 2003, Reiter, 2002, 2003). However, existing dis-
closure risk assessment approaches for statistical disclo-
sure limitation techniques often depend on the specific
values in a given data set as well as various assump-
tions about the background knowledge and behaviors
of data intruders (Reiter, 2005, Hundepool et al., 2012,
Manrique-Vallier and Reiter, 2012). In some cases, only
heuristic arguments are employed without numerical as-
sessment of disclosure risk.

Differential privacy (DP), a concept popularized in the
theoretical computer science community, provides strong
privacy guarantee in mathematical terms without mak-
ing assumptions about the background knowledge of data
intruders (Dwork et al., 2006a, Dwork, 2008, 2011). In
brief, if a statistic is released via a ε-differentially pri-
vate mechanism, then when the statistic is calculated from
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two neighboring data sets that differ by one record, the
log-difference on the probability to obtain a specific value
of that statistic is bounded between (−ε, ε). In layman’s
terms, DP means the chance an individual will be identi-
fied based on the sanitized statistic is low (the smaller ε

is, the lower the probability is) since the statistic would
be about the same with or without the individual in the
database.

DP has spurred a great amount work in developing dif-
ferentially private mechanisms in general settings (Dwork
et al., 2006a, McSherry and Talwar, 2007, McSherry,
2009, Nissim and Stemmer, 2015) as well as for specific
statistical analysis such as data mining (Mohammed et al.,
2011), shrinkage regression (Chaudhuri, Monteleoni and
Sarwate, 2011, Kifer, Smith and Thakurta, 2012), prin-
ciple component analysis (Chaudhuri, Sarwate and Sinha,
2012), genetic association tests (Yu et al., 2014), Bayesian
learning (Wang, Fienberg and Smola, 2015), location
privacy (Xiao and Xiong, 2015), recommender systems
(Friedman, Berkovsky and Kaafar, 2016), deep learning
(Abadi et al., 2016), among others. Software or web-
based interfaces to generate differentially private statistics
are also in development, such as RescueDP (Wang et al.,
2016), an online aggregate monitoring scheme that pub-
lishes real-time population statistics on spatial-temporal,
crowd-sourced data from mobile phone users with DP and
Private data Sharing Interface (Gaboardi et al., 2016) that
aims to allow data sharing among researchers in the social
sciences and other fields while satisfying DP.

DP was originally developed and is widely used for
releasing aggregate or summary statistics to answering
queries submitted to a database. However, query-based
data release has several shortcomings. The requirement
to prespecify the level of privacy budget ε often dictates
the number and the types of future queries. The curator of
a database will refuse to answer any further queries if the
prespecified privacy budget is exhausted from answering
all previous queries. Additionally, data users would pre-
fer to directly access the individual-level data to perform
statistical analysis on their own.

Efforts have also been made to release differentially
private individual-level data, which we will refer to as
DIPS (DIfferentially Private Data Synthesis). Barak et al.
(2007) generated synthetic data via the Fourier transfor-
mation and linear programming in low-order contingency
tables. Blum, Ligett and Roth (2013) discussed differen-
tially private data synthesis from the perspective of the
learning theory. Abowd and Vilhuber (2008) proposed
an approach to synthesize differentially private tabular
data from the predictive posterior distributions of fre-
quencies, which was applied in the simulations studies
in Charest (2010) to explored inferences on proportions
from synthesized binary data. McClure and Reiter (2012)
implemented a similar technique for synthesizing binary

data with a different specification of the differentially pri-
vate prior. Wasserman and Zhou (2010) proposed several
paradigms to sample from appropriately differentially pri-
vate perturbed histograms or empirical distribution func-
tions. They also examined the rate that the probability
of empirical distribution of the synthetic data converges
to the true distribution of the original data. Zhang et al.
(2017) created PrivBayes to release high-dimensional
data from Bayesian networks with binary nodes and low-
order interactions among the nodes. Li, Xiong and Jiang
(2014a) developed DPCopula for synthesizing multivari-
ate data by using Copula functions to take into account
the dependency structure. Liu (2016) proposed a Bayesian
technique, model-based DIPS (MODIPS), to release dif-
ferentially private synthetic data and explored the inferen-
tial properties of the released data. Besides these generic
DIPS approaches, there are also DIPS developed for spe-
cific type of data such as graphs (Proserpio, Goldberg and
McSherry, 2012), and mobility data from GPS trajectories
(Chen et al., 2013, He et al., 2015).

The goals of this paper are two-fold. First, it introduces
the powerful concept of DP to the statistical commu-
nity and surveys the current development in DIPS. Sec-
ond, it examines and compares some of the general DIPS
approaches based on the statistical and inferential util-
ity of the respective synthesized data; both conceptually
and empirically via simulation studies and a real-life case
study. We aim to, through this comparative examination of
different DIPS approaches, demonstrate the useful appli-
cations of DP in releasing synthetic data with guaranteed
privacy and to provide some guidance on the feasibility of
the DIPS methods for practical use.

The remainder of the paper is organized as follows. Sec-
tion 2 overviews the basic concepts of DP and some com-
mon differentially private mechanisms. Section 3 presents
some currently available DIPS approaches. Section 4
compares and examines the utility and inferential prop-
erties of the individual-level surrogate data released from
some of the DIPS methods introduced in Section 3 via
four simulation studies on different types of data. Sec-
tion 5 evaluates the practical feasibility of DIPS on real-
world data. Concluding remarks are given in Section 6.

2. CONCEPTS

The concepts of DP and the sanitization algorithms
were developed originally for releasing results of queries
sent to a database. We rephrase the main concepts in DP
below in terms of statistics. There is essentially no differ-
ence between query results and statistics given that both
are functions of data. Denote the target data for protec-
tion by x = {xij } of dimension n × p (i = 1, . . . , n; j =
1, . . . , p). Each row xi represents an individual record
with p variables/attributes.
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2.1 Differential Privacy (DP) and Composition
Properties

DEFINITION 2.1 (Differential privacy (Dwork et al.,
2006a)). A sanitization algorithm R gives ε-DP if for all
data sets (x,x′) that is d(x,x′) = 1 and all subsets Q ⊆ T ,

(2.1)
∣∣∣∣log

(
Pr(R(s(x)) ∈ Q)

Pr(R(s(x′)) ∈ Q)

)∣∣∣∣ ≤ ε,

where T denotes the output range of the algorithm R,
ε > 0 is the privacy budget (or loss) and s denotes the
statistics. d(x,x′) = 1 implies that x′ differs from x by
only one individual. Mathematically, equation (2.1) states
that the log-difference on the probability of obtaining a
specific value of s via R is bounded by (−ε, ε) when it
is calculated from two neighboring data sets that differ by
one record. If ε is small, then the chance an individual
will be identified based on the sanitized query result is
low since the query result would be about the same with
or without the individual in the database. Inversely, if ε

is larger, then the more differentiable the sanitized results
are when an individual is absent or present in the data set.

Regarding what value of ε is considered to be appro-
priate or acceptable for practical use, Dwork (2008) dis-
cussed the choice of ε is a social question (and “beyond
the scope of” her paper), but suggests 0.01 ∼ ln(3), or
even up to 3 in some cases, as possible ε values. Lee
and Clifton (2011) stated that ε does not easily relate to
practically relevant measures of privacy and suggest a for-
mula to calculate ε if the goal is to hide any individual’s
presence (or absence) in the database. The formula relies
on some assumptions, like query-dependency and also re-
quires knowing the data universe as well as the subset of
that universe to be queried. Abowd and Schmutte (2015)
examined the question from the economic perspective by
accounting for the public-good properties of privacy loss
and data utility, and quantify the optimal choice of ε by
formulating a social planner’s problem and incorporating
(ε, δ)-DP (another relaxation of the pure DP; see Defi-
nition 2.5) and (α, δ)-accuracy (the l1 error in released
statistics is bounded by α with probability 1 − β) to re-
lease normalized histograms via the private multiplicative
weights method. In two applications, they have examined
the optimal ε is 0.067 and 0.044 for α = 0.096 and 0.073
(resp.) when β = 0.01 and δ = 0.9/N , where N is the
population size for some specific settings on the popula-
tion size and query set size. If deemed valid, the ε val-
ues suggested in the (ε, δ)-DP setting can also be consid-
ered for ε-DP as the latter implies stricter privacy protec-
tion at the same ε value. However, the caveat of possible
worse information preservative compared to its relaxed
counterpart. Other ε values also came up in the literature.
For example, Machanavajjhala et al. (2008) applied DP in
the OnTheMap data (commuting patterns of the US pop-
ulation) and used (ε = 8.6, δ = 10−5)-probabilistic DP

(a relaxation of the pure DP in equation (2.1); see Defini-
tion 2.6) to synthesize commuter data. Karwa, Krivitsky
and Slavković (2017) use ε = 3 and ε = 6 when synthe-
sizing edges in social networks via a randomized response
mechanism with ε-edge DP. Ding et al. (2011) and Li,
Xiong and Jiang (2014b) use ε = 1 in their experiments.

All of the work above suggests there are many factors
that affect the choice of ε, including the type of informa-
tion released to the public, social perception of privacy
protection, statistical accuracy of the release data, among
others. Also, that it remains an open question that war-
rants more research and further investigation. The smaller
ε is, the less the privacy loss, but the less accurate the re-
leased information. Choosing an “appropriate” ε is essen-
tially finding a good trade-off between privacy loss and
released information accuracy. We will provide more dis-
cussion regarding the choice of ε in Section 6, reviewing
what we have learned from the literature and the simula-
tion/case studies.

Often in practice a data set is queried for multiple statis-
tics especially when the data is high-dimensional. Every
time the data set is queried, there is a privacy cost (loss) as
information is being asked about the same set of individu-
als. Therefore, the data curator must track all queries and
analysis conducted on a data set to ensure the overall pri-
vacy spending does not exceed the prespecified level; say,
r queries are sent to the same data set with a total privacy
budget of ε. The data curator could allocate ε/r privacy
budget to each of the r queries to maintain the total pri-
vacy cost at ε. On the other hand, if each query is sent to
a disjoint set of data such that each set has no overlapping
individuals, then the privacy cost does not accumulate.
A typical example is the release of a histogram, where
the counts in different bins of the histogram are based on
disjoint subsets of data, and each bin is perturbed with the
full privacy budget ε. These principles are presented in
the sequential composition and parallel composition the-
orems below.

THEOREM 2.2 (Composition theorems (McSherry,
2009)). Suppose a differentially private mechanism Rj

provides εj -DP for j = 1, . . . , r .

(a) Sequential composition: The sequence of Rj (x) ex-
ecuted on the same data set x provides (

∑
j εj )-DP.

(b) Parallel Composition: Let Dj be disjoint subsets of
the input domain D. The sequence of Rj (x∩Dj) provides
max(εj )-DP.

2.2 Relationship Between DP and Disclosure Risk
Assessment in the Traditional Statistical
Disclosure Limitation Setting

The concept of DP is different from the traditional dis-
closure risk assessment in statistical disclosure limitation.
The former does not rely on any background knowledge
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or behavioral assumptions of a data intruder while the lat-
ter often models what the data intruder knows and how the
disclosure risk is formulated or calculated and could vary
significantly, depending on the data and the approaches
for assessing disclosure risk, lacking a unified principle.
Provided below is a concrete example that illustrates the
differences between DP and the traditional disclosure risk
assessment.

Suppose a data set contains 11 attributes, one out of
the 11 is a sensitive variable, such as HIV status, and the
other 10 are pseudo-identifiers such as age, gender, etc.
In a typical disclosure risk assessment, the data curator
would first make an assumption about what the intruder
knows and what the intruder will do to obtain the infor-
mation she/he is interested in. Therefore, the curator will
likely assume in this case that: (1) the intruder A wants
the information on the sensitive variable on individual B,
and A knows that B is in the data set; (2) A knows all
10 pseudo-identifiers of B; (3) A fits a logistic model to
calculate the probability of having HIV with the released
data set. Suppose the true HIV status of B is T and esti-
mated Pr(HIV = T|the 10 attributes) is 5% from the lo-
gistic model based on a synthetic copy of the original
data; then from the perspective of the traditional disclo-
sure risk assessment, we would consider B is at a lower
risk of getting his/her personal information disclosed.
However, how confident are we with this 5%? What if
the data intruder has more information in addition to the
released data? What if the data intruder has a more ef-
ficient method than the logistic regression to predict the
HIV status with high accurate? In other words, the sin-
gle value 5% with all the above assumptions could be far
from being optimal in reflecting the true disclosure risk.

If the surrogate data set is synthesized via a tech-
nique based on the DP framework, then it is guaran-
teed that any individual (including B) from the original
data has little impact on any statistics calculated from
the synthetic data, and the impact is quantified by the
probabilities of obtaining the same statistic with versus
without any single individual, the ratio between which
is bounded by (e−ε, eε). In this example, the statistic s

is Pr(HIV|the 10 attributes), and the the ratio Pr(s∗|x∗)
Pr(s∗|x′∗) ∈

(e−ε, eε), where data x∗ and x′∗ differ by one individual
and s∗ is the sanitized version of the observed original s

based on the synthetic data. Using a small ε leads to a
tight neighborhood (e−ε, eε) around 1, and a small pri-
vacy loss.

A reviewer asks if DP can be used as an upper bound for
disclosure risk assessment. The above example suggests
the way the DP bounds the absolute log-ratio of two dis-
tribution functions on the sanitized version of s obtained
from two neighboring data sets (x and x′) by ε rather than
providing a direct measure on the probability that an in-
dividual would be identified or have his/her true value on

a sensitive variable disclosed. Lee and Clifton (2011) cal-
culated an upper bound for the posterior probability of a
correct guess from an adversary on whether an individual
is in a data set given discrete query results sanitized via
the Laplace mechanism under some assumptions. How-
ever, the bound is not tight.

In summary, the link between DP and the traditional
disclosure risk assessment is an interesting topic and open
question. One thing for certain is that DP integrates out all
the unknowns (e.g., whether and how data intruder would
use that data set, whether an individual in a particular data
set or will participate in any future studies, etc.) and cov-
ers the worst-case scenario, whether the data curator can
think of or not, from the perspective of protecting every
individual.

