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Abstract.  Vector-borne diseases have long presented major challenges to
the health of rural communities in the wet tropical regions of the world, but
especially in sub-Saharan Africa. In this paper, we describe the contribution
that statistical modelling has made to the global elimination programme for
one vector-borne disease, onchocerciasis.

We explain why information on the spatial distribution of a second vector-
borne disease, Loa loa, is needed before communities at high risk of on-
chocerciasis can be treated safely with mass distribution of ivermectin, an
antifiarial medication.

We show how a model-based geostatistical analysis of Loa loa preva-
lence survey data can be used to map the predictive probability that each
location in the region of interest meets a WHO policy guideline for safe
mass distribution of ivermectin and describe two applications: one is to data
from Cameroon that assesses prevalence using traditional blood-smear mi-
croscopy; the other is to Africa-wide data that uses a low-cost questionnaire-
based method.

We describe how a recent technological development in image-based mi-
croscopy has resulted in a change of emphasis from prevalence alone to
the bivariate spatial distribution of prevalence and the intensity of infec-
tion among infected individuals. We discuss how statistical modelling of the
kind described here can contribute to health policy guidelines and decision-
making in two ways. One is to ensure that, in a resource-limited setting,
prevalence surveys are designed, and the resulting data analysed, as effi-
ciently as possible. The other is to provide an honest quantification of the
uncertainty attached to any binary decision by reporting predictive probabil-

ities that a policy-defined condition for action is or is not met.
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1. PROBLEM STATEMENT

Vector-borne diseases have long presented major chal-
lenges to the health of rural communities in the wet trop-
ical regions of the world, but especially in sub-Saharan
Africa. In this paper, we describe the contribution that
statistical modelling has made to the global elimination
programme for one vector-borne disease, onchocerciasis.

Onchocerciasis was not always targeted for elimina-
tion. When the International Task Force for Disease Erad-
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ication met in 1993, onchocerciasis was not among the
six diseases considered eradicable at the time (Centers
for Disease Control and Prevention, 1993). Indeed, the
Onchocerciasis Control Program (OCP), and the African
Programme for Onchocerciasis Control (APOC) that suc-
ceeded it, focused on controlling significant disease of
the skin and eyes so that onchocerciasis would no longer
be a public health problem (Amazigo, 2008). That strat-
egy for control relied on mass drug administration (MDA)
with ivermectin, an antifilarial medication that kills larval-
stage parasites (microfilariae) before they can either cause
significant disease in infected people or be transmitted
to the blackfly vectors of infection. Ivermectin, under
its trade name, MECTIZANR, has been provided free of
charge since 1987 by its manufacturer, Merck & Co., Inc.,
to control onchocerciasis in all affected countries world-
wide.! Even so, the successful execution of a control pro-
gramme using mass drug administration with ivermectin
(henceforth, MDA) faced formidable practical difficulties
due to the size and inaccessibility of the populations at
risk and the low national income levels of many of the af-
fected countries. To address this challenge and ensure that
even the most remote populations can be reached, APOC
developed a novel delivery strategy known as Commu-
nity Directed Treatment with Ivermectin (CDTI, Homeida
et al., 2002), which has since been used by onchocerciasis
programmes with great success.

The past two decades have seen tremendous success for
onchocerciasis programmes. In the Americas, where the
infection is more focal and political will is strong, on-
chocerciasis has now been eliminated in 11 of 13 foci
of infection over 6 countries (World Health Organisa-
tion, 2013, 2014, 2015, Thiele et al., 2016). In Africa,
over a dozen annual rounds of MDA led to the interrup-
tion of transmission in selected foci in several countries
including Mali, Senegal, Uganda, Ethiopia, Nigeria and
Sudan (World Health Organisation, 2018). Collectively,
these experiences demonstrated that the tools to detect
and eliminate onchocerciasis infection exist and can be
used successfully by country programmes. As a conse-
quence, in 2012 the World Health Organization recog-
nized that elimination is the appropriate target for on-
chocerciasis in Africa, where 99% of the world’s popula-
tion at risk live. This elimination effort is now being coor-
dinated by WHO’s regional office in Africa through their
Expanded Special Project for Elimination of Neglected
Tropical Diseases (ESPEN, World Health Organisation,
2012).

