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Minimax Rates in Network Analysis:
Graphon Estimation, Community Detection
and Hypothesis Testing
Chao Gao and Zongming Ma

Abstract. This paper surveys some recent developments in fundamental
limits and optimal algorithms for network analysis. We focus on minimax
optimal rates in three fundamental problems of network analysis: graphon es-
timation, community detection and hypothesis testing. For each problem, we
review state-of-the-art results in the literature followed by general principles
behind the optimal procedures that lead to minimax estimation and testing.
This allows us to connect problems in network analysis to other statistical
inference problems from a general perspective.
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1. INTRODUCTION

Network analysis (Goldenberg et al., 2010) has gained
considerable research interests in both theory (Bickel and
Chen, 2009) and applications (Girvan and Newman, 2002,
Wasserman and Faust, 1994). In this survey, we review
recent developments that establish the fundamental limits
and lead to optimal algorithms in some of the most impor-
tant statistical inference tasks. Consider a stochastic net-
work represented by an adjacency matrix A ∈ {0,1}n×n.
In this paper, we restrict ourselves to the setting where
the network is an undirected graph without self-loops. To
be specific, we assume that Aij = Aji ∼ Bernoulli(θij )

for all i < j . The symmetric matrix θ ∈ [0,1]n×n mod-
els the connectivity pattern of a social network and fully
characterizes the data generating process. The statistical
problems we are interested is to learn structural informa-
tion of the network coded in the matrix θ . We focus on the
following three problems:

1. Graphon estimation. The celebrated Aldous–Hoover
theorem (Aldous, 1981, Hoover, 1979) asserts that the
exchangeability of {Aij } implies the representation that
θij = f (ξi, ξj ) with some nonparametric function f (·, ·).
Here, ξi ’s are i.i.d. random variables uniformly distributed
in the unit interval [0,1]. The function f is coined as the
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graphon of the network. The problem of graphon estima-
tion is to estimate f with the observed adjacency matrix.

2. Community detection. Many social networks such
as collaboration networks and political networks exhibit
clustering structure. This means that the connectivity pat-
tern is determined by the clustering labels of the network
nodes. In general, for an assortative network, one expects
that two network nodes are more likely to be connected
if they are from the same cluster. For a disassortative net-
work, the opposite pattern is expected. The task of com-
munity detection is to learn the clustering structure, and is
also referred to as the problem of graph partition or net-
work cluster analysis.

3. Hypothesis testing. Perhaps the most fundamental
question for network analysis is whether a network has
some structure. For example, an Erdős–Rényi graph has
a constant connectivity probability for all edges, and is
regarded to have no interesting structure. In comparison,
a stochastic block model has a clustering structure that
governs the connectivity pattern. Therefore, before con-
ducting any specific network analysis, one should first test
whether a network has some structure or not. The test be-
tween an Erdős–Rényi graph and a stochastic block model
is one of the simplest examples.

This survey will emphasize the developments of the
minimax rates of the problems. The state-of-the-art of the
three problems listed above will be reviewed in Section 2,
Section 3 and Section 4, respectively. In each section, we
will introduce critical mathematical techniques that we
use to derive optimal solutions. When appropriate, we will
also discuss the general principles behind the problems.
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This allows us to connect the results of the network anal-
ysis to some other interesting statistical inference prob-
lems.

Real social networks are often sparse, which means that
the number of edges are of a smaller order compared with
the number of nodes squared. How to model sparse net-
works is a longstanding topic full of debate (Lloyd et al.,
2012, Bickel and Chen, 2009, Crane and Dempsey, 2018,
Caron and Fox, 2017). In this paper, we adopt the no-
tion of network sparsity max1≤i<j≤n θij = o(1), which is
proposed by Bickel and Chen (2009). Theoretical foun-
dations of this sparsity notion were investigated by Borgs
et al. (2014, 2018). There are other, perhaps more natural,
notions of network sparsity, and we will discuss potential
open problems in Section 5.

We close this section by introducing some notation
that will be used in the paper. For an integer d , we use
[d] to denote the set {1,2, . . . , d}. Given two numbers
a, b ∈ R, we use a∨b = max(a, b) and a∧b = min(a, b).
For two positive sequences {an}, {bn}, an � bn means
an ≤ Cbn for some constant C > 0 independent of n, and
an � bn means an � bn and bn � an. We write an � bn

if an/bn → 0. For a set S, we use 1{S} to denote its in-
dicator function and |S| to denote its cardinality. For a
vector v ∈ R

d , its norms are defined by ‖v‖1 =∑n
i=1 |vi |,

‖v‖2 =∑n
i=1 v2

i and ‖v‖∞ = max1≤i≤n |vi |. For two ma-
trices A,B ∈ R

d1×d2 , their trace inner product is defined
as 〈A,B〉 =∑d1

i=1
∑d2

j=1 AijBij . The Frobenius norm and
the operator norm of A are defined by ‖A‖F = √〈A,A〉
and ‖A‖op = smax(A), where smax(·) denotes the largest
singular value.

2. GRAPHON ESTIMATION

2.1 Problem Settings

Graphon is a nonparametric object that determines the
data generating process of a random network. The con-
cept is from the literature of exchangeable arrays (Aldous,
1981, Hoover, 1979, Kallenberg, 1989) and graph limits
(Lovász, 2012, Diaconis and Janson, 2008). We consider
a random graph with adjacency matrix {Aij } ∈ {0,1}n×n,
whose sampling procedure is determined by

(ξ1, . . . , ξn) ∼ Pξ ,

Aij |(ξi, ξj ) ∼ Bernoulli(θij ),

where θij = f (ξi, ξj ).

(1)

For i ∈ [n], Aii = θii = 0. Conditioning on (ξ1, . . . , ξn),
the Aij ’s are mutually independent across all i < j . The
function f on [0,1]2, which is assumed to be symmetric,
is called graphon. The graphon offers a flexible nonpara-
metric way of modeling stochastic networks. We note that
exchangeability leads to independent random variables
(ξ1, . . . , ξn) sampled from Uniform[0,1], but for the pur-
pose of estimating f , we do not require this assumption.

We point out an interesting connection between
graphon estimation and nonparametric regression. In the
formulation of (1), suppose we observe both the adja-
cency matrix {Aij } and the latent variables {(ξi, ξj )}, then
f can simply be regarded as a regression function that
maps (ξi, ξj ) to the mean of Aij . However, in the setting
of network analysis, we only observe the adjacency ma-
trix {Aij }. The latent variables are usually used to model
latent features of the network nodes (Hoff, Raftery and
Handcock, 2002, Ma, Ma and Yuan, 2020), and are not al-
ways available in practice. Therefore, graphon estimation
is essentially a nonparametric regression problem with-
out observing the covariates, which leads to a new phe-
nomenon in the minimax rate that we will present below.

In the literature, various estimators have been proposed.
For example, a singular value threshold method is ana-
lyzed by Chatterjee (2015), later improved by Xu (2018).
The paper Lloyd et al. (2012) considers a Bayesian non-
parametric approach. Another popular procedure is to
estimate the graphon via histogram or stochastic block
model approximation (Wolfe and Olhede, 2013, Chan and
Airoldi, 2014, Airoldi, Costa and Chan, 2013, Olhede and
Wolfe, 2014, Borgs, Chayes and Smith, 2015, Borgs et al.,
2015). Minimax rates of graphon estimation have been in-
vestigated by Gao, Lu and Zhou (2015), Gao et al. (2016)
and Klopp et al. (2019).

2.2 Optimal Rates

Before discussing the minimax rate of estimating a non-
parametric graphon, we first consider graphons that are
blockwise constant functions. This is equivalently recog-
nized as stochastic y models (SBMs) (Holland, Laskey
and Leinhardt, 1983, Nowicki and Snijders, 2001). Con-
sider Aij ∼ Bernoulli(θij ) for all 1 ≤ i < j ≤ n. The class
of SBMs with k clusters is defined as

�k = {{θij } ∈ [0,1]n×n : θii = 0, θij = Buv = Bvu

for (i, j) ∈ z−1(u) × z−1(v)

with some Buv ∈ [0,1] and z ∈ [k]n}.
(2)

In other words, for any θ = {θij } ∈ �k , its off-diagonal
entries take the form θij = Bz(i)z(j) for some B = BT ∈
[0,1]k×k and some z ∈ [k]n. The network nodes are di-
vided into k clusters that are determined by the clus-
ter labels z. The subsets {Cu(z)}z∈[k] with Cu(z) = {i ∈
[n] : z(i) = u} form a partition of [n]. The mean matrix
θ ∈ [0,1]n×n is a piecewise constant with respect to the
blocks {Cu(z) × Cv(z) : u, v ∈ [k]}.

In this setting, graphon estimation is the same as esti-
mating the mean matrix θ . If we know the clustering la-
bels z, then we can simply calculate the sample averages
of {Aij } in each block Cu(z) × Cv(z). Without the knowl-
edge of z, a least-squares estimator proposed by Gao, Lu
and Zhou (2015) is

(3) θ̂ = argmin
θ∈�k

‖A − θ‖2
F,
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which can be understood as the sample averages of {Aij }
over the estimated blocks {Cu(̂z) × Cv(̂z)}.

