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On the Probability That Two Random
Integers Are Coprime
Jing Lei and Joseph B. Kadane

Abstract. We show that there is a nonempty class of finitely additive prob-
abilities on N

2 such that for each member of the class, each set with limiting
relative frequency p has probability p. Hence, in that context the probabil-
ity that two random integers are coprime is 6/π2. We also show that two
other interpretations of “random integer,” namely residue classes and shift
invariance, support any number in [0,6/π2] for that probability. Finally, we
specify a countably additive probability space that also supports 6/π2.

Key words and phrases: Number theory, coprime, uniform distribution,
finitely additive probability.

1. INTRODUCTION

For two integers a, b, let gcd(a, b) be the largest posi-
tive integer that evenly divides both a and b. It is a well-
established result in number theory that

(1.1) lim
n→∞

#{(a, b) ∈ [n]2,gcd(a, b) = 1}
n2 = 6

π2 .

(Hardy and Wright, 2008, Theorem 331), where [n] =
{1,2, . . . , n}. They then write “it is natural” to interpret
(1.1) as a probability, and conclude (Theorem 332) that

(1.2)
the probability that two randomly chosen
integers are co-prime is 6/π2.

The result in (1.1) and its intuitive probabilistic interpreta-
tion (1.2) have a rich history. See Abramovich and Nikitin
(2017) for a recent review.

The purpose of this paper is to reconcile (1.2) with
modern probability theory. To do so, we first introduce the
two main frameworks used in probability, and then apply
them to (1.2).

1.1 A Brief Introduction to Probability Axioms

There are two different axiom systems for probability.
The first, and most familiar, is countably additive. It starts
with a triple of objects: (�,B,P ), where � is the basic
set of objects, B is a σ -field of subsets of � and P {·} is a
probability over elements of B satisfying:
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(a) P {B} ≥ 0 for all B ∈ B
(b) P {�} = 1
(c) If B1,B2, . . . is a countable sequence of disjoint el-

ements of B, then

P

{ ∞⋃
i=1

Bi

}
=

∞∑
i=1

P {Bi}.

This is the axiom system advocated by Kolmogoroff
(1973).1 It has the advantage that conditional probabili-
ties obey the tower property:

(1.3) E(X) = E
[
E(X|Y)

]
,

but the disadvantage that it is defined only on B, and
cannot, in general, be extended to the power set of �

(Billingsley, 1995, Section 3, shows the existence of non-
measurable sets).

The second axiom system is finitely additive, replacing
(c) above with the condition:

(c′) If B1,B2, . . . ,Bn is a finite collection of disjoint
subsets of �, then

P

{
n⋃

i=1

Bi

}
=

n∑
i=1

P {Bi}.

This has the advantage that a finitely additive distribution
can be extended to the power set, but the disadvantage that
the tower property does not, in general, hold for them.
This sense of probability was particularly advocated by
de Finetti (1937).2

Every countably additive probability is finitely additive,
but not conversely.

1For an English translation, see Kolmogorov (2018).
2For an English translation, see Kyburg (1978).
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1.2 Application to Coprime Integers

Let G = {(a, b) ∈ N
2 : gcd(a, b) = 1} be the set of pairs

of integers that are coprime. We explore the probability of
G under various different settings, beginning with limit-
ing relative frequency. Limiting relative frequency can-
not be countably additive, since the limiting relative fre-
quency of each pair of integers is zero, but the count-
able union of them, N2, has limiting relative frequency
one. Hence, we consider first finitely additive probabili-
ties on N

2, including limiting relative frequency, in Sec-
tion 2. Sections 3, 4 and 5 apply finitely additive prob-
ability on N

2 respectively to limiting relative frequency,
residue classes and shift invariance. Section 6 proposes a
countably additive probability specification that also sup-
ports P {G} = 6/π2.

2. FINITELY ADDITIVE PROBABILITY

2.1 General Background

Allowing probabilities that are finitely but not count-
ably additive permits extension to the power set at the cost
that many other useful results that are true for countable
additive probabilities do not hold. The following theorem,
from Kadane and O’Hagan (1995) (relying on results of
Bhaskara Rao and Bhaskara Rao (1983)) gives a neces-
sary and sufficient condition for such an extension of a
finitely additive probability.

