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Abstract. Researchers are often challenged with assessing the impact of an
intervention on an outcome of interest in situations where the intervention
is nonrandomised, the intervention is only applied to one or few units, the
intervention is binary, and outcome measurements are available at multiple
time points. In this paper, we review existing methods for causal inference
in these situations. We detail the assumptions underlying each method, em-
phasize connections between the different approaches and provide guidelines
regarding their practical implementation. Several open problems are identi-
fied thus highlighting the need for future research.
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1. INTRODUCTION

Evaluation of the causal effect of an intervention
(e.g., a newly introduced policy, a novel experimental
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practice or an unexpected event) on an outcome of in-
terest is a problem frequently encountered in several
fields of scientific research. These include economics
(Angrist and Pischke, 2009; Imbens and Wooldridge,
2009), epidemiology and public health (Rothman and
Greenland, 2005; Glass et al., 2013), management
(Antonakis et al., 2010), marketing (Rubin and Water-
man, 2006; Varian, 2016) and political sciences (Keele,
2015).

Researchers are often interested in assessing the im-
pact of an intervention (occasionally referred to as
treatment henceforth) in situations where: (i) the data
are observational, that is, the allocation of the sample
units to the intervention and control groups is not ran-
domised, but instead determined by factors that con-
found the association between the indicator of inter-
vention and the outcome of interest; (ii) the interven-
tion is binary, that is, sample units cannot receive the
interventions at varying intensities; (iii) only one or a
small number of units are treated; and (iv) at each of
a set of time points, before and after the time at which
the intervention is introduced, the outcome is measured
on every sampled unit, thus giving rise to panel data.

Several statistical methods for causal inference in
this setting have been developed to account for the spe-
cial characteristics of the data: the presence of (likely
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unobserved) confounders, the existence of temporal
trends in the outcome and the limited number of sam-
ple units to which the intervention is given. In this
paper, we review the existing literature, motivated by
recent methodological developments and the increas-
ing application of these methods to real-life problems.
Since the existing literature comes from a wide range
of research disciplines, our focus is on unifying the var-
ious methods under a common terminology and nota-
tion, appropriate to a statistical audience. Further, we
draw connections between various methods and point
out issues related to their practical implementation. Fi-
nally, we suggest some possible directions for future
research.

We focus on four classes of methods: difference-in-
differences, latent factor models, synthetic control-type
methods and the causal impact method. Excluded from
our review are propensity score methods (Rosenbaum
and Rubin, 1983) (see Austin, 2011, for a recent re-
view), because the small number of treated units does
not allow accurate estimation of the parameters of a
propensity score model, and the interrupted time se-
ries method (Lopez Bernal, Cummins and Gasparrini,
2016), because it does not use data on the units that do
not receive the intervention.

This manuscript is structured as follows. In Sec-
tion 2, we define notation, describe the causal frame-
work underlying the methods and introduce the illus-
trative example. Section 3 presents the four classes of
methods. Section 4 is about quantification of uncer-
tainty and hypothesis testing. Section 5 discusses is-
sues related to practical implementation. Sections 6
and 7 contain an applications to real data and a dis-
cussion, respectively. Finally, in Section 8 we highlight
some remaining problems in the field.

2. PRELIMINARIES

2.1 Notation

Let i = 1, . . . , n index the entities (e.g., hospitals
or general practices) for which the outcome of inter-
est is observed: henceforth, we refer to these enti-
ties as units. For unit i we have measurements yi· =
(yi1, . . . , yiT )�, where t indexes time. We let y·t =
(y1t , . . . , ynt )

� denote the vector containing the set of
n observations at time t and yi,t1:t2 = (yit1, . . . , yit2)

�
denote the measurements on unit i from time t1 to time
t2 (t1 ≤ t2). Throughout, we assume that yit is univari-
ate.

Let dit = 1 if unit i receives the intervention at
or before time t , and dit = 0 otherwise. Let d i =

(di1, . . . , diT )�. Of the n units, the first n1 remain un-
treated for the entire study period. We call these the
controls. For the n2 treated units, there is a time T1
(1 < T1 < T ) immediately after which the intervention
is applied. We assume that all treated units receive the
intervention at the same time. Hence dit = 1 if i > n1
and t > T1, and dit = 0 otherwise. We make this as-
sumption to simplify the notation, but the methods we
describe can be easily extended to allow for different
treatment times. The number of post-intervention ob-
servation times is denoted by T2 = T − T1. For each
unit and time, we may also observe a set of K covari-
ates xit = (xit1, . . . , xitK)�.

2.2 Potential Outcomes

We adopt the potential outcomes framework (Rubin,
1974, 1990), also known as the Rubin causal model
(Holland, 1986, RCM). Under this model, for each
treated unit (i > n1) and post-intervention time (t >

T1) there are two potential outcomes, y
(0)
it and y

(1)
it :

y
(0)
it represents the outcome that would be observed

if intervention were not applied, and y
(1)
it is the out-

come that would be observed if the intervention were
applied. We only observe y

(1)
it , that is, yit = y

(1)
it . For

the control units (i ≤ n1) at any time t and the treated
units (i > n1) at a pre-intervention time (t ≤ T1), we
only define y

(0)
it and y

(0)
it = yit is observed.