2.3 Empirical DP and Local DP

Classical DP has inspired other privacy concepts such
as the empirical DP (Abowd, Schneider and Vilhuber,
2013) and local DP (Duchi, Jordan and Wainwright,
2013), both of which look for bounding some type of
“privacy” using a single parameter ε. We will not examine
the two concepts further in this discussion for the reasons
given below.

Empirical DP was first proposed for privacy protection
in Bayesian mixed-effects modeling. In empirical DP, a
prior distribution is designed to guarantee that the log dif-
ference on the posterior distribution of a parameter with
versus without each of the individuals in the original data
is bounded by (−ε, ε). Charest and Hou (2017) showed
that empirical DP is more of an empirical measurement
of sensitivity, and relates to the so-called “local sensitiv-
ity” (Nissim, Raskhodnikova and Smith, 2007) rather than
a guarantee or an empirical estimate of DP. In addition,
empirical DP is computationally sensitive to how many
posterior samples are drawn and how they are binned in
its numerical calculation as the analytical form of the pos-
terior distribution is often not available.

For local DP, although its mathematical formulation
seems similar to the classical DP, the two are concep-
tually different. In local DP, the true response of an in-
dividual goes through a locally ε-differentially private
randomization mechanism that generates a perturbed re-
sponse, which is recorded and released. Different from
the traditional DP (where the privacy budget ε is pos-
sessed by a whole data set), each individual receives a
privacy budget ε in local DP, and the log-difference in
the probability of generating the same perturbed response
from two different individual responses is bounded by
(−ε, ε). Local DP has been applied in practice to col-
lect users’ data (Erlingsson, Pihur and Korolova, 2014,
Fanti, Pihur and Erlingsson, 2016, Tang et al., 2017); but
given its conceptual difference from the classical DP, we
leave the in-depth investigation and exploration of local
DP for future research (more discussion on the local DP
is provided in Section 6).
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2.4 Differentially Private Mechanisms

We introduce two commonly used sanitizers to achieve
ε-DP: the Laplace mechanism and the exponential mech-
anism. A key concept in the Laplace mechanism is the
global sensitivity of s (Dwork et al., 2006a), defined as
the following: For all (x,x′) that is d(x,x′) = 1, the global
sensitivity of statistics s is �s = maxx,x′,d(x,x′)=1 ‖s(x) −
s(x′)‖1. In layman’s terms, �s is the maximum change
in terms of l1 norm a person would expect in s across
all possible configurations of (x,x′) and d(x,x′) = 1. The
sensitivity is “global” since it is defined for all possible
data sets and all possible ways that two data sets differ by
one observation. The higher �s is the more disclosure risk
there will be on the individuals in the data from releasing
the original s.

DEFINITION 2.3 (Laplace mechanism (Dwork et al.,
2006a)). The Laplace mechanism of ε-DP adds inde-
pendent noises e sampled from the Laplace distribution
with location parameter 0 and scale parameter �sε

−1 to
each of the elements of the original result s to generate
perturbed s∗ = s + e.

Per the Laplace distribution, values closer to the raw
results s have higher probabilities of being released than
those that are further away from s. The variance of the
Laplace distribution is 2(�sε

−1)2, implying the smaller
the privacy budget ε and/or the larger the �s, the higher
the probability that the perturbed result s∗ will be farther
way from s when released. The Laplace mechanism is a
quick and simple DP mechanism, but does not apply to all
statistics such as statistics that have nonnumerical outputs.
McSherry and Talwar (2007) introduces a more general
DP mechanism, the exponential mechanism, that applies
to all types of queries.

DEFINITION 2.4 (Exponential mechanism (McSherry
and Talwar, 2007)). In the exponential mechanism, a
utility function u assigns a score to each possible output
s∗ and releases s∗ with probability

(2.2)
exp(u(s∗|x) ε

2�u
)∫

exp(u(s∗|x) ε
2�u

) ds∗

to ensure ε-DP, where �u = maxx,x′,d(x,x′)=1 |u(s∗|x) −
u(s∗|x′)| is the maximum change in score u with one row
change in the data (if s∗ is discrete, the integral in equation
(2.2) is replaced with summation).

Per the exponential mechanism, the probability of re-
turning s∗ increases exponentially with the utility score.
For example, if s is numerical and the goal is to preserve
as much original information as possible, metrics measur-
ing the closeness between s∗ and the original s are good
candidates for u such as the negative p-norm distance
−‖s− s∗‖p = −(

∑r
j=1 |sj − s∗

j |p)1/p (Liu, 2019a). When

the l1 norm is used, the exponential mechanism in Defi-
nition 2.4 becomes the Laplace mechanism with halved
privacy budget (McSherry and Talwar, 2007, Liu, 2019a).
Both the Laplace mechanism and exponential mechanism
are widely applied in developing more complicated mech-
anisms, such as the multiplicative weight approach of
generating synthetic discrete data iteratively (Hardt and
Rothblum, 2010) and the median mechanism for effi-
ciently releasing correlated queries (Roth and Roughgar-
den, 2010).

Besides the Laplace mechanism and the exponential
mechanism, there are other sanitizers for general settings,
such as the Gaussian mechanism that adds Gaussian noise
to satisfy a softer version of DP (Section 2.5) (Dwork
and Roth, 2014, Liu, 2019a) and the generalized Gaus-
sian mechanisms that include the Laplace mechanism and
the Gaussian mechanism as special cases (Liu, 2019a).

2.5 Relaxations of Pure ε-DP

The pure ε-DP in Section 2.1 can lead to poten-
tially large amounts of noise injected to query results to
achieve a high level of privacy guarantee. This concern
has motivated work on relaxing the pure ε-DP. We briefly
overview three relaxations: approximate differential pri-
vacy (aDP), probabilistic differential privacy (pDP) and
concentrated differential privacy (cDP).

DEFINITION 2.5 (Approximate differential privacy
(Dwork et al., 2006b)). A sanitization algorithm R
gives (ε, δ)-aDP if for all data sets (x,x′) that are
d(x,x′) = 1,

(2.3) Pr
(
R

(
s(x)

) ∈ Q
) ≤ exp(ε)Pr

(
R

(
s
(
x′)) ∈ Q

) + δ,

where δ > 0 is typically chosen based on the sample size
of the data set n that satisfies δ(n)/nr → 0 for all r > 0.
The pure ε-DP is a special case of aDP when δ = 0.

DEFINITION 2.6 (Probabilistic differential privacy
(Machanavajjhala et al., 2008)). A sanitization algo-
rithm R gives (ε, δ)-pDP if

(2.4) Pr
(
R

(
s(x)

) ∈ Disc(x, ε)
) ≤ δ

for all data sets (x,x′) that are d(x,x′) = 1, where
Disc(x, ε) is the disclosure set R(s(x)) such that
| ln( Pr(R(s(x))∈Q)

Pr(R(s(x′))∈Q)
)| > ε. Equation (2.4) can be interpreted

as the pure ε-DP fails with probability δ.

DEFINITION 2.7 (Concentrated differential privacy
(Dwork and Rothblum, 2016)). For all data sets (x,x′),
that is d(x,x′) = 1, a sanitization algorithm R gives
(μ, τ )-cDP ifDsubG(R(x)‖R(x′)) � (μ, τ ), where DsubG
stands for sub-Gaussian divergence, defined as follows:
two random variables Y and Z are DsubG(Y‖Z) � (μ, τ )

if and only if E(LY‖Z) ≤ μ and the centered distribu-
tion of (LY‖Z − E(LY‖Z) is defined and τ -sub-Gaussian,
where L(Y‖Z) = ln(p(Y )/p(Z)) is the privacy loss ran-
dom variable.
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Both pDP and cDP regard privacy loss as random vari-
ables, but cDP has some advantages over pDP. First, cDP
has a bounded expected privacy loss whereas pDP has an
infinite privacy loss with probability δ. Second, cDP has
better accuracy without compromising the privacy loss
from multiple inquiries (Dwork and Rothblum, 2016).

3. DIFFERENTIALLY PRIVATE DATA SYNTHESIS
(DIPS)

We loosely group the currently available DIPS meth-
ods into two categories: the nonparametric approach (NP-
DIPS) and the parametric approach (P-DIPS). In the NP-
DIPS approach, the synthesizer is constructed based on
the empirical distribution of the data, while in the P-DIPS
approach it is constructed based on a parametric distri-
bution or an appropriately defined model for the original
data.

3.1 Nonparametric DIPS (NP-DIPS)

When the original data is categorical, the statistics s
targeted for differentially private sanitization are the cell
counts or proportions in some types of cross-tabulation
in NP-DIPS, from which the synthetic data will be from
generated. In the case of continuous data, the NP-DIPS
techniques can be applied to generate differentially pri-
vate histograms, kernel density estimators or empirical
distributions. The list of the NP-DIPS covered in this sec-
tion is given in Table 1. Our goal is not to discuss every

NP-DIPS method out there in the literature, which would
be impossible to achieve in one paper. The list is not ex-
haustive, but should provide the readers an idea on how
DIPS works in the nonparametric setting.

3.1.1 Synthesis of categorical data. In a data set with
p categorical variables, a straightforward approach in
generating synthetic data is to add Laplace noise to the
cell counts of k-way cross-tabulation of x, where k ≤ p,
and then to generate individual level of data from the san-
itized counts. If k = p, it is the full cross-tabulation of x,
and the individual-level data are straightforward to gener-
ate from sanitized counts. If k < p, there are

(p
k

)
k-way

contingency tables, and the sanitization process needs to
be carefully planned so that all k-way tables are consistent
to yield legitimate marginals and individual-level data.

When k = p, denote the original frequencies of the
K cells formed by the p-way cross-tabulation of x by
n = (n1, . . . , nK). The Laplace sanitizer perturbs the orig-
inal n via n∗

j = nj + ej , where ej ∼ Lap(0,�s/ε) inde-
pendently for j = 1, . . . ,K . �s is the l1 global sensitivity
from releasing the whole cross-tabulation. �s can be set at
2 or 1, depending on how d(x,x′) = 1 is defined. Specifi-
cally, if the change in one individual refers to the case that
n remains the same, but the data in exactly one individual
change, then �s = 2. If the change in one individual refers
to removal of one individual from the data, then �s = 1.
When n is relatively large, say > 30, the difference in the
standard deviations of the Laplace noises

√
2n−1 between

TABLE 1
Summary of NP-DIPS approaches discussed in Section 3.1

Sec Method Pros Cons

3.1.1 Laplace sanitizer simple; fast not accurate for large number of queries
3.1.1 Fourier transformation preserves low-order marginals accurately computationally expensive as the number of

attributes increases
3.1.1 multiplicative weights Exponential

mechanism
adaptive, preserves consistency of marginals
across tables

difficulty of choosing an appropriate
iteration number; inaccuracy

3.1.2 perturbed histogram simple; fast discretization of continuous attributes;
doesn’t preserve correlation well

3.1.2 smoothed histogram simple; fast discretization of continuous attributes;
worse than perturbed histogram in accuracy

3.1.2 empirical cumulative density function via
Exponential mechanism

flexible; general computational infeasibility

3.1.2 kernel density estimator with Gaussian
process noise

general works for (ε, δ)-aDP; curse of
dimensionality

3.1.3 histogram with constrained inferences better accuracy than perturbed histogram constrains are publicly known or inherent
3.1.3 universal histogram accuracy for low-order counts less accurate for high-order counts
3.1.3 DPCube multidimensional data inefficiency in constructing accurate

high-dimensional histograms; performs
worse than the Laplace sanitizer

3.1.3 NoiseFirst and StructureFirst outperforms several other DP methods low dimensional histograms;
nonconsistency as ε → ∞

3.1.3 Exponential Fourier perturbation and P-H
Partition

better than NoiseFirst and StructureFirst depends on histogram compressibility
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the two versions is O(10−2). There is no practical differ-
ence on which one to use. In the simulation studies and
the case study presented later, we used �s = 1. Given the
smallest n examined was 40, we expect the results to re-
main roughly the same if we had used �s = 2.

When k < p, Barak et al. (2007) conducted early work
on constructing k-way differentially private, consistent,
and nonnegative contingency tables via a Fourier trans-
formation. The approach identifies the complete set of
metrics required to reproduce a contingency table, where
each cell is perturbed to achieve the same level of accu-
racy. The Fourier transformation based algorithm depends
on the linear programming and could be computationally
infeasible when p is large. For this reason, we do not eval-
uate this method in Section 4.

Another approach that can be used to generate indi-
vidual-level data in the discrete domain is the multiplica-
tive weights Exponential mechanism given a set of linear
queries (Hardt, Ligett and McSherry, 2012). The multi-
plicative weights exponential mechanism yields an differ-
entially private empirical distribution that approximates
the original empirical distribution in terms of the input
linear queries through an iterative process. It often starts
from a uniform distribution over the supports of all the
attributes in the original data, and then updates the dis-
tribution via multiplicative weighting based on a query
sampled via the exponential mechanism and sanitized via
the Laplace mechanism in each iteration. Since every iter-
ation accesses the original data, the total privacy needs to
be divided by the number of iterations. It can be difficult
to choose an optimal iteration number especially when p

is large. A small number of iterations would not be suf-
ficient to capture the information in the original queries,
leading to biased results, while a large number of itera-
tions will introduce too much noise during the data gener-
ation process, rendering the synthetic data useless. The in-
accuracy of the multiplicative weights exponential mech-
anism is documented in Li et al. (2016), Vadhan (2017),
Kowalczyk et al. (2017) and is also confirmed by the
simulation studies we have conducted. For these reasons,
we do not evaluate the multiplicative weights exponential
mechanism in Section 4.

3.1.2 Synthesis of numerical data. A straightforward
approach for releasing differentially private numerical
data is to first generate differentially private histograms,
and then synthesize numerical data by drawing a bin ac-
cording to the relative sanitized frequencies of the his-
togram bins, and lastly, sample data from the uniform dis-
tributions bounded by the sampled bin endpoints in the
previous step.