THEOREM 2.1. Let C be any collection of subsets of
a set � such that � ∈ C. Let μ be a nonnegative real func-
tion defined on C such that μ(�) = 1. Then μ can be ex-
tended to a finitely additive probability on all subsets of
� if and only if, for all collections of sets A1, . . . ,Aa and
B1, . . . ,Bb in C,

(2.1)
a∑

i=1

IAi
≤

b∑
j=1

IBj

implies that

(2.2)
a∑

i=1

μ(Ai) ≤
b∑

j=1

μ(Bj ),

where IA is the indicator function of A.

A second result, also in Kadane and O’Hagan (1995),
gives upper and lower bounds on the probability of a set
D (not in general in C).

THEOREM 2.2. Let C be any collection of subsets of
a set � such that � ∈ C. Let μ be a nonnegative real func-
tion defined on C such that μ(�) = 1, and let μ be extend-
able to a finitely additive probability on all subsets of �.
Let M be the set of such extensions. Consider a further
set D ⊂ �. Then{

μ(D) : μ ∈M
} = [

�(D,M), u(D,M)
]
,

where �(D,M) (u(D,M)) is the supremum (infimum) of

(2.3) h−1

{
a∑

i=1

μ(Ai) −
b∑

j=1

μ(Bj )

}

over all A1,A2, . . . ,Aa,B1,B2, . . . ,Bb ∈ C and all
a, b,h = 1,2,3, . . ., such that

(2.4)
a∑

i=1

IAi
−

b∑
i=1

IBj
≤ (≥)hID.

2.2 Finitely Additive Uniform Probabilities on N

While there is only one sense of uniformity on a finite
set (each element has the same probability), the same is
not true on N. Several such senses have been studied in
the literature.

1. Limiting relative frequency. Define

CF =
{
C ⊆ N : lim

n→∞ #
(
C ∩ [n])/n exists

}
be the collection of subsets of N with a limiting rel-
ative frequency. Then it is natural to require μ(C) =
limn→∞ #(C ∩ [n])/n for C ∈ CF . Kadane and
O’Hagan (1995) proved that such a μ is extendable. We
denote the collection of all such finitely additive measures
by MF .

2. Shift invariance. Another way of defining uniform
measure on N is to require μ to be shift invariant. For-
mally, let s : N �→ N be s(x) = x + 1. Shift invariance
requires μ(A) = μ(s−1(A)) for all A ⊆N. Denote the set
of finitely additive shift invariant probabilities by MS .

3. Residue class. Let CR be the residue class, consisting
of sets of the form

(2.5) C = Rj,k = {x : x ≡ j modk}
for some j ∈ [k] − 1 and k ∈ N. Uniformity naturally re-
quires that μ(Rj,k) = k−1 for all k ∈ N and j ∈ [k] − 1.
Kadane and O’Hagan (1995) proved that such a μ is ex-
tendable. We denote the collection of all such extended
finitely additive measures by MR .

The results in Kadane and O’Hagan (1995) and
Schirokauer and Kadane (2007) jointly imply that

MF ⊂ MS ⊂ MR

and that each of these inclusions is strict.

2.3 Finitely Additive Uniform Probabilities on N
2

Now we extend the three types of finitely additive uni-
form probabilities to N

2, and present our main result for
finitely additive uniform distributions. The proof of the
main result and some intermediate claims, such as extend-
ability, are deferred to later sections.
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1. Limiting relative frequency on N
2. Define

C2
F =

{
C ⊆ N

2 :

lim
n1∧n2→∞

#(C ∩ ([n1] × [n2]))
n1n2

exists
}
,

(2.6)

and μ(C) be the limit in (2.6) for C ∈ C2
F . Theorem 3.1

below ensures that (C2
F ,μ) can be extended to 2N

2
. De-

note the collection of all such extensions by M2
F .

2. Shift invariance on N
2. For j = 1,2, define sj :

N
2 �→ N

2 as the shift function that increases the j th co-
ordinate by one. Denote M2

S the set of finitely addi-
tive shift invariant probabilities on N

2 (i.e., those satisfy
μ(A) = μ(s−1

j (A)) for all A ⊆ N
2 and j = 1,2).