To study the performance of the least-squares estimator
θ̂ , we need to introduce some additional notation. Since
θ̂ ∈ �k , the estimator can be written as θ̂ij = B̂ẑ(i)̂z(j) for
some B̂ ∈ [0,1]k×k and some ẑ ∈ [k]n. The true matrix
that generates A is denoted by θ∗. Then we define

(4) θ̃ = argmin
θ∈�k(̂z)

∥∥θ∗ − θ
∥∥2

F.

Here, the class �k(̂z) ⊂ �k consists of all SBMs with
clustering structures determined by ẑ. Then we immedi-
ately have the Pythagorean identity

(5)
∥∥θ̂ − θ∗∥∥2

F = ‖θ̂ − θ̃‖2
F + ∥∥θ̃ − θ∗∥∥2

F.

By the definition of θ̂ , we have the basic inequality ‖θ̂ −
A‖2

F ≤ ‖θ∗ −A‖2
F. After a simple rearrangement, we have∥∥θ̂ − θ∗∥∥2

F

≤ 2
∣∣〈θ̂ − θ∗,A − θ∗〉∣∣

≤ 2‖θ̂ − θ̃‖F

∣∣∣∣〈 θ̂ − θ̃

‖θ̂ − θ̃‖F
,A − θ∗

〉∣∣∣∣
+ 2

∥∥θ̃ − θ∗∥∥
F

∣∣∣∣〈 θ̃ − θ∗

‖θ̃ − θ∗‖F
,A − θ∗

〉∣∣∣∣
≤ ∥∥θ̂ − θ∗∥∥

F

×
√∣∣∣∣〈 θ̂ − θ̃

‖θ̂ − θ̃‖F
,A − θ∗

〉∣∣∣∣2 +
∣∣∣∣〈 θ̃ − θ∗

‖θ̃ − θ∗‖F
,A − θ∗

〉∣∣∣∣2,
where the last inequality is by Cauchy–Schwarz and (5).
Therefore, we have∥∥θ̂ − θ∗∥∥2

F

≤
∣∣∣∣〈 θ̂ − θ̃

‖θ̂ − θ̃‖F
,A − θ∗

〉∣∣∣∣2 +
∣∣∣∣〈 θ̃ − θ∗

‖θ̃ − θ∗‖F
,A − θ∗

〉∣∣∣∣2
≤ sup

{v∈�k :‖v‖F=1}
∣∣〈v,A − θ∗〉∣∣2 + max

1≤j≤kn

∣∣〈uj ,A − θ∗〉∣∣2,
where {uj }1≤j≤kn are kn fixed matrices with Frobenius
norm 1. To understand the last inequality above, observe
that θ̂−θ̃

‖θ̂−θ̃‖F
belongs to �k and has Frobenius norm 1. Re-

call the definition of θ̃ in (4). Since ẑ takes at most kn

possible values, so does the matrix θ̃−θ∗
‖θ̃−θ∗‖F

. We then use

{uj }1≤j≤kn to denote the kn possible values of θ̃−θ∗
‖θ̃−θ∗‖F

.
Finally, an empirical process argument and a union bound
leads to the inequalities

E

[
sup

{v∈�k :‖v‖F=1}
∣∣〈v,A − θ∗〉∣∣2]� k2 + n log k,

E

[
max

1≤j≤kn

∣∣〈uj ,A − θ∗〉∣∣2]� n log k,

which then implies the bound

(6) E
∥∥θ̂ − θ∗∥∥2

F � k2 + n logk.

The upper bound (6) consists of two terms. The first
term k2 corresponds to the number of parameters we need
to estimate in a SBM with k clusters. The second term
results from not knowing the exact clustering structure.
Since there are in total kn possible clustering configura-
tions, the complexity log(kn) = n logk enters the error
bound. Even though the bound (6) is achieved by an esti-
mator that knows the value of k, a penalized version of the
least-squares estimator with the penalty λ(k2 + n log k)

can achieve the same bound (6) without the knowledge
of k.

The paper by Gao, Lu and Zhou (2015) also shows that
the upper bound (6) is sharp by proving a matching min-
imax lower bound. While it is easy to see that the first
term k2 cannot be avoided by a classical lower bound ar-
gument of parametric estimation, the necessity of the sec-
ond term n logk requires a very delicate lower bound con-
struction. It was proved by Gao, Lu and Zhou (2015) that
it is possible to construct a B ∈ [0,1]k×k , such that the set
{Bz(i)z(j) : z ∈ [k]n} has a packing number bounded below
by ecn log k with respect to the norm ‖ · ‖F and the radius at
the order of

√
n logk. This fact, together with a standard

Fano inequality argument, leads to the desired minimax
lower bound.

We summarize the above discussion into the following
theorem.

THEOREM 2.1 (Gao, Lu and Zhou, 2015). For the
loss function L(θ̂, θ) = (n

2

)−1∑
1≤i<j≤n(θ̂ij − θij )

2, we
have

inf
θ̂

sup
θ∈�k

EL(θ̂, θ) � k2

n2 + logk

n
,

for all 1 ≤ k ≤ n.

Having understood minimax rates of estimating mean
matrices of SBMs, we are ready to discuss minimax rates
of estimating general nonparametric graphons. We con-
sider the following loss function that is widely used in the
literature of nonparametric regression:

L(f̂ , f ) = 1(n
2

) ∑
1≤i<j≤n

(
f̂ (ξi, ξj ) − f (ξi, ξj )

)2
.

Note that L(f̂ , f ) = L(θ̂, θ) if we let θ̂ij = f̂ (ξi, ξj ) and
θij = f (ξi, ξj ). Then the minimax risk is defined as

inf
f̂

sup
f ∈Hα(M)

sup
Pξ

EL(f̂ , f ).

Here, the supreme is over both the function class Hα(M)

and the distribution Pξ that the latent variables (ξ1, . . . ,

ξn) are sampled from. While Pξ is allowed to range from
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the class of all distributions, the Hölder class Hα(M) is
defined as

Hα(M) = {‖f ‖Hα ≤ M : f (x, y) = f (y, x) for x ≥ y
}
,

where α > 0 is the smoothness parameter and M > 0 is
the size of the class. Both are assumed to be constants.
In the above definition, ‖f ‖Hα is the Hölder norm of the
function f (see Gao, Lu and Zhou, 2015, for the details).

The following theorem gives the minimax rate of the
problem.

THEOREM 2.2 (Gao, Lu and Zhou, 2015). We have

inf
f̂

sup
f ∈Hα(M)

sup
Pξ

EL(f̂ , f ) �
⎧⎪⎨⎪⎩

n− 2α
α+1 , 0 < α < 1,

logn

n
, α ≥ 1,

where the expectation is jointly over {Aij } and {ξi}.
The minimax rate in Theorem 2.2 exhibits different be-

haviors in the two regimes depending on whether α ≥ 1 or
not. For α ∈ (0,1), we obtain the classical minimax rate
for nonparametric regression. To see this, one can related
the graphon estimation problem to a two-dimensional
nonparametric regression problem with sample size N =
n(n−1)

2 , and then it is easy to see that N− 2α
2α+d � n− 2α

α+1 for
d = 2. This means for a nonparametric graphon that is not
so smooth, whether or not the latent variables {(ξi, ξj )}
are observed does not affect the minimax rate. In contrast,
when α ≥ 1, the minimax rate scales as logn

n
, which does

not depend on the value of α anymore. In this regime,
there is a significant difference between the graphon esti-
mation problem and the regression problem.

Both the upper and lower bounds in Theorem 2.2 can
be derived by a SBM approximation. The minimax rate
given by Theorem 2.2 can be equivalently written as

min
1≤k≤n

{
k2

n2 + log k

n
+ k−2(α∧1)

}
,

where k2

n2 + log k
n

is the optimal rate of estimating a k-

cluster SBM in Theorem 2.1, and k−2(α∧1) is the approx-
imation error for an α-smooth graphon by a k-cluster
SBM. As a consequence, the least-squares estimator (3)

is rate-optimal with k � n
1

α∧1+1 . The result justifies the
strategies of estimating a nonparametric graphon by net-
work histograms in the literature (Wolfe and Olhede,
2013, Chan and Airoldi, 2014, Airoldi, Costa and Chan,
2013, Olhede and Wolfe, 2014).

Despite its rate-optimality, a disadvantage of the least-
squares estimator (3) is its computational intractability.
A naive algorithm requires an exhaustive search over all
kn possible clustering structures. Although a two-way k-
means algorithm in Gao et al. (2016) works well in prac-
tice, there is no theoretical guarantee that the algorithm

can find the global optimum in polynomial time. An al-
ternative strategy is to relax the constraint in the least-
squares optimization. For instance, let �̃k be the set of
all symmetric matrices θ ∈ [0,1]n×n that have at most k

ranks. It is easy to see �k ⊂ �̃k . Moreover, the relaxed
estimator θ̂ = argminθ∈�̃k

‖A − θ‖2
F can be computed ef-

ficiently through a simple eigenvalue decomposition. This
is closely related to the procedures discussed in Chatterjee
(2015). However, such an estimator can only achieve the
rate k

n
, which can be much slower than the minimax rate

k2

n2 + log k
n

. To the best of our knowledge, k
n

is the best
known rate that can be achieved by a polynomial-time al-
gorithm so far. We refer the readers to Xu (2018) for more
details on this topic.