The RCM allows the effect of intervention unit i

(i > n1) at time t (t > T1) to be expressed as τit =
y

(1)
it − y

(0)
it . Estimation of τit is complicated by the

fact that y
(0)
it is not observed. In order to estimate

τit from the observed data, it is necessary to make
identifying assumptions (Morgan and Winship, 2007,
Keele and Minozzi, 2013). For the methods consid-
ered in this paper, these assumptions allow the unob-
served counterfactual outcomes y

(0)
it of treated units in

the post-intervention period (i.e., for i > n1 and t > T1)
to be predicted using the observed outcomes on con-
trol and treated units. Denote these predictions as ŷ

(0)
it .

The intervention effect τit can then be estimated as
τ̂it = yit − ŷ

(0)
it .

2.3 An Illustrative Example

As our illustrative example we use data from Abadie,
Diamond and Hainmueller (2015) who investigated the
effect that West Germany’s reunification with East Ger-
many in 1990 had on the economic growth of the for-
mer. To do so, they compared West Germany’s annual
per-capita GDP (the outcome variable) to its counter-
factual GDP (i.e., its GDP had reunification not taken
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FIG. 1. Time series plot of the German reunification data. The
values on the y-axis represent per-capita GDP measured in U.S.
dollars. West Germany’s per-capita GDP is shown in blue; the data
on control units (16 other OECD countries) are shown in light red;
the dashed red line represents the average GDP of the control units.
The dashed gray line indicates 1990, the year of reunification.

place), which they predicted based on annual per-capita
GDP data from n1 = 16 member countries of the Or-
ganisation for Economic Co-operation and Develop-
ment (OECD) (none of which underwent reunifica-
tion, and so are ‘control units’). The authors used data
from 1960–2003 and hence there are T1 = 30 pre-
intervention and T2 = 13 post-intervention time points.
Figure 1 shows the time-series of the outcome on all
17 units. In Section 6, we analyse this dataset using the
methods reviewed in this article.

3. ESTIMATION METHODS

In this section, we review four classes of methods
for predicting the counterfactual treatment-free out-
comes y

(0)
it of the treated units at post-intervention

times, needed to calculate τ̂it . Here we focus on the
intuition and the assumptions underlying each method,
and report results on theoretical properties of unbiased-
ness and consistency in Appendix A. For full technical
details of each approach, the reader is directed to the
original publications.

3.1 Difference-in-Differences

Early works (Ashenfelter, 1978; Ashenfelter and
Card, 1985; Card and Krueger, 1994) used so-called
difference-in-differences (DID) models to compare
two time periods (pre- versus post-intervention). The
identifying assumption in DID models is that the av-
erage outcomes of control and treated units in the ab-
sence of an intervention would follow parallel trends
over time (Abadie, 2005).

Figure 2 is a graphical representation of the basic
DID method for a single control and single treated unit.

FIG. 2. Graphical illustration of the difference-in-differences
method.

The four points A–D on the graph represent the con-
trol (A) and treated (B) units at t = 1, and the con-
trol (C) and treated (D) units at t = 2. Under the paral-
lel trends assumption, the difference between the out-
come of the treated unit and of the control unit would
be constant over time in the absence of intervention.
The counterfactual outcome for the treated unit at the
post-intervention time can then be predicted as point E
in Figure 2. Letting yA, yB , yC , yD and yE denote the
y-values corresponding to the points A, B, C, D and
E in Figure 2, respectively, the estimated effect of the
intervention is

τ̂22 = yD − yE

= yD − {
yC + {yB − yA}}

= {yD − yC} − {yB − yA},
that is, the difference (after versus before) of the dif-
ferences between the two units. The same method can
be used when multiple time points and multiple control
units are available.

A commonly used solution to adjust for the effect
of covariates xit

1 is to specify a parametric linear DID
model for the observed outcome yit (Angrist and Pis-
chke, 2009, Jones and Rice, 2011)

yit = y
(0)
it + τitdit ,

(3.1)
y

(0)
it = x�

it θ + κi + μt + εit ,

where θ is a vector of regression coefficients, κi is an
(unknown) fixed effect of unit i, μt allows for tempo-
ral trends and εit are the zero-mean error terms which

1Blundell et al. (2004) and Abadie (2005) propose alternative
DID estimators that can account for the effect of covariates. How-
ever, these methods are not suitable when only a small number of
units are treated and hence are not reviewed in this article.
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are independent of djs , xjs , κj , μs for all i, j , t , s.
Lagged outcomes and/or transformations of xit can be
included as extra covariates in the linear DID model
(Jones and Rice, 2011). The parameters of the linear
DID model can be estimated by ordinary least squares
(OLS) regression (see Angrist and Pischke, 2009, pp.
167, for details). Let τ̂DID

it denote the resulting estimate
of τit .