To form histograms on the original numerical data, dis-
cretization is necessary. In addition, there could be a large
number of data bins/cubes if high-order interactions exist
among the data attributes and are taken into account when

the histogram is generated. Let K be the total number
of bins (or squares/cubes in the multidimensional case),
nk = ∑K

k=1 I (xi ∈ Bk) be the number of observations in
Bk for k = 1, . . . ,K , p̂k = nk/n and I () be the indica-
tor function (I (xi ∈ Bk) = 1 if xi ∈ Bk ; 0 otherwise), a
mean-squared consistent density histogram estimator is
f̂K(x) = ∑K

k=1 Kp̂kI (x ∈ Bk) (Scott, 2015). A differen-
tially private perturbed histogram is a direct application
of the Laplace mechanism. The sanitized bin counts and
proportions with ε-DP are given by n∗

k = nk + ek and

p̂∗
k = n∗

k/
∑

k n∗
k , respectively, where ek

iid∼ Lap(0,�s/ε)

with �s = 1. The density histogram estimator that satis-
fies ε-DP is thus

(3.1) f̂ ∗
K(x) =

K∑
k=1

Kp̂∗
k I (x ∈ Bk).

Note that sanitized n∗
k can be negative since the Laplace

noise ∈ (−∞,∞), especially when nk is small or ε is
small. Commonly used post-hoc processing approaches
include replacing negative n∗

k with 0 (Barak et al., 2007)
or using the truncated or boundary inflated truncated
Laplace distributions to obtain legitimate data (Liu,
2019b). To incorporate the uncertainty introduced by the
sanitization process, releasing multiple sets of x̃ is sug-
gested, one set per sanitized n∗ = {n∗

k}1:K .
Another method to generate differentially private his-

tograms is the smoothed histogram approach. Wasserman
and Zhou (2010) provided the formulation of smoothed
histograms of ε-DP for x ∈ [0,1]p , where p is the number
of numerical attributes. It is easy to extend the formulation
to the general case when x is bounded by [c10, c11]×· · ·×
[cp0, cp1]. The differentially private smooth histogram is

f̂ ∗
K(x) = (1 − λ)f̂K(x) + λ	

where 	 =
( p∏

j=1

(cj1 − cj0)

)−1(3.2)

and λ ≥ K

K + n(eε/n − 1)
(3.3)

is a constant between 0 and 1 to satisfy ε-DP. When
ε → 0, λ → 1, the synthetic data are simulated from a
uniform-like f̂ ∗

K(x) that is too noisy to be of any use.
When ε → ∞, λ → 0, f̂ ∗

K(x) → f̂K(x), the synthetic data
would have minimal privacy protection from the DP per-
spective. Since λ is a constant given n, K and ε, f̂K(x)

is not subject to randomness either, it is not necessary to
release multiple sets of x̃ from f̂ ∗

K(x) from an inferential
perspective.

In addition to the perturbed histogram and smooth his-
togram approaches, there is also the approach to gen-
erating data from differentially private empirical cumu-
lative density functions via the Exponential mechanism
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(Wasserman and Zhou, 2010). Specifically, surrogate data
x̃ is simulated from

h(x̃) = gx(x̃)∫
[c10,c11]×···×[cp0,cp1] gx(z) dz

,

where gx(x̃) = exp
(
−u(F̂x, F̂x̃)

ε

2�u

)
,

�u = sup
x,x′,�(x,x′)=1

sup
x̃

∣∣u(F̂x, F̂x̃) − u(F̂x′, F̂x̃)
∣∣,

(3.4)

F̂x is the original empirical cumulative density function,
F̂x̃ is the empirical cumulative density function’s of the
sanitized data, u is the utility function that denotes a dis-
tance measure between the two cumulative density func-
tions, and �u is the sensitivity of u. If the Kolmogorov–
Smirnov distance is used on u, �u ≤ n−1 (Wasserman and
Zhou, 2010). However, releasing x̃ via the Exponential
mechanism defined in equation (3.4) does not seem to be
a viable choice in practice. One difficulty lies in defining
the set of all possible candidate cumulative density func-
tions, the size of which increases rapidly with sample size
n and p, making the synthesis process computationally
challenging and unrealistic for a large data set. Due to the
impracticality of this approach, we did not implement this
method in our simulation studies.

Hall, Rinaldo and Wasserman (2013) proposed sanitiz-
ing kernel density estimator by adding noise from a Gaus-
sian process to yield DP, from which synthetic data can be
generated. If a Gaussian kernel is used, they show there is
no loss of accuracy in the differentially private kernel den-
sity estimator to the original one with the optimal band-
width that minimizes the integrated mean squared error.
However, the method is currently only available for (ε, δ)-
aDP for δ > 0, and suffers the same curse of dimension-
ality for large p (Scott, 2015).

3.1.3 Other NP-DIPS methods. There are also various
extensions to the basic Laplace sanitizer and the perturbed
histogram approach with the purposes to improve their
accuracy. Hay et al. (2010) suggested boosting the ac-
curacy of differentially private histograms by sorting the
bin values after sanitation if the order of the bin size
is known to the public. They also developed a univer-
sal histogram approach by exploring the inherent con-
sistency in a hierarchical histogram, and proved that the
accuracy of lower-order contingency tables/marginals is
improved, but at the sacrifice of high-order contingency
tables (Qardaji, Yang and Li, 2013, Hay et al., 2016).
Xiao, Gardner and Xiong (2012) applied a 2-phase parti-
tioning strategy, DPCube, to multidimensional data cubes.
Gardner et al. (2013) implemented DPCube in biomedical
data to demonstrate its practical feasibility on real-world
data sets, but found that DPCube was still inefficient in
constructing accurate high-dimensional histograms. Ad-
ditionally, Hay et al. (2016) showed that DPCube per-
formed worse than the Laplace sanitizer. Xu et al. (2013)

proposed two mechanisms, NoiseFirst and StructureFirst,
that performed well against some DP methods, but only
applied to low-dimensional histograms due to long run-
ning time. Moreover, StructureFirst is inconsistent; where
the error of the statistics does not tend to 0 as ε increases
to infinity (Qardaji, Yang and Li, 2013, Hay et al., 2016).
Acs, Castelluccia and Chen (2012) presented two sani-
tization techniques, the exponential Fourier perturbation
algorithm and the P-H Partition, that sanitize compressed
data to exploit the inherent redundancy of real-life data
sets. From the experimental results, the techniques out-
performed some DP methods, including NoiseFirst and
StructureFirst, but the performance depended on the com-
pressibility of a histogram.

In summary, the accuracy improvements, if any, of the
above methods over the basic Laplace sanitizer or the per-
turbed histogram either utilize some constraints that only
exist in certain types of histograms/data, or only benefit
low dimensional histograms. For these reasons, we do not
explore these extensions in the simulations studies in Sec-
tion 4. That being said, it is of our interest to further ex-
plore these extended methods that provide better accuracy
in low-dimensional histograms in the future, by coupling
them with efficient and accurate dimensional reduction
techniques.

3.2 Parametric DIPS (P-DIPS)

The synthesizers in the P-DIPS category are based on
an assumed distribution or an appropriately defined model
given the original data. In what follows, we describe the
Multinomial-Dirichlet synthesizer and other methods mo-
tivated by the Multinomial-Dirichlet synthesizer for cate-
gorical data, the model-based DIPS (MODIPS) approach
for general data types based on a Bayesian modeling
framework and sequential regression synthesizers. The
list of the P-DIPS covered in this section is given in Ta-
ble 2. The list is not meant to be exhaustive nor does it
list the methods that deal with a specific type of data, but
it gives readers an idea on how DIPS works in the para-
metric setting. The PrivBayes and the DPCopula methods,
though listed in Table 2, will not be covered in full details
in this section given that they are not as widely used for
routine data analysis.

3.2.1 Multinomial-Dirichlet synthesizer. Abowd and
Vilhuber (2008) proposed the Multinomial-Dirichlet syn-
thesizer to generate differentially private categorical data
in the Bayesian framework. The likelihood of proportions
π is constructed from f (n|π) ∼ Multinom(n,π), where
n = (n1, . . . , nK) contains the original cell counts in K

categories in the original data and n = ∑
k nk . A Dirich-

let prior f (π) = D(α) is imposed on π , where each ele-
ment of α is set at α∗

k = n/(eε − 1), the minimum value
that guarantees ε-DP, for k = 1, . . . ,K . To generate dif-
ferentially private surrogate data sets, π∗ is first simu-
lated from the posterior distribution f (π∗|x) = D(α∗ +
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TABLE 2
Summary of Parametric DIPS approaches discussed in Section 3.2

Sec Method Data Pros Cons

3.2.1 Multinomial-Dirichlet, Binomial-Beta categorical straightforward; easy to implement performs poorly on sparse data;
perturbation amount increases with n;
possible biased inferences on proportions

3.2.2 Model-based DIPS (MODIPS) any general; the DP version of the
model-based multiple synthesis without
DP

model-dependent; relies on identification
and sanitization of sufficient statistics or
likelihood functions

3.2.3 Sequential Regression Modeling
Synthesizers

any general; models the correlations among
all variables

large amount noises for large p

PrivBayes categorical models dependency among variable; has
an inherent model selection component

requires dichotomization on continuous
attributes; depends on a quality function
that can be computationally inefficient

DPCopula any general same limitations for copula models in
general and quadratic time complexity

n), and then synthetic data is drawn from f (ñ|π∗) =
Multinom(n,π∗). To ensure valid inferences in the syn-
thetic data, multiple sets of ñ can be released; one for
each differentially private π∗. The Multinomial-Dirichlet
synthesizer reduces to the Binomial-Beta synthesizer in
the binary case. McClure and Reiter (2012) proposed a
slightly different approach to synthesizing binary data
from f (ñ|n) = Binom(n, n1+α1

n+α1+α2
), where α1 = α2 =

(eε/n − 1)−1 to satisfy ε-DP, which we refer to as the
Binomial-Beta McClure–Reiter approach. The Binomial-
Beta McClure–Reiter differs from the Binomial-Beta syn-
thesizer not only in how the prior on π differ, but also that
it does not simulate π from its posterior distribution thus
ñ synthesized via the Binomial-Beta McClure–Reiter has
one less layer variability.

In both the Multinomial-Dirichlet/Binomial-Beta and
the Binomial-Beta McClure–Reiter synthesizers, α∗

k in-
creases with n, implying that when data/observed infor-
mation increases, the amount of perturbation required to
maintain ε-DP also increases and can be nontrivial for
any n. Furthermore, since all α∗

k ’s for k = 1, . . . ,K are
equal, when nk’s are not the same across the K categories,
the perturbation will bias the synthetic proportions away
from their originals. Charest (2010) modeled explicitly
the Binomial-Beta mechanism in a Bayesian framework
in the binary data case to reduce the bias of the inferences

in the synthetic binary data, which seems to be effective
as long as ε is not too small.

3.2.2 Model-based DIPS (MODIPS). The MODIPS
approach is based in a Bayesian modeling framework and
releases m sets of multiple differentially private surrogate
data to the original data to account for the uncertainty
of the synthesis model (Liu, 2016). An illustration of the
MODIPS algorithm is given in Figure 1.

The MODIPS approach first constructs an appropriate
Bayesian model from the original data and identifies the
Bayesian sufficient statistics s associated with the model.
The posterior distribution of θ can then be represented as
f (θ |s). The MODIPS then sanitizes s with privacy bud-
get ε/m. Denote the sanitized s by s∗. Synthetic data x̃
is simulated given s∗ by first drawing θ∗ from the pos-
terior distribution f (θ |s∗), and then simulating x̃∗ from
f (x|θ∗). The procedure is repeated m times to generate
m surrogate data sets.

Since the MODIPS approach is model-dependent, the
identification and validation of an appropriate model for
data x is critical, and model misspecification will gen-
erate biased samples. If the identification of a suitable
model is based on previous knowledge and common prac-
tice, then no privacy will need to be spend; however, if
the model selection procedure is based on the the data

FIG. 1. The MODIPS algorithm.
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to be released, then the data curator will have to a cer-
tain portion of the total privacy budget to the model se-
lection procedure. Differentially private model selection
is a separate research topic that is beyond the scope of
this paper. When there are several plausible models, the
model averaging idea can be incorporated into the syn-
thetic data generation and serves as a mitigation measure
to model misspecification and the dependency of the syn-
thetic data on a single synthesis model. The model av-
eraging can be implemented using the Bayesian model
averaging method (Hoeting et al., 1999); but it can be
analytically and computationally demanding. An alterna-
tive approach, less formal but practically more straight-
forward manner, can also be applied. Say there are 3 rea-
sonable models—M1, M2 and M3—for the original data,
with the “plausibility” weights 0.4, 0.3 and 0.3 for each
model (e.g., per Bayes factors). Suppose 10 sets of syn-
thetic data are to be released; we could then generate 4
sets of synthetic data from M1, 3 sets from M2 and 3 sets
from M3, leading to 10 sets synthesized by 3 different
models. The inferences based on the 10 sets (combined
using the method given in Section 3.3) will implicitly in-
tegrate out the model uncertainty, and are more robust and
less sensitive to the model selection and specification than
in the case where all 10 sets are generated from a single
model. The downside of the model averaging idea is that
it will result in more uncertainty in the synthetic data, a
price paid for more robustness. In addition, the weights
associated with the set of the models can be subjective,
even via the Bayes factor approach, which is known for
its dependence on the priors.