In the midst of this great progress, there remains one
insidious obstacle to the global elimination of onchocer-
ciasis, namely the presence of Loa loa. Towards the end

Igee https://investors.merck.com/news/press-release-details/2017/
Merck-Commemorates-30-Years-of-MECTIZAN-Donation-Program-
Progress/default.aspx.

of the last century, reports emerged of severe, sometimes
fatal, reactions to ivermectin experienced by some indi-
viduals who were heavily infected with a second vector-
borne parasitic infection, Loa loa (Gardon et al., 1997,
Boussinesq et al., 1998, 2003). This discovery threatened
to de-rail the MDA programme that until then had been
regarded as safe. Because Loa loa was not considered to
be a major public health problem in its own right, there
was limited understanding of its geographical distribution
in areas endemic for onchocerciasis, or of the numbers of
highly infected individuals considered to be at risk of ex-
periencing serious adverse reactions (henceforth, SAEs)
to ivermectin. The presence of Loa loa has stymied the
elimination effort in areas where the two parasites are co-
endemic, as there has not been an agreed upon strategy
for how to deliver safe treatment with ivermectin. The re-
mainder of the paper describes how statistical modelling
has been, and continues to be, used to address the “Loa
loa problem”, and hence to inform the operational policy
around MDA for the elimination of onchocerciasis.

2. MAPPING LOA LOA PARASITOLOGICAL
PREVALENCE

To make safe ivermectin treatment decisions for on-
chocerciasis in areas where Loa loa is potentially co-
endemic, it is first necessary to map the areas where heav-
ily infected individuals, that is, individuals harboring an
abundant number of Loa loa parasites, are likely to be
found. A general feature of the epidemiology of vector-
borne diseases is that heavily infected individuals are
more likely to be found in high-prevalence areas. For evi-
dence in the current context, see Boussinesq et al. (2001).
For this reason, and because it would have been infeasi-
ble to test individuals for their levels of infection with Loa
loa parasites before administering iveremctin, Thomson
et al. (2000) used data from Loa loa prevalence surveys in
conjunction with satellite-derived images of environmen-
tal variables to map the geographical variation in Loa loa
prevalence. They fitted a logistic regression model to data
on the presence/absence of Loa loa parasites under micro-
scopic examination of blood smears for “14,305 individu-
als sampled from more than 100 villages” in five Loa loa-
endemic west and central African countries. As explana-
tory variables, they used data at 1 km pixel resolution on
forest cover, land use type and soil type. Their model ex-
plained approximately 50% of the variation in prevalence
over the sampled villages. Thomson et al. (2004) also de-
veloped a logistic regression model for Loa loa preva-
lence using data for 14,225 individuals from 94 villages
in Cameroon together with a wider range of explanatory
variables; their model explained approximately 60% of
the variation in prevalence over the sampled villages.
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Variation in prevalence of an environmentally driven
disease typically obeys Tobler’s so-called first law of ge-
ography, which states that “everything is related to every-
thing else, but near things are more related than distant
things” (Tobler, 1970). The statistical expression of this
is that empirical prevalence data usually exhibit spatial
correlation. To the extent that the relevant environmen-
tal risk-factors can be measured, this spatial correlation
can be removed by covariate adjustment, but this typically
leaves an unexplained component of geographical vari-
ation that manifests itself in residual spatial correlation.
One way to account for this residual spatial correlation
is to extend the logistic regression model by including a
latent, spatially correlated process in the linear predictor
(Breslow and Clayton, 1993, Diggle, Tawn and Moyeed,
1998). The resulting model for P(x), the prevalence of
disease at location x, is

() log[P(0)/{1 = P(0)}] =d(x)'B + S(x),

where d(x) is a vector of covariates associated with x and
S(x) is a latent, spatially continuous stochastic process.
Conditional on the prevalence surface P(x) throughout
the region of interest, the numbers Y; of infected individ-
uals out of m; tested at locations x; : i =1, ...,n are in-
dependent, binomially distributed random variables with
binomial probabilities P (x;) and denominators m;.