3. Residue class on N
2. Let C2

R = CR × CR be the
residue class on N

2 and define M2
R be the set of finitely

additive probabilities on N
2 extended from (C2

R,μ) with
μ(Rj1,k1 × Rj2,k2) = (k1k2)

−1 for all Rj1,k1,Rj2,k2 ∈ CR .

The following lemma extends its counterpart in N, with
an almost identical proof.

LEMMA 2.3. M2
F ⊆ M2

S ⊆M2
R .

It is possible to also establish strict inclusions by con-
sidering direct products of the examples given in Kadane
and O’Hagan (1995), Schirokauer and Kadane (2007).
Now we state our main result for finitely additive prob-
abilities.

THEOREM 2.4. Let G = {(x, y) ∈ N
2 : gcd(x, y) =

1} be the set of pairs of positive integers that are coprime.
Then

�
(
G,M2

F

) = u
(
G,M2

F

) = u
(
G,M2

S

)
= u

(
G,M2

R

) = 6/π2
(2.7)

and

�
(
G,M2

S

) = �
(
G,M2

R

) = 0,(2.8)

where the numbers u(G,M), �(G,M) are defined in
Theorem 2.2.

PROOF OF THEOREM 2.4. The proof of Theorem 2.4
essentially contains the organization of results proved in
the next three sections.

First, Lemma 2.3 implies that

�
(
G,M2

R

) ≤ �
(
G,M2

S

) ≤ �
(
G,M2

F

)
≤ u

(
G,M2

F

) ≤ u
(
G,M2

S

)
≤ u

(
G,M2

R

)
.

(2.9)

To prove (2.7), Theorem 3.2 implies that �(G,M2
F ) =

u(G,M2
F ) = 6/π2, while Theorem 4.2 proves that

u(G,M2
R) = 6/π2. Therefore, (2.7) follows from (2.9).

Next, (2.8) is a direct consequence of (2.9) and Theo-
rem 5.4, which proves �(G,M2

S) = 0. �
Theorem 2.4 implies that if we interpret uniformity by

limiting relative frequency, then G has measure 6/π2 in
all finitely additive uniform probabilities on N

2. However,
if we interpret uniformity by either shift invariance or pro-
portion of residue classes, then the measure of G can be
anywhere between 0 and 6/π2. Both the lower and upper
bounds in these cases are new.

3. LIMITING RELATIVE FREQUENCY

In this section, we prove the subset of claims in Theo-
rem 2.4 involving M2

F , as well as extendability of (C2
F ,μ)

where μ maps C ∈ C2
F to the limiting relative frequency

of C as defined in (2.6).
We first establish extendability.

THEOREM 3.1. (C2
F ,μ) can be extended to 2N

2
.

PROOF OF THEOREM 3.1. Let A1, . . . ,Aa and B1,

. . . ,Bb be elements of C2
F such that

a∑
i=1

IAi
≤

b∑
j=1

IBj
.

Then for all k1, k2 ∈ N

a∑
i=1

#
(
Ai ∩ ([k1] × [k2])) ≤

b∑
j=1

#
(
Bj ∩ ([k1] × [k2])).

So
a∑

i=1

lim
k1<k2,k1→∞

#(Ai ∩ ([k1] × [k2]))
k1k2

≤
b∑

j=1

lim
k1<k2,k1→∞

#(Bj ∩ ([k1] × [k2]))
k1k2

,

that is,
∑a

i=1 μ(Ai) ≤ ∑b
j=1 μ(Bj ). �

The next result completes the proof of the subset of
claims in Theorem 2.4 involving M2

F .

THEOREM 3.2.

lim
n1∧n2→∞

#(G ∩ ([n1] × [n2]))
n1n2

= 6/π2.

As a consequence, G ∈ C2
F and μ(G) = 6/π2 for all μ ∈

M2
F .

Theorem 3.2 is a slight generalization of a Theorem in
Collins and Johnson (1988), which focuses on the case of
n1 = n2. The proof is similar.