2.3 Extensions to Sparse Networks

In many practical situations, sparse networks are more
useful. A network is sparse if the maximum probability
of {Aij = 1} tends to zero as n tends to infinity. A sparse
graphon f is a symmetric nonnegative function on [0,1]
that satisfies supx,y f (x, y) ≤ ρ = o(1) (Bickel and Chen,
2009, Borgs et al., 2014, 2018). Analogously, a sparse
SBM is characterized by the space �k(ρ) = {θ ∈ �k :
maxij θij ≤ ρ}. An extension of Theorem 2.1 is given by
the following result.

THEOREM 2.3 (Klopp, Tsybakov and Verzelen, 2017;
Gao et al., 2016). We have

inf
θ̂

sup
θ∈�k

EL(θ̂, θ) � min
{
ρ

(
k2

n2 + logk

n

)
, ρ2

}
,

for all 1 ≤ k ≤ n.

Theorem 2.3 recovers the minimax rate of Theorem 2.1
if we set ρ � 1. The result was obtained independently
by Klopp, Tsybakov and Verzelen (2017) and Gao et al.
(2016) around the same time. Besides the the loss func-
tion L(·, ·) on the probability matrix, Klopp, Tsybakov
and Verzelen (2017) also considered integrated loss for
the graphon function.

To achieve the minimax rate, one can consider the least-
squares estimator

(7) θ̂ = argmin
θ∈�k(ρ)

‖A − θ‖2
F

when k2

n2 + log k
n

≥ ρ. In the situation when k2

n2 + log k
n

< ρ,

the minimax rate is ρ2 and can be trivially achieved by
θ̂ = 0.

Theorem 2.3 also leads to optimal rates of nonparamet-
ric sparse graphon estimation in a Hölder space (Klopp,
Tsybakov and Verzelen, 2017, Gao et al., 2016). In addi-
tion, sparse graphon estimation in a privacy-aware setting
(Borgs, Chayes and Smith, 2015) and a heavy-tailed set-
ting (Borgs et al., 2015) have also been considered in the
literature.
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2.4 Biclustering and Related Problems

SBM can be understood as a special case of bicluster-
ing. A matrix has a biclustering structure if it is blockwise
constant with respect to both row and column clustering
structures. The biclustering model was first proposed by
Hartigan (1972), and has been widely used in modern
gene expression data analysis (Cheng and Church, 2000,
Madeira and Oliveira, 2004). Mathematically, we con-
sider the following parameter space:

�k,l = {{θij } ∈R
n×m : θij = Bz1(i)z2(j),B ∈ R

k×l,

z1 ∈ [k]n, z2 ∈ [l]m}.
Then, for the loss function L(θ̂, θ) = 1

nm
×∑n

i=1
∑m

j=1(θ̂ij − θij )
2, it has been shown in Gao, Lu and

Zhou (2015), Gao et al. (2016) that

(8) inf
θ̂

sup
θ∈�k,l

EL(θ̂, θ) � kl

mn
+ log k

m
+ log l

n
,

as long as log k � log l. The minimax rate (8) holds under
both Bernoulli and Gaussian observations. When k = l

and m = n, the result (8) recovers Theorem 2.1.
The minimax rate (8) reveals a very important princi-

ple of sample complexity. In fact, for a large collection of
popular problems in high-dimensional statistics, the min-
imax rate is often in the form of

(9)
(#parameters) + log(#models)

#samples
.

For the biclustering problem, nm is the sample size
and kl is the number of parameters. Since the num-
ber of biclustering structures is knlm, the formula (9)
gives (8).

To understand the general principle (9), we need to dis-
cuss the structured linear model introduced by Gao, van
der Vaart and Zhou (2020). In the framework of structured
linear models, the data can be written as

Y = XZ(B) + W ∈ R
N,

where XZ(B) is the signal to be recovered and W is a
mean-zero noise. The signal part XZ(B) consists of a
linear operator XZ(·) indexed by the model/structure Z

and parameters that are organized as B . The structure Z

is in some discrete space Zτ , which is further indexed
by τ ∈ T for some finite set T . We introduce a function
	(Zτ ) that determines the dimension of B . In other words,
we have B ∈ R

	(Zτ ). Then the optimal rate that recovers
the signal θ = XZ(B) with respect to the loss function
L(θ̂, θ) = 1

N

∑N
i=1(θ̂i − θi)

2 is given by

(10)
	(Zτ ) + log |Zτ |

N
.

We note that (10) is a mathematically rigorous version of
(9). In Gao, van der Vaart and Zhou (2020), a Bayesian

nonparametric procedure was proposed to achieve the rate
(10). Minimax lower bounds in the form of (10) have been
investigated by Klopp et al. (2019) under a slightly differ-
ent framework. Below we present a few important exam-
ples of the structured linear models.

Biclustering. In this model, it is convenient to orga-
nize XZ(B) as a matrix in R

n×m and then N = nm.
The linear operator XZ(·) is determined by [XZ(B)]ij =
Bz1(i)z2(j) with Z = (z1, z2). With the relations τ = (k, l),
T = [n] × [m], Zk,l = [k]n × [l]m, we get 	(Zk,l) = kl

and log |Zk,l| = n logk + m log l, and the rate (8) can be
derived from (10).

Sparse linear regression. The linear model Xβ with
a sparse β ∈ R

p can also be written as XZ(B). To
do this, note that a sparse β implies a representation
βT = (βT

S ,0T
Sc) for some subset S ⊂ [p]. Then Xβ =

X∗SβS = XZ(B), with the relations Z = S, τ = s, T =
[p], Zs = {S ⊂ [p] : |S| = s}, 	(Zs) = s and B = βS .
Since |Zs | = (p

s

)
, the numerator of (10) becomes s +

log
(p
s

) � s log(
ep
s

), which is the well-known minimax
rate of sparse linear regression (Donoho and Johnstone,
1994, Ye and Zhang, 2010, Raskutti, Wainwright and Yu,
2011). The principle (10) also applies to a more general
row and column sparsity structure in matrix denoising
(Ma and Wu, 2015b).

Dictionary learning. Consider the model XZ(B) =
BZ ∈ R

n×d for some Z ∈ {−1,0,1}p×d and Q ∈ R
n×p .

Each column of Z is assumed to be sparse. Therefore,
dictionary learning can be viewed as sparse linear regres-
sion without knowing the design matrix. With the rela-
tions τ = (p, s), T = {(p, s) ∈ [n ∧ d] × [n] : s ≤ p} and
Zp,s = {Z ∈ {−1,0,1}p×d : maxj∈[d] | supp(Z∗j )| ≤ s},
we have 	(Zp,s) + log |Zp,s | � np + ds log ep

s
, which is

the minimax rate of the problem (Klopp et al., 2019).
The principle (9) or (10) actually holds beyond the

framework of structured linear models. We give an exam-
ple of sparse principal component analysis (PCA). Con-
sider i.i.d. observations X1, . . . ,Xn ∼ N(0,�), where
� = V �V T + Ip belongs to the following space of co-
variance matrices:

F(s,p, r, λ)

= {
� = V �V T + Ip : 0 < λ ≤ λr ≤ · · · ≤ λ1 ≤ κλ,

V ∈ O(p, r),
∣∣rowsupp(V )

∣∣≤ s
}
,

where κ is a fixed constant. The goal of sparse PCA is
to estimate the subspace spanned by the leading r eigen-
vectors V . Here, the notation O(p, r) means the set of
orthonormal matrices of size p × r , rowsupp(V ) is the set
of nonzero rows of V , and � is a diagonal matrix with
entries λ1, . . . , λr . It is clear that sparse PCA is a covari-
ance model and does not belong to the class of structured
linear models. Despite that, it has been proved in Cai, Ma
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and Wu (2013) that the minimax rate of the problem is
given by

inf
V̂

sup
�∈F(s,p,r,λ)

E
∥∥V̂ V̂ T − V V T

∥∥2
F

� λ + 1

λ

r(s − r) + s log ep
s

n
.

(11)

The minimax rate (11) can be understood as the product

of λ+1
λ

and
r(s−r)+s log ep

s

n
. The second term

r(s−r)+s log ep
s

n

is clearly a special case of (9). The first term λ+1
λ

can
be understood as the modulus of continuity between the
squared subspace distance used in (11) and the intrin-
sic loss function of the problem (e.g., Kullback–Leibler),
because the principle (9) generally holds for an intrin-
sic loss function. In addition to the sparse PCA problem,
the minimax rate that exhibits the form of (9) or (10)
can also be found in sparse canonical correlation analy-
sis (sparse CCA) (Gao et al., 2015, Gao, Ma and Zhou,
2017).

3. COMMUNITY DETECTION

3.1 Problem Settings

The problem of community detection is to recover the
clustering labels {z(i)}i∈[n] from the observed adjacency
matrix {Aij } in the setting of SBM (2). It has wide appli-
cations in various scientific areas. Community detection
has received growing interests in past several decades.
Early contributions to this area focused on various cost
functions to find graph clusters, in particular those based
on graph cuts or modularity (Girvan and Newman, 2002,
Newman, Watts and Strogatz, 2002, Newman, 2010). Re-
cent research has put more emphases on fundamental lim-
its and provably efficient algorithms.

In order for the clustering labels to be identifiable, we
impose the following conditions in addition to (2):

(12) min
1≤u≤k

Buu ≥ p, max
1≤u<v≤k

Buv ≤ q,

for some p > q . This is referred to as the assortative con-
dition (Amini and Levina, 2018), which implies that it is
more likely for two nodes in the same cluster to share an
edge compared with the situation where they are from two
different clusters. Relaxation of the condition (12) is pos-
sible, but will not be discussed in this survey. Given an
estimator ẑ, we consider the following loss function:

	(̂z, z) = min
π∈Sk

1

n

n∑
i=1

1{̂z(i) �=π◦z(i)}.

