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Convex Relaxation Methods for Community
Detection
Xiaodong Li, Yudong Chen and Jiaming Xu

Abstract. This paper surveys recent theoretical advances in convex opti-
mization approaches for community detection. We introduce some impor-
tant theoretical techniques and results for establishing the consistency of
convex community detection under various statistical models. In particular,
we discuss the basic techniques based on the primal and dual analysis. We
also present results that demonstrate several distinctive advantages of convex
community detection, including robustness against outlier nodes, consistency
under weak assortativity, and adaptivity to heterogeneous degrees.

This survey is not intended to be a complete overview of the vast literature
on this fast-growing topic. Instead, we aim to provide a big picture of the
remarkable recent development in this area and to make the survey accessible
to a broad audience. We hope that this expository article can serve as an
introductory guide for readers who are interested in using, designing, and
analyzing convex relaxation methods in network analysis.

Key words and phrases: Community detection, semidefinite program,
strong consistency, weak consistency, assortativity, degree correction, robust-
ness.

1. INTRODUCTION

Convex relaxation has arisen as a powerful framework
for developing computationally tractable and statistically
efficient solutions to the community detection problems.
Particularly in the last few years, this area has enjoyed re-
markable progress: a variety of new methods have been
proposed with established strong performance guarantees
demonstrating their power and statistical advantages. In
this expository article, we give a survey of these convex
optimization approaches from the perspective of convexi-
fied maximum likelihood and discuss their major theoreti-
cal properties as well as relevant analytical tools. We hope
this exposition is helpful to the readers who are interested
in proposing and analyzing their own convex optimization
methods for network analysis.

Convex optimization approaches for community de-
tection can be traced back to the computer science and
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mathematical programming literature in the study of the
planted partition problem; see, for example, Mathieu and
Schudy (2010), Oymak and Hassibi (2011), Chen et al.
(2014), Ames and Vavasis (2014), Ames (2014). For com-
munity detection under statistical models, various theo-
retical properties of convex optimization methods have
been studied in depth recently; a partial list includes
strong consistency1 with a growing number of communi-
ties (Chen, Sanghavi and Xu, 2014, Chen and Xu, 2016,
Cai and Li, 2015), sharp threshold under sparse networks
for strong consistency (Abbe, Bandeira and Hall, 2016,
Hajek, Wu and Xu, 2016a, Bandeira, 2018, Hajek, Wu
and Xu, 2016b, Agarwal et al., 2015, Perry and Wein,
2015), weak consistency (Guédon and Vershynin, 2016,
Fei and Chen, 2019a), nontrivial recovery (Montanari
and Sen, 2015, Fan and Montanari, 2017, Mei et al.,
2017), robustness against outlier nodes (Cai and Li, 2015,
Moitra, Perry and Wein, 2016, Makarychev, Makarychev

1An estimator of the community structure is said to achieve strong
consistency, if it equals the underlying true community partition with
probability tending to 1 as network size grows. It is said to achieve
weak consistency, if the fraction of misclassified nodes (up to a per-
mutation of community labels) goes to 0 with probability tending to 1.
It is said to achieve nontrivial recovery, if the fraction of misclassified
nodes (up to a permutation of community labels) is strictly better than
the random guess.

2

https://imstat.org/journals-and-publications/statistical-science/
https://doi.org/10.1214/19-STS715
https://www.imstat.org
mailto:xdgli@ucdavis.edu
mailto:yudong.chen@cornell.edu
mailto:jx77@duke.edu


CONVEX COMMUNITY DETECTION 3

and Vijayaraghavan, 2016), consistency under degree-
corrected models (Chen, Li and Xu, 2018), and consis-
tency under weak assortativity (Amini and Levina, 2018,
Yan, Sarkar and Cheng, 2018).

1.1 Stochastic Block Models

In the above literature, a standard setting for deriving
and analyzing the convex relaxation formulations is the
so-called stochastic block model (SBM) (Holland et al.,
1983), which we shall focus on. The SBM is a generative
model for a random graph G = (V ,E), where V = [n]
is a set of n nodes and and E is the set of edges. Un-
der SBM, the nodes are partitioned into r clusters accord-
ing to the mapping φ : [n] → [r], where the node i be-
longs to the cluster φ(i). Each pair of nodes i and j are
connected independently with probability Bφ(i)φ(j). Note
that the connectivity probability only depends on the clus-
ter memberships of the nodes. We refer to the symmetric
matrix B := [Bab]1≤a,b≤r as the connectivity probabil-
ity matrix. We also denote the size of the ath cluster by
na := |φ−1(a)|. The general community detection prob-
lem under SBM is to estimate the unknown cluster struc-
ture φ given the observed graph G.

SBM is a powerful and versatile modeling tool that
captures several key aspects of the community detection
problem in real world networks:

• Sparsity: Most large-scale networks are sparse. In SBM,
sparsity can be modeled by assuming that the matrix B
has small entries.

• Connectivity probabilities: Different connectivity pat-
terns can be captured by the matrix B . Examples
include strong assortativity, where min1≤a≤r Baa >

max1≤a<b≤r Bab, and weak assortativity Baa −
maxb �=a Bab > 0,∀a (Amini and Levina, 2018).

• Number of communities: The number of clusters r may
be large and in particular is allowed to grow with the
number of nodes n.

• Unbalancedness: SBM allows for significantly unbal-
anced clusters by imposing high variation in the cluster
sizes n1, . . . , nr .

For expository purposes, we mostly focus on the simple
(p, q)-SBM setting, where the diagonal entries of B are
all p and the off-diagonal entries are all q . In other words,
nodes in the same clusters are connected with probability
p, whereas nodes in different clusters are connected with
probability q . The results and techniques discussed in this
paper can often be extended to the general SBM (or at least
to the strong assortativity setting), though in some cases
the extension is more difficult.

To prepare for discussion of the convex relaxation ap-
proaches, we introduce an alternative way to parameter-
ize the cluster structure through an n × n partition matrix
X. Here the binary variable Xij indicates whether or not

the nodes i and j are assigned to the same cluster, that
is, Xij = 1 if φ(i) = φ(j) and Xij = 0 if φ(i) �= φ(j).
Correspondingly, the observed network can also be repre-
sented by its n × n adjacent matrix A, where Aij = 1 if
the nodes i and j are connected and Aij = 0 otherwise.

1.2 Convex Relaxation Approaches

Convex relaxations for community detection can be de-
rived in various ways, for instance through the relaxation
of modularity maximization, k-means, or min k-cut. Such
derivations often give rise to convex programs of similar
forms. Here we focus on the perspective of convexifying
maximum likelihood estimators. To the best of our knowl-
edge, this perspective was first considered in the context
of SBM by Chen, Sanghavi and Xu (2014).

Let us start with the (p, q)-SBM, and derive the like-
lihood function �(A|X,p, q) of the community struc-
ture given the observed network data. If we denote by
p(Aij |Xij ,p, q) the probability mass function for the
Bernoulli random variable Aij , then by definition of the
model we have

logp(Aij |Xij ,p, q)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
logp, Aij = Xij = 1,

log(1 − p), Aij = 0,Xij = 1,

logq, Aij = 1,Xij = 0,

log(1 − q), Aij = Xij = 0.

This formula can be rewritten as a linear function of Xij :

logp(Aij |Xij ,p, q)

=
[(

log
p

1 − p
− log

q

1 − q

)
Aij − log

1 − q

1 − p

]
Xij

+ [
Aij logq + (1 − Aij ) log(1 − q)

]
.