PROOF OF THEOREM 3.2. Without loss of general-
ity, assume n1 ≤ n2. Let qn1,n2 be the number of pairs of
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integers (a, b) ∈ [n1]×[n2] such that gcd(a, b) = 1. Then

qn1,n2 = n1n2 − ∑
p

�n1/p��n2/p�

+ ∑
p1<p2

⌊
n1/(p1p2)

⌋⌊
n2/(p1p2)

⌋ − · · ·

=
n1∑

k=1

ν(k)�n1/k��n2/k�,

where ν(·) is the mobius function such that ν(k) = (−1)s

when k is the product of s distinct primes, and ν(k) = 0
otherwise (ν(1) = 1).

Because

0 ≤ n1n2/k2 − �n1/k��n2/k�
= (

n2/k − �n2/k�)(n1/k)

+ (
n1/k − �n1/k�)�n2/k�

≤ (n1 + n2)/k,

we have∣∣∣∣∣
n1∑

k=1

ν(k)
(
n1n2/k2) − qn1,n2

∣∣∣∣∣
=

∣∣∣∣∣
n1∑

k=1

ν(k)
(
n1n2/k2 − �n1/k��n2/k�)

∣∣∣∣∣
≤ (n1 + n2)

n1∑
k=1

(1/k) = o(n1n2).

So

qn1,n2

n1n2
=

n1∑
k=1

ν(k)k−2 + o(1) → 6/π2.
�

The results of this section give a framework that justi-
fies Hardy and Wright’s claim that (1.1) implies (1.2). In
this connection, the proof of (1.1) offered by Abrams and
Paris (1992) is not correct, because it relies on countable
additivity of limiting relative frequency.

4. RESIDUE CLASSES

In this section, we first address the extendability of
C2

R , and then prove that u(G,MR) = 6/π2. The lower
bound �(G,M2

R) = 0 will be proved as a consequence of
�(G,M2

S) = 0, which is established in the next section.

THEOREM 4.1. Let μ be a function defined on C2
R sat-

isfying μ(Rj1,k1 × Rj2,k2) = 1/k1k2 for all j1, j2, k1, k2 ∈
N. Then μ can be extended to 2N

2
.

PROOF OF THEOREM 4.1. We first establish a 1-1
map between Rj1,k1 × Rj2,k2 and Rj2k1+j1,k1k2 , which is
realized by writing an arbitrary k ∈ [k1k2]− 1 uniquely as
k = j2k1 + j1 for j1 ∈ [k1] − 1 and j2 ∈ [k2] − 1.

Now each element of C2
R can be mapped 1-1 to an ele-

ment of CR . By the result of Kadane and O’Hagan (1995),
the set of residue classes can be extended. Therefore, so
can C2

R . �
The rest of this section focuses on proving u(G,MR) =

6/π2. We begin by introducing a general way of identify-
ing u(D,M2

R) for arbitrary D ⊆N
2.

THEOREM 4.2. For all D ⊆ N
2,

u
(
D,M2

R

) = inf
t1,t2

rt1,t2(D)

t1t2
,

where

rt1,t2(D) = #
{
(k1, k2) ∈ ([t1] − 1

) × ([t2] − 1
) :

D ∩ (Rk1,t1 × Rk2,t2) �= ∅
}
.

(4.1)

PROOF OF THEOREM 4.2. According to Theorem
2.2,

u
(
D,M2

R

) = infh−1

[
a∑

i=1

μ(Ai) −
b∑

j=1

μ(Bj )

]
,

where the inf is taken over all A1, . . . ,Aa,B1, . . . ,Bb ∈
C2

R and h = 1,2,3, . . . such that

a∑
i=1

IAi
−

b∑
j=1

IBj
≥ hID.

Let t = (t1, t2) be the pair of least common multi-
ples of the moduli pairs of the residue sets A1, . . . ,Aa ,
B1, . . . ,Bb. Then

hID ≤
a∑

i=1

IAi
−

b∑
j=1

IBj

=
t1−1∑
k1=0

t2−1∑
k2=0

dk1,k2IRk1,t1×Rk2,t2

(4.2)

for some integers d0,0, d0,1, . . . , dt1−1,t2−1.
Thus

u
(
D,M2

R

) = infh−1
t1−1∑
k1=0

t2−1∑
k2=0

dk1,k2

(
1

t1t2

)

= infh−1
(

1

t1t2

) t1−1∑
k1=0

t2−1∑
k2=0

dk1,k2,

where the inf is taken over all (t1, t2) and (dk1,k2 : k1 ∈
[t1] − 1, k2 ∈ [t2] − 1) such that (4.2) holds.