3.2.3 Sequential regression modeling synthesizers.
Another method to generate DIPS data is through a
sequential regression modeling synthesizer approach,
which broadly speaking, can also be regarded as the
MODIPS approach. Specifically, suppose the variables
from the data are X1,X2, . . . ,Xp . The joint distribution
of f (X1, . . . ,Xp) can be decomposed as f (X1)f (X2|
X1) · · ·f (Xp|X1, . . . ,Xp−1), suggesting data can be gen-
erated sequentially by first synthesizing X1 from f (X1),
then X2 from the conditional model of X2 given X1, and
so on. Each of the p regression models needs to differ-
ently private and can borrow the existing framework on
differentially private empirical risk minimization (ERM)
or differentially private regression models. For instance,
Chaudhuri and Monteleoni (2009) proposed directly per-
turbing the minimizers or perturbing the empirical risk
to obtain differentially private minimizers in l2 regu-
larized logistic regression, which is extended to differ-
entially private empirical risk minimization with differ-
entiable and strongly convex regularizers in Chaudhuri,
Monteleoni and Sarwate (2011) and with a nondifferen-
tiable regularizer in Kifer, Smith and Thakurta (2012).
Zhang et al. (2012) proposed the functional mechanism

that adds noise to the objective function using the Laplace
mechanism and estimates the global sensitivity through a
polynomial representation. The functional mechanism ap-
plies to both linear and logistic regression, but the latter is
based on the approximation through the Taylor expansion
and is susceptible to a large amount of noise (Zhang et al.,
2013). Sheffet (2017) examined differentially private in-
ferences (hypothesis testing and confidence interval con-
struction) for ordinary least squares and ridge estimator
in linear regression.

The sequential regression modeling synthesizer ac-
counts for the correlations among the various variables.
In addition, the synthesizer can be implemented in most
data types as long as the differentially private versions for
the commonly used regression model types are available.
The sequential modeling framework has been success-
fully implemented in practice for imputing missing data
(Raghunathan et al., 2001, Raghunathan, Solenberger and
Hoewyk, 2017) and data synthesis (Kinney et al., 2011)).
Used as a DIPS methods, there are a few potential draw-
backs. First, the total privacy budget needs to be divided
into p portions due to the DP sequential composition, and
each regression model receives only a single portion. If p

is large, this approach could perform poorly in terms of
statistical utility of the synthetic data due to the lack of
privacy budget per regression. Most of the DP regression
techniques mentioned above often output a single point
estimate for the parameters involved in each regression
models, which can be plugged in to generate synthetic
data. To properly propagate the uncertainty around the
parameters, we either have to model the synthesis pro-
cess analytically or release multiple synthetic data sets by
drawing and plugging in multiple sets of parameters as
in the MODIPS approach. Third, efficient DP regression
models are not available for all model types (e.g., the Cox
regression for survival data). One possible solution that
circumvents regression modeling is the STEPS approach
(Bowen and Liu, 2018), a nonparametric synthesizer that
is also based sequentially “modeling” of the data.

3.3 Inferences from Synthetic Data via DIPS

Synthetic data generated by DIPS approaches are per-
turbed through the sanitization process with random noise
into the original data. Some P-DIPS approaches (such as
the Multinomial-Dirichlet synthesizer and MODIPS) also
incorporate the uncertainty around the distribution and
model assumed on the original data. There are at least two
approaches that account for the sanitization/synthesis un-
certainty in the inferences based on the synthetic data. The
first approach is to model the sanitization/synthesis pro-
cess directly, such as in Charest (2010) for synthesizing
binary data and in Karwa, Krivitsky and Slavković (2017),
where the edges of a social network are synthesized via a
randomized response mechanism under ε-edge DP in the
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exponential random graph models and then likelihood-
based inference for missing data and Markov chain Monte
Carlo techniques (more specifically, Metropolis–Hastings
algorithms) are applied to model the synthesis process.
This approach can be demanding for data users both ana-
lytically and computationally. The second approach is to
release multiple sets of synthetic data, which can be re-
garded as a Monte Carlo version of the former. In the
multiple release approach, data users only need to ana-
lyze each surrogate data set as if they had the original data
set, and then combine the multiple sets of inferences in a
legitimate way to yield the final inferences. Suppose the
parameter of interest is β . Denote the estimate of β in the
lth synthetic data by β̂(l) and the associated standard error
by v(l). The final point estimate β is

(3.5) β̄ = m−1
m∑

l=1

β̂(l)

with Var(β̄) estimated by

(3.6) T = m−1B + W,

where B = ∑m
l=1(β̂

(l) − β̄)2/(m − 1) (between-set vari-

ability) and W = m−1 ∑m
j=1 v2(l) (average per-set vari-

ability); and tests and confidence intervals are based on

(3.7) (β̄ − β)T −1/2 ∼ tν=(m−1)(1+mW/B)2 .

The formal proof of the variance combination rule for the
MODIPS approach can be found in Liu (2016).

The estimator in equation (3.6) is the same as the vari-
ance combination rule in Reiter (2003) for obtaining in-
ferences from multiply synthetic sets in the context of
non-DP setting for partial synthesis. The equivalence be-
tween the two is not just a random coincidence but likely
due to that the synthesis processes are similar between
the two, with the only difference in the extra variability
brought into the synthetic data via a differentially private
mechanism in the DP setting, which is nicely captured
by the between-set variability component B and does not
affect how B and W are combined. Given this extra vari-
ability, inferences from the differentially privately synthe-
sized data will be less precise than those from non-DP MS
approaches—a price paid for the DP guarantee. Although
not formally proved, it is expected equation (3.5) to (3.7)
also apply in the Multinomial-Dirichlet synthesizer and
other DIPS approaches that use multiple set releases to
account for sanitization and synthesis uncertainty, though
the sources that compose B would differ. Reiter and Kin-
ney (2012) and Raab, Nowok and Dibben (2017) sug-
gested that the estimator W + B/m, although derived for
partial synthesis, also works for complete (full) synthe-
sis and does not require the synthetic data to be gener-
ated from the posterior predictive distribution. These ar-
guments further connects W + B/m with the DIPS meth-
ods and support its potential as the variance estimator

for the DIPS methods in general. First, DIPS falls under
the complete synthesis scenario, but without generating a
synthetic population from which a synthetic sample data
set is drawn or having any known population auxiliary
variables X as referred to by Raghunathan, Reiter and
Rubin (2003). Second, many DIPS methods do not syn-
thesize data from posterior predictive distributions (e.g.,
the Laplace sanitizer), which is a case that W + B/m can
accommodate.

The estimator for the DIPS presented in equation (3.6)
is the first proposed variance estimator in the DP set-
ting. Although there exist several variance estimators in
the non-DP setting (see Raab, Nowok and Dibben (2017),
it provides an overview of estimators and recommenda-
tions on which one to use in different scenarios. We con-
ducted simulation studies to examine how these variance
estimators would work in the DIPS setting. While the
simulations studies are neither comprehensive nor confir-
matory, they provide some interesting findings: (1) (1 +
m−1)B − W (Raghunathan, Reiter and Rubin, 2003) can
lead to an underestimation of the variance, an undercov-
erage of CIs when ε is small and an overcoverage when
ε is large; (2) W(1 + 2/m) (Raab, Nowok and Dibben,
2017) can lead to a severe undercoverage when ε is small
and deliver nominal coverage when ε is relatively large;
(3) W + (1 + 1/m)B , the very first combination rule for
inferences in multiple imputation in the missing data set-
ting leads to an overcoverage; (4) W + B/m in equation
(3.6) delivers the nominal coverage in all the examined
simulation scenarios. In summary, W + B/m seems to
work the best based on the theoretical and empirical evi-
dence collected so far; but both aspects are somewhat lim-
ited in depth and scope, calling for more research on the
development and validation of the variance estimator in
the setting of DIPS.

4. SIMULATION STUDIES

We assess the utility and inferential properties of the
sanitized data via some of the DIPS approaches presented
in Section 3 through four simulation studies. We examine
the approaches in the setting of the pure ε-DP through the
application of the Laplace mechanism, but all the DIPS
approaches can be applied under softer versions of DP
(e.g., (ε, δ)-pDP) via the employment of appropriate san-
itizers (such as the Gaussian mechanism). The first and
second simulation studies focus on univariate categorical
data and univariate continuous data, respectively; the third
and fourth simulation studies involve a mixture of cate-
gorical and continuous variables, but data are generated
from different models.

Despite the simplicity of the first and second simula-
tion studies, the results on the impacts of DP on the sta-
tistical inferences are rather insightful, especially consid-
ering there is very little research in comparing the utility
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of various DIPS approaches in terms of statistical infer-
ences. These simulations also provide justifications for
the choices of the DIPS approaches used in the third
and fourth simulation studies. In the fourth simulation,
we examine the effect of misspecification on the synthe-
sis model for the MODIPS approach, and investigate the
importance of selection and validation of an appropriate
synthesis model. We did not implement the model selec-
tion/validation procedures in simulation studies 1 to 2 due
to the simplicity of the data and thus the obvious choice of
an appropriate model. We also did not conduct the model
selection/validation in simulation study 3 given that its
similarity in the data structure with simulation 4. There is
no difference whether simulation studies 3 or 4 is used for
the purposes of illustrating the model selection/validation
procedure in the MODIPS approach.

We varied the privacy budget ε from e−4 to e4 in each
simulation to examine its effect on the statistical infer-
ences. While ε as large as e4 might not be used in prac-
tice due to privacy considerations, it is a useful theoreti-
cal exploration on the amount of privacy sacrifice in or-
der to have inferences based on the synthetic data to be
close to the original; likewise, ε as small as e−4 helps us
to understand what level of privacy would ruin the infer-
ences to an unacceptable degree based on the synthetic
data. In all the examined DIPS approaches, the sample
size of each released synthetic set is the same as the orig-
inal data, and 5 sets of synthetic data are generated in
DIPS approaches except for the smoothed histogram and
the Binomial-Beta McClure–Reiter approaches for rea-
sons stated in Section 3. For the DIPS approaches that
generate 5 synthetic data sets, each synthesis receives 1/5
of the total privacy budget ε per the sequential composi-
tion principle. The inferences based on the DIPS synthetic
data are benchmarked against those based on the original
data and the traditional non-DP MS technique.

4.1 Simulation Study 1: Categorical Data

The following DIPS methods are compared in this sim-
ulation study: the MODIPS synthesizer, the Laplace sani-
tizer, the Binomial-Beta McClure–Reiter synthesizer and
the Multinomial-Dirichlet synthesizer. Data was simu-
lated from a Bernoulli distribution f (xi) = Bern(π) for
i = 1, . . . , n. We examined 9 simulation scenarios for
n ∈ {40,100,1000} and π ∈ {0.10,0.25,0.50}, with 5000
repetitions per scenario.

The non-DP MS and the MODIPS approaches are
model-based, and usually model selection and valida-
tion should be applied to select an appropriate synthesis
model. However, we did not perform model and selection
and validation given obvious choice of the likelihood with
the simplicity of the data in this simulation. With the bi-
nomial likelihood and prior Beta(α,β) on π , the posterior
distribution of π given x is f (π |x) = Beta(α + n1, β +

n − n1) where n1 = #{xi = 1}. We set α = β = 1/3
(Kerman, 2011). In the MODIPS approach, we first lo-
cated the Bayesian sufficient statistics s associated with
the posterior distribution f (π |x), which is n1 with global
sensitivity being 1. The Laplace mechanism was then em-
ployed to obtain n∗

1 = n1 + e, where e ∼ Lap(0, ε−1). Fi-
nally, we sampled π∗ from f (π∗|n∗

1) = Beta(α +n∗
1, β +

n − n∗
1), and x̃i from f (x̃i |π∗) = Bern(π∗) for i =

1, . . . , n to generate one set of synthetic data. The cy-
cle was repeated 5 times (from sanitizing n1 to drawing
x̃) to obtain 5 sets of synthetic binary data. The non-
DP MS approach generated synthetic data in a similar
manner to the MODIPS approach except that there was
no perturbation of n1 and π was sampled directly from
f (π |x) = Beta(α +n1, β +n−n1), and then x̃i was sam-
pled from f (x̃i |π) = Bern(π). In the Laplace sanitizer,
five sets of sanitized binary data were directly generated
per n∗

1 = n1 + e without any distributional assumption or
model fitting.

In both the Laplace sanitizer and the MODIPS, the sani-
tized n∗ could be out of bounds [0, n] as the Laplace noise
is drawn from the real line. To legitimize n∗

1, we applied
truncation (out-of-bounds n∗

1 is thrown away and only in-
bounds values are kept), and the boundary inflated trun-
cation (setting n∗

1 < 0 values at 0 and those > n at n).
Neither post-hoc processing procedures compromise DP
as no new information is leaked from the original data
(sample size n is assumed to be insensitive information
and can be released) (Liu, 2019b). Bounding n∗ at [0, n]
in the MODIPS implies that α∗ = α + n∗

1 ≥ 0 and β∗ =
β + n− n∗

1 ≥ β in f (π∗|n∗
1) = Beta(α + n∗

1, β + n− n∗
1).

A reviewer suggested bounding n∗ at [−α,β + n], thus
α∗ ≥ 0 and β∗ ≥ 0 and a wider range of π∗ can be sam-
pled. We compared this truncation scheme with the above
two in this simulation and no significant differences were
found.

Both the Binomial-Beta McClure–Reiter synthesizer
and the Multinomial-Dirichlet synthesizer simulated data
x̃ from Bern(p∗); however, p∗ was fixed at n1+α∗

n+α∗+β∗ with

α∗ = β∗ = (eε/n − 1)−1 for the Binomial-Beta McClure–
Reiter synthesizer, and was drawn from f (p∗|α∗, β∗) =
Beta(α∗ +n1, β

∗ +n−n1) for the Multinomial-Dirichlet
synthesizer with α∗ = β∗ = n/(eε − 1). In the Binomial-
Beta McClure–Reiter sanitizer, a single synthetic set was
released. In the Multinomial-Dirichlet synthesizer, five
synthetic sets were generated, one per each sanitized p∗.