Since all pairs of nodes are connected independently, that
is, the Aij ’s are independent across 1 ≤ i < j ≤ n, the log-
likelihood function given the observed adjacency matrix
A has the summation form

�(A|X,p, q) = ∑
1≤i<j≤n

logp(Aij |Xij ,p, q).

Our goal is to estimate the true matrix of membership,
denoted by X�, using the maximum likelihood approach.
If p and q are fixed and given, then maximizing the log
likelihood �(A|X,p, q) is equivalent to the maximization
of ∑
1≤i<j≤n

[(
log

p

1 − p
− log

q

1 − q

)
Aij − log

1 − q

1 − p

]
Xij

over all possible cluster matrices X with any number of
clusters r . In real world networks, individuals within the
same communities are often more likely to be connected
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than those across different communities, which corre-
sponds to the setting with p > q and hence log p

1−p
−

log q
1−q

> 0. In this case, the above optimization problem
is equivalent to

(1.1) max
X

∑
1≤i<j≤n

(Aij − λ)Xij ,

where

(1.2)

λ ≡ λ(p,q)

= log(1 − q) − log(1 − p)

logp − logq + log(1 − q) − log(1 − p)
.

If p and q are unknown, we simply treat λ as a tuning
parameter.2

To derive a convex relaxation, it is more convenient to
write the problem (1.1) in a matrix form. Since both A
and X are symmetric and the diagonal entries of A are all
0, the problem (1.1) can be rewritten as

(1.3)
max

X
〈X,A − λJ n〉

subject to X is a partition matrix,

where J n is the n × n matrix with all entries equal to 1,
and 〈A,B〉 := trace(A	B) denotes the trace inner prod-
uct. The problem (1.3) is nonconvex due to its constraint.
To convexify this program, let us investigate the proper-
ties of a partition matrix X. By definition we see that X
must have form

(1.4) X = P

⎡⎢⎣J n1
. . .

J nr

⎤⎥⎦P ᵀ,

where P is some permutation matrix and the number of
communities r is unknown. The set of all matrices X of
this form is of course nonconvex. The key observation is
that any such X satisfies several convex constraints such
as (i) all entries of X are nonnegative, (ii) all diagonal en-
tries of X are 1, and (iii) X is positive semidefinite. Vari-
ous convex relaxations can hence be derived by replacing
the constraint in (1.3) with these convex constraints (or
variants thereof).

One typical relaxation obtained in this way is

(1.5)

max 〈X,A − λJ n〉
subject to X 
 0,X ≥ 0,

Xii = 1 for 1 ≤ i ≤ n,

where X ≥ 0 means Xij ≥ 0 for 1 ≤ i, j ≤ n. In Section 2
we present results on when (1.5) recovers the ground truth
clusters. These results highlight the following attractive
properties of the formulation (1.5):

2An alternative approach is profile likelihood maximization, that
is, we maximize �(A|X, p̂, q̂) with (p̂(X), q̂(X)) := arg maxp,q �(A|
X,p, q). However, the framework of profile likelihood will result in a
highly nonlinear function of X to maximize.

• The communities are allowed to be significantly unbal-
anced;

• The number of communities r may grow as n increases;
• Although (1.5) is derived from the (p, q)-model, it is

applicable to a more general connectivity probability
matrix B with strong assortativity;

• The knowledge of r is not required in (1.5);
• There is only one tuning parameter, λ.

Convex relaxation methods of similar forms to (1.5)
have been extensively studied in the literature; see, for
example, Ames (2014), Chen and Xu (2016), Cai and
Li (2015), Amini and Levina (2018), Guédon and Ver-
shynin (2016), Hajek, Wu and Xu (2016b), Agarwal et al.
(2015), Perry and Wein (2015), Chen, Li and Xu (2018),
Fei and Chen (2019a). Moreover, other convex relax-
ation formulations, such as those for the simple two-
community setting considered by Abbe, Bandeira and
Hall (2016), Hajek, Wu and Xu (2016a), Bandeira (2018),
Montanari and Sen (2015), Javanmard, Montanari and
Ricci-Tersenghi (2015), are also intrinsically related to
(1.5).

The subsequent sections are devoted to understanding
the statistical performance of the convex relaxation (1.5)
and some of its variants. In particular, we present theo-
retical results on when these relaxations yield, with high
probability, a good estimate of the ground truth commu-
nities of SBM in terms of strong and weak consistency.
Particular focus is given to elucidating several important
techniques, including dual and primal analysis, for estab-
lishing such results.

In the sequel, we use C0 etc. to denote a positive and
sufficiently large absolute constant. By “with high proba-
bility” we mean with probability at least 1 − 10n−10.

2. STRONG CONSISTENCY VIA DUAL
CERTIFICATION ANALYSIS

In this section we introduce a dual certification tech-
nique for establishing strong consistency of the convex re-
laxation (1.5). This technique involves constructing a set
of dual variables that certify the optimality of the desired
primal solution X� via the KKT condition. This type of ar-
guments are widely employed in the literature to study ex-
act recovery under SBM using convex optimization; see,
for example, Chen, Sanghavi and Xu (2014), Cai and Li
(2015), Ames (2014).

For the ease of presentation, we present the dual certi-
fication analysis under the two-cluster (p, q)-model with
n1 = O(n) and n2 = O(n). Without loss of generality we
assume that the permutation matrix corresponding to the
ground truth communities is the identity, that is, P = I .
Under this assumption, the adjacency matrix A and the
true partition matrix X� as defined in (1.4) can be written
as

(2.1) A =
[
A11 A12

A	
12 A22

]
and X� =

[
J n1 0

0 J n2

]
,
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where the entries of A11 and A22 are Bernoulli random
variables with parameter p and those A12 are Bernoulli
with parameter q .

Our goal is to prove that the convex relaxation (1.5)
recovers the true X� as an optimal solution. We do so
by showing that X� satisfies the KKT condition, a suf-
ficient condition for optimality (cf. Boyd and Vanden-
berghe, 2004, Section 5.5.3). The KKT condition stipu-
lates the existence of some �, �, and β satisfying:

• Stationarity: λJ n − A = � + � + diag(β),
• Complementary slackness: 〈X�,�〉 = 〈X�,�〉 = 0,
• Dual feasibility: � ≥ 0,� 
 0,

where �,� ∈ R
n×n and β ∈ R

n are the dual variables
associated with the constraints of (1.5) in order. We write
these variables in blocks as in (2.1):

� =
[
�11 �12

�	
12 �22

]
, � =

[
�11 �12

�	
12 �22

]
and

β =
[
β1
β2

]
.

Our strategy for finding �, � and β involves two steps:
we first construct these variables so that the equality con-
straints in the KKT conditions are satisfied determinis-
tically, and then verify that the inequality constraints in
KKT hold with high probability.

Step 1(a): Constructing �11, �22, �12 and β

We begin by rewriting the stationarity condition in
blocks:⎧⎪⎪⎨⎪⎪⎩

−A11 + λJ n1 − �11 − diag(β1) = 0,

−A22 + λJ n2 − �22 − diag(β2) = 0,

−A12 + λJ n1,n2 − �12 − �12 = 0,

where J n1,n2 is the n1-by-n2 all-one matrix. We next ob-
serve that the complementary slackness and dual feasibil-
ity constraints are implied by the following equalities:

�111n1 = 0, �221n2 = 0, �121n2 = 0,

�	
121n1 = 0, �11 = 0, �22 = 0.