For given (t1, t2), the right-hand side of the above equa-
tion is minimized by setting dk1,k2 = h if D ∩ (Rk1,t1 ×
Rk2,t2) �= ∅ and dk1,k2 = 0 otherwise. �

LEMMA 4.3. If (x, y) ∈ G, then for every n ∈ N there
exists a ∈ N such that gcd(ax + y,n) = 1.
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PROOF OF LEMMA 4.3. Let p1, . . . , p�, q1, . . . , qk ,
r1, . . . , rh be all distinct prime factors of n such that

x ≡ (0, . . . ,0, a1, . . . , ak, c1, . . . , ch)

× mod(p1, . . . , p�, q1, . . . , qk, r1, . . . , rh),

y ≡ (b1, . . . , b�,0, . . . ,0, d1, . . . , dh)

× mod(p1, . . . , p�, q1, . . . , qk, r1, . . . , rh),

where 1 ≤ aj ≤ qj − 1, 1 ≤ cj ≤ rj − 1, 1 ≤ dj ≤ rj − 1,
1 ≤ bj ≤ pj − 1, for all j .

Then one can pick any a that satisfies

a ≡ (0, . . . ,0,1, . . . ,1,0, . . . ,0)

× mod(p1, . . . , p�, q1, . . . , qk, r1, . . . , rh).

Existence of such an a is guaranteed by the Chinese re-
mainder theorem. �

LEMMA 4.4. Let k1, k2 be two positive integers, and
(j1, j2) ∈ [k1] × [k2]. Then G ∩ (Rj1,k1 × Rj2,k2) �= ∅ if
and only if gcd(j1, j2, k1, k2) = 1.

PROOF OF LEMMA 4.4. The necessity is obvious. We
only need to prove sufficiency.

For i = 1,2, let pi = gcd(ki, ji), ki = piri , ji = pisi .
By construction and the assumption that gcd(k1, j1, k2,

j2) = 1, we have

gcd(p1,p2) = gcd(r1, s1) = gcd(r2, s2) = 1.

Then apply Lemma 4.3 to (n, x, y) = (p2, r1, s1), there
exists a1 ∈ N such that

(4.3) gcd(p2, a1r1 + s1) = 1.

Apply Lemma 4.3 again to (n, x, y) = (p1(a1r1 + s1),

r2, s2), there exists an a2 ∈ N such that

(4.4) gcd
[
p1(a1r1 + s1), a2r2 + s2

] = 1.

Now combine (4.3), (4.4) and that gcd(p1,p2) = 1 we
have

gcd(a1k1 + j1, a2k2 + j2) = 1. �
THEOREM 4.5. u(G,M2

R) = 6/π2.

PROOF OF THEOREM 4.5. Let (k1, k2) ∈ N
2 and de-

note cd(k1, k2) the set of prime common divisors of k1 and
k2. Then Lemma 4.4 implies that G ∩ (Rj1,k1 × Rj2,k2) �=
∅ if and only if j1, j2 are not both divisible by any
p ∈ cd(k1, k2). As a result,

rk1,k2

k1k2
= ∏

p∈cd(k1,k2)

(
1 − p−2

j

)
.

Now apply Theorem 4.2,

u
(
G,M2

R

) = inf
k1,k2

∏
p∈cd(k1,k2)

(
1 − p−2)

= ∏
p prime

(
1 − p−2) = 6

π2 .
�

5. SHIFT INVARIANCE

Combining Lemma 2.3 with Theorem 3.2 and Theo-
rem 4.5, we have

u
(
G,M2

S

) = 6/π2.

Therefore, the proof of Theorem 2.4 will be complete if
we can show

�
(
G,M2

S

) = 0,

which is the focus of the current section.
We prove the claim in a more general setting. Let d ≥ 2

be a positive integer. For 1 ≤ i ≤ d , let si : Nd �→ N
d be

the shift operator in the ith coordinate:

si(a1, . . . , ad) = (a1, . . . , ai + 1, . . . , ad).