To obtain inferences on π from the released data, each
of the 5 sets was analyzed separately in all the above syn-
thesis approach except for the Binomial-Beta McClure–
Reiter approach. The point estimate of π in the lth (l =
1, . . . ,5) synthetic data set was the sample proportion
p̂(l), and its variance was estimated as v(l) = p̂(l)(1 −
p̂(l))n−1. Equations (3.5) to (3.7) were then applied to
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FIG. 2. The bias, RMSE, 95% coverage probability (CP) and 95% confidence interval (CI) width of π in simulation study 1. MODIPS repre-
sents the model-based differentially private synthesis, LAP represents the Laplace sanitizer, MD represents the Multinomial-Dirichlet synthesizer,
BB-MR represents Binomial-Beta McClure–Reiter synthesizer, Ori is the original results without any perturbation and MS is the traditional multiple
synthesis method without DP.

obtain a final estimate of p̂ and the associated 95% confi-
dence interval (CI). Figure 2 depicts the results on the bias
and root mean squared error (RMSE), CI width and the
coverage probabilities (CPs) of the 95% CIs for π from
each DIPS approach, the non-DP MS approach and the
original data (we present only the results from the bound-
ary inflated truncation post-processing, which were better
than the results from the truncation approach).

The results are summarized as follows. (1) The overall
performances of the MODIPS and the Laplace synthe-
sizer are similar while those of the Multinomial-Dirichlet
and Binomial-Beta McClure–Reiter synthesizers are sim-
ilar; in general, the inferences in the former two are bet-
ter than the latter two. (2) There is noticeable bias, large
RMSE and some undercoverage especially when ε < 1
and n is small across all DIPS approaches. The inferences
improve as ε increases (more privacy budget, and thus
less perturbation), eventually approaching the original re-
sults for the Multinomial-Dirichlet and Binomial-Beta
McClure–Reiter synthesizers, and approaching the non-
DP MS results for the MODIPS and the Laplace sanitizer.
(3) In the MODIPS and Laplace sanitizer, the amount of
noise remains constant regardless of n; in other words,
the noise becomes less significant for larger n. In the

Multinomial-Dirichlet and the Binomial-Beta McClure–
Reiter synthesizers, the perturbation introduced through
the prior information increases monotonically with n.
As a result, there is little improvement in inferences
with larger n, which is a significant drawback for the
Multinomial-Dirichlet and the Binomial-Beta McClure–
Reiter synthesizers. (4) Since the prior mean of π is
0.5 for the Multinomial-Dirichlet and the Binomial-Beta
McClure–Reiter synthesizers, when the sample propor-
tion is not 0.5, the two sanitizers introduce bias into the
released data. Therefore, the inferences are the best when
π = 0.5 for the Multinomial-Dirichlet and Binomial-Beta
McClure–Reiter synthesizers given the consistency be-
tween the prior information and the data. (5) For the
Laplace sanitizer and the MODIPS approach, the infer-
ences are also the best when π = 0.5 since 0.5 is the mid-
point for the range of a proportion, truncating at 0 or 1
does not skew the distribution of π as much as when π is
close to 0 or 1. (6) The RMSE values from the MODIPS
and Laplace sanitizers are much smaller than those from
the Binomial-Beta McClure–Reiter and Multinomial-
Dirichlet synthesizes for most ε values when π �= 0.5;
when π = 0.5, the Binomial-Beta McClure–Reiter and
Multinomial-Dirichlet synthesizers offer smaller RMSE
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values for small ε; actually, the values are even smaller
than the original RMSE values for small ε values and de-
crease when there is more perturbation (ε shrinks). Again,
this is due to the consistency of the prior information
and the data when π = 0.5. As ε decreases, the prior in
the Multinomial-Dirichlet and Binomial-Beta McClure–
Reiter priors become more “informative,” and inject more
“useful” prior information about π that is consistent with
the data, leading to smaller RMSE. (7) The MODIPS
and Laplace sanitizers produce close-to-nominal coverage
(0.95) across all the n and π values, except for some un-
dercoverage at small ε and n due the relatively large bias
with the truncation at 0 and 1 for sanitized proportions.
Eventually all CPs converge to the nominal level as ε in-
creases in all the sanitizers except for the Binomial-Beta
McClure–Reiter synthesizer. (8) On the other hand, the
CIs for the Laplace and the MODIPS sanitizers are much
wider when ε < e−1 than those from the Binomial-Beta
McClure–Reiter and Multinomial-Dirichlet synthesizes.

4.2 Simulation Study 2: Continuous Data

The following methods are compared in this simulation
study: the MODIPS synthesizer, the NP-DIPS synthesiz-
ers via the perturbed histogram and the smoothed his-
togram approaches. Data was simulated from N(μ,σ 2).
We manually truncated the simulated data at bounds [c0 =
μ − 3σ, c1 = μ + 4σ ] around μ to generate bounded data
so that global sensitivity for the sample mean and vari-
ances are finite and calculable. Since there is minimal
probability mass (0.0013) outside the [μ − 3σ,μ + 4σ ],
the normal assumption is hardly affected with the trunca-
tion (note that the bounds we used are asymmetric around
the true μ, which is more representative of real life data
than symmetric bounds). We also examined symmetric
bounds, but present the results in the Supplementary Ma-
terial (Bowen and Liu, 2020). We examined 9 simulation
scenarios for n = {20,100,1000} and σ 2 = {1,4,9}, with
5000 repetitions per scenario. Without loss of generality,
μ was set to 0 in all scenarios.

With the obvious choice of the likelihood given the sim-
plicity of the data, we did not perform model selection
and validation in this simulation. Given prior f (μ,σ 2) ∝
σ−2, the posterior distributions are f (σ 2|x) =
Inv-Gamma[(n − 1)/2, (n − 1)S2/2] and f (μ|x, σ 2) =
N(x̄, n−1σ 2), where x̄ and S2 are the sample mean and
variance, respectively. In the non-DP MS, a synthetic set
was generated by first drawing σ 2 and μ from their pos-
terior distributions, and then drawing x̃ from the normal
distribution given the drawn μ and σ 2. The process was
repeated 5 times to generate 5 sets of synthetic data to
release.

The MODIPS procedure started with sanitizing suffi-
cient statistics s via the Laplace mechanism, which are,
in the posterior distribution f (μ,σ 2|x), s = (x̄, S2). To

calculate the global sensitivity for x̄ and S2, we needed
the global bounds of X. We assumed the bounds of the
data were publicly known knowledge, which is a realistic
assumption in general as it is very likely an attribute in
a data set was never studied previously; there the global
bounds on the attribute values are known (e.g., human
height, income or published biomarkers, etc). A reviewer
questioned the possible conservativeness of the bounds. If
the bounds are conservative given the local data, then it is
not a concern as DP protects against the worst case sce-
nario and the global bounds are what is needed instead of
the local data. If the bounds are conservative at the global
level, this implies there is insufficient information on the
attribute. In this case, it would be better to be conserva-
tive rather than not from a privacy protection perspective
though it means more than necessary noise is injected.
Future studies are expected to help gain more understand-
ing on the attribute and tighten the bounds. Note that us-
ing the local bounds directly would violate privacy even if
one is willing to spend some privacy budget to perturb the
bounds before using them. However, how to perturb the
minimum and maximum can be difficult without knowing
the global bounds in the first place.

The global sensitivity is (c1 − c0)n
−1 for x̄ and (c1 −

c0)
2n−1 for S2, where (c1 − c0) = 7σ (Liu, 2016).

Since the data are bounded, so are x̄ and S2. Specifi-
cally, the bounds for x̄ are [c0, c1], and those of S2 are
[0, (c1 − c0)

2/4 · n/(n − 1)] (Macleod and Henderson,
1984). If a sanitized statistic was outside its range, it was
post-processed by the boundary inflated truncation proce-
dure. Given the sanitized s∗ = {x̄∗, S2∗}, the MODIPS
technique drew σ 2∗ from Inv-Gamma[(n − 1)/2, (n −
1)S2∗/2] and μ∗ from N(x̄∗, n−1σ 2∗). Finally, x̃∗

i was
simulated from N(μ∗, σ 2∗) for i = 1, . . . , n to generate
one synthetic set. The whole procedure was repeated 5
times to generate 5 surrogate data sets. ε/5 of the total
budget was spent per synthesis. In addition, since there
are two statistics, (x̄, S2), to sanitize over the same set of
data, the ε/5 budget per synthesis was further split in half
between the sanitization of x̄ and S2.

In deciding the number of bins for the histograms for
the perturbed and smoothed histogram approaches, we ap-
plied Scott’s rule after comparing it with the Sturges’ rule
and the Freedman–Diaconis rule (Scott, 2015). Specif-
ically, the bin width is set at ĥ = 3.5Sn−1/3, where S

is the sample standard deviation of x and n is the sam-
ple size. The median number of bins is 7, 10 and 21 for
n = 20,100 and 1000, respectively, across all simulations
(Table 1 in the Supplementary Material). In the perturbed
histogram, all bin counts were perturbed via the Laplace
mechanism with �s = 1 to obtain the perturbed density
histogram (equation (3.1)). The procedure was repeated
5 times to obtain 5 sets of differentially private p̂(l) (the
perturbed bin counts), based on the 5 sets of synthetic data
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that were simulated. For the smoothed histogram, we first
calculated λ for a given ε using equation (3.3), and then
constructed the smoothed histogram by applying equation
(3.2), from which a single set of synthetic data was gen-
erated and released.

To obtain the inference on μ and σ 2 from the mul-
tiple released data sets via the MODIPS, the perturbed
histogram sanitizers, and the non-DP MS approach, each
synthetic set l was analyzed to obtain point estimates of μ

and σ 2, which were x̄(l) (the sample mean) and s2(l) (the
sample variance), respectively; the associated within-set
variance estimates were s2(l)/n and (s2(l))2(2(n− 1)−1 +
κ(l)n−1), respectively, where κ(l) was the excess kurtosis
in the lth set. Equations (3.5) to (3.7) were then applied to
obtain the final estimates and 95% CIs.

Figures 3 and 4 depict the bias, RMSE, 95% CI width
and the CP of the 95% CI for μ and σ 2 based on the
synthetic data of μ and σ 2 based on the synthetic data
via the 3 DIPS approaches, respectively. For the purposes
of comparability across different values of σ 2, the bias,
RMSE and CI width for σ 2 are scaled by the true σ 2, re-
ferred to as the relative bias, scaled RMSE and scaled CI
width, respectively.

The results are summarized as follows. (1) For all
approaches, there are some noticeable biases and large
RMSE at small ε for both μ and σ 2, which shrink as ε

increases and eventually approach the original or the non-
DP MS results. Overall, the perturbed histogram seems
to offer the best trade-off between bias and variance for
the inferences based on the synthetic data. (2) For the
MODIPS and the perturbed histogram approaches, the
amount of injected noise becomes immaterial and the in-
ferences improve as n increases. In the smoothed his-
togram, λ in equation (3.3) gets larger and approaches
K/(K + ε) as n increases. As a result, increasing n does
not help the inferences in the smoothed histogram. (3) The
positive bias in μ can be explained by the asymmetric
bounds [μ − 3σ,μ + 4σ ] of data x around μ. When san-
itized x̄∗ or synthesized data are out of bound, they are
set at the boundary values per the boundary inflated trun-
cation procedure. Since the left bound μ − 3σ is closer
to μ, there are more values at μ − 3σ than at μ + 4σ ,
resulting in overestimation. The observed positive bias
in σ 2 is expected due to the randomness introduced via
synthesis and sanitization. (4) In terms of RMSE, the
histogram-based approaches produce smaller RMSE for
μ than the MODIPS for most of n and ε < 1, but the situa-
tion changes for σ 2 with the smallest RMSE coming from
the MODIPS. (5) In terms of CP, the MODIPS produces
close-to-nominal level coverage in all examined scenarios
for both μ and σ 2 at the cost of wide CIs for ε < 1; the
perturbed histogram has moderate to mild undercoverage

FIG. 3. The bias, RMSE, 95% CP and 95% CI width of μ in simulation study 2. MODIPS represents the model-based differentially data private
synthesis, PERT represents the perturbed histogram method, SMOOTH represents the smoothed histogram method, MS is the traditional multiple
synthesis method without DP and Ori is the original results without any perturbation.
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FIG. 4. The bias, RMSE, 95% CP and 95% CI width of σ 2 in simulation study 2. MODIPS represents the model-based differentially data private
synthesis, PERT represents the perturbed histogram method, SMOOTH represents the smoothed histogram method, MS is the traditional multiple
synthesis method without DP and Ori is the original results without any perturbation.

with much narrower CIs; and the smooth histogram has
unacceptable severe undercoverage at small ε for large n.

The results when the data bounds [μ − 4σ,μ + 4σ ]
are symmetric around the true mean are presented in Fig-
ures 2 to 5 in the Supplementary Material. As expected,
there are minimal biases on μ in all the DIPS approaches
(there was some fluctuation in MODIPS for small ε),
and the CPs in all approaches are at nominal-level. The
histogram-based approaches deliver more precise esti-
mates than MODIPS in the inferences of μ (smaller
RMSE and narrower CIs). However, the histogram-based
approaches do not perform as well as MODIPS in the in-
ferences of σ 2. Both the bias and RMSE are large and
there is severe undercoverage at small values of ε.

4.3 Simulation Studies 3 and 4: Mixture of
Continuous and Categorical Data

In simulation studies 3 and 4, we compare the
MODIPS synthesizer and the NP-DIPS synthesizer in
data with mixed Gaussian variables x and categorical
variables w. The data were generated from the GLOM
(General LOcation Model) based on f (x|w)f (w) in sim-
ulation 3, and from the SLOMAG model (Sequential
LOgistic regression with MArginal Gaussian distribution)
f (w|x)f (x) in simulation 4. We also investigate the im-
pact of misspecification of the synthesis models. For NP-

DIPS in both simulations, we applied the Laplace synthe-
sizer on w coupled with the perturbed histogram for x.
We did not implement the Multinomial-Dirichlet synthe-
sis or the smoothed histogram approach given their in-
ferior performances to the the Laplace sanitizer, the per-
turbed histogram and the MODIPS based on the results
from simulation studies 1 and 2.