Diggle et al. (2007) used this approach to refine the pre-
dictions in Thomson et al. (2004), using prevalence data
for 21,938 individuals from 168 villages in Cameroon and
Nigeria. The addition of the stochastic term S(x) on the
right-hand side of (1) helps to explain the geographical
variation in Loa loa prevalence. Its purpose is two-fold:
to give more robust inferences about the effects of the en-
vironmental risk-factors and, more importantly in this ap-
plication, to give predictions of prevalence at unsampled
locations that are both more accurate than can be obtained
using only the available environmental risk-factors and
more honest in their associated measures of uncertainty.
Diggle et al. (2007) examined the residuals from a stan-
dard logistic regression model to suggest a suitable model
for S(x). This led them to specify S(x) to be a Gaussian
process with covariance function

Cov{S(x), S(x)}
= azexp(—”x —x'|/¢) + rzl(x =x'),

where || - || denotes distance and I (+) is the indicator func-
tion. This model recognises two sources of extra-binomial
variation in the data, a spatial component o> and a non-
spatial component 72. Diggle et al. (2007) fitted the model
using a MCMC implementation of Bayesian inference,
with the ratio 72/02 held fixed at 0.4 (owing to a limi-
tation of the software available to the authors at the time),
an improper uniform prior for o2 and the regression pa-
rameters 3, and a proper uniform prior for the spatial cor-
relation range parameter ¢ ~ U(0, c¢) with ¢ = 100 km.
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FI1G. 1. Observed and predicted prevalences of Loa loa: (a) spatial
model from Diggle et al. (2007); (b) logistic regression model from
Thomson et al. (2004). Figure reproduced from Diggle et al. (2007).

The explanatory variables in the model were elevation and
two satellite-derived variables associated with greenness
of vegetation. The rationale for choosing these was that
the vector, a Chrysops fly species, can breed successfully
in hot, wet conditions; in equatorial regions, elevation acts
as a proxy for minimum temperature.

The minimum mean square error predictor for P(x) is
its conditional expectation given the data. The improve-
ment in accuracy of prediction over the logistic regres-
sion model of Thomson et al. (2004) is summarised by
the two scatterplots of observed against predicted preva-
lence shown in Figure 1. A conventional measure of the
associated uncertainty would be the conditional variance
of P(x) given the data. Diggle et al. (2007) argue that a
more useful way to summarise uncertainty is to map se-
lected points of the predictive distribution of each P(x),
that is, its conditional distribution given the data. This
was particularly relevant to the application because by
this time APOC policies included a requirement that in
areas where Loa loa prevalence exceeded 0.2 (20%), pre-
cautionary measures should be put in place before im-
plementation of MDA with ivermectin, so as to be able
to respond promptly to any cases of SAEs. Accordingly,
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FIG. 2.  Map of the predictive probability that prevalence of Loa loa
exceeds 0.2 (20%). Solid dots indicate the sampled village locations
and their observed prevalences. Figure reproduced from Diggle et al.
(2007).

Figure 2 maps the predictive probability that P(x) > 0.2.
One striking feature of this map is that even in some areas
where no data on prevalence are available, the model can
be almost certain that P(x) does not exceed 0.2, whereas
it can only be confident that P (x) does exceed 0.2 in areas
where prevalences above 0.2 have been observed. Put an-
other way, the environmental variables alone can be suffi-
cient to declare an area “safe” for MDA with ivermectin,
but not to declare an area “unsafe”. Finally, and impor-
tantly, large swathes of the map in Figure 2 are pink, rep-
resenting a close to fifty-fifty call on prevalence exceeding
0.2. This is both the strength and the weakness of the map.
Its strength is it honesty in declaring an answer of “don’t
know” to the policy-relevant question. Its weakness is the
extent of the pink regions, indicating a need for substan-
tially more data.

3. SCALING UP: THE RAPLOA METHOD

The conclusion from the Diggle et al. (2007) analysis is
that the intensity of data collection in Cameroon is insuffi-
cient to delineate the whole of the country into “safe” and
“unsafe” areas for MDA. But expanding even this inten-
sity of data collection to all of the APOC countries would

® Cameroon/Nigeria
® DRC East/West

parasitology (logit scale)

RAPLOA(logit scale)