We call a function μ : 2N
d �→ R shift-invariant if μ(A) =

μ(s−1
i (A)) for all A ⊆ N

d and all 1 ≤ i ≤ d .
Following ideas in Schirokauer and Kadane (2007),

we study shift-invariant functions by constructing linear
functionals on �∞(Nd) with certain desirable properties.
Recall the definition of �∞(Nd).

�∞(
N

d) =
{
x = (

x(a) ∈ R : a ∈ N
d) : sup

a∈Nd

∣∣x(a)
∣∣ < ∞

}
.

Then �∞(Nd) is a Banach space equipped with norm
‖x‖ = supa∈Nd |x(a)|.

LEMMA 5.1. There exists a linear functional � on
�∞(Nd) such that:

1. � is shift-invariant: �(x) = �(Six) for all i ∈ [d],
where (Six)(a) = x(si(a)) for all a ∈ N

d ;
2. � is positive: � ≥ 0 whenever x(a) ≥ 0 for all a ∈

N
d ;
3. � is normalized: �(1) = 1 where 1 is the constant-1

vector.

PROOF OF LEMMA 5.1. Consider the linear subspace
of �∞(Nd) given by

W
def=

{
d∑

i=1

(Sixi − xi) : xi ∈ �∞(
N

d)}
.

Then we can claim that W and R1 intersect trivially. To
see this, let c �= 0 and w = ∑d

i=1(Sixi − xi), then

‖w + c1‖ ≥ 1

nd

∑
a∈[n]d

∣∣w(a) + c
∣∣

≥ 1

nd

∣∣∣∣ ∑
a∈[n]d

(
w(a) + c

)∣∣∣∣ → |c|
(5.1)

as n → ∞.
Now let �0 be a linear functional on W ⊕R1 given by

�0(w + c1) = c.
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By (5.1), ‖�0‖ ≤ 1. By the Hahn–Banach theorem, there
exists an extension � of �0 to �∞(Nd) such that ‖�‖ ≤ 1.

Now we check that such a linear functional � satisfies
the requirements of the claim.

1. Shift-invariance: by linearity �(Six) − �(x) =
�(Six − x) = 0.

2. Normalized: by construction.
3. Positivity: if x ∈ �∞(Nd) is positive, then we can

write x = cy for some c > 0 and ‖y‖ ≤ 1, and

�(x) = c�(y) = c
(
1 − �(1 − y)

)
≥ c

(
1 − ‖1 − y‖) ≥ 0. �

The usefulness of Lemma 5.1 is the following gen-
eral construction of shift-invariant probability measures
on 2N

d
.

For X,A ⊆ N
d , define s−A(X) = ⋃

a∈A s−a(X), where
s−a(X) = s

−a1
1 (· · · s−ad

d (X)) for a = (a1, . . . ad) ∈ N
d .

LEMMA 5.2. Let μ1 be a finitely additive probability
on 2N

d
. Define μ : 2N

d �→R as

μ(Z) = �
{[

μ1
(
s−a(Z)

) : a ∈ N
d]}

.

Then μ is a finitely additive, shift-invariant probability on
2N

d
.

PROOF OF LEMMA 5.2. First, μ1(s
−a(Z)) ∈ [0,1]

for all a ∈ R
d , by positivity and normalization of � we

have μ(Z) ∈ [0,1] for all Z.
Second, when Z = N

d we have s−a(Z) = N
d for all

a ∈ N
d , and hence μ(Z) = �(1) = 1.

Third, if Z1,Z2 ⊆N
d are disjoint, then s−a(Z1 ∪Z2) =

s−a(Z1) ∪ s−a(Z2) and s−a(Z1) ∩ s−a(Z2) = ∅. Then
finite additivity of μ follows from linearity of �.