The linear DID model (3.1) makes very strong as-
sumptions regarding the data generating mechanism.
The term κi in (3.1) allows expected counterfactual
treatment-free outcomes to be higher (or) lower in the
treated units than in control units, even after adjusting
for observed covariates xit . Hence, κi can represent
an unobserved confounder. However, equation (3.1) as-
sumes that the effect of this possible confounder on the
outcome is constant over time. Similarly, the term μt

in (3.1) can only account for temporal trends that are
common to both treated and control units.

Although the linear DID specification (3.1) is often
preferred in practice due to its simple interpretation and
implementation, there exist other methods that build on
the parallel trends idea. Athey and Imbens (2006) relax
the linearity assumption of (3.1), allowing the outcome
yit to be a more general (nonlinear) function of the un-
observed characteristics of unit i. However, it is diffi-
cult to implement their method when there are more
than two time points and xit is high-dimensional. An-
other method based on parallel trends is the triple dif-
ferences method (Atanasov and Black, 2016, Wing, Si-
mon and Bello-Gomez, 2018), which uses two groups
of control units. For example, when the treated group
consists of male employees of a company, then the
control group can be either the female employees of
the same company, or the male employees of a differ-
ent company. In such situations, the triple differences
method can use the second control group to correct for
biases caused by the violation of the assumption of par-
allel trends between the outcomes of the treated group
and the control group.

There are many examples of the use of DID models.
Ashenfelter (1978) and Ashenfelter and Card (1985)
investigate the effect of training programs on worker
earnings. Card (1990) assesses the impact that the
Mariel Boatlift, a mass migration of Cuban citizens
to Miami in 1980, had on the city’s labour market,
using four other cities as controls. Card and Krueger
(1994) estimate the effect that the increase of the min-
imum salary had on employment rates in New Jer-
sey’s fast-food industry in 1992, using fast-food restau-
rants located in Pennsylvania as the control group. See

Galiani, Gertler and Schargrodsky (2005), Branas et al.
(2011), King et al. (2013) for recent works applications
of the DID approach.

3.2 Latent Factor Models

In the linear DID model of equation (3.1), there is
one unit-specific term, κi , and this can represent a sin-
gle unobserved confounder whose effect on the out-
come is constant over time. In the following latent fac-
tor model (LFM), κi is replaced by λif t

yit = y
(0)
it + τitdit ,

(3.2)
y

(0)
it = x�

it θ + λ�
i f t + εit ,

where f t = (f1t , . . . , fJ t )
� are J time-varying fac-

tors, λi = (λi1, . . . , λiJ )� are unit-specific factor load-
ings, and εit are the zero-mean errors which are inde-
pendent of djs , xjs , λj , f s for all i, j , t , s. When
f t = (1,μt )

� and λi = (κi,1)�, the second line in
(3.2) reduces to the second line in (3.1). So, the lin-
ear DID model is a special case of the LFM. Just as
κi in the linear DID model can represent a single un-
observed confounder, λi can represent J unobserved
confounders, whose effect on the outcome varies with
time and is described by f t . Hence, the LFM (3.2) re-
laxes the DID assumption that the average outcomes
of control and treated units follow parallel trends. In
econometrics, f t is interpreted as a ‘shock’ that affects
all units at time t and λi represents the response of unit
i to these shocks (Bai, 2009).

Xu (2017) proposes a three-step estimation proce-
dure for predicting counterfactual treatment-free out-
comes using the LFM model. In the first step, ob-
servations on control units are used to estimate θ ,
f 1, . . . ,f T and λ1, . . . ,λn1 through the iterative pro-
cedure of Bai (2009) that minimises

∑n1
i=1

∑T
t=1(yit −

ŷ
(0)
it )2, the mean squared error (MSE) between the ob-

servations yit and the corresponding predicted values

ŷ
(0)
it = x�

it θ̂ + λ̂
�
i f̂ t . In the second step, the estimated

factor loadings for the treated units, λ̂i (i > n1), are ob-
tained conditional on the parameter estimates obtained
in the first step by minimising the MSE between yit and
ŷ

(0)
it for the treated units in the pre-intervention period.

Finally, the third step involves estimating the interven-
tion effects τit as τ̂XU

it = yit − ŷ
(0)
it .

Several authors have proposed alternative methods
for predicting counterfactuals using the LFM. These
include Ahn, Lee and Schmidt (2013), Gobillon and
Magnac (2016), Chan and Kwok (2016) and Athey
et al. (2017). We have focused on the method of Xu
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because, to the best of our knowledge, it is the only
one for which an R package has been developed.

Gobillon and Magnac (2016) and Xu (2017) describe
applications of the LFM to real data. Gobillon and
Magnac (2016) estimate the effect on unemployment
rates of a French program offering tax reliefs to com-
panies that hired at least 20% of their personnel from
the local labour force. Xu (2017) evaluates the impact
of Election Day Registration (EDR), a law that enables
eligible citizens to register on site when they arrive at
the voting centre, on voter turnout in the US. For more
applications of the LFM see Kim and Oka (2014) and
Sanso-Navarro, Sanz-Gracia and Vera-Cabello (2018).