The loss function measures the misclassification propor-
tion of ẑ. Since permutations of labels correspond to the
same clustering structure, it is necessary to take infimum
over Sk in the definition of 	(̂z, z).

In ground-breaking works by Mossel, Neeman and Sly
(2015, 2018) and Massoulié (2014), it is shown that the
necessary and sufficient condition to find a ẑ that is posi-
tively correlated with z (i.e., 	(̂z, z) ≤ 1

2 − δ) when k = 2

is n(p−q)2

2(p+q)
> 1. Moreover, the necessary and sufficient

condition for weak consistency (	(̂z, z) → 0) when k =
O(1) is n(p−q)2

2(p+q)
→ ∞ (Mossel, Neeman and Sly, 2014).

Optimal conditions for strong consistency (	(̂z, z) = 0)
were studied by Mossel, Neeman and Sly (2014) and
Abbe, Bandeira and Hall (2016). When k = 2, it is pos-
sible to construct a strongly consistent ẑ if and only if
n(

√
p − √

q)2 > 2 logn, and extensions to more gen-
eral SBM settings were investigated in Abbe and Sandon
(2015). We refer the readers to a thorough and compre-
hensive review by Abbe (2017) for those modern devel-
opments.

Here, we will concentrate on the minimax rates and
algorithms that can achieve them. We favor the frame-
work of statistical decision theory to derive minimax
rates of the problem because the results automatically im-
ply optimal thresholds in both weak and strong consis-
tency. To be specific, the necessary and sufficient condi-
tion for weak consistency is that the minimax rate con-
verges to zero, and the necessary and sufficient condi-
tion for strong consistency is that the minimax rate is
smaller than 1/n, because of the equivalence between
	(̂z, z) < 1/n and 	(̂z, z) = 0. In addition, the minimax
framework is very flexible and it allows us to naturally
extend our results to more general degree corrected block
models (DCBMs).

3.2 Results for SBMs

We first formally define the parameter space that we
will work with,

�k(p,q,β)

=
{
θ = {Bz(i)z(j)} ∈ �k : nu(z) ∈

[
n

βk
,
βn

k

]
,

B satisfies (12)
}
,

where the notation nu(z) stands for the size of the uth
cluster, defined as nu(z) =∑n

i=1 1{z(i)=u}. We introduce a
fundamental quantity that determines the signal-to-noise
ratio of the community detection problem,

I = −2 log
(√

pq +
√

(1 − p)(1 − q)
)
.

This is the Rényi divergence of order 1/2 between
Bernoulli(p) and Bernoulli(q). The next theorem gives
the minimax rate for �k(p,q,β) under the loss function
	(̂z, z).
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THEOREM 3.1 (Zhang and Zhou, 2016). Assume
nI

k logk
→ ∞, and then

inf
ẑ

sup
�k(p,q,β)

E	(̂z, z)

=

⎧⎪⎪⎨⎪⎪⎩
exp

(
−(1 + o(1)

)nI

2

)
, k = 2,

exp
(
−(1 + o(1)

)nI

βk

)
, k ≥ 3,

(13)

where 1 + Ck/n ≤ β <
√

5/3 with some large constant
C > 1 and 0 < q < p < (1 − c0) with some small con-
stant c0 ∈ (0,1). In addition, if nI/k = O(1), then we
have inf̂z sup�k(p,q,β)E	(̂z, z) � 1.

Theorem 3.1 recovers some of the optimal thresholds
for weak and strong consistency results in the literature.
When k = O(1), weak consistency is possible if and
only if inf̂z sup�k(p,q,β)E	(̂z, z) = o(1), which is equiv-
alently the condition nI → ∞ (Mossel, Neeman and Sly,
2014). Similarly, strong consistency is possible if and
only if nI

2 > logn when k = 2 and nI
βk

> logn when k

is not growing too fast (Mossel, Neeman and Sly, 2014,
Abbe, Bandeira and Hall, 2016). Between the weak and
strong consistency regimes, the minimax misclassifica-
tion proportion converges to zero with an exponential rate.

To understand why Theorem 3.1 gives a minimax rate
in an exponential form, we start with a simple argument
that relates the minimax lower bound to a hypothesis test-
ing problem. We only consider the case where 3 ≤ k =
O(1) and nI → ∞ are satisfied, and refer the readers to
Zhang and Zhou (2016) for the more general argument.
We choose a sequence δ = δn that satisfies δ = o(1) and
log δ−1 = o(nI). Then we choose a z∗ ∈ [k]n such that
nu(z

∗) ∈ [ n
βk

+ δn
k

,
βn
k

− δn
k

] for any u ∈ [k] and n1(z
∗) =

n2(z
∗) = � n

βk
+ δn

k
�. Recall the notation Cu(z

∗) = {i ∈
[n] : z∗(i) = u}. Then we choose some C̃1 ⊂ C1(z

∗) and
C̃1 ⊂ C1(z

∗) such that |C̃1| = |C̃2| = �n1(z
∗)− δn

k
�. Define

T = C̃1 ∪ C̃2 ∪
(

k⋃
u=3

Cu

(
z∗)) and

ZT = {
z ∈ [k]n : z(i) = z∗(i) for all i ∈ T

}
.

The set ZT corresponds to a subproblem that we only
need to estimate the clustering labels {z(i)}i∈T c . Given
any z ∈ ZT , the values of {z(i)}i∈T are known, and for
each i ∈ T c, there are only two possibilities that z(i) = 1
or z(i) = 2. The idea is that this subproblem is simple
enough to analyze but it still captures the hardness of the
original community detection problem. Now, we define
the subspace

�0
k(p, q,β)

= {
θ ∈ {Bz(i)z(j)} ∈ �k : z ∈ ZT ,

Buu = p,Buv = q, for all 1 ≤ u < v ≤ k
}
.

We have �0
k(p, q,β) ⊂ �k(p,q,β) by the construction

of ZT . This gives the lower bound

inf
ẑ

sup
�k(p,q,β)

E	(̂z, z)

≥ inf
ẑ

sup
�0

k(p,q,β)

E	(̂z, z)

= inf
ẑ

sup
z∈ZT

1

n

n∑
i=1

P
{̂
z(i) �= z(i)

}
.

(14)

The last inequality above holds because for any z1, z2 ∈
ZT , we have 1

n

∑n
i=1 1{z1(i) �=z2(i)} = O(δk

n
) so that 	(z1,

z2) = 1
n

∑n
i=1 1{z1(i) �=z2(i)}. Continuing from (14), we

have

inf
ẑ

sup
z∈ZT

1

n

n∑
i=1

P
{̂
z(i) �= z(i)

}
≥ |T c|

n
inf
ẑ

sup
z∈ZT

1

|T c|
∑
i∈T c

P
{̂
z(i) �= z(i)

}
≥ |T c|

n

1

|T c|
∑
i∈T c

inf
ẑ(i)

avez∈ZT
P
{̂
z(i) �= z(i)

}
.

(15)

Note that for each i ∈ T c,

inf
ẑ(i)

avez∈ZT
P
{̂
z(i) �= z(i)

}
≥ avez−i

inf
ẑ(i)

(
1

2
P(z−i ,z(i)=1)

(̂
z(i) �= 1

)
+ 1

2
P(z−i ,z(i)=2)

(̂
z(i) �= 2

))
.

(16)

Thus, it is sufficient to lower bound the testing error be-
tween each pair (P(z−i ,z(i)=1),P(z−i ,z(i)=2)) by the desired
minimax rate in (13). Note that |T c| � δn

k
with a δ that

satisfies log δ−1 = o(nI). So the ratio |T c|/n in (15) can
be absorbed into the o(1) in the exponent of the minimax
rate.

The above argument leading to (16) implies that we
need to study the fundamental testing problem between
the pair (P(z−i ,z(i)=1),P(z−i ,z(i)=2)). That is, given the
whole vector z but its ith entry, we need to test whether
z(i) = 1 or z(i) = 2. This simple versus simple testing
problem can be equivalently written as

(17)

H1 : X ∼
m1⊗
i=1

Bern(p) ⊗
m1+m2⊗
i=m1+1

Bern(q)

vs. H2 : X ∼
m1⊗
i=1

Bern(q) ⊗
m1+m2⊗
i=m1+1

Bern(p).

The optimal testing error of (17) is given by the following
lemma.
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LEMMA 3.1 (Gao et al., 2018). Suppose that as
m1 → ∞, 1 < p/q = O(1), p = o(1), |m1/m2 − 1| =
o(1) and m1I → ∞, we have

inf
φ

(
PH1φ + PH2(1 − φ)

)= exp
(−(1 + o(1)

)
m1I

)
.