4.3.1 Simulation study 3: GLOM model. Data x com-
prise three categorical variables w = (w1,w2,w3) with
2, 3 and 4 levels, respectively, and continuous variables
z. Let nk denote the count in cell k in the full cross-
tabulation of w for k = 1, . . . ,24. The counts n = {nk}
in the 24 cells were first simulated from a multinomial
distribution with parameter π = {πk} (which are summa-
rized in Table 3 from the Supplementary Material); zik =
(zik1, zik2)

′ was then simulated from N(2)(μk,�) for i =
1, . . . , nk and k = 1, . . . ,24, where μk = (μk1,μk2)

′ is
the mean of z in cell k, and � is the covariance matrix
that is the same across all 24 cells. The summary of the
parameter values of μ1, μ2, π across the 24 cells are pro-
vided in Table 2 in the Supplementary Material. We set
n = 1000, the variances of zik1 and zik2, σ 2

1 = σ 2
2 = 1,

and their correlation at ρ = 0.50 with 5000 repetitions.
zikj in cell k (where j = 1,2) was truncated at [c0,kj =
μkj − 4σj , c1,kj = μkj + 4σj ] to generate bounded data.
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Additionally, in the Supplementary Material, Table 3 de-
picts the summary statistics for the number of observa-
tions in the 24 cells across the 5000 repetitions.

For the non-DP MS approach, Given priors f (π) =
Dirichlet(α), where α = {α1, . . . , α24} = 1/2, and f (μ1,

. . . ,μ24,�) ∝ |�−1|. The posterior distributions are
f (π |w) = D(α′), f (�|z,w) = Inv-Wishart(n − K,S)

and f (μk|�, z,w) = N(2)(z̄k, n
−1
k �), where α′ = α + n,

S = n−1 ∑K
k=1

∑nk

i=1(zik − z̄k)(zik − z̄k)
′, and z̄k con-

tains the sample means of z in cell k. Synthetic data
were simulated from the posterior predictive distribution
f (z̃i , w̃i |z,w) by first drawing π ∼ f (π |w) = D(α + n),
� from f (�|z,w) = Inv-Wishart(n−K,�̂) and μk from
f (μk|�, z,w) = N(2)(z̄k, n

−1
k �); then sampling w̃ from

f (w̃|π) = Multinom(n,π), and z̃i from f (zi |w̃i ,�) =
N(2)(μk,�) for i = 1, . . . , ñk , where ñk is the count in
cell k based on the synthesized w̃. The drawing process
was repeated 5 times to generate 5 synthetic sets.

The Bayesian sufficient statistics from the above Bayes-
ian model are s = (n, S, z̄); z̄ contain the 24 pairs of
cell means of z1 and z2. The MODIPS procedure started
with sanitizing s via the Laplace mechanism to obtain
s∗ = (n∗, S∗, z̄∗) (the l1 global sensitivity was 1 for
n, (c1,kj − c0,kj )n

−1
k for z̄kj and (c1,kj − c0,kj )

2(n −
1)(n(n − K))−1 for each entry in S (Liu, 2019b), where
c1,kj − c0,kj = 8σ for k = 1, . . . ,24 and j = 1,2). Given
s∗, the MODIPS method first drew π∗ from f (π∗|n∗) =
D(α + n∗), w̃∗ from f (w̃∗|π∗) = Multinom(n,π∗),
�∗ from f (�∗|S∗) = Inv-Wishart(n − K,S∗), μ∗

k from
f (μ∗

k |�∗, z̄∗,w) = N(z̄∗
k, n

−1
k �∗); and then z̃i was simu-

lated from f (zi |μ∗
k̃
,�∗) = N(μ∗

k̃
,�∗) for i = 1, . . . , ñ∗

k to
generate one set of surrogate data, where ñ∗

k is the count
in cell k based on the synthesized w̃∗, and k̃ indicates
the cell which the simulated case i belonged to given the
synthesized w̃∗

i . The procedure was repeated 5 times to
generate 5 synthetic sets with ε/5 privacy budget each.
Since s contains 6 components: n, z̄1, z̄2, two variance
terms and one covariance term from S, each received 1/6
of ε/5 budget allocated to each synthesis (there is no need
to split ε/30 further among the 24 elements in n per the
parallel composition as they are calculated over nonover-
lapping subsets; similar for z̄1 and z̄2, respectively).

In the NP-DIPS approach, we applied the Laplace san-
itizer to sanitize 24 cell counts n formed by the full cross-
tabulation of w, and the perturbed histogram method to
sanitize continuous z within each of the 24 cells. Since
z is 2-dimensional, each bin of the histogram of z is a
square rather than an interval. The number of bins were
determined using the Scott’s rule, and the medians range
from 16 to 49 across the 5000 repeats in the 24 cells (Sup-
plementary Material Table 4). The process was repeated 5
times to create 5 sets of sanitized ñ and 24 perturbed his-
tograms, from which 5 sets of synthetic data were gener-
ated. Each synthesis was allocated 1/5 of the total privacy

budget, which was further split between sanitizing the 24
cells formed by w and sanitizing the histogram formed by
z in a 1:1 ratio.

We examine the inferences on μ1, μ2, σ 2
1 , σ 2

2 , ρ

and probabilities � = {Pr(w1 = 1),Pr(w2 = 1),Pr(w2 =
2),Pr(w3 = 1),Pr(w3 = 2),Pr(w3 = 3)} based on the
synthetic data sets. In each synthetic set l (l = 1, . . . ,5),
� was estimated by the corresponding sample marginal
probability P̂(l); μ1 and μ2 were estimated by the sam-
ple cell means z̄1,l and z̄2,l ; and � was estimated by the
pooled variance-covariance S(l). The within-set variance
was estimated by P̂(l)(1 − P̂(l))n−1 for P̂(l), S2

j,ln
−1 for

z̄j (j = 1,2), (S2
j,l)

2(2(n − 1)−1 + κ(l)n−1) for S2
k,l and

(1 − r2(l))(n − 2)−1 for the correlation between Z1 and
Z2, respectively, where S2

1,l and S2
2,l are the diagonal ele-

ments of S(l), κ(l) is the excess kurtosis and r(l) is derived
from S(l). Equations (3.5) to (3.7) were applied to obtain
the final estimates of the parameters and the 95% CIs.

Figure 5 shows the results on the bias, RMSE, CP and
the 95% CI width of μ1 and �. The results on μ2, σ 2

1 , σ 2
2 ,

ρ are provided in Figures 6 and 7 in the Supplementary
Material. The results are summarized as follows. (1) NP-
DIPS performs better than MODIPS for the inferences of
μ1, μ2 and � with smaller bias, similar or smaller RMSE,
closer-to-nominal coverage and slightly narrower CIs for
ε > e−2. (2) On the other hand, the MODIPS outperforms
the NP-DIPS approach for the inferences on σ 2

1 , σ 2
2 , ρ

with much smaller bias and RMSE for ε > e−1 and deliv-
ers nominal CP with reasonable CI widths for ε > 1; the
NP-DIPS approach experiences severe undercoverage in
all 3 variance/covariance components and never reaches
the nominal level of 95% at all level of ε. The severe un-
dercoverage in the NP-DIPS at large ε (where the injected
noise is supposed to be small) is due to the discretization
in forming the histogram bins. The performance of the
MODIPS is based on the correct specification of the syn-
thesis model (the GLOM). Misspecification of the synthe-
sis model is expected to lead to worse results, which we
will explore in simulation study 4.

4.3.2 Simulation study 4: SLOMAG model. In this sim-
ulation, we first simulated z from the bivariate normal
distribution f (Z) = N(2)(μ,�) and then generated the
categorical variables w from a sequence of logistic re-
gression models. We set μ = (μ1,μ2)

′ = 0, the vari-
ances of Z1 and Z2 at σ 2

1 = σ 2
2 = 1 and their cor-

relation at ρ = 0.50. Zj (j = 1,2) was truncated at
[c0j = μj − 4σj , c1j = μj + 4σj ] to generate bounded
data. w contains 3 categorical variables W1, W2, W3
with 2, 2 and 3 levels, respectively, and was generated
from W1|Z1,Z2 ∼ Bern(π1) with π1 = e(1,Z1,Z2)β1(1 +
e(1,Z1,Z2)β1)−1, W2|Z1,Z2,W1 ∼ Bern(π2) with π2 =
e(1,Z1,Z2,W1)β2(1 + e(1,Z1,Z2,W1)β2)−1 and W3|Z1,Z2,

W1,W2 ∼ Multinom(1, (π31, π32, π33)), where π31 =
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FIG. 5. The bias, RMSE, CP and 95% CI width of � and μ1 in simulation study 3. In the plot of �, each line presents a different marginal
probability. In the plot of μ1, the lines represent the min, med, max, Q1, Q3 of the true 24 cell means, respectively. MODIPS represents the
model-based differentially private data synthesis, NP-DIPS represents the Laplace sanitizer + perturbed histogram method, MS is the traditional
MS method without DP and Ori is the original results without perturbation.

(1+A+B)−1, π32 = A(1+A+B)−1, π33 = B(1+A+
B)−1, A = e(1,Z1,Z2,W1,W2)β3 , B = e(1,Z1,Z2,W1,W2)β4 ;
and β1 = (β01, β11, β21)

′ = (−1,0.5,−1)′, β2 = (β02,

β12, β22, β32)
′ = (−2,−1,1.5,0.5)′, β3 = (β03, β13, β23,

β33, β43)
′ = (0,−2.5,1,0.5,0.4)′ and β4 = (β04, β14,

β24, β34, β44)
′ = (0.1,−1,−0.5,0,1.5)′. We ran 1000

repetitions, each sized at n = 1000.
The implementation of the NP-DIPS approach is

straightforward. z was first discretized via the Scott’s rule
to form a 2-way histogram (Table 6 presents the number
of histogram bins in the Supplementary Material), which
was then combined with (w1,w2,w3) to form a 5-way
cross-tabulation. The counts from which were sanitized
via the Laplace sanitizer with global sensitivity is 1, from
which 5 sets of synthetic data were generated.

The non-DP MS and the MODIPS methods rely on
specifying a synthesis model. In the case of the non-
DP MS, an appropriate model can be identified without
having to worry about privacy costs. For MODIPS, if
the identification of a suitable model is based on previ-
ous knowledge and common practice, then no privacy is
needed to be spent; however, if the model selection proce-
dure is based on the the data to be released, then the data
curator will have to allocate a certain portion of the to-
tal privacy budget to the model selection procedure. Dif-
ferentially private model selection is a separate research
topic that is beyond the scope of this paper. For simplic-
ity, we assume the correct SLOMAG model is identified
beforehand without using the current data set.

In the SLOMAG model, we employed prior f (μ,�) ∝
|�−1| and assumed f (β1,β2,β3,β4) = f (β1)f (β2)×
f (β3,β4). The joint posterior distribution of the parame-

ters can be factorized as f (�|z)f (μ|�, z)f (β1|z,w1) ×
f (β2|z,w1,w2)f (β3,β4|z,w1,w2,w3), where f (�|
z) = Inv-Wishart(n,S), f (μ|�, z) = N(z̄, n−1�) (z̄ con-
tains the sample means of z and S = n−1 ∑n

i=1(zi −
z̄)(zi − z̄)′ is the sample covariance matrix of z) and

f (β1|w1, z) ∝ f (β1)

n∏
i=1

ewi1(1,zi1,zi2)β1

1 + e(1,zi1,zi2)β1
,(4.1)

f (β2|w2,w1, z) ∝ f (β2)

n∏
i=1

ewi2(1,zi1,zi2,wi1)β2

1 + e(1,zi1,zi2,wi1)β2
,(4.2)

f (β3,β4|w3,w2,w1, z)

∝
n∏

i=1

{(
1

1 + Ai + Bi

)I (wi3=1)

×
(

ewi3(1,zi1,zi2,wi1,wi2)β3

1 + Ai + Bi

)I (wi3=2)

×
(

ewi3(1,zi1,zi2,wi3,wi2)β4

1 + Ai + Bi

)I (wi3=3)}

× f (β3,β4)

= eaiβ3+biβ4∏n
i=1(1 + Ai + Bi)

f (β3,β4),

(4.3)

where ai = (
∑n

i=1 I (wi3 = 2),
∑n

i=1 zi1I (wi3 = 2),∑n
i=1 zi2I (wi3 = 2),

∑n
i=1 wi1I (wi3 = 2),

∑n
i=1 wi2 ×

I (wi3 = 2)), bi = (
∑n

i=1 I (wi3 = 3),
∑n

i=1 zi1 ×
I (wi3 = 3),

∑n
i=1 zi2I (wi3 = 3),

∑n
i=1 wi1I (wi3 = 3),∑n

i=1 wi2I (wi3 = 3)), Ai = e(1,zi1,zi2,wi1,wi2)β3 and Bi =
e(1,zi1,zi2,wi1,wi2)β4 .
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To synthesize z̃i for i = 1, . . . , n in the traditional
non-DP MS approach via the SLOMAG model, we first
drew � from f (�|z) = Inv-Wishart(n,S), and μ from
f (μ|�, z) = N(z̄, n−1�) and then simulated z̃i from
f (z̃i |μ,�) = N(μ,�) given the drawn (�,μ). To syn-
thesize w̃i = (w̃i1, w̃i2, w̃i3), we assumed f (β1)f (β1) ×
f (β3,β4) ∝ constant and applied the Metropolis al-
gorithm to sample β1, β2, β3, β4 from their poste-
rior distributions and, after checking on the conver-
gence of the MCMC chains (2 chains, a burn-in period
of 1500, a thinning period of 10 and 10,000 iterations
to yield a total of 7650 samples), simulated w̃i1, w̃i2
and w̃i3 from f (w̃i1|β1,�, z̃), f (w̃i2|β2, w̃1i , z̃i) and
f (w̃i3|β3,β4, w̃i2, w̃i1, z̃i), respectively. We calculated
the potential scale reduction factor (psrf) using the R
package coda to check on the convergence of the MCMC
chains. In the Supplementary Material, we provide the
MCMC trace plots from a random sample out of the 1000
repeats on β1 as an example.