have been unaffordable. There was therefore an urgent
need to develop a low-cost alternative to blood-smear mi-
croscopy for estimating village-level prevalence. Such an
alternative had been proposed by Takougang et al. (2002),
and was in the process of being validated at the time of the
Diggle et al. (2007) study. This method, RAPLOA, con-
sisted of a three-item questionnaire: have you had past
experience of eye worm? Did it look like this photograph
(of an adult worm in the white part of the eye)? Did the
most recent episode last between 1 and 7 days? Declaring
a positive RAPLOA result as three “yes” answers gives
village-level prevalence estimates that correlate well with
estimates based on blood smear microscopy, at a fraction
of the cost. A validation study appeared in 2012 (Wanji
et al., 2012) although the data underlying that study had
been collected and the results of a preliminary analysis
reported to APOC some years previously, leading to the
adoption of a policy guideline equating 40% RAPLOA
prevalence to 20% blood smear prevalence. In fact, the re-
sults in Wanji et al. (2012) suggested a best-guess equiv-
alence slightly higher than 40% but by this time the 40—
20 rule had become well established and changing this to
one that implied a less stringent safety threshold would
not have been acceptable. The discrepancy arose because
the original analysis assumed a quadratic relationship be-
tween RAPLOA and blood smear prevalences, whereas
Wanji et al. (2012) assumed a linear relationship between
log-odds-transformed prevalences; see Figure 3.

Zoure et al. (2011) report on an Africa-wide study
of RAPLOA prevalence, covering 381,575 individuals in
4798 villages over an area of approximately 2500 by
3000 km in sub-Saharan Africa. The two panels of Fig-
ure 4 map the locations of the 4798 villages and the
predictive probability that RAPLOA prevalence exceeds
40%

100
1

® Cameroon/Nigeria
® DRC East/West

80

60

parasitology

0 20 40 60 80 100

RAPLOA

FI1G. 3. Relationship between village-level blood smear prevalence and RAPLOA prevalence. Black and red lines show the calibration models
fitted to the original and validation data, respectively. The left-hand panel shows the relationship on the log-odds scale, the right-hand panel on the
prevalence scale. Figure reproduced from Wanji et al. (2012). Original data from Takougang et al. (2002).
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FI1G. 4. Maps of survey locations (left-hand panel) and the predictive probability that RAPLOA prevalence exceeds 40% (right-hand panel). Figure

reproduced from Zoure et al. (2011).

4. JOINT ANALYSIS OF PREVALENCE AND
INTENSITY OF INFECTION: THE LOASCOPE

A major limitation of prevalence mapping as a way of
identifying areas that are and are not considered to be safe
for MDA with ivermectin is that village-level prevalence
is at best a proxy for the proportion of village inhabi-
tants who are heavily infected with Loa loa and, therefore,
at risk of experiencing an SAE when given ivermectin.
Schliiter et al. (2016) addressed this by investigating in
more detail than hitherto the joint distribution of village-
level prevalence and the distribution of levels of infec-
tion. They used data from Takougang et al. (2002) and
Wanji et al. (2012) consisting of blood smear counts of
Loa loa microfilariae per ml obtained from 19,049 indi-
viduals in 222 villages in Cameroon, Republic of Congo
and Democratic Republic of Congo. They found that in
most of the sampled villages the empirical distribution of
microfilariae per ml was reverse-J-shaped, and that in vil-
lages with higher observed prevalence the distribution of
positive counts typically had a longer upper tail; see Fig-
ure 5.

The behaviour illustrated in Figure 5 led Schliiter et al.
(2016) to propose a bivariate random effects model of the
following form. Let Y denote the number of microfilariae
per ml for a randomly sampled individual in a particu-
lar village, and (U, V) a latent bivariate random variable.
Conditional on (U, V), the distribution function of Y is

(3) F(y)=1-P xexp{—(y/N)}:y =0,

where log{P/(1 — P)} = U, logA =V and the latent
variable (U, V) follows a bivariate Normal distribution,
realised independently in different villages. Schliiter et al.
(2016) found, unsurprisingly, that in the fitted model U
and V were positively correlated (95% confidence inter-
val 0.534 to 0.864). This implies that it is possible to pre-
dict the proportion of highly infected and, therefore, high-
risk, individuals in a village, given only the presence or

absence of Loa loa microfilariae in blood smears from
a sample of village inhabitants. In most villages, the in-
fection levels considered to be indicative of a high-risk
individual lie well into the upper tail of the distribution.
For this reason, model-based predictions based only on
the sample size and number of presences of Loa loa mi-
crofilariae were more precise than empirical predictions
based on the observed proportion of highly infected indi-
viduals.