3.3 Synthetic Control-Type Approaches

The original synthetic controls method (SCM) was
developed by Abadie and Gardeazabal (2003) and
Abadie, Diamond and Hainmueller (2010) and can
only be applied to one treated unit at a time. The idea
behind the SCM is to find weights w = (w1, . . . ,wn1)

�
for the control units such that the weighted average
of the controls’ outcomes best predicts (in terms of
MSE) the outcome of the treated unit during the pre-
intervention period, and then use the weights to esti-
mate the counterfactual treatment-free outcomes in the
post-intervention period. The set of weights w min-
imises√(

yn1+1,1:T1
− Y c

1:T1
w

)�
V

(
yn1+1,1:T1

− Y c
1:T1

w
)
,

(3.3)

subject to the constraints

(3.4)
n1∑
i=1

wi = 1 and wi ≥ 0,

where Y c
1:T1

is the T1 × n1 matrix with ith column
yi,1:T1

and V is a T1 × T1 symmetric, positive semi-
definite matrix reflecting the importance given to the
different pre-intervention time points (Abadie and
Gardeazabal, 2003). The predicted counterfactual of
the treated unit is

(3.5) ŷ
(0)
n1+1,(T1+1):T = Y c

(T1+1):T w,

where Y c
(T1+1):T is defined analogously to Y c

1:T1
. The

estimated intervention effect at times t (t > T1) is then
τ̂SCM
n1+1,t = yn1+1,t − ŷ

(0)
n1+1,t .

It is also possible to use the covariates, by replac-
ing yi,1:T1

with zi,1:T1 = (y�
i,1:T1

,x�
i,1:T1

)� in equa-
tion (3.3). Abadie, Diamond and Hainmueller (2010)

suggest that instead of using the full data zi,1:T1 , it
may be reasonable to consider only a few summaries,
such as the mean outcome 1

T1

∑T1
t=1 yit in the pre-

intervention period, and the corresponding means of
the covariates, that is, to replace zi,1:T1 by ( 1

T1

∑T1
t=1 yit ,

1
T1

∑T1
t=1 x�

it )
�. Such reduction of the dimensionality of

zi,1:T1 might be necessary in applications with T1 � n1
in order to reduce computation time.

The choice of matrix V can either be based on
a subjective judgement of the relative importance of
the variables in yi,1:T1

or zi,1:T1 or be determined
through a data-driven approach. For example, Abadie
and Gardeazabal (2003) and Abadie, Diamond and
Hainmueller (2010) choose V as the positive def-
inite diagonal matrix that minimises the MSE be-
tween the observed outcomes yi,1:T1

(i = 1, . . . , T1)
and estimated outcomes ŷi,1:T1

= Y c
1:T1

w(V ) in the
pre-intervention period, where w(V ) is the solution to
(3.3) for a fixed V .

The SCM makes no assumptions regarding the data
generating mechanism. The method has strong links
with the matching literature, where the outcome of
each treated individual is compared to the outcomes
of controls with similar covariate values (Rosenbaum,
2002; Stuart, 2010). However, it is more general in the
sense that a good match is sought by weighted averag-
ing of the controls. The SCM also relates to the method
of analogues used for time-series prediction. The dif-
ference is that in the method of analogues there is only
one time-series and ‘controls’ are simply earlier seg-
ments of the time-series; for more details see Viboud
et al. (2003).

There have been several proposed extensions of the
SCM. To allow for multiple treated units, Kreif et al.
(2016) apply the SCM to the averaged vector out-
come ȳtr = ( 1

n2

∑n
i=n1+1 yi1, . . . ,

1
n2

∑n
i=n1+1 yiT )� of

the treated units. Acemoglu et al. (2016) assume that
the intervention effects τn1+1, . . . ,τn are equal and
estimate the common effect at time t (t > T1) as
the weighted average

∑n
i=n1+1 q−1

i τ̂it /
∑n

i=n1+1 q−1
i ,

where τ̂it (i > n1) is obtained by applying the origi-
nal algorithm to just the data on treated unit i and the
control units 1, . . . , n1, and

qi =
√

T −1
1

(
yi,1:T1

− ŷ
(0)
i,1:T1

)�(
yi,1:T1

− ŷ
(0)
i,1:T1

)
.

Their stated rationale for using weights q−1
i is that

units with good fit in the pre-intervention period should
be more reliable for estimating the common interven-
tion effect and hence receive higher weights.
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Hsiao, Ching and Wan (2012), henceforth HCW, and
Doudchenko and Imbens (2016), henceforth DI, extend
the SCM by adding a time-constant intercept term to
the SCM estimator and removing the constraints on
the weights. The intercept is necessary when the out-
come of the treated unit is systematically (over time)
higher or lower than the outcomes of the controls units
and hence there exists no set of weights that can pro-
vide a good fit for yn1+1,t in the pre-intervention pe-
riod. The removal of the constraints on the weights
is useful, for example, when there exist control units
with outcomes that are negatively correlated with the
outcomes on the treated unit. HCW suggest estimating
y