Finally, for i ∈ [d], s−a(s−1
i (Z)) = s−si (a)(Z), so the

shift-invariance of μ follows from the shift-invariance of
� (Property 1 of Lemma 5.1). �

LEMMA 5.3. For X ⊆ N
d , the following are equiva-

lent:

1. s−A(X) �= N
d for any finite set A ⊂ N

d .
2. There is a shift-invariant finitely-additive probability

μ on 2N
d

such that μ(X) = 0.

PROOF OF LEMMA 5.3. “2 ⇒ 1”: If μ(X) = 0, then
μ(s−a(X)) = 0 for every a. Hence μ(s−A(X)) = 0 for
any finite A.

“1 ⇒ 2”: Let C be a family consisting of Nd and all sets
of the form s−A(X) with finite A. Let μ0 : C �→R

+ be de-
fined as μ0(N

d) = 1, μ0(Y ) = 0 if Y �= N
d . The assump-

tion that s−A(X) �= N
d for any finite set A implies that,

according to Theorem 1 of Kadane and O’Hagan (1995),
μ0 can be extended to 2N

d
. Let μ1 be such an extended

finitely additive probability and let

μ(Z) = �
((

μ1
(
s−a(Z)

) : a ∈ N
d))

,

where � is the functional constructed in Lemma 5.1.

Lemma 5.2 ensures that μ is a shift-invariant finitely
additive probability. On the other hand, μ1(s

−a(X)) =
μ0(s

−a(X)) = 0 for all a ∈ N
d . By construction, μ(X) =

�(0) = 0. �

THEOREM 5.4. �(G,M2
S) = 0.

PROOF OF THEOREM 5.4. According to Lemma 5.3,
it suffices to prove that s−A(G) �= N

2 for every finite A ⊂
N

2.
Let (a1, b1), (a2, b2), . . . , (am, bm) be enumeration of

all elements of A. Let p1, . . . , pm be m arbitrary distinct
prime numbers. By Chinese remainder theorem, there ex-
ist a, b ∈ N such that

a + ai ≡ 0 mod pi, ∀i ∈ [m],
b + bi ≡ 0 mod pi, ∀i ∈ [m].

Then (a, b) /∈ s−A(G). �

6. COUNTABLY ADDITIVE PROBABILITY

In order to keep countable additivity in the probability,
we must work with a smaller σ -field of subsets of N2.

For i ∈N let pi be the ith prime number and define

Ai = {x ∈ N : x ≡ 0 mod pi}.
For finite disjoint subsets I , J of N, let

AI,J =
(⋂

i∈I

Ai

)
∩

(⋂
i∈J

Ac
i

)

be the set of positive integers divisible by prime numbers
in I but not by those in J . It is allowed to have I = J = ∅,
and we define A∅,∅ = N. Define

C =
{

K⋃
k=1

AIk,Jk
: K ∈ N, Ik ∩ Jk = ∅, |Ik|, |Jk| < ∞

}

∪ {∅}.
LEMMA 6.1. C is a field of subsets of N.

PROOF OF LEMMA 6.1. Consider A = {0,1}N. For
finite disjoint I, J ⊂ N, we can represent AI,J as a subset
of A by AI,J ⇔ {0}I × {1}J × {0,1}(I∪J )c . For example,
when I = {2}, J = {1,3}, then the corresponding subset
of A is {x ∈ {0,1}N : x1 = 0, x2 = 1, x3 = 0}, the cylinder
in {0,1}N with base (0,1,0).

It is easy to check ∅ and A∅,∅ = N are in C. We pro-
ceed to make the following three observations:

(a) C is closed under finite unions.
Let

C1 =
K1⋃
k=1

AI 1
k ,J 1

k
and C2 =

K2⋃
k=K1+1

AI 2
k ,J 2

k
.
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and

Ik = I 1
k and Jk = J 1

k for 1 ≤ k ≤ K1,

Ik = I 2
k and Jk = J 2

k for K1 + 1 ≤ k ≤ K2.

Then

C1 ∪ C2 =
K1+K2⋃

k=1

AIk,Jk
∈ C.

(b) Ac
I,J ∈ C.

Now assume (I, J ) �= (∅,∅). Use the product repre-
sentation to write Ac

I,J :

Ac
I,J = [{0,1}I∪J \({0}I × {1}J )] × {0,1}(I∪J )c .

and

{0,1}I∪J \{0}I × {1}J

= ⋃
I ′⊆(I∪J ),I ′ �=I

{0}I ′ × {1}(I∪J )\I ′
.