Lemma 3.1 is an extension of the classical Chernoff–
Stein theory of hypothesis testing for constant p and q

(see Chapter 11 of Cover and Thomas, 2006). The er-
ror exponent m1I is a consequence of calculating the
Chernoff information between the two hypotheses in (17).
In the setting of (16), we have m1 = (1 + o(1))m2 =
(1 + o(1)) nI

βk
, which implies the desired minimax lower

bound for k ≥ 3 in (13). For k = 2, we can slightly mod-
ify the result of Lemma 3.1 with asymptotically different
m1 and m2 but of the same order. In this case, one ob-
tains exp(−(1 + o(1))m1+m2

2 I ) as the optimal testing er-
ror, which explains why the minimax rate in (13) for k = 2
does not depend on β .

We remark that even though Lemma 3.1 gives the opti-
mal testing error up to a (1 + o(1)) factor in the exponent,
it would be interesting to investigate the exact form of
o(1)m1I . This problem has been recently studied in the
paper Zhou and Li (2018), where upper and lower bounds
of o(1)m1I was obtained. It also leads to a slight sharper
version of Theorem 3.1.

The testing problem between the pair (P(z−i ,z(i)=1),

P(z−i ,z(i)=2)) is also the key that leads to the minimax
upper bound. Given the knowledge of z but its ith entry,
one can use the likelihood ratio test to recover z(i) with
the optimal error given by Lemma 3.1. Inspired by this
fact, Gao et al. (2017) considered a two-stage procedure
to achieve the minimax rate (13). In the first stage, one
uses a reasonable initial label estimator ẑ0. This serves as
an surrogate for the true z. Then in the second stage, one
needs to solve the estimated hypothesis testing problem

(P(z−i=ẑ0−i ,z(i)=1),P(z−i=ẑ0−i ,z(i)=2), . . . ,

P(z−i=ẑ0−i ,z(i)=k)).
(18)

Since this is an upper bound procedure, we need to select
from the k possible hypotheses. The solution, derived by
Gao et al. (2017), is given by the formula

(19) ẑ(i) = argmax
u∈[k]

( ∑
{j :̂z0(j)=u}

Aij − ρ̂nu

(̂
z0)).

The number ρ̂ is a data-driven tuning parameter that has
an explicit formula given ẑ0 (see Gao et al., 2017, for
details). The formula (19) is intuitive. For the ith node,
its clustering label is given by the one that has the most
connections with the ith node, offset by the size of that
cluster multiplied by ρ̂. This one-step refinement proce-
dure enjoys good theoretical properties. As was shown in
Gao et al. (2017), the minimax rate (13) can be achieved

given a reasonable initialization such as regularized spec-
tral clustering. In practice, after updating all i ∈ [n] ac-
cording to (19), one can regard the current ẑ as the new
ẑ0, and refine the estimator using (19) for a second round.
From our experience, this will improve the performance,
and usually less than ten steps of refinement is more than
sufficient.

The “refinement after initialization” method is a com-
monly used idea in community detection to achieve expo-
nentially small misclassification proportion. Comparable
results as Gao et al. (2017) are also obtained by Yun and
Proutiere (2014, 2016). In addition to the likelihood-ratio-
test type of refinement, the paper Zhang and Zhou (2020)
shows that a coordinate ascent variational algorithm also
converges to the minimax rate (13) given a good initial-
ization.

3.3 Results for DCBMs

As was observed in Bickel and Chen (2009) and
Zhao, Levina and Zhu (2012), SBM is not a satisfac-
tory model for many real data sets. An interesting gen-
eralization of SBM that captures degree heterogene-
ity was proposed by Dasgupta, Hopcroft and McSherry
(2004) and Karrer and Newman (2011), called degree
corrected block model (DCBM). DCBM assumes that
Aij ∼ Bernoulli(didjBz(i)z(j)). The extra sequence of pa-
rameters (d1, . . . , dn) models individual sociability of net-
work nodes. This extra flexibility is important in real-
world network data analysis.

However, the extra nuisance parameters (d1, . . . , dn)

impose new challenges for community detection. There
are not many papers that extend the results of SBM in
Mossel, Neeman and Sly (2015), Mossel, Neeman and
Sly (2018), Massoulié (2014), Mossel, Neeman and Sly
(2014), Abbe, Bandeira and Hall (2016) and Abbe and
Sandon (2015) to DCBM. A few notable exceptions are
Zhao, Levina and Zhu (2012), Chen, Li and Xu (2018)
and Gulikers, Lelarge and Massoulié (2018, 2017).

On the other hand, the decision theoretic framework
can be naturally extended from SBM to DCBM, and the
results automatically imply optimal thresholds for both
weak and strong consistency.

We first define the parameter space of DCBMs as

�k(p,q,β, d; δ)

=
{
θ = {didjBz(i)z(j)} :

{Bz(i)z(j)} ∈ �k(p,q,β),

∣∣∣∣
∑

i∈Cu(z) di

nu(z)
− 1

∣∣∣∣≤ δ

}
.

Note that the space �k(p,q,β, d; δ) is defined for a given
d ∈ R

n. This allows us to characterize the minimax rate of
community detection for each specific degree heterogene-

ity vector. The inequality |
∑

i∈Cu(z) di

nu(z)
− 1| ≤ δ is a condi-

tion for z. This means that the average value of {di}i∈Cu(z)
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in each cluster is roughly 1, which implies approximate
identifiability of d , B , z in the model.

Before stating the minimax rate, we also introduce the
quantity J , which is defined by the following equation:

(20) exp(−J ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

n

n∑
i=1

exp
(
−di

nI

2

)
, k = 2,

1

n

n∑
i=1

exp
(
−di

nI

βk

)
, k ≥ 3.

When di = 1 for all i ∈ [n], J is the exponent that appears
in the minimax rate of SBM in (13).

THEOREM 3.2 (Gao et al., 2018). Assume min(J,

logn)/ logk → ∞, the sequence δ = δn satisfies δ = o(1)

and log δ−1 = o(J ), and (d1, . . . , dn) satisfies Condition
N in Gao et al. (2018). Then we have

(21) inf
ẑ

sup
�k(p,q,β,d;δ)

E	(̂z, z) = exp
(−(1 + o(1)

)
J
)
,

where 1 + Ck/n ≤ β <
√

5/3 and 1 < p/q ≤ C with
some large constant C > 1.

With slightly stronger conditions, Theorem 3.2 general-
izes the result of Theorem 3.1. By (20) and (21), the min-
imax rate of community detection for DCMB is an aver-
age of exp(−di

nI
2 ) or exp(−di

nI
βk

), depending on whether
k = 2 or k ≥ 3. A node with a larger value of di will be
more likely clustered correctly.

Similar to SBM, the minimax rate of DCBM is also
characterized by a fundamental testing problem. With the
presence of degree heterogeneity, the corresponding test-
ing problem is

(22)

H1 : X ∼
m1⊗
i=1

Bern(d0dip)

⊗
m1+m2⊗
i=m1+1

Bern(d0diq)

vs. H2 : X ∼
m1⊗
i=1

Bern(d0diq)

⊗
m1+m2⊗
i=m1+1

Bern(d0dip).

Here, we use 0 as the index of node whose clustering la-
bel is to be estimated. The optimal testing error of (22) is
given by the following lemma.

LEMMA 3.2 (Gao et al., 2018). Suppose that as
m1 → ∞, 1 < p/q = O(1), p max0≤i≤m1+m2 d2

i = o(1),
|m1/m2 − 1| = o(1) and | 1

m1

∑m1
i=1 d1 − 1| ∨ | 1

m2
×∑m2

i=m1+1 di − 1| = o(1). Then, whenever d0m1I → ∞,
we have

inf
φ

(
PH1φ + PH2(1 − φ)

)= exp
(−(1 + o(1)

)
d0m1I

)
.

A comparison between Lemma 3.2 and Theorem 3.2
reveals the principle that the minimax clustering error rate
can be viewed as the average minimax testing error rate.

Finally, we remark that the minimax rate (21) can be
achieved by a similar “refinement after initialization” pro-
cedure to that in Section 3.2. Some slight modification is
necessary for the method to be applicable in the DCBM
setting, and we refer the readers to Gao et al. (2018) for
more details.

3.4 Initialization Procedures

In this section, we briefly discuss consistent initializa-
tion strategies so that we can apply the refinement step
(19) afterwards to achieve the minimax rate. The discus-
sion will focus on the SBM setting. The goal is to con-
struct an estimator ẑ0 that satisfies 	(̂z0, z) = oP(1) under
a minimal signal-to-noise ratio requirement. We focus our
discussion on the case k = O(1). Then we need a ẑ0 that
is weakly consistent whenever nI → ∞. The requirement
for ẑ0 when k → ∞ was given in Gao et al. (2017).

A very popular computationally efficient network clus-
tering algorithm is spectral clustering (Shi and Malik,
2000, McSherry, 2001, von Luxburg, 2007, von Luxburg,
Belkin and Bousquet, 2008, Rohe, Chatterjee and Yu,
2011, Chaudhuri, Chung and Tsiatas, 2012, Coja-Oghlan,
2010). There are many variations of spectral clustering al-
gorithms. In what follows, we present a version proposed
by Gao et al. (2018) that avoids the assumption of eigen-
gap. The algorithm consists of the following three steps:

1. Construct an estimator θ̂ of θ = EA.
2. Compute θ̃ = argminrank(θ)≤k ‖θ − θ̂‖2

F.
3. Apply k-means algorithm on the rows of θ̃ , and

record the clustering result by ẑ0.