Model-based predictions are, however, less robust than
empirical ones, leading to an understandable reluctance
to adopt them for routine use. A recent and potentially
game-changing technological development has been the
invention of the LoaScope, a form of portable microscopy
that uses image analysis of the movement of microfilar-
iae in an individual’s blood sample to estimate their level

o
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Relative cummulative frequency
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©

0 25000 50000 75000 100000 125000
microfilariae/ml

FIG. 5. Empirical cumulative distributions of Loa loa microfilar-
iae per ml in five randomly selected villages. Figure reproduced from
Schliiter et al. (2016).
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FIG. 6.  Maps of the predictive probability that at most 1% of individuals living at a particular location would give a LoaScope estimate in excess of
20,000 microfilariae per ml. Solid dots show survey locations. The left-hand panel was constructed from the first round of surveys. In the right-hand
panel, the map has been updated to incorporate data from the second round of surveys.

of infection (D’ Ambrosio et al., 2015). The practical sig-
nificance of this is that it enables individual-level testing
to identify high-risk individuals at the point of care and
in real-time, without the need for trained microscopists.
Kamgno et al. (2017) propose using the LoaScope in a
test-and-not-treat strategy whereby individuals are tested
and ivermectin withheld if their estimated level of infec-
tion exceeds an agreed safe limit, currently set at 20,000
microfilariae per ml. While this fest-and-not-treat strategy
is presently the best tool for making safe ivermectin treat-
ment decisions, the need to test every individual makes it
a resource-intensive approach. The Schliiter et al. (2016)
model can be applied at village-level using LoaScope data
from a sample of individuals to predict, with quantifiable
uncertainty, whether the village is safe to treat with iver-
mectin. The potential value of this is that it can reduce the
time and effort needed to establish whether MDA can be
used in a particular village.

The statistical argument is as follows. Suppose it would
be acceptable to declare a village safe for MDA if at
most k individuals (where k may be zero or a small pos-
itive integer) would give a LoaScope response in excess
of 20,000 microfilariae per ml. Call this event 7. The
Schliiter et al. (2016) model can be used to calculate the
predictive probability of 7" given a set of LoaScope es-
timates y = (yy, ..., yn). If this probability is at least ¢,
for an agreed value of ¢ close to 1, declare the village
safe. If it is less than a second agreed value ¢’ close to
zero, declare it unsafe. If ¢’ < P(T'|y) < ¢, increase the
sample size. Provided that the village population size, N
say, is known, then with k£ = O this strategy converges to
test-and-not-treat as g approaches 1. If N is unknown, the
model can only calculate the probability than an unsam-
pled individual will give a LoaScope estimate in excess of
20,000 microfilariae per ml.

Giorgi, Schliiter and Diggle (2018) extended the
Schliiter et al. (2016) model by allowing the random ef-
fects (U, V) to be spatially correlated. Incorporating an

estimate of the correlation structure of a bivariate spatial
process, {U(x), V(x)} leads to more precise prediction
at any one location x by, in effect, allowing the pooling
of information from neighbouring locations. As always,
this extra information is not a free lunch; it is bought at
the cost of making additional, albeit empirically test-able,
modelling assumptions. Figure 6 shows a recent applica-
tion of the Giorgi, Schliiter and Diggle (2018) model to
LoaScope data from Gabon. In this application, the agreed
definition of “safe” was that with probability at least 0.95,
at most 1% of the individuals living at a location x would
give a LoaScope estimate in excess of 20,000 microfilar-
iae per ml. After a first round of surveys concentrated in
three distinct regions of Gabon, we constructed the pre-
dictive probability map of 7" shown in the left-hand panel
of Figure 6. This led to the decision to conduct a second
round of surveys in the areas adjacent to the western and
eastern surveyed regions, in the hope that this would ex-
tend the declared “safe” area. The result is shown in the
right-hand panel of Figure 6, which does show a modest
extension of the “safe” eastern area but also the emer-
gence of a relatively unsafe area to the north of the west-
ern cluster of sampled locations. Note that in areas remote
from any survey location predictive probabilities simply
reflect the region-wide average properties of the data. For
this reason, we caution against mapping such areas at all,
so as to avoid the risk of over-interpretation. In Figure 6,
we have chosen to restrict our predictions to locations for
which the distance to the nearest data-location is less than
the so-called practical range, that is, the distance at which
the fitted spatial correlation reaches the value 0.05.