This shows that Ac
I,J = ⋃

I ′⊆(I∪J ),I ′ �=I AI ′,(I∪J )\I ′ ∈ C.
(c) AI1,J1 ∩ AI2,J2 ∈ C.
For finite disjoint (Ij , Jj ), (j = 1,2), let T = ∪(I1,

J1, I2, J2). We consider the augmented representation of
AI1,J1 and AI2,J2 ,

AI1,J1 = {0}I1 × {1}J1 × {0,1}T \(I1∪J1) × {0,1}T c

,

AI2,J2 = {0}I2 × {1}J2 × {0,1}T \(I2∪J2) × {0,1}T c

.

Let Bj = {0}Ij ×{1}Jj ×{0,1}T \(Ij∪Jj ) for j = 1,2. Then
each Bj is a subset of {0,1}T , which is a finite set. Now
let C = B1 ∩ B2, then C is a subset of {0,1}T . So there
exists a subset I ⊆ T , such that

C = ⋃
I ′∈I

{0}I ′ × {1}T \I ′
.

Since T is finite, the union in the above expression for C

is finite. Thus we proved that AI1,J1 ∩ AI2,J2 ∈ C.

The three observations (a-c) are sufficient to imply further
claims such as that C is closed under complement, which
concludes the proof. �

REMARK. Note that although C has an isomorphism
between the subsets of N and those in A, the gener-
ated σ -fields are different. In fact,

⋂∞
i=1 A{i},∅ = ∅, but⋂∞

i=1{0}{i} × {0,1}N\{i} = {0}N �= ∅.

Now we are ready to define the uniform probabil-
ity measure on C. Let P : C �→ [0,1] be that if C =⋃K

k=1 AIk,Jk
for disjoint sets {AIk,Jk

: 1 ≤ k ≤ K}, then

P {C} =
K∑

k=1

P {AIk,Jk
}

with

(6.1) P {AI,J } = ∏
i∈I

p−1
i

∏
i∈J

(
1 − p−1

i

)
.

We further define P {∅} = 0 and P {N} = 1.

Equation (6.1) reflects the uniformity of P : For distinct
prime numbers p and q:

(i) the probability of being divisible by a prime num-
ber p is p−1;

(ii) being divisible by p and being divisible by q are
independent events.

THEOREM 6.2. P is a probability on C and can be
uniquely extended to F = σ(C).

PROOF OF THEOREM 6.2. We only need to prove
countable additivity of P on C. The second part follows
from Carathéodory’s extension.

Let AI,J = ⋃∞
k=1 AIk,Jk

, where {AIk,Jk
: k ≥ 1} are dis-

joint with Ik , Jk finite and disjoint. Now define Q to be the
product measure on A with marginal Qi being Bernoulli
(1 − p−1

i ). The existence and uniqueness of Q is guaran-
teed by Kolmogorov’s extension.

Then P and Q agree on C. Since Q is a probability
measure, we have

P {AI,J } = Q{AI,J } =
∞∑

k=1

Q{AIk,Jk
}

=
∞∑

k=1

P {AIk,Jk
}.

�
THEOREM 6.3. Let P2 be the product measure of P

on N
2. Then

P2{G} = 6/π2.

PROOF OF THEOREM 6.3. gcd(x, y) = 1 if and only
if (x, y) ∈ (A{i},∅ × A{i},∅)c for all i. By independence
between A{i},∅ as i changes,

P2{G} =
∞∏
i=1

(
1 − p−2

i

) = 6

π2 .
�

7. CONCLUSION

The probability assigned to the set of G of relatively
prime integers depends on the sense of “uniform” proba-
bility being used. When the class of finitely additive prob-
abilities defined by relative frequency is used, P(G) =
6/π2. Similarly, when the countably additive probability
defined in Section 6, P {G} = 6/π2 is the only value sup-
ported. However, when the finitely additive classes de-
fined by shift invariance or residue classes are involved,
there are elements of those classes satisfying P {G} = x if
and only if x ∈ [0,6/π2].
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