(0)
n1+1,t (t > T1) as ŷ

(0)
n1+1,t = β0 + ∑n1

i=1 βiyit , where
β0, . . . , βn1 are the OLS coefficient estimates of the re-
gression of yn1+1,1:T1

on y1,1:T1
, . . . ,yn1,1:T1

, that is,
they minimise

(3.6)

(
yn1+1,1:T1

− β01 − Y c
1:T1

β
)�

· (
yn1+1,1:T1

− β01 − Y c
1:T1

β
)
,

where 1 denotes a T1-vector of ones, β0 is the intercept
and β = (β1, . . . , βn1)

�. Amjad, Shah and Shen (2018)
also remove the constraint on the weights and suggest
that, before estimating these weights, the data on the
control outcomes Y c

1:T1
should be de-noised.

Ben-Michael, Feller and Rothstein (2018) intro-
duced the augmented SCM. First, the SCM is applied
and weights w1, . . . ,wn1 obtained. Second, a model
(e.g., a LFM) for the untreated outcomes y

(0)
i of all

n1 + 1 units is fitted to all the outcomes of the un-
treated units and the pre-intervention outcomes of the
untreated unit. If ỹ

(0)
it (i = 1, . . . , n1 +1; t > T1) denote

the predicted untreated outcomes from this model, then∑n1
i=1 wiyit − ỹ

(0)
n1+1,t is an estimate of the bias of the

SCM estimator. The augmented SCM estimator of the
counterfactual y

(0)
n1+1 equals the original SCM estimate

plus this estimated bias. They argue that this method is
particularly useful when the SCM method provides a
poor fit in the pre-intervention period.

Hazlett and Xu (2018) estimate the weights using
a kernel transformation of the pre-intervention out-
comes. This is done to ensure that higher-order features
of the outcomes (authors mention, e.g., volatility and
variance) are taken into account when estimating the
weights. Using simulated examples, they showed that
their approach can eliminate biases that occur if the un-
transformed outcomes are used to estimate the weights.

Several recent works utilise synthetic control-type
approaches for estimating the effects of an interven-
tion. These include Cavallo et al. (2013), who ex-
amine the effect of large-scale natural disasters on

gross domestic product, and Ryan et al. (2016), who
investigate the impact that UK’s Quality and Out-
comes Framework, a pay-for-performance scheme in
primary health, had on population mortality. For more
applications of synthetic control-type methods, see
Billmeier and Nannicini (2013), Fujiki and Hsiao
(2015), Saunders et al. (2015) and Aytuğ et al. (2017).

3.4 Causal Impact

The causal impact method (CIM) was introduced by
Brodersen et al. (2015) and can only be applied to a
single treated unit at a time. A Bayesian model is as-
sumed for the outcome of the treated unit. This model
includes a time-series component that relates the out-
come of the treated unit at time t to previous outcomes
on the same unit, and a regression component that uses
the outcomes on control units as covariates. Specifi-
cally,

y
(0)
n1+1,t = β0t +

n1∑
i=1

βiyit + εt (t = 1, . . . , T ),

β0,t+1 = β0,t + δt + ηt ,(3.7)

δt+1 = δt + ζt ,

with mutually independent εit ∼ N(0, σ 2
ε ), ηt ∼ N(0,

σ 2
η ) and ζt ∼ N(0, σ 2

ζ ), and priors for β00, δ0, β1, . . . ,

βn1 , σ 2
ε , σ 2

η and σ 2
ζ . In equations (3.7), the component

β0t induces temporal correlation in the outcome, the re-
gression component

∑n1
i=1 βiyit relates y

(0)
n1+1,t to mea-

surements from control units, and the error component
εt accounts for unexplained variability. More complex
models can be adopted (Brodersen et al., 2015), for ex-
ample, by adding a seasonal component.

The model (3.7) is fitted to the observed data,
y

(0)
n1+1,1, . . . , y

(0)
n1+1,T1

, treating the counterfactuals

y
(0)
n1+1,T1+1, . . . , y

(0)
n1+1,T as unobserved random vari-

ables. Independent, improper, uniform priors are used
for τn1+1,T1+1, . . . , τn1+1,T . Then, L samples y

(0,l)
n1+1,t

(l = 1, . . . ,L) are drawn from the resulting posterior
predictive distribution of the counterfactual outcome
y

(0)
n1+1,t (t > T1), thus providing samples yn1+1,t −

y
(0,l)
n1+1,t from the posterior distribution of τn1+1,t . Typi-

cally, this would be done using a Markov chain Monte
Carlo algorithm. A point estimate τ̂CIM

n1+1,t for the causal
effect τn1+1,t at time t (t > T1) is then given by its pos-
terior mean.

Bruhn et al. (2017) use the CIM to assess the impact
of pneumococcal conjugate vaccines on pneumonia-
related hospitalisations using hospitalisations from
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other diseases as the control time-series. de Vocht et al.
(2017) evaluate the benefits of stricter alcohol licensing
policies on alcohol-related hospitalisations in several
areas, control areas being other areas where these poli-
cies were not implemented. See also de Vocht (2016),
González and Hosoda (2016), Vizzotti et al. (2016) for
other applications of the CIM.