Combining the first two equalities with the stationarity
condition, we see that

β1 = −A111n1 + n1λJ n1, β2 = −A221n2 + n2λJ n2,

and that � can be expressed in terms of �12 as

� =
[

diag(A111n1) − n1λIn1 − A11 + λJ n1

−�	
12 − A	

12 + λJ n2,n1

−�12 − A12 + λJ n1,n2

diag(A221n2) − n2λIn2 − A22 + λJ n2

]
,

where In1 is the n1 × n1 identity matrix. Consequently,
the equalities �121n2 = 0 and �	

121n1 = 0 are equivalent
to

(2.2)
�121n2 = (λJ n1,n2 − A12)1n2,

1	
n1

�12 = 1	
n1

(λJ n1,n2 − A12).

Therefore, to establish the KKT condition, it suffices to
construct a matrix �12 that satisfies the equality (2.2) as
well as the inequality constraints �12 ≥ 0 and � 
 0.

Step 1(b): Constructing �12

Such construction is often an art. Here we propose
as a candidate using the following rank-2 matrix �12 =
y1	

n2
+ 1n1z

	 for some vectors y ∈ R
n1 and z ∈ R

n2 .
We solve for y and z by plugging this candidate into the
equality (2.2), which yields that

�12 = − 1

n2
A12J n2 − 1

n1
J n1A12

+ 1

n1n2
J n1A12J n2 + λJ n1,n2 .

It remains to verify that the inequality constraints �12 ≥ 0
and � 
 0 hold with high probability under appropriate
choices of the tuning parameter λ.

Step 2(a): Verifying �12 > 0

Note that E�12 = (λ − q)J n1,n2 > 0 provided that
λ > q . To translate this expectation bound to a high prob-
ability bound, we make use of the Chernoff’s inequality
and the assumption that n1 = O(n) and n2 = O(n), which
guarantee that �12 > 0 with high probability as long as
λ > q + O((logn)/n + √

(q logn)/n).

Step 2(b): Verifying � � 0

Here we use an important consequence of the rank-2
structure of �12: the matrix � is the projection of another
matrix onto a lower dimensional space. To see this, we
define the projective matrix

� :=

⎡⎢⎢⎣
1

n1
J n1 0

0
1

n2
J n2

⎤⎥⎥⎦
and let

�̃ :=
[

diag(A111n1) − n1λIn1 − A11 + pJ n1

−A	
12 + qJ n2,n1

−A12 + qJ n1,n2

diag(A221n2) − n2λIn2 − A22 + pJ n2

]
.

Using the fact that the rank-2 matrix �12 satisfies the
equality (In1 − J n1/n)�12(In2 − J n2/n) = 0, we obtain
the identity � = (In −�)�̃(In −�). Therefore, the con-
dition � 
 0 is implied by �̃ � 0. To proceed, we decom-
pose �̃ into two terms as �̃ = (E[A]−A)+ (A−E[A]+
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�̃). The first term can be interpret as the “noise,” that is,
deviation of the adjacency matrix A from its expectation.
A known result in random matrix theory guarantees that
‖E[A] − A‖ ≤ C0

√
np provided p ≥ C0 logn/n, where

‖ · ‖ denotes the spectral norm; see, for example, Feige
and Ofek (2005), Vu (2018), Hajek, Wu and Xu (2016a)
and Bandeira and van Handel (2016). On the other hand,
one can verify that the second term is a diagonal matrix
of the form

A −E[A] + �̃

=
[
diag(A111n1) − (n1λ − p)In1

0

0
diag(A221n2) − (n2λ − p)In2

]
.

Each diagonal entry above is (roughly) equal to the num-
ber of neighbors of a node in its own cluster minus λ

times the cluster size, and hence can be interpreted as the
“signal” strength, which is bounded from below thanks
to the Chernoff’s inequality. In particular, letting nmin :=
min(n1, n2), we obtain that

A −E[A] + �̃ 
 (nminp − 2
√

nminp logn − nminλ)In

with high probability. We conclude that �̃ � 0 as long as
λ < p − O(

√
p logn/n).

The KKT condition in general does not guarantee X
to be the unique solution to (1.5), establishing which re-
quires additional steps. We refer the readers to Cai and
Li (2015) for the details of such steps using Cauchy’s in-
terlacing theorem. Summarizing the above arguments, we
obtain the following result:

THEOREM 2.1. Under the two-cluster (p, q)-model
with n1 = O(n) and n2 = O(n), if p − q > C0 ×√

p logn/n, then there exists a tuning parameter λ such
that the ground truth partition matrix X� is the unique so-
lution to the convex relaxation (1.5) with high probability.

It is worth highlighting that the above argument is quite
generic, and can be extended in a straightforward man-
ner to more general and realistic setups of SBM, such
as those with significantly unbalanced clusters, a fast
growing number of communities and general connectiv-
ity probability matrix satisfying strong assortativity; see,
for example, Chen, Sanghavi and Xu (2014).

3. SHARP THRESHOLD FOR STRONG
CONSISTENCY

A line of recent work on community detection stud-
ies the necessary and sufficient conditions on p and q

with sharp constants for achieving strong consistency us-
ing convex relaxations. This line of work, initiated by
Abbe, Bandeira and Hall (2016) and followed by Hajek,

Wu and Xu (2016a), Bandeira (2018), Hajek, Wu and Xu
(2016b), Agarwal et al. (2015), Perry and Wein (2015),
has achieved remarkable progress. Some additional as-
sumptions are usually essential in deriving conditions
with sharp constants, such as relatively balanced clusters
and fixed (or slowly growing) number of clusters. Never-
theless, these results demonstrate the statistical power of
the convex relaxation approaches, and also highlight the
theoretical and practical importance of certain constraints
(e.g., row-sum constraints) used in convex relaxations. In
this section, we briefly outline the main results in this line,
with emphasis on the relevant theoretical tools developed
therein.

As suggested in Amini and Levina (2018), Hajek, Wu
and Xu (2016b), Agarwal et al. (2015), we here consider
an important variation of (1.5) which arises when assum-
ing that all communities have equal size n/r and that r

is known. In this case, the partition matrix X in (1.4) sat-
isfies another convex constraint: X1n = n

r
1n, where 1n is

the all one vector in R
n. Adding this constraint to (1.5)

leads to the convex relaxation

(3.1)

max 〈X,A〉
subject to X 
 0,X ≥ 0,

X1n = n

r
1n,Xii = 1 for 1 ≤ i ≤ n.

The term λJ n in (1.5) disappears because 〈X,J n〉 is a
constant under the row-sum constraint X1n = n

r
1n.

We consider the two-cluster (p, q)-SBM setting as in
Section 2. For ease of exposition, we further assume
that the two clusters are of equal size (n1 = n2 = n/2)
and that p = a log(n)

n
and q = b log(n)

n
, where a > b > 0

are two fixed constants. In this setting, the information-
theoretically limit (i.e., sufficient and necessary condi-
tion) for exact recovery is known to be

√
a − √

b >√
2 (Abbe, Bandeira and Hall, 2016, Mossel, Neeman

and Sly, 2016). It turns out that the convex relaxation
(3.1) achieves this information-theoretic limit. In partic-
ular, if

√
a − √

b >
√

2, then the convex relaxation (3.1)
with row-sum constraint recovers the true partition ma-
trix X∗ in (2.1) as the unique optimum with probability
1 − n−�(1). Below we present the proof of this result,
which makes use of the dual certification analysis argu-
ment.