The three steps are highly modular and each one can
be replaced by a different modification, which leads to
different versions of spectral clustering algorithms (Zhou
and Amini, 2019). The vanilla spectral clustering algo-
rithm either chooses the adjacency matrix or the normal-
ized graph Laplacian as θ̂ in Step 1. Then the k-means al-
gorithm will be applied on the rows of Û instead of those
of θ̃ in Step 2, where Û ∈ R

n×k is the matrix that consists
of the k leading eigenvectors. In comparison, the choice
of θ̃ in Step 2 can be written as θ̃ = Û�̂ÛT , where �̂

is a diagonal matrix that consists of the k leading eigen-
values1 of θ̂ . Our modified Step 1 and Step 2 make the
algorithm consistent when nI → ∞ without an eigengap
assumption.

The choice of θ̂ in Step 1 is very important. Before dis-
cussing the requirement we need for θ̂ , we need to under-
stand the requirement for θ̃ . According to a standard anal-
ysis of the k-means algorithm (see, e.g., Lei and Rinaldo,

1The k leading eigenvalues are the k eigenvalues with the largest
absolute values.
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2015 and Gao et al., 2018), a smaller E‖θ̃ − θ‖2
F leads

to a smaller clustering error of ẑ0. Therefore, the least-
squares estimator (7) will be the best option for θ̃ because
it is minimax optimal (Theorem 2.3). However, there is no
known polynomial-time algorithm to compute (7). On the
other hand, the low-rank approximation in Step 2 can be
computed efficiently through eigenvalue decomposition,
and it enjoys the risk bound

E‖θ̃ − θ‖2
F = O

(
E‖θ̂ − θ‖2

op
)
.

This means it is sufficient to find an θ̂ that achieves the
minimal risk in terms of the squared operator norm loss.
In other words, we seek an optimal sparse graphon esti-
mator θ̂ with respect to the loss function ‖ · ‖2

op. The fun-
damental limit of the problem is given by the following
theorem.

THEOREM 3.3 (Gao, Lu and Zhou, 2015). For n−1 ≤
ρ ≤ 1 and k ≥ 2, we have

inf
θ̂

sup
θ∈�k(ρ)

E‖θ̂ − θ‖2
op � ρn.

The minimax rate can be achieved by the estimator pro-
posed by Chin, Rao and Vu (2015). Define the trimming
operator Tτ : A �→ Tτ (A) by replacing the ith row and the
ith column of A with 0 whenever

∑n
j=1 Aij ≥ τ . Then we

set θ̂ = Tτ (A) with τ = C 1
n−1

∑n
i=1

∑n
j=1 Aij for some

large constant C > 0. This estimator can be shown to
achieve the optimal rate given by Theorem 3.3 (Chin, Rao
and Vu, 2015, Gao et al., 2017). When ρ � logn

n
or the

graph is dense, the native estimator θ̂ = A also achieves
the minimax rate. This justifies the optimality of the re-
sults in Lei and Rinaldo (2015) in the dense regime.

With θ̂ described in the last paragraph, the three steps
in the algorithm are fully specified. It can be shown that
	(̂z0, z) = o(1) with high probability as long as nI → ∞
(Gao et al., 2017, 2018).

Another popular version of spectral clustering is to
apply k-means on the leading eigenvectors of the nor-
malized graph Laplacian L = D−1/2AD−1/2, where D

is a diagonal degree matrix. The advantage of using
graph Laplacian in spectral clustering is discussed in von
Luxburg, Belkin and Bousquet (2008) and Sarkar and
Bickel (2015). When the graph is sparse, it is important to
use regularized version of graph Laplacian (Amini et al.,
2013, Qin and Rohe, 2013, Joseph and Yu, 2016), defined
as Lτ = D

−1/2
τ AτD

−1/2
τ , where (Aτ )ij = Aij + τ/n and

Dτ is the degree matrix of Aτ . The regularization param-
eter plays a similar role as the τ in Tτ (A). Performance
of regularized spectral clustering is rigorously studied by
Le, Levina and Vershynin (2015), Gao et al. (2017) and
Le, Levina and Vershynin (2017).

For DCBM, it is necessary to apply a normaliza-
tion for each row of θ̃ in Step 2. Instead of apply-
ing k-means directly on the rows of θ̃ , it is applied on

{θ̃1∗/‖θ̃1∗‖, . . . , θ̃n∗/‖θ̃n∗‖}. Then the dependence on the
nuisance parameter di will be eliminated at each ra-
tio θ̃i∗/‖θ̃i∗‖. The idea of normalization is proposed by
Jin (2015) and is further developed by Lei and Rinaldo
(2015), Qin and Rohe (2013) and Gao et al. (2018).

Besides spectral clustering algorithms, another popu-
lar class of methods is semidefinite programming (SDP)
(Cai and Li, 2015, Chen, Li and Xu, 2018, Amini and
Levina, 2018). It has been shown that SDP can achieve
strong consistency with the optimal threshold of signal-
to-noise ratio (Hajek, Wu and Xu, 2016a, Hajek, Wu and
Xu, 2016b). Moreover, unlike spectral clustering, the er-
ror rate of SDP is exponential rather than polynomial (Fei
and Chen, 2019).

3.5 Some Related Problems

The minimax rates of community detection for both
SBM and DCBM are exponential. A fundamental princi-
ple for such discrete learning problems is the connection
between minimax rates and optimal testing errors. In this
section, we review several other problems in the literature
that share this connection.

Crowdsourcing. In many machine learning problems
such as image classification and speech recognition, we
need a large amount of labeled data. Crowdsourcing pro-
vides an efficient while inexpensive way to collect la-
bels through online platforms such as Amazon Mechani-
cal Turk (2010).

Though massive in amount, the crowdsourced labels are
usually fairly noisy. The low quality is partially due to
the lack of domain expertise from the workers and pres-
ence of spammers. Let {Xij }i∈[m],j∈[n] be the matrix of
labels given by the ith worker to the j th item. The clas-
sical Dawid and Skene model (Dawid and Skene, 1979)
characterizes the ith worker’s ability by a confusion ma-
trix

(23) π
(i)
gh = P(Xij = h|yj = g),

which satisfies the probabilistic constraint
∑k

h=1 π
(i)
gh = 1.

Here, yj stands for the label of the j th item, and it takes
value in [k]. Given yj = g, Xij is generated by a categor-

ical distribution with parameter π
(i)
g∗ = (π

(i)
g1 , . . . , π

(i)
gk ).

The goal is to estimate the true labels y = (y1, . . . , yn)

using the observed noisy labels {Xij }.
With the loss function 	(ŷ, y) = 1

n

∑n
j=1 1{ŷj �=yj }, it is

proved by Gao, Lu and Zhou (2016) that under certain
regularity conditions, the minimax rate of the problem is

(24) inf
ŷ

sup
y∈[k]n

E	(ŷ, y) = exp
(−(1 + o(1)

)
mI (π)

)
,

where

I (π) = −max
g �=h

min
0≤t≤1

1

m

m∑
i=1

log

(
k∑

l=1

(
π

(i)
gl

)1−t (
π

(i)
hl

)t)
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is a quantity that characterizes the collective wisdom of a
crowd.

The fact that (24) takes a similar form as (13) is not a
coincidence. The crowdsourcing problem is essentially a
hypothesis testing problem. For each j ∈ [n], one needs
to select from the k hypotheses {Hg}g∈[k], with the data
generating process associated with Hg given by (23).

Variable selection. Consider the problem of variable se-
lection in the Gaussian sequence model Xj ∼ N(θj , σ

2)

independently for j = 1, . . . , d . The parameter space of
interest is defined as

�d(s, a)

=
{
θ ∈ R

d : θj = 0 if zj = 0, θj ≥ a if zj = 1,

z ∈ {0,1}d and
d∑

j=1

zj = s

}
.

For any θ ∈ �d(s, a), there are exactly s nonzero coordi-
nates whose values are greater than or equal to a.

With the loss function 	(̂z, z) = 1
s

∑d
j=1 1{̂zj �=zj }, the

minimax risk of variable selection derived by Butucea
et al. (2018) is

(25) inf
ẑ

sup
�d(s,a)

E	(̂z, z) = �+(d, s, a),

where the quantity �+(d, s, a) is given by

�+(d, s, a)

=
(

d

s
− 1

)
�

(
− a

2σ
− σ

a
log

(
d

s
− 1

))
+ �

(
− a

2σ
+ σ

a
log

(
d

s
− 1

))
.

The notation �(·) is the cumulative distribution function
of N(0,1). Obviously, the optimal estimator that achieves
the above minimax risk is the likelihood ratio test be-
tween N(0, σ 2) and N(a,σ 2) weighted by the knowledge
of sparsity s.

Despite the connection between variable selection and
hypothesis testing, the minimax risk (25) has two distinct
features. First of all, the loss function is the number of
wrong labels divided by s instead of the overall dimen-
sion d . This is because the problem has an explicit spar-
sity constraint, which is not present in community detec-
tion or crowdsourcing. Second, given the Gaussian error,
one can evaluate the minimax risk (25) exactly instead of
just the asymptotic error exponent. The result (25) can be
extended to more general settings and we refer the readers
to Butucea et al. (2018).

Ranking. Consider n objects with ranks r(1), r(2), . . . ,

r(n) ∈ [n]. We observe pairwise interaction data
{Xij }1≤i �=j≤n that follow the generating process Xij =
μr(i)r(j) + Wij . The goal is to estimate the ranks r =

(r(1), . . . , r(n)) from the data matrix {Xij }1≤i �=j≤n.
A natural loss function for the problem is 	0(̂r, r) =
1
n

∑n
i=1 1{̂r(i) �=r(i)}. However, since ranks have a natural

order, we can also measure the difference |̂r(i) − r(i)|
in addition to the indicator whether or not r̂(i) = r(i).
This motivates a more general 	q loss function 	q (̂r, r) =
1
n

∑
i=1 |̂r(i) − r(i)|q for some q ∈ [0,2] by adopting the

convention that 00 = 0. In particular, 	1(̂r, r) is equiv-
alent to the well-known Kendall tau distance (Diaconis
and Graham, 1977) that is commonly used for a ranking
problem.