For the MODIPS approach, there are total 8 sets of
quantities to be sanitized: z̄, S and 3 sets of estimated re-
gression coefficients β̂1, β̂2 and (β̂3, β̂4), implying the
total privacy budget per synthesis (ε/5) should be di-
vided by 8. z̄ (2 components) and S (3 components) are
the Bayesian sufficient statistics associated with the pos-
terior distributions of � and μ. Since c1,j − c0,j = 8σ

for j = 1,2, the l1 global sensitivity is 8σn−1 for z̄j

and (8σ)2n−1 for each entry in S. To obtain differen-
tially private samples from the posterior distributions of
β1, β2, β3 and β4 in equation (4.1) to (4.3), we imple-
mented Algorithm 1 in Chaudhuri and Monteleoni (2009).
Specifically, denote by β̂ the optimizer of the loss func-
tion from a logistic regression model with l2 regulariza-
tion (tuning parameter λ) and normalized predictors x
for all i = 1, . . . , n (per Euclidean norm ‖x‖i ≤ 1), then
the differentially private coefficient estimates are given
by β̂

∗ = β̂ + e, where the distribution of the noises e
is f (e) ∝ exp(−nλε‖e‖/2). In this simulation study, we
added the noise e to a random draw from the posterior
distribution of the β instead of to the optimizer (poste-
rior mode in the Bayesian context) as originally targeted
in Chaudhuri and Monteleoni (2009) because it can be
easily shown that the same global sensitivity 2/(nλ) is
applicable for other values of β in addition to the opti-
mizer. λ is often chosen by cross-validation if there is no
privacy concern, but costs privacy otherwise. Chaudhuri,
Monteleoni and Sarwate (2011) suggested two ways of
selecting λ; using a separate public data set, which does
not cost privacy budget; or subsetting the data and then
apply the Exponential mechanism with the prediction ac-
curacy as the scoring function to choose λ (Algorithm 4
in Chaudhuri, Monteleoni and Sarwate (2011)). Here, we
assumed there exists a public data set (which was sim-
ulated from the same joint distribution of X and W and

attempted five different λ values (0.01,0.05,0.1,0.5,1)

in each regression on this public data set. We found λ1,
λ2, λ3 around 0.5 performed the best in terms of predic-
tion accuracy, which was used as the final λ’s in MODIPS
approach.

In summary, the steps for generating the differentially
private data from the SLOMAG model are as follow.
(1) sanitize z̄ and S, draw μ and � from their posterior
distributions with the sanitized z̄∗ and S∗, and simulate
z̃∗ from its posterior predictive distribution given μ∗ and
�∗. (2) Fit the l2 regularized logistic regression on w1 in
the Bayesian framework with the normalized predictor z′

and prior f (β1)
ind∼ N(0, λ−1

1 ); draw β1 from its posterior
distribution and sanitize it as outlined above; simulate w̃∗

1
given the sanitized β∗

1 and the normalized sanitized z̃∗′

from the first step. (3) Fit the l2 regularized logistic re-
gression on w2 in the Bayesian framework with the nor-

malized predictor (z′,w′
1) and prior f (β2)

ind∼ N(0, λ−1
2 );

draw β2 from its posterior distribution and sanitize it as
outlined above; simulate w̃∗

2 given the sanitized β∗
2 and

the normalized (z̃∗′
, w̃∗′

1 ) from the first two steps. (4) Fit
the l2 regularized multinomial logistic regression on w3
in the Bayesian framework with the normalized predic-

tor (z′,w′
1,w′

2) and prior f (β3,β4)
ind∼ N(0, λ−1

3 ); draw
(β3,β4) from their posterior distributions and sanitize
them as outlined above; simulate w̃∗

3 given the sanitized
(β∗

3,β
∗
4) and the normalized (w̃∗

1, w̃∗
2, z̃∗) from the previ-

ous three steps. Similar to the non-DP MS case, we calcu-
lated the psrf to check on the convergence of the MCMC
chains. In the Supplementary Material, we provide the
MCMC trace plots from a random sample out of the 1000
repeats on β1 as an example.

To check on the impact of the misspecification of syn-
thesis models in MODIPS on the inferences from the
synthetic data, we also synthesized data from a misspec-
ificated model. There are many possible models for a
mixture of categorical and continuous variables, for ex-
ample, assuming independence among (x,w), dropping
a predictor in one of the logistic regression equations
above, switching the order of the logistic regression se-
quence, or applying the GLOM, which are all regarded
as mis-specifications in this simulation. For the purposes
of checking on the impact of the mis-specification of syn-
thesis models, it makes no essential difference which mis-
specified model to be compared with the correct specifi-
cation. Therefore, we used the GLOM as a representation
for the model misspecification. The Bayesian GLOM in
this case is similar to that in Section 4.3.1, with the multi-
nomial distribution on (W1,W2,W3) (12 cells) and the bi-
variate Gaussian assumption on (Z1,Z2) in each of the 12
cells, to generate 5 synthetic data sets. To examine how
bad the misspecification could be in terms of inferences,
the Supplementary Material present a posterior predictive
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check from fitting the SLOMAG and the GLOM mod-
els to the original data. Although misspecification leads
to biased synthetic data, it does bring some potential side
benefit in terms of privacy protection. Specifically, mis-
specification could offer some additional privacy guaran-
tee as it provides another type of noise that deviates the
synthetic information from the original. Therefore, the
comparison in statistical utility below from the synthetic
data might be unfair to the GLOM model as the actual
privacy it provides might be more than the nominal ε-
DP, which the other synthesizer guarantees. On the other
hand, the additional privacy protection, if there is any, can
be difficult to trace or quantify; or it may be unnecessary
given that the pre-specified privacy is already guaranteed
through DP.

We examine the inferences on �, μ and β1, β2, β3,
β4. μ1 and μ2 in synthetic data set l (l = 1, . . . ,5) were
estimated by the sample means z̄

(l)
1 and z̄

(l)
2 , and � was

estimated by the sample covariance S(l). The correspond-
ing within-set variance was estimated by (S2

k )(l)n−1 for

z̄
(l)
k (k = 1,2), ((S2

k )(l))2(2(n − 1)−1 + κ(l)n−1) for the
marginal variances of z1 and z2, and (1 − (r(l))2)(n −
2)−1 for the correlation between Z1 and Z2, respectively,
where (S2

1)(l), (S2
2)(l) are the diagonal elements of S(l),

κ(l) is the excess kurtosis and r(l) is derived from S(l). The
regression coefficients β were estimated using the lo-
gistf function with the Firth’s bias reduction method
in the R package logistf along with the correspond-
ing estimated variance estimates. Equations (3.5) to (3.7)
were then applied to obtain the final estimates of the pa-
rameters and the 95% CIs in each DIPS approach.

Due to space limit, we present the results on the bias,
log(RMSE), CP, and log(95% CI width) for β2 and β3
in Figures 6 and 7; the results on μ1, μ2, σ 2

1 , σ 2
2 , ρ, β1

and β4 are available in the Supplementary Material. For
very small values of ε = e−4 to e−2, the logistic regres-
sion based on the synthetic data from the MODIPS ap-
proach failed to converge thus the results were not avail-
able for plotting. The results are summarized as follows.
(1) First, as expected, MODIPS-Wrong fails to capture
the original information due to the model misspecifica-
tion (large bias and undercover coverage). (2) Overall, the
biases for MODIPS-Correct get smaller and are close zero
for ε > e−1 ≈ 0.368, whereas the biases from the NP-
DIPS approach do not seem to diminish even at large ε.
However, the bias in the MODIPS-Correct method is un-
stable and larger than the other methods when ε is small
(not plotted). (3) The RMSE values in general are large
compared to the original RMSE values across all DIPS
methods. (4) The MODIPS-Correct approach produces
coverage at or above the nominal level of 95% for ε > e−1

at the cost of wide CIs. The CP results from the NP-DIPS
approach vary across parameters: some experience severe
undercoverage across all values of ε or only at small val-
ues of ε, some have close to 95% coverage across the
board. The CI width varies little with ε in the NP-DIPS
approach. (5) For μ1 and μ2, the bias, RMSE and CI
width of the estimates are smaller in the NP-DIPS ap-
proach than those in the MODIPS-Correct approach for
ε < e and are similar for ε > e; and both provide about
95% CP. Although the RMSE and CI width decrease as
ε increases for MODIPS-Wrong, the bias and CP de-
viate significantly from the original values. (6) For �,

FIG. 6. The bias, log(RMSE), 95% CP and log(95% CI width) for β2 in simulation study 4. MODIPS represents the model-based differentially
private synthesis, NP-DIPS represents the Laplace sanitizer + perturbed histogram method, MS is the traditional multiple synthesis method without
DP and Ori is the original results without any perturbation.
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FIG. 7. The bias, log(RMSE), 95% CP and log(95% CI width) for β3 in simulation study 4. MODIPS represents the model-based differentially
private synthesis, NP-DIPS represents the Laplace sanitizer + perturbed histogram method, MS is the traditional multiple synthesis method without
DP and Ori is the original results without any perturbation.

the NP-DIPS and MODIPS–Wrong approaches experi-
ence severe undercoverage in all 3 components (σ 2

1 , σ 2
2

and ρ) regardless of ε. The former sufferes for the same
reason given in simulation study 3 (discretization and uni-
form sampling from each histogram bin). The MODIPS–
Correct method provides nominal CP for σ 2

1 , σ 2
2 and ρ

and has smaller bias and RMSE than the NP-DIPS ap-
proach for ε > e−2, at the cost of wide CIs for ε < e.

Compared to simulation study 3 which also examines
a mixture of continuous and categorical variables, the re-
sults in simulation study 4 are generally worse for both the
NP-DIPS and the MODIPS approaches, but in different
ways. The identification of statistics to sanitize with the
SLOMAG model is less obvious and the inferences based
on the synthetic data are less stable in simulation 4 for the
MODIPS approach, probably due to the direct sanitization
of the likelihood functions. For the NP-DIPS approach,
the discretization and sanitization procedure is the same
between simulations 3 and 4, but seems to affect the in-
ferences from the SLOMAG model more than those from
the GLOM. The different results from the two simulation
studies suggest that even though the NP-DIPS approach is
nonparametric, inferences based on the synthesized data
in certain models can be more sensitive than others.

5. CASE STUDY

We applies several DIPS approaches to a real-life data
set to assess the feasibility these approaches in generating
useful synthetic data sets in practice. We used the fertility
data set from Gil et al. (2012) in a study of 100 student
volunteers at the University of Alicante. Each participant
provided a semen sample after 3 to 6 days of sexual absti-
nence, and answered a questionnaire about their life habits

and health status. The attributes in the data are summa-
rized in Table 3 (there are originally 35 variables in Gil
et al. (2012), but only 10 variables are publicly available
on the UCI Machine Learning Repository). The data set
is useful for studying risk factors possibly associated with
the fertility rate. On the other hand, sharing the data set
publically could cause privacy concerns as some of the
variables such as “diagnosis of seminal quality” are gen-
erally regarded as sensitive information.

The main goal of Gil et al. (2012) is to compare the
performance of three machine learning techniques (deci-
sion trees, Multilayer Perception and Support Vector Ma-
chine/SVM) in predicting the seminal quality given var-
ious predictors. The authors found that Multilayer Per-
ception and SVM outperformed decision trees with SVM

TABLE 3
Variables from the fertility data in Gil et al. (2012)

Variable Values

Season of the analysis Winter, Spring, Summer, Fall
Age at the time of analysis (years) 18 ∼ 36
Childish diseases Yes, No
Accident or serious trauma Yes, No
Surgical intervention Yes, No
High fevers in the last year <3 months ago, >3 months

ago, no
Frequency of alcohol consumption several times a day, every day,

several times a week, once a
week, hardly ever or never

Smoking habit never, occasional, daily
Number of hours sitting per day 1 ∼ 16
Diagnosis of seminal quality normal, altered



DIFFERENTIALLY PRIVATE DATA SYNTHESIS 301

slightly more accurate. Therefore, we only employed the
SVM in this case study. Specifically, we first randomly
split the original data into a training set of 80 subjects
and a test set of 20 subjects. The same test set was then
used to evaluate the predictive power of the SVMs con-
structed from the synthetic data via different DIPS ap-
proaches (so to avoid testing the SVM on a test data that
was synthesized via the same DIPS approach for generat-
ing the training data). Since this analysis did not involve
statistical inferences, we generated a single synthetic data
set with ε = e1 = 2.72, a practically small and reasonable
privacy budget.

We employed the Laplace sanitizer (ND-DIPS) and the
MODIPS (P-DIPS) approach. In the Laplace sanitizer,
we first discretized the two continuous variables (age and
hours sitting) into a 2D histogram, then sanitized the cell
counts n from the full cross tabulation of the 10 vari-
ables with the additive noise from Lap(0, ε−1). For the
MODIPS approach, the first step was to select an ap-
propriate synthesis model. There are 8 categorical vari-
ables with some of them having sparse cell counts in their
marginal distribution (e.g., in alcohol consumption, there
is only 1 person in the categories of several times a day
and every day, resp.); both of the two continuous vari-
ables (age and hours sitting) deviate from Gaussian dis-
tributions. Given the small sample size (n = 80 in the
training set), the GLOM is not expected to work well as
there would be too many empty or sparse cells from the
full cross-tabulation of the categorical variables; the SLO-
MAG model could generate noisy synthetic data based on
its performance in the simulation study 4 where the sam-
ple size (n = 1000) is much higher and has a much smaller
cross-tabulation of the categorical variables than this case
study. We also tried the second-order mixed graphical
model approach on the data, and the prediction was not
good even without DP perturbation. All taken together,
we discretized the two continuous variables and then fit-
ted a saturated log-linear model. The Bayesian sufficient
statistics is n. We first sanitized n via the Laplace mech-
anism with scale ε−1 to obtain n∗. Given s∗, we drew

π∗ from f (π∗|n∗) = D(α + n∗), then x̃ from f (x̃|π∗) =
Multinom(n,π∗). We ran 100 repetitions.