The dual certificate construction is similar to that in-
troduced in the previous section. A key difference is that
the extra row-sum constraint induces a new dual variable
μ ∈ R

n, allowing for extra freedom in the construction.
The KKT condition of the relaxation (3.1) with primal
solution X∗ defined in (2.1) reads:

• Stationarity: −A−�−�− diag(β)−μ1	
n − 1nμ

	 =
0,

• Complementary slackness: 〈X�,�〉 = 〈X�,�〉 = 0,
• Dual feasibility: � ≥ 0,� 
 0.
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Under the balanced-cluster assumption n1 = n2 = n/2,
we can simply let � = 0. Similarly to the argument in
Section 2, we construct the other dual variables as

μ1 = − 1

n2
A121n2 + 1	

n1
A121n2

2n1n2
1n1,

μ2 = − 1

n1
A	

121n1 + 1	
n1

A121n2

2n1n2
1n2,

β1 = −A111n1 + A121n2,

β2 = −A221n2 + A	
121n1

and

� = −A − � − diag(β) − μ1	
n − 1nμ

	

= (I − �)
((
E[A] − A

)+ pI − diag(β)
)

× (I − �),

where the projection � is defined in Section 2. To verify
that � 
 0, it suffices to show that (E[A] − A) + pI −
diag(β) � 0. This condition can be established by com-
bining the following two facts. First, by a tight Chernoff’s
inequality (Hajek, Wu and Xu, 2016a, Lemma 1), the in-
equality mini∈[n](−βi) ≥ logn

log logn
holds with probability

at least 1 − n1−(
√

a−√
b)2/2+o(1), which is 1 − n−�(1) as

long as
√

a − √
b >

√
2. Second, as shown in Section 2,

‖A − E[A]‖ ≤ c′√logn with high probability for a posi-
tive constant c′. With an addition step proving the unique-
ness of the optimal solution, which we skip here, we ob-
tain the following result in the line of Abbe, Bandeira and
Hall (2016), Hajek, Wu and Xu (2016a), Bandeira (2018),
Hajek, Wu and Xu (2016b), Agarwal et al. (2015):

THEOREM 3.1. Under the two-cluster (p, q)-model
with equal cluster sizes, suppose that p = a log(n)

n
and

q = b log(n)
n

. If
√

a − √
b >

√
2, then with probability

1 − n−�(1), the ground truth partition matrix X� is the
unique solution to the convex relaxation (3.1).

In the above proof with two clusters, we simply choose
� = 0. This simple choice not longer works for r > 2
equal-sized clusters. In that case, denoting by �k,� the
block in � corresponding to Ak,�, we may choose �k,� =
yk,�1	

n�
+ 1nk

z	
k,� for some vectors yk,� and zk,�. The

detailed argument can be found in Hajek, Wu and Xu
(2016b).

We note that the dual variable −βi above corresponds
to the number of neighbors node i has in its own cluster
minus the number of its neighbors in the other cluster.
The variable −βi is closely related to the information-
theoretic lower bounds of strong consistency. In particu-
lar, it was shown in (Abbe, Bandeira and Hall, 2016) that
if

√
a − √

b <
√

2, then with probability 1 − o(1), there
exists a pair of nodes i and j from different clusters such
that −βi < −1 and −βj < −1, which further implies that

the maximum likelihood estimator cannot coincide with
the ground truth X� and hence the impossibility of achiev-
ing strong consistency.

Other convex relaxation formulations

It is noteworthy that besides the formulation (3.1) with
row-wise constraints, there exist other convex optimiza-
tion methods that achieve the sharp thresholds for strong
consistency. For example, in the two-community setting,
one may consider the following formulation:

(3.2)
max 〈Y ,A − λJ n〉
subject to Y 
 0, Yii = 1 for 1 ≤ i ≤ n,

which is a variant of the well-known SDP relaxation for
MaxCut (Goemans and Williamson, 1995). With some
appropriate λ, the formulation (3.2) is shown to recover
the ground truth centered partition matrix Y ∗ = 2X∗ −J n

as the unique optimum with probability 1 − o(1), within
the information-theoretically feasible range of SBM pa-
rameters; see Abbe, Bandeira and Hall (2016), Hajek, Wu
and Xu (2016a), Bandeira (2018) for the case of equal
cluster sizes and Hajek, Wu and Xu (2016b) for the unbal-
anced case. Extensions to the more general setting with
multiple clusters of unequal sizes can be found in Perry
and Wein (2015).

4. PROJECTIVE MATRIX BASED CONVEX
OPTIMIZATION AND WEAK ASSORTATIVITY

In Section 2, we present strong consistency results for
the relaxation (1.5) under the (p, q)-SBM, which can be
extended to more general connectivity probability matri-
ces B . However, the strong consistency of (1.5) requires
that the tuning parameter λ is between minimum within-
community edge density min1≤a≤r Baa and the maxi-
mum cross-community edge density max1≤a<b≤r Bab.
This means that one must have min1≤a≤r Baa >

max1≤a<b≤r Bab, namely, the strong assortativity of B .
The notion of strong assortativity, coined in Amini and
Levina (2018), is a common assumption in the literature
of community detection under the SBM; see, for example,
Rohe, Chatterjee and Yu (2011) and Chaudhuri, Chung
and Tsiatas (2012).

Strong assortativity is sometimes too restrictive. To
address this issue, Amini and Levina (2018) consider
the SBM under the weak assortativity assumption Baa >

maxb �=a Bab for any a = 1, . . . , r , and show that the con-
vex relaxation (3.1) achieves strong consistency under
certain conditions of the model parameter. The dual anal-
ysis used to prove this result is similar to that in Section 3,
although they do not focus on identifying sharp thresh-
olds. However, this result relies on the strong assumption
that all cluster have equal sizes. Indeed, as discussed in
Section 3, this assumption is necessary for the true parti-
tion matrix X∗ to be feasible to the formulation (3.1).
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It is desirable to develop a convex relaxation that does
not require this unrealistic assumption of equal-cluster-
size while still guaranteeing strong consistency under
weak assortativity. To this end, we keep a version of the
row-sum constraint X1n = n

r
1n, which appears essential

for the weak assortativity setting, but try to remove its ex-
plicit diagonal constraints in (3.1) with a trace constraint,
that is,

max
X

〈X,A〉

subject to X 
 0,X ≥ 0,X1n = n

r
1n, trace(X) = n.

With a change of variable Z = r
n
X, we obtain the follow-

ing relaxation:

(4.1)

max
Z

〈Z,A〉
subject to Z 
 0,Z ≥ 0, Z1n = 1n,

trace(Z) = r.

Note that the above relaxation has no explicit dependence
on the cluster sizes. The relaxation (4.1) appears to be less
studied in the community detection literature compared
to (1.5) and (3.1), but it in fact coincides with the well-
known Peng-Wei relaxation (Peng and Wei, 2007) for K-
means in the literature of clustering in Euclidean space.
With this relaxation, the goal is to recover the the ground
truth projective matrix

(4.2) Z� = P

⎡⎢⎢⎢⎢⎢⎣
1

n1
J n1

. . .

1

nr

J nr

⎤⎥⎥⎥⎥⎥⎦P 	,

which is a symmetric matrix with all eigenvalues equal
to either one or zero, and can be viewed as a normal-
ized version of the true partition matrix X� given in (1.4).
The work in that literature shows that under certain mix-
ture models satisfying appropriate affinity or separation
conditions, the Z� is the unique solution to the relaxation
(4.1); see, for example, Iguchi et al. (2015, 2017), Li et al.
(2017) and Fei and Chen (2018).