Rather than discussing the general framework in
Gao (2017), we consider a special model with Xij ∼
N(β(r(i) − r(j)), σ 2). Then,the minimax rate of the
problem in Gao (2017) is given by

inf
r̂

sup
r∈R

E	q (̂r, r)

�

⎧⎪⎪⎪⎨⎪⎪⎪⎩
exp

(
−(1 + o(1)

)nβ2

4σ 2

)
,

nβ2

4σ 2 > 1,[(
nβ2

4σ 2

)−1
∧ n2

]q/2
,

nβ2

4σ 2 ≤ 1.

(26)

The set R is a general class of ranks that allow ties (ap-
proximate ranking). The detailed definition is referred to
Gao (2017). If R is replaced by the set of all permuta-
tions (exact ranking without tie), then the minimax rate

(26) will still hold after nβ2

4σ 2 being replaced by nβ2

2σ 2 (Chen
and Gao, 2018).

The rate (26) exhibits an interesting phase transition

phenomenon. When the signal-to-noise ratio nβ2

4σ 2 > 1, the
minimax rate of ranking has an exponential form, much
like the minimax rate of community detection in (13). In

contrast, when nβ2

4σ 2 ≤ 1, the minimax rate becomes a poly-
nomial of the inverse signal-to-noise ratio.

When nβ2

4σ 2 > 1, the difficulty of ranking is determined
by selecting among the following n hypotheses

(Pr−i ,r(i)=1,Pr−i ,r(i)=2, . . . ,Pr−i ,r(i)=n),

for each i ∈ [n]. Since the error of the above testing prob-
lem is dominated by the neighboring hypotheses, that is,
we need to decide whether Pr−i ,r(i)=j or Pr−i ,r(i)=j+1 is
more likely, the minimax ranking is then given by the
exponential form in (26), where the exponent is essen-
tially the Chernoff information between Pr−i ,r(i)=j and
Pr−i ,r(i)=j+1.

4. TESTING NETWORK STRUCTURE

4.1 Likelihood Ratio Tests for Erdős–Rényi Model
Versus Stochastic Block Model

Let A = AT ∈ {0,1}n×n be the adjacency matrix of an
undirected graph with no self-loop. For any probability
p ∈ [0,1], let G1(n,p) denote the Erdős–Rényi model
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where for all i < j , Aij
iid∼ Bernoulli(p). For any p �=

q ∈ [0,1], let G2(n,p, q) denote the following “mix-

ture” of SBMs. First, for i = 1, . . . , n, let z(i) − 1
iid∼

Bernoulli(1/2). Conditioning on the realization of the
z(i)’s, for all i < j ,

Aij = Aji
ind∼
{

Bernoulli(p), if z(i) = z(j),

Bernoulli(q), if z(i) �= z(j).

We start with the simple testing problem of

H0 : A ∼ G1

(
n,

p + q

2

)
vs. H1 : A ∼ G2(n,p, q).

(27)

As in the previous section, we allow p and q to scale
with n. Under the present setting, both null and alterna-
tive hypotheses are simple, and so the Neyman–Pearson
lemma shows that the most powerful test is the likelihood
ratio test. In what follows, we review the structure of the
likelihood ratio statistics of the testing problem (27) in
two different regimes determined by whether the average
node degree n

2 (p + q) remains bounded or grows to infin-
ity as the graph size n tends to infinity. For convenience,
denote the null distribution in (27) by P0,n and the alterna-
tive distribution P1,n. We also define the following mea-
sure on the separation of the alternative distribution from
the null:

(28) t =
√

n(p − q)2

2(p + q)
.

The nontrivial cases are when t is finite.

The regime of bounded degrees. In the asymptotic
regime where

(29) np = a and nq = b are constants as n → ∞,

Mossel, Neeman and Sly (2015) focused on the assorta-
tive case where p > q and showed that the testing prob-
lem (27) has the following phase transition:

• When t < 1, P0,n and P1,n are asymptotically mutu-
ally contiguous, and so there is no consistent test for (27);

• When t > 1, P0,n and P1,n are asymptotically sin-
gular (orthogonal) and counting the number of cycles of
length �log1/4 n� in the graph leads to a consistent test.

Their proof relies on the coupling of the local neighbor-
hood of a vertex in the random graph with a Galton–
Watson tree, which in turn depends crucially on the as-
sumption (29) that the expected degrees of nodes remain
bounded as the graph size grows.

In this asymptotic regime, when t < 1, the asymptotic
distribution of the log-likelihood ratio can be character-
ized by that of the weighted sum of counts of m-cycles
in the graph for m ≥ 3. As far as asymptotic distribu-
tion is concerned, we can stop the summation at mn =

�log1/4 n�. For each positive integer j , let Xj = Xn,j be
the counts of j -cycles in the graph of size n. Following
the lines of Mossel, Neeman and Sly (2015), one can ac-
tually show that when t < 1 and (29) holds, one achieves
the asymptotic power of the likelihood ratio test by rejects
for large values of

(30) Lc =
mn∑
j=3

[
Xn,j log(1 + δj ) − λjδj

]
with

λj = 1

2j

(
a + b

2

)j

and δj =
(

a − b

a + b

)j

.

To see this, one may replace Theorem 6 in Mossel, Nee-
man and Sly (2015) with Theorem 1 in Janson (1995).
Intuitively speaking, the counts of short cycles determine
the likelihood ratio in the contiguous regime.

The regime of growing degrees. Now consider the fol-
lowing growing degree asymptotic regime where

(31) np,nq → ∞ as n → ∞.

For simplicity, further assume that p,q → 0 as n → ∞,
though all results in this part can be generalized to cases
where p and q converge to constants in (0,1). Gen-
eralizing the contiguity arguments developed by Janson
(1995), Banerjee (2018) established under (31) the fol-
lowing phase transition phenomenon similar to that in the
bounded degree case:

• When t < 1, P0,n and P1,n are asymptotically mutu-
ally contiguous, and so there is no consistent test for (27);

• When t ≥ 1, P0,n and P1,n are asymptotically singu-
lar (orthogonal) and there is a consistent test.

Let Ln = dP1,n

dP0,n
be the likelihood ratio of (27). Banerjee

(2018) showed that when t < 1 and (31) holds, the log-
likelihood ratio log(Ln) satisfies

(32)

log(Ln)
d→ N

(
−1

2
σ(t)2, σ (t)2

)
, under H0,

log(Ln)
d→ N

(
1

2
σ(t)2, σ (t)2

)
, under H1,

where

σ(t)2 = 1

2

(
− log

(
1 − t2)− t2 − t4

2

)
.

Moreover, let pav = 1
2(p + q) and for any integer i ≥ 3

define the signed cycles of length i as

Cn,i(A) = ∑
j0,j1,...,ji−1

[
Aj0j1 − pav√
npav(1 − pav)

]
· · ·

[
Aji−1j0 − pav√
npav(1 − pav)

]
,

(33)
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where j0, j1, . . . , ji−1 are all distinct and the summation
is over all such i-tuples. Unlike the actual counts of cycles
used in the bounded degree regime, the signed cycles do
not have a straightforward interpretation as graph statis-
tics. Banerjee (2018) further showed that when t < 1 and
(31) holds, the statistic

(34) Lsc =
∞∑
i=3

2t iCn,i(A) − t2i

4i

has the same asymptotic distributions as those in (32) un-
der both null and alternative. In other words, a test that re-
jects H0 for large values of Lsc has the same asymptotic
power as the likelihood ratio test which in turn is opti-
mal by the Neyman–Pearson lemma. Finally, when t > 1,
with appropriate rejection regions, Lsc leads to a consis-
tent test. Analogous to (30), here the signed cycle statis-
tics determine the likelihood ratio asymptotically within
the contiguous regime.

4.2 Tests with Polynomial Time Complexity

By our setting, the null hypothesis in (27) is simple
while the alternative averages over 2n different possi-
ble configurations of the community assignment vector
z = (z(1), . . . , z(n))T . Therefore, direct evaluation of the
likelihood ratio test in either asymptotic regime is of ex-
ponential time complexity. It is therefore of great inter-
est so see whether restricting one’s attention to tests with
polynomial time complexity would incur any penalty on
statistical optimality (Berthet and Rigollet, 2013, Ma and
Wu, 2015a). Interestingly, one can show that for the test-
ing problem (27), there are polynomial time tests that are
asymptotically as good as the likelihood ratio test.

The regime of bounded degrees. In view of (30), in or-
der to achieve the asymptotic powers of the likelihood ra-
tio test, it suffices to count the numbers of m-cycles up to
a slowly growing upper bound on m, say mn = �log1/4 n�.
Proposition 1 in Mossel, Neeman and Sly (2015) implied
that this can be achieved within Õ(n(a +b)mn) time com-
plexity in expectation.

The regime of growing degrees. We divide the discus-
sion into two different regimes. In view of (34), it suffices
to focus on estimating the signed cycles up to a slowly
growing upper bound. In what follows, we divide the dis-
cussion into two parts according to edge density.