4. QUANTIFICATION OF UNCERTAINTY &
HYPOTHESIS TESTING

We now describe approaches to estimating standard
errors and testing the null hypothesis that τit = 0, or,
for Bayesian methods, estimating the posterior distri-
bution of τit .

DID. If it is assumed that the errors εit in the lin-
ear DID are mutually independent and homoscedastic,
variance estimates for the OLS estimates of τit (i > n1,
t > T1) are easy to obtain. These represent the variance
of τ̂DID

it over repeated samples of the errors εit holding
(x�

11, . . . ,x
�
1T , κ1,d

�
1 , . . . ,x�

n1, . . . ,x
�
nT , κn,d

�
n ,μ1,

. . . ,μT )� fixed. A Wald test for τit = 0 can then
be performed. However, the assumption that the er-
rors εit are mutually independent may not be plau-
sible. Bertrand, Duflo and Mullainathan (2004) show
that when, as is likely, the errors εi1, . . . , εiT are seri-
ally correlated, the variance estimator for τ̂it is biased
downwards and type-I error rates are inflated, and they
describe methods to deal with this. Standard errors can
also be underestimated if there are correlations due to
units being grouped (e.g., hospitals within the same
county); Donald and Lang (2007) discuss possible so-
lutions.

LFM. Xu (2017) uses parametric bootstrap to ob-
tain confidence intervals for τ̂XU

it and p-values, assum-
ing that ε1t , . . . , εnt are independent and homoscedas-
tic at each individual time t . Repeated sampling here
is of the errors εit holding (x�

11, . . . ,x
�
1T ,λ�

1 ,d�
1 , . . . ,

x�
n1, . . . ,x

�
nT ,λ�

n ,d�
n ,f �

1 , . . . ,f �
T )� fixed. Li (2018)

derive the asymptotic distribution (as T1, T2 → ∞) of
the average effect

∑T
t=T1+1 τ̂XU

it for the ith treated unit.
Synthetic control-type approaches. Abadie, Dia-

mond and Hainmueller (2010, 2015) argue that tra-
ditional statistical inference is difficult in this setting,
unless one is prepared to assume that the unit that re-
ceived the intervention was chosen at random. Under
that assumption, a standard permutation test would
provide a valid p-value for the null hypothesis that
treatment would have no effect on any of the units (i.e.,
τit = 0 for all i = 1, . . . , n1 + 1). Abadie, Diamond
and Hainmueller propose using a very similar test even

in settings where the intervention is not randomly as-
signed and called this a ‘placebo test’. They argue that
such a test provides an alternative mode of inference,
saying that our confidence that a large treatment ef-
fect estimate truly reflects the effect of the intervention
would be undermined if similarly large effect estimates
were obtained when the treatment labels of the units
were permuted.

More specifically, Abadie, Diamond and Hainmuel-
ler (2010, 2015) compare τ̂SCM

n1+1,t to τ̂SCM
1t , . . . , τ̂SCM

n1t
,

the estimated effects considering each of the control
units in turn as though it had been the treated unit,
and using the remaining n1 − 1 controls to estimate
the weights, at each post-intervention time. Their test
statistic ri is

(4.1) ri = T1(yi,T1+1:T − ŷi,T1+1:T )�(yi,T1+1:T − ŷi,T1+1:T )

T2(yi,1:T1
− ŷi,1:T1

)�(yi,1:T1
− ŷi,1:T1

)
,

that is, the ratio of post- to pre-intervention MSE be-
tween the observed and predicted outcomes. The pre-
dicted counterfactual of control unit i (i ≤ n1) is ob-
tained by applying the SC method to that unit, using
the remaining n1 −1 controls to find weights. Their in-
tuition is that under the null hypothesis the predictive
ability of the SCM should be similar in the two periods
and thus the ratio rn1+1 close to 1. Hence, a value of
rn1+1 that lies in the tail of the empirical distribution of
r1, . . . , rn1+1 can be viewed as evidence for a nonzero
intervention effect. Firpo and Possebom (2018) inves-
tigate the impact that the choice of the test statistic has
on the results of Abadie, Diamond and Hainmueller’s
test, finding that ri outperformed alternative statistics
that they considered in several performance measures.

Firpo and Possebom (2018) propose a generalisation
of Abadie, Diamond and Hainmueller’s placebo test.
Rather than giving equal weight to all possible permu-
tations of the treatment labels when calculating the p-
value, they make the weights depend on a sensitivity
parameter φ. The reasoning is that even if the unit that
received the intervention had actually been chosen at
random, some units might have been more likely to be
chosen, thus making some permutations of the treat-
ment labels more probable than others. Firpo and Pos-
sebom (2018) vary the value of φ and assess how ro-
bust to this value is the conclusion of a treatment effect
(or lack thereof).