The relaxation (4.1) was recently analyzed in the con-
text of community detection by Yan, Sarkar and Cheng
(2018). They show that this relaxation enjoys strong con-
sistency (in the sense of recovering Z� as the unique
solution with high probability) under SBM with weak as-
sortativity and unbalanced communities. This result sub-
stantially extends the result in Amini and Levina (2018).

The proof of the above result again uses dual certifica-
tion analysis. The primal feasibility of the projective ma-
trix Z� in (4.2) to the relaxation (4.1) can be directly ver-
ified. To further establish the optimality of Z� to (4.1), it
suffices, similarly to Section 2 and Section 3, to construct
dual variables �, �, μ and z for which the following KKT
conditions hold:

• Stationarity: −A − � − � + zI − μ1	
n − 1nμ

	 = 0,
• Complementary slackness: 〈Z�,�〉 = 〈Z�,�〉 = 0,
• Dual feasibility: � ≥ 0,� 
 0.

Notice that the above conditions differ from the KKT con-
ditions of the relaxation (3.1) given in Section 3; in par-
ticular, the diagonal matrix −diag(β) is replaced by the
scaled identity matrix zI , which reduces the freedom for
the dual construction. The detailed construction of these
dual variables can be found in Yan, Sarkar and Cheng
(2018). Here we cite the result established therein:

THEOREM 4.1. Denote by nmax and nmin the maxi-
mum and minimum cluster sizes in the SBM, respectively.
If the following separation condition holds:

min
k

(
Bkk − max

l �=k
Bkl

)
≥ 2

√
6 lognmax

k

√
Bkk/nk

+ 6 max
1≤k<l≤r

√
Bkl logn/nmin

+ C0

√(
n/n2

min

)(
max

k
Bkk

)
,

then with high probability, the matrix Z� in (4.2) is the
unique solution to (4.1).

5. WEAK CONSISTENCY BY PRIMAL ANALYSIS

In this section, we describe a “primal” approach for
analyzing convex relaxation formulations. As opposed
to the dual certification analysis presented in the pre-
vious sections, this approach directly makes use of the
primal optimality and feasibility of the SDP solution
X̂ and the ground-truth X�. Combined with the cele-
brated Grothendieck’s inequality (Grothendieck, 1996),
this approach leads to a simple proof of weak consis-
tency (Guédon and Vershynin, 2016). Under the equal-
cluster-size assumption, a more refined primal analy-
sis provides unified guarantees covering both weak and
strong consistency (Fei and Chen, 2019a, 2019b).

To present the above results, we consider the (p, q)-
SBM and the convex relaxation (1.5) with q < λ < p.
Let τ := min(p − λ,λ − q). For expository convenience,
we simply choose λ = p+q

2 , which is an approximation
of (1.2) used in the exact log likelihood. In this case we
have τ = p−q

2 . The arguments below can be extended to
other values of λ in a straightforward fashion. Recall that
our goal is to estimate the ground truth partition matrix
X�. We use the solution X̂ to the convex relaxation (1.5)
as an estimator, and aim to characterize the efficiency of
(1.5) by bounding the distance between X̂ and X�.

The primal analysis begins with noting that the optimal-
ity of X̂ and the feasibility of X� to the convex relaxation



CONVEX COMMUNITY DETECTION 9

(1.5) imply that 〈X∗,A − λJ n〉 ≤ 〈X̂,A − λJ n〉. Rear-
ranging the inequality and separating the expectation and
deviation terms, we obtain the following inequality:

0 ≤ 〈
X̂ − X�,A − λJ n

〉
= 〈

X̂ − X�,EA − λJ n

〉+ 〈
X̂ − X�,A −EA

〉
.

To proceed, we make use of a simple observation on the
relationship between X� and EA. For each i �= j , EAij =
p > (p + q)/2 if and only if X∗

ij = 1, whereas EAij =
q < (p+q)/2 if and only if X∗

ij = 0. Due to the feasibility

of X̂, we deduce that the entries of the error matrix X� −
X̂ must have matching signs with those of EA − p+q

2 J n.
This observation implies that〈

X� − X̂,EA − λJ n

〉 ≥ p − q

2

∥∥X̂ − X�
∥∥

1.

The key step in Guédon and Vershynin (2016) involves
bounding the “deviation term” 〈X̂−X�,A−EA〉. To this
end, one applies the triangle inequality to obtain〈

X̂ − X�,A −EA
〉

≤ ∣∣〈X̂,A −EA〉∣∣+ ∣∣〈X�,A −EA
〉∣∣

≤ 2 sup
X
0

diag(X)≤1

∣∣〈X,A −EA〉∣∣,
where diag(X) ≤ 1 means that Xii ≤ 1 for all i =
1, . . . , n, and the second inequality follows from the
feasibility of X̂ and X�. The Grothendieck’s inequal-
ity (Grothendieck, 1996, Lindenstrauss and Pełczyński,
1968) guarantees that

sup
X
0,diag(X)≤1

∣∣〈X,A −EA〉∣∣ ≤ KG‖A −EA‖∞→1,

where KG denotes the Grothendieck’s constant (0 <

KG ≤ 1.783) and ‖M‖∞→1 := supx:‖x‖∞≤1 ‖Mx‖1 is
the �∞ → �1 operator norm for a matrix M . We next
make use of the identity

‖A −EA‖∞→1

= sup
x:‖x‖∞≤1
y:‖y‖∞≤1

y	(A −EA)x

= sup
x∈{±1}n
y∈{±1}n

y	(A −EA)x.

For each pair of fixed vectors x, y ∈ {±1}n, y	(A −
EA)x can be written as the sum of independent ran-
dom variables and hence be bounded using Bernstein’s
inequality. Taking a union bound over all x and y, we ob-
tain that with probability at least 1 − 2(e/2)−2n,

‖A −EA‖∞→1 ≤ 2
√

2p
(
n3 − n2

)+ (8/3)n.

Combining pieces, we conclude that with probability at
least 1 − 2(e/2)−2n,∥∥X̂ − X�

∥∥
1 ≤ 2/(p − q)

(
8
√

2p
(
n3 − n2

)+ (32/3)n
)

(i)≤ 45
√

pn3/(p − q),

where step (i) holds provided that p ≥ 1/n. We have
therefore established the following result, which was first
proved in Guédon and Vershynin (2016):

THEOREM 5.1. Under the (p, q)-SBM, if p ≥ 1/n

and p > q , then with high probability, any optimal solu-
tion X̂ of the SDP (1.5) satisfies the bound ‖X̂ − X�‖1 ≤
45

√
pn3/(p − q).

A prominent advantage of this result is that it is ap-
plicable even when the networks is very sparse, that is,
p � 1/n. Moreover, the result does not require any as-
sumption on the number of clusters, the cluster sizes, or
the knowledge thereof.

Given the above bound on ‖X̂ − X�‖1, one can further
derive bounds on the clustering errors. For example, in
the two-cluster case one can simply estimate the under-
lying community label φ by taking the entry-wise sign of
the leading eigenvector of Ŷ = 2X̂−J n, the centered ver-
sion of X̂. It is easy to show that the fraction of misclas-
sified vertices is upper bounded by (1/n2)‖X̂ − X�‖1 up
to constant factors (Guédon and Vershynin, 2016). Com-
bined with Theorem 5.1, we conclude that the fraction of
misclassified vertices is smaller than ε with high proba-
bility provided that n(p − q)2 � pε−2.