First, assume that np2 → ∞. In this case, the aver-
age node degree grows at a faster rate than

√
n. In this

regime, Banerjee and Ma (2017) showed that one can
approximate the signed cycles by carefully designed lin-
ear spectral statistics of a rescaled adjacency matrix up
to mn = �min(log1/2(np2), log1/4 n)�. In particular, de-
fine Acen = (

Aij−pav√
npav(1−pav)

1i �=j ). Moreover, for any uni-
variate function g and any n-by-n symmetric matrix S, let

Tr(g(S)) = ∑n
i=1 g(λi) where the λi’s are the eigenval-

ues of S. Furthermore, define Pj (x) = 2Sj (x/2) where Sj

is the standard Chebyshev polynomial of degree j given
by Sj (cos θ) = cos(jθ). Banerjee and Ma (2017) showed
that when np2 → ∞, a test that rejects for large values of

(35) La =
mn∑
i=3

t i

2i
Tr
(
Pi(Acen)

)
achieves the asymptotic power of the likelihood ratio test
within the contiguous regime. Moreover, the mean and
variance of La admit explicit formulae, and so the compu-
tational cost of La is Õ(n3) as the most demanding step in
its evaluation is computing the eigenvalues of an n-by-n
matrix.

Next, we consider the regime where np → ∞, while
np2 remains bounded. In this case, instead of working
with the adjacency matrix directly, we may work with a
scaled version of a weighted nonbacktracking matrix pro-
posed in Fan and Montanari (2017). For a graph with n

vertices, there are n(n − 1) distinct ordered pairs of (i, j)

with i �= j . Define a weighted nonbacktracking matrix B

of size (n2 − n)-by-(n2 − n) indexed by pairs of all such
ordered pairs as

B
(
(i, j),

(
i ′, j ′))

=
{
(Acen)ij , when j = i′ and j ′ �= i,

0, otherwise.

(36)

Banerjee and Ma (2018) showed that as long as np → ∞,
a test based on some carefully constructed linear spec-
tral statistic of B achieves the asymptotic optimal power
of the likelihood ratio test. Regardless of the asymptotic
condition, since the eigenvalues of B can always be com-
pleted within O(n6) time complexity, the time complexity
of the test is bounded by Õ(n6).

Finally, we mention that when np → ∞ and t > 1,
Montanari and Sen (2016) showed that SDP can be used
to test (27) consistently.

4.3 Tests for More General Settings

When it comes to network data analysis in real world,
degree heterogeneity is an indispensable feature for many
social network data sets. This motivates us to consider a
more general version of the hypothesis testing problem
(27). We use Gk(n,p, q,D) to denote the following mix-

ture of DCBMs. First, let z(i)
iid∼ Uniform([k]) for i ∈ [n],

and independently let di
iid∼ D for i ∈ [n]. Then, condition-

ing on z(i)’s and di ’s, for all i < j ,

Aij = Aji
ind∼
{

Bernoulli(didjp), if z(i) = z(j),

Bernoulli(didjq), if z(i) �= z(j).

In order that the model parameters are identifiable, we im-
pose the constraint

(37) Ed∼D
(
d2)= 1.



MINIMAX RATES IN NETWORK ANALYSIS 29

When p = q or k = 1, the model is reduced to Aij |(di,

dj )
ind∼ Bernoulli(didjp) for all i < j , which is recognized

as as the configuration model (van der Hofstad, 2017) and
is closely related to the Chung-Lu model (Chung and Lu,
2002) of random graphs with expected degrees. The task
we consider here is to test whether p = q (or k = 1) or
p �= q (or k > 1). The testing problem (27) can be viewed
as a special case with D being a delta measure at 1.

The key identity for the testing problem described
above is revealed by the following lemma.

LEMMA 4.1 (Gao and Lafferty, 2017). Define the

population edge ( ), vee ( ), and triangle ( ) prob-
abilities by E = P(A12 = 1), V = P(A12A13 = 1), and
T = P(A12A13A23 = 1). Then, under A ∼ Gk(n,p, q,D)

that satisfies (37), we have

(38) T −
(

V

E

)3
= (k − 1)(p − q)3

k3 .

The relation (38) implies that k = 1 or p = q if and only
if T − (V/E)3 = 0. Intuitively speaking, when the net-
work has more than one communities, its expected den-
sity of triangles deviates from the benchmark of a config-
uration model. When T − (V/E)3 > 0, the network has
an assortative clustering structure; such a network will
induce more triangles compared with the configuration
model. Conversely, the network will have a disassorta-
tive clustering structure if T − (V/E)3 < 0, in which case
there will be fewer triangles.

A remarkable feature of the equation (38) is its inde-
pendence of the distribution D that characterizes the het-
erogeneity of the network nodes. Therefore, in order to
test whether the null hypothesis is true or not, one does
not need to estimate these nuisance parameters.

The asymptotic distribution of the empirical version of
T − (V/E)3 is given by the following theorem.

THEOREM 4.1 (Gao and Lafferty, 2017). Consider
the empirical versions of E, V and T , defined as

Ê =
(
n

2

)−1∑
i<j

Aij ,

V̂ =
(
n

3

)−1 ∑
i<j<l

AijAil + AijAjl + AilAjl

3
,

T̂ =
(
n

3

)−1 ∑
i<j<l

AijAilAjl.

In addition to (37), assume Ed∼D(d4) = O(1) and n−1 �
p � q � n−2/3. Suppose

δ = lim
n→∞

(k − 1)(p − q)3
√

6

(
n

k(p + (k − 1)q)

)3/2

∈ [0,∞).

Then we have

2

√(
n

3

)(√
T̂ − (V̂ /Ê)3/2)� N(δ,1),

under the data generating process A ∼ Gk(n,p, q,D).

Under the null hypothesis, we have k = 1, which im-
plies δ = 0. This leads to the asymptotic distribution
N(0,1), and one can use the standard Gaussian quantile to
determine the threshold of rejecting the null with a Type-1
error control. Under the alternative hypothesis, it is easy

to see that |δ| � (
n(p−q)2

k4/3(p+q)
)3/2. This implies a consistent

test whenever n(p−q)2

k4/3(p+q)
→ ∞, a condition that is slightly

stronger than the optimal one discussed in Section 4.1, but
applies to a much more general setting that even allows
for a growing k.

One advantage of the above test is its applicability to
real social network data because of both its simplicity and
its invariance with respect to the distribution of the de-
gree heterogeneity parameters. This provides practition-
ers a very useful tool to screen thousands of networks and
only select those with potentially interesting community
structure for further studies. Figure 1 visualizes real Face-
book neighborhood graphs with small and large p-values.

Although the model Gk(n,p, q,D) is very flexible to
derive a testing procedure that works really well in prac-
tice, further extensions are still possible by considering
mixtures of degree corrected mixed membership models
with possibly unbalanced community sizes. A test using
more complicated subgraph counts including short paths
and cycles is proposed by Jin, Ke and Luo (2018), and
similar theoretical results as Theorem 4.1 are obtained.

5. DISCUSSION

There are a number of open problems in the research
topics we have discussed. For graphon estimation, the
best rate achievable by polynomial-time algorithms has
not been well understood. For community detection, even
in the simple SBM setting, dependence of the tightest
separation condition on the number of clusters k is an
interesting problem worth further investigation. Further-
more, a challenging next step in network testing is to test
a composite null of a k-community model against a com-
posite alternative of models with more than k commu-
nities. Though some methods have been developed for
this problem in the literature (Bickel and Sarkar, 2016,
Chen and Lei, 2018), finding the minimax separation in
the sense of Carpentier and Verzelen (2019) remains an
open problem.

The paper is focused on the notion of network sparsity
introduced by Bickel and Chen (2009) and Borgs et al.
(2014), Borgs et al. (2018). Mathematically speaking, a
network is sparse if max1≤i<j≤n θij = o(1). However, this
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FIG. 1. Facebook neighborhood graphs, each with between 30 and 40 nodes, extracted from the Facebook 100 dataset. Top: 20 graphs with the
smallest p-values. Bottom: 20 graphs with the largest. Community structure is readily apparent in the top graphs, and lacking in the bottom graphs.

notion of sparsity contradicts the property of exchange-
ability (Lloyd et al., 2012), which is crucial for the infer-
ential results to be able to generalize to the entire popula-
tion (McCullagh, 2002). Recently, two alternative notions
of network sparsity have been developed in the literature.
One of the proposals considers sparse networks induced
by exchangeable random measures (Caron and Fox, 2017,
Veitch, 2015, Borgs et al., 2017), and the other considers
the notion of edge exchangeability (Crane and Dempsey,
2018, Crane, 2018). Unlike the framework of Bickel and
Chen (2009) and Borgs et al. (2014, 2018), these two al-
ternative notions of sparsity allow well-defined sparse net-
work models on the entire population, which implies a
valid out-of-sample inference. However, rigorous and op-
timal statistical estimation and inference under these two
frameworks are not well developed, except for only a few
recent efforts (Todeschini, Miscouridou and Caron, 2020,
Herlau, Schmidt and Mørup, 2016). It is natural to ask
whether the current state-of-the-art techniques of network
analysis discussed in this paper can be modified or gener-
alized to analyze sparse networks in these two alternative
exchangeability frameworks. This question is of obvious
significance and deserves extensive efforts of future re-
search.
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