Amjad, Shah and Shen (2018) take an empirical
Bayes approach to test the hypothesis that τn1+1,t = 0.
They assume that yn1+1,1:T ∼ N (Ỹ

c
1:T1

w, σ 2I ), where

Ỹ
c
1:T1

are the de-noised control outcomes obtained via
singular value thresholding, and the weights w have
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a N (0, σ 2
wI ) prior distribution, for some value of σ 2

w .
The posterior distribution of w can be used to calculate
the posterior predictive distribution of y

(0)
n1+1,t (t > T1).

Let a and b be the 97.5th and 2.5th centiles of this
distribution. The 95% posterior credible interval for
τn1+1,t is (yn1+1,t − a, yn1+1,t − b).

Abadie, Diamond and Hainmueller (2010) also con-
sider a variant of their placebo test in which the time
of the intervention, rather than the unit that receives in-
tervention, is changed. They do not, however, propose
this as being a way to calculate a p-value.

In their application, HCW fit an autoregressive
model to the estimated intervention effects τ̂HCW

n1+1,T1+1,

. . . , τ̂HCW
n1+1,T . They then test the null hypothesis that

the mean of these effects, which they refer to as the
long-run intervention effect, equals zero. In their im-
plementation of the HCW method, Gardeazabal and
Vega-Bayo (2017) use a test that is equivalent to the
test proposed by Abadie, Diamond and Hainmueller
(2010, 2015) for the SCM, to test if τit = 0 for all
i and t > T1. As pointed out by one of the referees,
an intuitive approach to obtain confidence intervals
for τ̂HCW

n1+1,t would be to use the bootstrap. Finally, Li
and Bell (2017) derive the asymptotic distribution (as
T1, T2 → ∞) of the average effect

∑T
t=T1+1 τ̂HCW

n1+1,t .
CIM. For the CIM, a 95% posterior credible interval

for τn1+1,t can be calculated as (yn1+1,t − a, yn1+1,t −
b), where a and b denote, respectively, the 97.5th and
2.5th centiles of the posterior predictive distribution of
the counterfactual y

(0)
n1+1,t .

All methods. Recently, there has been work building
upon the end-of-sample stability test (Andrews, 2003).
For a single treated unit, the idea is that under the hy-
pothesis of no intervention effect, the process yn1+1,t −
ŷ

(0)
n1+1,t (t = 1, . . . , T ) is stationary. Chernozhukov,

Wüthrich and Zhu (2017) propose a permutation pro-
cedure to test the stationarity of this process and show
that their approach gives valid inference for several
methods including DID, LFM and SCM. Hahn and Shi
(2017) apply the same idea to the SCM. Both note that
confidence sets for the intervention effect can be ob-
tained by statistic inversion.

5. IMPLEMENTATION ISSUES

In this section, we discuss issues related to the prac-
tical implementation of the methods presented in Sec-
tion 3: model choice and diagnostic checks.

5.1 Model Choice

Choosing the control units. When implementing the
SCM, HCW, DI and CIM, it may be desirable to ex-
clude some of the potential control units. Using all po-
tential controls might result in nonunique causal effect
estimates when there are more such controls than pre-
intervention time points. Moreover, standard errors of
estimates can be reduced by discarding controls whose
outcomes are not related to the outcome of the treated
unit.

HCW develop a two-stage approach to exclude po-
tential controls. For each � = 1, . . . , n1 they implement
their method

(n1
�

)
times, where each time they use a dif-

ferent subset of size � of the control units. For each �

they choose the subset that maximises the regression
R2 and thus obtain n1 candidate models. They recom-
mend choosing one of these n1 models according to
a model selection criterion such as the AIC. An alter-
native approach was suggested by Li and Bell (2017),
who use the least absolute shrinkage and selection op-
erator (LASSO) to select controls.

DI exclude potential controls by encouraging some
of the weights βi to shrink towards (or even equal to)
zero. This achieved by including the penalty term

(5.1) ρ

(
1 − δ

2

n1∑
i=1

β2
i + φ

n1∑
i=1

|βi |
)
,

in the objective function (3.6), where ρ and φ are
penalty parameters. For CIM Brodersen et al. (2015)
induce sparsity on the vector (β1, . . . , βn1)

� that de-
scribes the dependence on controls by using a spike-
and-slab prior.

Choosing the covariates. An issue that may arise
when implementing the linear DID and the LFM
methodology of Xu (2017) is the choice of covariates
to include. Exclusion of potential covariates may be
desirable for the same reasons that one might exclude
control units. For the linear DID model, covariates,
which may include lagged outcomes and interactions
of lagged outcomes with the covariates, may be se-
lected by imposing sparsity on the regression coeffi-
cient vector, using, for example, the LASSO. For the
LFM, one can use the factor-lasso approach of Hansen
and Liao (2019).