Under the equal-cluster-size assumption, the error
bound in Theorem 5.1 has been substantially improved
by Fei and Chen (2019a). In particular, by deriving a
tighter bound on the term 〈X̂ − X�,A − EA〉, they show
that the estimation error of the SDP (1.5) in fact decays
exponentially:∥∥X̂ − X�

∥∥
1 � n2 exp

[
−�

(
n(p − q)2

pr

)]
(5.1)

provided that (p − q)2/p � r2/n. Assuming r = O(1),
the bound (5.1) guarantees that the fraction of misclassi-
fied nodes is at most ε as long as n(p −q)2 � p log(ε−1).
Consequently, the convex relaxation achieves weak con-
sistency (i.e., ε → 0) if n(p − q)2/p logn → ∞, and
strong consistency (i.e., ε < 1/n, which implies ε = 0)
if n(p − q)2/p � logn. In fact, in the setting with r = 2
equal-sized clusters and using the SDP (3.1), Fei and
Chen (2019b) show that the exponent in (5.1) can be taken
to be −(1 − o(1))(

√
p − √

q)2n/2, which is minimax-
optimal (cf. Zhang and Zhou, 2015) and as a corollary im-
plies the sharp threshold for strong consistency presented
in Section 3.

Let us provide an additional remark on the setting with
two equal-sized clusters and sparse networks, that is,
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p = a/n and q = b/n for two constants a, b. Assum-
ing a > b and (a − b)2 ≥ C0(a + b), a related question
is what is the smallest C0 to guarantee that the SDP for-
mulation can achieve ε < 1/2, that is, producing a non-
trivial estimate that is better than random guess. It is
known that the information-theoretic necessary condition
for achieving ε < 1/2 fraction of misclassified nodes is
(a − b)2 > 2(a + b) (Mossel, Neeman and Sly, 2015,
Massoulié, 2014, Mossel, Neeman and Sly, 2018). In
the converse direction, recent work by Montanari and
Sen (2015) shows that the SDP (3.2) with appropriate λ

achieves ε < 1/2 with probability 1 − on(1) if (a − b)2 >

(2 + ε)(a + b) and a + b > C1 for a sufficiently large
constant C1 depending on ε. Therefore, the results in
Montanari and Sen (2015) show that the convex relaxation
approach is nearly optimal in achieving nontrivial esti-
mation. More recent work by Fan and Montanari (2017)
gives more precise bounds on C1 by proving that a simple
local algorithm approximately solves the convex program
within a factor 1 + O(1/(a + b)).

6. DEGREE CORRECTION AND CONVEXIFIED
MODULARITY MAXIMIZATION

An alternative to the likelihood-based approach (1.1)
for community detection is modularity maximization.
Proposed by Newman and Girvan (Newman, 2006), this
approach involves finding a partition matrix X that maxi-
mizes the so-called “modularity”:

(6.1) max
X

∑
1≤i<j≤n

(
Aij − didj

2L

)
Xij ,

where di := ∑n
j=1 Aij is the degree of node i, and L :=

1
2
∑n

i=1 di is the total number of edges. Compared to like-
lihood maximization (1.1), modularity maximization can
be viewed as an adaptive variant, where the single tuning
parameter λ is replaced by the quantity didj

2L
that is adap-

tive to each pair of nodes (i, j).
To overcome the so-called “resolution limit” of mod-

ularity maximization (Fortunato and Barthelemy, 2007),
the work in Reichardt and Bornholdt (2006), Lancichinetti
and Fortunato (2011) proposed replacing the number 1

2L
in (6.1) with a tuning parameter λ. Convexifying the pro-
gram similarly to (1.5), we obtain the following convex
relaxation:

(6.2)

max
X

〈
X,A − λdd	〉

subject to X 
 0,X ≥ 0,Xii = 1,

for 1 ≤ i ≤ N.

This approach, termed convexified modularity maximiza-
tion, was first proposed by Chen, Li and Xu (2018). No-
tice that if we replace d with 1n, then the formulation (6.2)
falls back to convexified maximum likelihood (1.5).

An important advantage of modularity maximization
over likelihood maximization lies inits applicability be-
yond the standard SBM. Indeed, it was shown in Chen,
Li and Xu (2018) that the formulation (6.2) is consis-
tent even if the data is generated from the more general
degree corrected stochastic block model (DCSBM). We
now describe this result, beginning with an introduction
of DCSBM.

One obvious limitation of standard SBM is that nodes
within the same group are statistically equivalent and
hence have homogeneous degrees. Therefore, standard
SBM fails to model degree heterogeneity that is com-
mon in real world networks. This limitation motivates
researchers to consider the more general DCSBM. In
DCSBM, each pair of nodes i and j are connected with
probability θiθjBφ(i)φ(j)—as opposed to Bφ(i)φ(j) in
SBM—where θi is a degree heterogeneity parameter for
the node i.

A first step in deriving statistical guarantees under
DCSBM is an appropriate generalization of the “density
gap” condition p−q > 0 used in the (p, q)-SBM. We first
note that for each node i in community a, its expected de-
gree is

Edi = ∑
j �=i

EAij

= ∑
j �=i

θiθjBaφ(j)

= θi

∑
j

θjBaφ(j) − θ2
i Baa ≈ θi

∑
j

θjBaφ(j).

Define Ha := ∑
j θjBaφ(j) and note the alternative ex-

pression Ha = ∑r
b=1 BabGb, where Ga := ∑

i:φ(i)=a θi .
Here Ha captures the average degree of the nodes in the
a-th cluster in the sense that Ha ≈ Edi/θi . Based on these
observations, Chen, Li and Xu (2018) proposed the fol-
lowing degree-corrected density gap condition:

(6.3) max
1≤a<b≤r

Bab

HaHb

< min
1≤a≤r

Baa

H 2
a

.

This degree-corrected density gap condition enjoys sev-
eral desirable properties. First, it only depends on the
community aggregated quantities Ha’s instead of individ-
ual node parameters θi ’s, so it is robust against abnormal
nodes, such as one small θi . Moreover, while different
pairs of (B, θ) may correspond to the same DCSBM, the
condition (6.3) is invariant under equivalent DCSBM’s.

Chen, Li and Xu (2018) showed that under appropri-
ate conditions stated in terms of the gap condition (6.3),
the convexified modularity maximization (6.2) provides a
good estimate of the ground truth partition matrix X∗:

THEOREM 6.1. Under DCSBM, suppose that the
degree-corrected density gap condition (6.3) holds and
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the tuning parameter λ in the formulation (6.2) satisfies

(6.4) max
1≤a<b≤r

Bab + δ

HaHb

≤ λ ≤ min
1≤a≤r

Baa − δ

H 2
a

for some number δ > 0. Then with high probability, any
solution X̂ to the convex relaxation (6.2) satisfies the
bound

(6.5)

n∑
i=1

n∑
j=1

θiθj

∣∣X̂ij − X∗
ij

∣∣
≤ C0

δ
(1 + λσ)(

√
nσ + n),

where σ := ∑
a,b BabGaGb.

This theorem is proved via a primal analysis argument
similar to that in Guédon and Vershynin (2016) as pre-
sented in Section 5.