5. COMBINING INFORMATION FROM MULTIPLE
DIAGNOSTICS

As illustrated in Sections 3 and 4, the development
of alternatives to blood-smear microscopy for diagnos-
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tic testing has been of crucial importance in the Africa-
wide mapping of Loa loa risk. When different diagnos-
tics have been used in the same geographical region, sta-
tistical models that can combine information from mul-
tiple diagnostics have the potential to make better use
of all available data sources. Amoah, Giorgi and Diggle
(2018) introduce a geostatistical framework for combin-
ing data from multiple diagnostics and apply this to preva-
lence data obtained by blood-smear microscopy and by
RAPLOA. They propose a bivariate geostatistical model
that allows estimation of the calibration relationship be-
tween the two diagnostics, and uses this relationship to
predict blood-smear microscopy-based prevalence in sub-
regions where only the RAPLOA method has been used.
Their proposed model can be expressed as

logit{ Pri.(x)} =d T (x)B1 + S1(x) + Z1,
logit{ Pmp(x)} = d ' (x)B2 + $2(x) + Z»
+ o logit{ Pr.(x)},

where Prp(x) and Pyr(x) are, respectively, the underly-
ing RAPLOA and blood-smear microsopy prevalences at
location x. In this model, S1(x) and S>(x) are a pair of
independent Gaussian processes that are used to account
for unexplained spatial variation specific to each diagnos-
tic. An advantage of this model over approaches that ig-
nore the stochastic dependence between the two diagnos-
tics is the increased precision of the resulting predictions.
Against this, its practical utility in low-resource settings
may be constrained by computational and data-storage re-
quirements.

6. TRANSLATING RESEARCH INTO POLICY:
DECISION-MAKING UNDER UNCERTAINTY

An important implication of the shift from an onchocer-
ciasis control programme to an elimination programme
in Africa is that areas where ivermectin MDA was with-
held, due to a low risk of blindness or skin disease (pre-
viously referred to as ‘hypoendemic’ areas), now need to
be reassessed and potentially treated if there is a potential
for sustained transmission. The expansion of ivermectin
MDA into areas where onchocerciasis sequelae are less
prevalent brings into sharp focus the ethical dilemma of
an acceptable SAE risk. How does one weigh the ben-
efits of eliminating onchocerciasis in areas where the
population has seldom felt the acute effects of the dis-
ease against the potential harm that treatment could in-
flict on some individuals? A comprehensive policy for the
safe use of ivermectin has yet to be agreed. Any such
policy would need to consider a complex mix of sta-
tistical, biomedical, social, economic and ethical issues.
Test-and-not-treat undoubtedly gives the best protection
against the occurrence of SAEs, which are not only catas-
trophic for the individuals concerned but harm the ac-
ceptability of ivermectin to their communities. Against

this, with-holding treatment leaves untreated individuals
at risk of onchocerciasis. Also, unless and until LoaS-
copes can be manufactured at scale, test-and-not-treat
slows the Africa-wide roll-out of protective ivermectin
treatment to regions where it is known that Loa loa is
not co-endemic with onchocerciasis. One possible reso-
lution is a hybrid policy in which spatial modelling can
be used as a “first-pass” to determine if areas can be de-
clared safe for MDA with ivermectin, based on a yet-to-
be-determined acceptable level of SAE risk. Where the
spatial modelling results indicate that the safety threshold
has not been reached, individual village-by-village assess-
ments using the Schliiter et al. (2016) model, converging
to the test-and-not-treat strategy with increasing SAE risk,
would be required.

In the authors’ opinion, statistical method can make two
contributions to this complex issue. Firstly, given data and
an agreed definition of “safe” at an agreed geographical
scale, statistical modelling in conjunction with predictive
inference can deliver an honest assessment of the prob-
ability that the safety threshold has been reached. Sec-
ondly, when the available data are insufficient to resolve
the safety issue, statistical design can inform where ad-
ditional data should be collected. Chipeta et al. (2016)
describe strategies for the adaptive design of sequential
prevalence surveys to optimise a context-specific crite-
rion.

7. CONCLUSION

At the time of writing, the “Loa loa problem” persists.
Statistical modelling and inference can inform, but not re-
solve, the problem. Whatever policy decision is reached, it
must be acknowledged that there is no such thing as zero
risk. Balancing the remote risk of causing severe dam-
age to a relatively small number of individuals against the
likelihood of protecting much larger numbers against life-
changing disease is not something that can be done using
only statistical or, more broadly, “scientific” arguments.
Social context must also be taken into account and it is
imperative that the affected countries be a leading voice in
these deliberations. Nonetheless, in the authors’ opinion it
is essential that any debate aimed at achieving consensus
is informed by the use of statistical methods that make
the best possible use of relevant data while acknowledg-
ing their necessary limitations.
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