As a benchmark, we run the PrivateSVM (Algorithm 2
in Rubinstein et al. (2009)), an approach designed specifi-
cally for releasing differentially private SVM results. Pri-
vateSVM first applies the SVM to the original data and
then returns the noisy weight vector via the Laplace mech-
anism. Calculating the global sensitivity of the weight
vector for PrivateSVM is nontrivial. We employed the lin-
ear kernel for PrivateSVM, the global sensitivity based
which is 4LCκ

√
F/n (Rubinstein et al., 2009), where

L = 1 is the linear kernel, C = 1 is cost of constraints
violation (the C-constant of the regularization term in the
Lagrange formulation in SVM), κ is the upper bound for
the linear kernel (9 with the normalized data in this case),
F is the number of features (9 in this case) and n is the
number of observations in the training sample (80 in this
case). Thus, the total global sensitivity is 1.35.

If the DIPS approaches perform similarly to
PrivateSVM in classification accuracy, DIPS would be
preferable as data users will have the individual-level syn-
thetic data and can perform their own analyses whereas
PrivateSVM only provides a differentially private SVM.
When constructing the SVM on the synthetic data, we
employed the svm command in R package e1071 with
kernel="linear" and a 5-fold cross validation.

Table 4 shows the averaged confusion matrices and the
classification accuracy on the 20 testing cases over the
100 repeats by the SVMs constructed from PrivateSVM
as well as the synthetic data from the Laplace sanitizer
and MODIPS approaches. As expected, the prediction ac-
curacy of the SVMs constructed on the synthetic data via
the Laplace sanitizer and the MODIPS approach is not
as good (64.7% and 50.0%, respectively) as the original
SVM (85%) at the privacy budget of ε = 2.72, a cost we
have to pay to achieve some level of privacy. The Laplace
sanitizer is no worse than PrivateSVM (64.9%). The sig-
nificant decreases (20%) in predictive accuracy from the
original results in all 3 differentially private approaches
might have something to do with the small sample size
and the unbalancedness between the two categories of the

TABLE 4
Accuracy of SVMs constructed from PrivateSVM approach and synthetic data via the Laplace Sanitizer and MODIPS approaches when ε = e

Predicted based on

Observed Original data PrivateSVM Laplace sanitizer MODIPS

+ − + − + − + −

+ 0 3 0.84 2.16 1.04 1.96 1.50 1.50
− 0 17 4.87 12.13 5.11 11.89 8.51 8.49

CR† 17/20 = 85% 12.97/20 = 64.9% 12.93/20 = 64.7% 9.99/20 = 50.0%

†CR: consistency rate
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TABLE 5
Some summary statistics on the synthetic data

Statistic Attribute Original data Laplace santizer MODIPS

Mean (SD) age 0.67 (0.12) 0.66 (0.14) 0.66 (0.14)
hours 0.41 (0.19) 0.44 (0.21) 0.50 (0.29)

Total variation distance (TVD) 1-way table – 0.228 0.250
2-way table – 0.353 0.379
3-way table – 0.311 0.330
8-way table – 0.451 0.483

†TVD = t−1 ∑t
j=1 |p∗

j − pj |1, where t is the number of tables, pj and p∗
j represent the vector of cell probabilities in table j constructed from the

original and synthetic data, respectively.

outcome (88:12 normal vs. altered). On the other hand,
there might exist more efficient DIPS methods that can
better preserve the original info while satisfying DP, a
topic we will continue to work on.

We also examine summary statistics to further assess
the synthetic data quality. Table 5 summarizes the con-
tinuous variables (Age at the time of analysis andNumber
of hours sitting per day, which are referred to as Age and
Hours, resp.) by the mean and SD, and the categories vari-
ables by the averaged total variation distance in the 1-,
2-way, 3-way and 8-way (full) cross-tabulations, respec-
tively, constructed based on the synthetic versus the orig-
inal data. In summary, for both the Laplace sanitizer and
the MODIPS approach, the mean and SD of the two con-
tinuous variables are close to the original data’s values;
and the averaged total variation distances in all the cross-
tabulations are consistently smaller with the Laplace san-
itizer than the MODIPS approach.

6. DISCUSSION

We have reviewed various DIPS methods for synthesiz-
ing differentially private individual-level data and com-
pared some DIPS methods empirically through simula-
tion studies and a real-life case study on the utility and
inferential properties of the synthetic data generated by
the DIPS methods. To the best of our knowledge, this is
the first work that compares the inferential properties of
DIPS approaches across various types and sizes of data.

The NP-DIPS approaches are robust given that they
do not impose model or distribution assumptions on a
given data set. However, most NP-DIPS approaches re-
quire some degree of discretization on numerical at-
tributes. When the number of attributes p is large, an
important question to ask is whether there exists a “con-
sistent” high-dimensional histogram density estimator fn

for the underlying true density f for a given sample size
n, even before the employment of a DP technique. It is
known that the number of bins of a high-dimensional
histogram grows exponentially with dimension p, and
the rate of decrease of the mean integrated squared error

E‖(fn − f )‖2
2 degrades rapidly as p increases compared

to the ideal parametric rate O(n) (Scott, 2015). In addi-
tion, when p increase, most of the hypercube bins in the
high-dimensional histogram become empty and the his-
togram will be rough and provides reasonable estimates
only near the mode and away from the tails. When there
are correlations among the variables, smaller bin widths
are required to “track” the correlations (implying more
bins), and the asymptotic mean integrated squared error is
always larger than the independent case. In summary, in
high-dimensional histograms, the variance and bias trade-
off is not favorable unless n is large. If the original high-
dimensional histogram is not already a good estimator for
the distribution of the data, it is not meaningful to fur-
ther sanitize it. Additionally, inferences based on the syn-
thetic data via histogram-based NP-DIPS approaches are
affected by how the histogram bins are formed. There ex-
ists theoretical work in the computer science community
that examines the relationship between the sample size n

and the accuracy of p binary proportion. This accuracy is
defined as how close the sanitized histogram is to the orig-
inal and does not involve drawing inferences about pop-
ulation parameters. For example, the average l1 error of
answering p 1-way binary proportions has a lower bound
of 	(p/(nε)) (Hardt and Talwar, 2010); and the maxi-
mum l1 error from answering p binary proportion given
n has a upper bound of 	(p log(p)/(nε)) (Steinke and
Ullman, 2017).

The P-DIPS approaches, on the other hand, often re-
quire distributional assumptions and model building, and
thus are subject to appropriate model misspecification.
None of the P-DIPS procedures we have examined (ex-
cept for PrivBayes in Zhang et al. (2017)) have the in-
herent model-selection component, implying they are ap-
plied after a suitable model is identified. Broadly speak-
ing, there are two model selection scenarios—one costs
privacy budget and the other does not. Specifically, if the
model is chosen not using the knowledge in the current
data, but based on previous studies and common prac-
tice, then no privacy needs to be spent. If the synthesis



DIFFERENTIALLY PRIVATE DATA SYNTHESIS 303

model is selected via a selection procedure using the data
to be released, then we will need to split the privacy bud-
get between model selection and data synthesis. The cur-
rent research on differentially private model selection fo-
cuses on feature selection in the setting of a certain model
type, such as Kifer, Smith and Thakurta (2012), Smith and
Thakurta (2013), Lei et al. (2018) for linear regression;
and Zhang et al. (2017) for Bayesian networks. More re-
search will be needed in differentially privately selecting
among models that do not have to be of the same type,
maybe by perturbing model selection criteria such as AIC
or BIC. Meanwhile, to mitigate the concern on model
specification or when there are several plausible models,
we incorporated the model averaging idea into the syn-
thetic data generation, which also helps loosening the re-
striction the dependency of the synthetic data on a single
synthesis model.

An obvious drawback for all DIPS approaches is that
the data user will not know how much the results based
on the synthetic data deviate from those if they had access
to the original data. If the differentially private synthetic
data contain too much noise, the decisions made based on
the analysis of the synthetic might be improper or wrong.
Barrientos et al. (2019) proposed a differentially privately
mechanism to release the test statistic and p-value from
testing a regression coefficient against 0 from a linear re-
gression model. Their numerical results suggest the sign
of the test statistic and the conclusion of the hypothesis
test have a high probability of being consistent with the
original results. The authors also proposed that the ap-
proach can be used to validate the linear regression anal-
ysis based on synthetic data from a DIPS method. The
validation system hinted in Barrientos et al. (2019) is de-
veloped by Barrientos et al. (2018) in a more comprehen-
sive and integrated fashion using the U.S. federal govern-
ment employee longitudinal data as an example. Specif-
ically, the system has three components: (1) release syn-
thetic data generated from a joint distribution of the data;
(2) verif/validate the statistical utility of a certain analysis
(query) by comparing the results based on the synthetic
data with the query result released by a differentially pri-
vate mechanism and (3) provide the raw/confidential data
to approved data users via secure remote access. In the ex-
amples given in both papers, all the given privacy budget
is spent on testing or verifying a single query result, while
the reality is that a data user is often interested in esti-
mating more than parameters. From a DP perspective, the
total privacy budget will have to be split among all queries
to be verified, leading to potentially a large amount noised
injected per query and diminishing the value of a valida-
tion system. In addition, the synthesis in the validation
system mentioned in Barrientos et al. (2018) does not
have to be differentially private (and is not in the example
given in the paper). The validation system needs another

disclosure risk assessment step on the released synthetic
data, which relies on strong assumption and can be ad-hoc
as compared to the robustness of the DP concept. In addi-
tion, since DP aims to cover the worst case scenario, this
means the statistical utility of the query result obtained
via a differentially private mechanism can be further away
from the original than the inferences based on the syn-
thetic data without DP. In other words, a significant dis-
crepancy between the two as suggested in Barrientos et al.
(2018) does not necessarily invalidate one or the other.

An alternative to enhancing data users’ confidence in
synthetic data is to develop more efficient DP mechanisms
at the same privacy cost, but with less noise injected, such
as taking into account the correlations among the statis-
tics during sanitization so that the privacy budget is not
spent on overlapping information, or optimizing the pri-
vacy budget allocation scheme when the sequential com-
position is in effect. In all the simulation studies, we con-
ducted, statistics were sanitized independently, implying
that redundant noises were introduced on correlated statis-
tics. Accounting for the correlations among the statistics
will cut the necessary noises to satisfy DP, improving the
efficiency of the DIPS procedures. In addition, we could
always employ a relaxed version of DP (such as aDP or
pDP) to generate synthetic data as long as there is consen-
sus the relaxed DP still provide satisfactory privacy pro-
tection. Conceptually, all the DIPS methods introduced
and examined in the paper can be implemented with re-
laxed DP, assuming the appropriate sanitizer is employed.

Some future work could also involve developing a
system that compares the various DP definitions, mech-
anisms and algorithms, and recommends DP mecha-
nisms/algorithms to users. Given the wealth of DP meth-
ods, a data user might face difficulty in selecting the most
well-suited DP approach for his/her data, including con-
siderations on the practicality and computational limita-
tions of those DP methods. Hay et al. (2016) attempted
to address the issue proposing DPBench as approach for
standardized evaluation of privacy algorithm, as well as
valuable observations and findings after comparing var-
ious data-dependent and data-independent DP methods.
However, their work is limited to 1- and 2-dimensional
range queries. Motivated by DPBench, Kotsogiannis et al.
(2017) developed Pythia, a meta-algorithm that measures
the input features to select a particular DP method. Simi-
larly, Pythia is limited to releasing certain queries such as
histograms, range queries and Naive Bayes classifiers.

The choice of ε (and the parameter that quantifies the
relaxation of the strict ε-DP if a relaxed version of DP is
used) remains an open question. The concept of the ε-DP
is abstract and does not easily relate to practically rele-
vant measures of privacy, making the justification of a so-
cially acceptable of ε difficult. Based on the literature we
have surveyed as well as the observations on the statistical
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utility from the simulation studies and the case study we
conducted, ε in the neighborhood 1 (which is neither too
small nor too large) seems to produce synthetic data of
acceptable statistical utility. Additionally, ε = 1 has been
explored frequently in experiments run in literature. We
believe more research and further investigation on this is-
sue will help narrow down ε to a generally acceptable set
of values.

The ultimate goal of developing DIPS approaches is to
employ them for public data release in practice. The US
Census Bureau aims to employ DP in major data prod-
ucts like the 2020 Census of Population and House, the
Economic Census and the annual American Community
Surveys (Abowd et al., 2017). On the other hand, real-
life data can be large in size, complex in structure and
have a large number of attributes of various types. In
addition, issues such as missing data, sparse data, data
entry errors, among others further complicate the appli-
cation of DIPS. There is still a huge gap from the re-
search work on DP to the wide practical application of
DP. The status quo is that a large body of DP litera-
ture focus only on categorical/binary attributes and ig-
nore missing data or data entry errors. Machanavajjhala
et al. (2008) demonstrated that the Multinomial-Dirichlet
synthesizer led to poor inferences due to data sparsity
when releasing the commuting patterns of the US popula-
tion data and proposed combining distance-based coars-
ening with a probabilistic pruning algorithm and preserv-
ing (ε = 8.6, δ = 10−5)-pDP. The relatively low classifi-
cation accuracy based on synthetic data in our case study
in Section 5 also suggests that direct application of a
DIPS approach without any modification might not ac-
commodate real-life situation well enough. On the other
hand, local DP has been employed by big tech com-
panies (e.g., Google and Apple) to collect users data.
Though these applications seem to be successful, mul-
tiple sources suggest the privacy budget ε employed by
Apple to collect users data on mobile devices is too high
to be acceptable for privacy protection (Tang et al., 2017,
Orr, 2017). Although Apple has provided some informa-
tion about their DP approach, the information is vague.
Tang et al. (2017) attempted to replicate the method with-
out success and stated that “We applaud Apple’s deploy-
ment of DP for its bold demonstration of feasibility of in-
novation while guaranteeing rigorous privacy. However,
we argue that in order to claim the full benefits of differen-
tially private data collection, Apple must give full trans-
parency of its implementation and privacy loss choices,
enable user choice in areas related to privacy loss and
set meaningful defaults on the daily and device lifetime
privacy loss permitted.”
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