Note that the error metric in (6.5) is weighted by the
degree heterogeneity parameters. This captures the fact
that nodes with different θi’s and hence different de-
grees have different contributions to the overall clustering
quality. Moreover, the error bound (6.5) is insensitive to
θmin := mini θi . Therefore, the presence of a small θmin
does not hinder recovery of the memberships of nodes
with large θi .

To better appreciate the results in Theorem 6.1, let us
consider a simple sub-class of DCSBM with symmetric
and balanced clusters, where Baa = p for all 1 ≤ a ≤ r ,
Bab = q for all 1 ≤ a < b ≤ r , and Ga = g for all 1 ≤
a ≤ r . In this setting, direct calculation gives Ha = ((r −
1)q + p)g for all 1 ≤ a ≤ r . The constraint (6.4) on δ and
λ then simplifies to

(6.6)

p − q ≥ 2δ and

q + δ

(p + (r − 1)q)2g2 ≤ λ ≤ p − δ

(p + (r − 1)q)2g2 .

Note that the first inequality above is identical to the
standard density gap condition imposed in SBM. Furthre-
more, one has σ = r(p + (r − 1)q)g2 ≤ r2pg2. Substitut-
ing these expressions into equation (6.5) yields the error
bound

(6.7)
n∑

i=1

n∑
j=1

θiθj

∣∣X̂ij − X∗
ij

∣∣ � r

δ
(rg

√
np + n).

As discussed in the previous sections, the solution X̂ of
the convex relaxation is not necessarily a partition matrix;
Chen, Li and Xu (2018) show that an explicit clustering
can be extracted from X̂ using a weighted k-medoids al-
gorithm. The number of misclassified nodes, weighted by
their degree heterogeneity parameters {θi}, satisfies the
bound ∑

i∈E
θi � r

δ

(
r
√

np + n

g

)
,(6.8)

where E is the set of misclassified nodes. We refer the
readers to Chen, Li and Xu (2018), Sections 2.4, 3.2, for
the details of this result.

We note that the bound in (6.8) gives nontrivial guar-
antees all the way down to the sparse graph regime with
bounded average degrees. For example, suppose that p =
a/n and q = b/n for two fixed constants a > b, r = O(1),
and g � n. With (a − b)/

√
a sufficiently large and the

choice δ � (a − b)/n, one may bound the right-hand side
of (6.8) by an arbitrarily small constant times n, thereby
guaranteeing that an arbitrarily small fraction of nodes
are misclassified. In contrast, standard spectral cluster-
ing methods are known to be inconsistent in this sparse
regime (Krzakala et al., 2013).

Strong consistency: If in addition the minimum degree
heterogeneity parameter θmin is not too small, Chen, Li
and Xu (2018) further show that convexified maximum
likelihood perfectly recovers the ground truth communi-
ties with high probability. To illustrate this strong consis-
tency result, consider a sub-class of DCSBM with Baa = p

for all a = 1, . . . , r , and Bab = q for all 1 ≤ a < b ≤ r .
Under this setup, the degree-corrected density gap condi-
tion (6.4) becomes

(6.9) max
1≤a<b≤r

q + δ

HaHb

≤ λ ≤ min
1≤a≤r

p − δ

H 2
a

.

Further define Gmin := min1≤a≤r Ga . The following the-
orem, again extracted from Chen, Li and Xu (2018), pro-
vides sufficient conditions for strong consistency.

THEOREM 6.2. Suppose that the tuning parameter λ

satisfies the degree-corrected density gap condition (6.9)
for some number δ > 0, and that

δ > C0

(√
qn

Gmin
+

√
p logn

Gminθmin

)
.(6.10)

With high probability, the ground truth partition matrix
X� is the unique solution to the convex relaxation (6.2).

This theorem is proved using a dual certification analy-
sis argument similar to those presented in Section 2. Note
that the condition (6.10) for perfect recovery depends on
the minimum values Gmin and θmin. This is expected: it
is impossible to recover the membership of a node with
an overly small θi and Ga , as this node will have too few
edges.

7. ROBUSTNESS AGAINST OUTLIER NODES

The results presented in the previous sections high-
light some distinguishing statistical advantages of convex
relaxation methods for community detection, including
consistency under sparse networks and weak assortativ-
ity. In this section, we demonstrate another important
benefit of convex relaxation, namely, robustness. In Cai
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and Li (2015), it is shown, both theoretically and empir-
ically, that a simple variant of (1.5) is robust against out-
lier/adversarial nodes. That is, convex optimization meth-
ods can yield consistent estimates even if a proportion of
the nodes have arbitrary connections that do not satisfy
the SBM. Below we give an expository introduction of this
result and the associated analytical arguments.

For analytical convenience, Cai and Li (2015) consider
the following modified version of the convex relaxation
(1.5):

(7.1)

max
X

〈
X,A − λJ − (α − λ)I

〉
subject to X 
 0,X ≥ 0,Xii ≤ 1,

for 1 ≤ i ≤ n.

The optimization problem (7.1) differs from (1.5) in that
it does not require all diagonal entries of X to equal one.
Instead, the entries of X are constrained to fall between
0 and 1, and the trace of X is penalized by introducing a
second tuning parameter α.

To study the robustness of the formulation (7.1), let us
consider an extension of SBM that allows for abnormal
nodes. We assume that the set of nodes V can be decom-
posed as V = I ∪ O , where I represents the inliers and
O is the outliers. We assume the edges between nodes
within I are generated randomly according to the (p, q)-
SBM, whereas if one of i and j is an outlier, then i and j

are connected in an arbitrary or even adversarial manner.
Under the above model, one can show that the formu-

lation (7.1) can still consistently recover the community
memberships of the nodes in I . The argument is based
on analyzing the KKT condition for (7.1), but it differs
from the purely dual certification analysis presented in
Section 2. There when studying the standard SBM and the
formulations (1.5), (3.1) and (4.1), it is clear which is the
desired solution whose optimality we want to certify—it
is either the ground truth partition matrix in (1.4) or the
ground truth projective matrix in (4.2). Under the gener-
alized SBM with outlier nodes, however, the desired solu-
tion to (7.1) is much more complicated. Consequently, the
analysis of (7.1) involves both the construction of a can-
didate primal solution and that of its dual certificate. This
analytic technique, sometimes called primal-dual witness,
is powerful but relatively uncommon in the convex com-
munity detection literature. Below we briefly outline the
key ideas of this argument.

Similarly to Section 2, we focus on the (p, q)-model
with two inlier clusters. We assume that the |I | = n inliers
are partitioned into two clusters of sizes n1 and n2, and
the number of outliers is |O| = m, with n = n1 + n2 + m

being the total number of nodes. We refer to this model as
the (p, q,n1, n2,m)-generalized SBM. In the presence of
outliers, the adjacency matrix (up to some permutation)

has the following augmented block structure:

(7.2) A =
⎡⎢⎣A11 A12 Z1

A	
12 A22 Z2

Z	
1 Z	

2 W

⎤⎥⎦ .

Here A11, A22 and A12 correspond to the connectivity
within and between the two inlier clusters, and hence have
the same statistical properties as in SBM. On the other
hand, the blocks Z1 and Z2 represent the connectivity be-
tween the outliers and inliers, whereas the m×m symmet-
ric block W is the adjacency matrix within the outliers.
Note that Z1, Z2 and W are all arbitrary.

We say that the formulation (7.1) is robust against out-
liers if it achieves strong consistency within the inlier
nodes in I ; that is, its solution X̂ is of the form

(7.3) X̂ =
⎡⎣J n1 0 �

0 J n2 �

� � �

⎤⎦ .

To establish this property, we begin with the KKT condi-
tion of (7.1) for the primal solution X̂:

(7.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Stationarity:

−A + λJ + (α − λ)I = � + � − diag(γ ),

Primal feasibility:

X̂ 
 0, X̂ ≥ 0, X̂ii ≤ 1 for 1 ≤ i ≤ n,

Dual feasibility:

� 
 0,� ≥ 0,γ ≥ 0,

Complimentary slackness:

〈X̂,�〉 = 0, 〈X̂,�〉 = 0, γi = 0 iff X̂ii < 1.

Notice that � is determined by � and γ . It remains to
construct the primal solution X̂ and dual variables � and
γ for which the above conditions hold.

Primal solution candidate: Inspired by numerical sim-
ulations, Cai and Li (2015) consider a candidate primal
solution of the following form:

(7.5) X̂ =
⎡⎢⎣ J n1 0 1n1x

	
1

0 J n2 1n2x
	
2

x11	
n1

x21	
n2

x1x
	
1 + x2x

	
2

⎤⎥⎦ .

Assume that

−A + λJ + (α − λ)I :=
⎡⎢⎣ � � Z̃1

� � Z̃2

Z̃
	
1 Z̃

	
2 W̃

⎤⎥⎦ .

Plugging the parameterization (7.5) of the primal solution
into the convex relaxation (7.1), we obtain the following
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quadratic program:

(7.6)

min
x1,x2∈Rm

2∑
i=1

〈
xi , Z̃

	
i 1ni

〉+ 1

2

2∑
i=1

x	
i W̃xi

subject to x1 ≥ 0, x2 ≥ 0,

2∑
i=1

x	
i

(
eje

	
j

)
xi ≤ 1, for 1 ≤ j ≤ m.

Slightly abusing notation, we use (x1,x2) to denote the
solution to the above program. Plugging this pair (x1,x2)

into (7.5) gives our primal candidate X̂, which by def-
inition automatically satisfies primal feasibility in KKT
condition.

As an interesting and useful byproduct, we know that
the solutions to the dual problem of (7.6), denoted by
β1,β2, ξ ≥ 0 ∈R

m, satisfy the conditions⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
W̃xi + Z̃

	
i 1li = βi − diag(ξ)xi , i = 1,2,

ξj

(
1 −

r∑
i=1

x	
i

(
eje

	
j

)
xi

)
= 0, j = 1, . . . ,m,

〈xi ,βi〉 = 0, i = 1,2.

We then use β1, β2 and ξ to construct the dual certificates
� and γ as follows:

� =

⎡⎢⎢⎢⎢⎢⎢⎣
0 �12

1

n1
1n1β

	
1

�	
12 0

1

n2
1n2β

	
2

1

n1
β11	

n1

1

n2
β21	

n2
0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

γ =
⎡⎣γ 1
γ 2
ξ

⎤⎦ ;

see Cai and Li (2015) for the expressions of γ 1, γ 2 and
�12.

With the primal and dual solutions constructed above,
the KKT conditions in (7.4) can be validated with high
probability under appropriate conditions on p, q , n1, n2,
m and the tuning parameters λ and α. Doing so proves
the main Theorem 3.1 in Cai and Li (2015). A corollary
thereof is given below.

THEOREM 7.1. Under the above (p, q,n1, n2,m)-
generalized SBM, suppose that n1 = O(n) and n2 =
O(n), and parametrize p, q , m as p = a(logn)/n, q =
b(logn)/n, and m = θ logn. If

a − b > C0(1 + √
θ)

√
a,

then there exist tuning parameters λ and α such that with
high probability any solution to (7.1) is of the form (7.3).

This result implies that if p = O(logn/n) and q =
O(logn/n), the convex relaxation (7.1) is able to recover

the true clusters in presence of O(logn) outlier nodes.
The result can be extended to the more general setting
with a growing number of clusters and a general con-
nectivity probability matrix satisfying strong assortativ-
ity; see Cai and Li (2015) for the details.

Before concluding this section, we note that other
notions of robustness have been considered in the lit-
erature on convex community detection. For example,
one may consider a semirandom model where a mono-
tone adversary is allowed to add edges within commu-
nities and delete edges across communities. Weak con-
sistency results have been established under this model
(Moitra, Perry and Wein, 2016). A more general semi-
random model has later been introduced by Makarychev,
Makarychev and Vijayaraghavan (2016); their results on
outlier-robustness are comparable to (and sometimes bet-
ter than) the results in Cai and Li (2015).

8. CONCLUSIONS

The convex relaxation approaches to community detec-
tion have attracted much recent attention. The first and
foremost advantage of such approaches is that they pro-
vide a computationally tractable solution to the worst-case
hard combinatorial problems that arise in community de-
tection and clustering. In this survey, we have focused
on the statistical advantages of the convex relaxation ap-
proaches, including the power in providing rigorous and
strong recovery guarantees, the robustness against data
corruption and model misspecification, and the flexibility
in handling a broad range of variations of the community
detection problems. We have highlighted several key ana-
lytical tools for establishing such properties under certain
statistical models of the data. As can be seen, such analy-
sis is largely decoupled from the specific algorithms used
to solve the convex programs, which is an important ben-
efit of the convex relaxation framework.

Due to space limit, we did not provide a comprehensive
coverage of the fast-growing recent literature in the area
of convex community detection. Some notable omissions
include:

• Solving the convex programs: This can be done us-
ing a variety of existing powerful solvers such as inte-
rior point methods and ADMM (Nocedal and Wright,
2006). By leveraging specific structures (such as spar-
sity and low-rankness) that arise in community detec-
tion, even more efficient solvers have been developed
that scale well to large datasets. For work in this direc-
tion we refer to the papers by Chen, Li and Xu (2018),
Javanmard, Montanari and Ricci-Tersenghi (2015),
Bandeira, Boumal and Voroninski (2016), Montanari
(2016), Mei et al. (2017) and the references therein.

• Empirical performance: The convex relaxation ap-
proaches have been shown to enjoy competitive per-
formance on various synthetic and real-world bench-
marks; see, for example, the work in Cai and Li (2015),
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Chen, Li and Xu (2018), Javanmard, Montanari and
Ricci-Tersenghi (2015).

• Computational barriers in solving problems that are
hard on average: The work in Chen and Xu (2016),
Javanmard, Montanari and Ricci-Tersenghi (2015),
Hajek, Wu and Xu (2016c) studies the interplay be-
tween the statistical and computational limits of SDP
relaxations. Based on deep but nonrigorous statisti-
cal physics arguments, Decelle et al. (2011) conjec-
tures that there exists a fundamental computational
barrier that prevents all polynomial-time procedures
from achieving the optimal statistical performance.
Interested readers are referred to the recent surveys
in Moore (2017), Abbe (2017), Wu and Xu (2018) for
detailed discussions.

• Other considerations and extensions: Examples include
extracting explicit clustering from the convex relax-
ation solutions (Guédon and Vershynin, 2016, Chen,
Li and Xu, 2018), dealing with an unknown num-
ber of clusters and other unknown problem parame-
ters (Yan, Sarkar and Cheng, 2018, Chen, Sanghavi
and Xu, 2014), and clustering partially observed or
weighted networks (Chen et al., 2014, Lim, Chen and
Xu, 2017).

We hope that this survey will stimulate further research
exploiting the power of the convex relaxation approaches
to network analysis, and in particular provide impetus to
the development of efficient implementations of these ap-
proaches for practical and large-scale problems.
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