When implementing the SCM, users need to decide
which variables (pre-intervention outcomes, covariates
or summaries of these) to use to determine the weights.
Ferman, Pinto and Possebom (2016) demonstrate that
the estimated counterfactual may differ depending on
which variables are used. Dube and Zipperer (2015)
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develop the following approach for selecting among K

sets of variables. First, for every set k (k = 1, . . . ,K)
they apply the SCM to the data on every control unit
in turn, and calculate the predicted outcomes ŷ

(k)
it (i =

1, . . . , n1) based on the estimated weights. Then, they
choose the set k∗ that minimises the mean (over control
units) MSE between observed and predicted outcomes
ŷ

(k)
it in the post-intervention period. An alternative ap-

proach when T1 is large is to split the pre-intervention
data into a training dataset, to which the SCM is ap-
plied using different sets of variables, and a validation
dataset, which is used to assess which set has the best
predictive performance.

Other issues. Some of the methods for estimating the
parameters of the LFM (Gobillon and Magnac, 2016;
Chan and Kwok, 2016, Xu, 2017) require that the num-
ber of factors J be chosen. The usual approach is to
fit the LFM for various values of J and determine
the optimal J using cross-validation. An alternative for
choosing J is to use the procedures developed by Bai
and Ng (2002). However, these approaches provide es-
timates of standard errors that do not account for the
uncertainty about J .

For the CIM, practitioners need to decide what dy-
namical components to include in the counterfactual
model. Similar methods to those used for choosing
variables for the SCM can be used. An alternative is
to fit several models and use the one that achieves
the optimal trade-off between accuracy (the difference
yn1+1,t − ŷn1+1,t ) and precision (the length of the cred-
ible interval for yn1+1,t ) in the pre-intervention pe-
riod. In small datasets the inferences provided by the
CIM impact method will be sensitive to the choice
of prior distributions. Therefore, these specifications
should ideally be determined based on expert opinion.

5.2 Diagnostics

All the methods described in this article make as-
sumptions about the counterfactual outcomes of the
treated units in the post-intervention period. Since
these outcomes cannot be observed, it is never possi-
ble to test the full set of assumptions. Nonetheless, it is
sometimes possible to assess the validity of a subset of
these assumptions using data from the pre-intervention
period.

When no covariates are used and T1 > 1, an informal
check of the parallel trends assumption of DID meth-
ods can be conducted by plotting the average outcomes
of control and treated units in the pre-intervention pe-
riod (Keele and Minozzi, 2013): an approximately con-
stant (over time) distance between the two lines sug-
gests that parallel trends is plausible. The SCM should

not be used when the outcome of the treated unit lies
outside the convex hull of the outcomes of controls
units. This can be checked by plotting the time-series
of the outcome on all the units.

The fit provided for the outcomes on treated units
in the pre-intervention period can be used as a diag-
nostic check. Intuitively, if a model is not predictive
of the outcome in the pre-intervention period, it is less
likely to provide good predictions for the counterfac-
tuals in the post-intervention period. Goodness-of-fit
can be assessed using the MSE between the observed
and predicted values. However, in order for a good pre-
intervention fit to be reassuring, one needs to establish
that it does not occur due to overfitting, as can be the
case e.g. for the SCM when n1 > T1. For the methods
that provide fitted values for the outcomes of control
units, that is, the linear DID model and the method of
Xu (2017), one can further use the fit over the post-
intervention period for these units as a diagnostic tool.

Finally, for both the linear DID model and the LFM
method of Xu (2017), extrapolation biases may oc-
cur when the covariates (and loadings for the LFM)
of treated and control units do not share a common
support. In order to exclude the possibility of such bi-
ases, it suffices to ensure that the characteristics of the
treated units are not extreme compared to the charac-
teristics of control units. When a small number of co-
variates (and factors) is used, one can visually compare
the two groups for each covariate (and loading) in turn.
If this is not feasible, methods for multivariate outlier
detection (e.g., Filzmoser, Maronna and Werner, 2008)
can be used to identify treated units with extreme char-
acteristics.

6. APPLICATION: EFFECT OF GERMAN
REUNIFICATION ON GDP

In this section, we demonstrate the use of the meth-
ods we have described by analysing the data introduced
in Section 2.3. The dataset is publicly available.2 We
omit the available covariates because they might have
been affected by the reunification.

For the DID and SCM, some of the diagnostic checks
described in Section 5.2 do not require implementing
these methods and therefore we started by carrying out
these tests. Figure 4 of Appendix B shows the differ-
ence between West Germany’s GDP, y17,t , and the av-
erage GDP in the control countries, 1

16
∑16

i=1 yit , over
the pre-reunification period. The difference has a clear

2http://dx.doi.org/10.7910/DVN/24714

http://dx.doi.org/10.7910/DVN/24714
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increasing trend suggesting that the parallel trends as-
sumption does not hold, so the linear DID model is not
appropriate for this application. As we see from Fig-
ure 1, the outcome of the treated unit lies in the convex
hull of the outcomes of control units so this provides
no evidence that the SCM should not be used.

We only implement methods for which (to the best
of our knowledge) R (R Core Team, 2016) software
exists. The linear DID method can be implemented us-
ing any linear regression function (e.g., lm). For the
remaining methods, we used the packages specifically
developed for these methods: gsynth for the LFM;
Synth (Abadie, Diamond and Hainmueller, 2011) for
the SCM; pamp (Vega-Bayo, 2015) for the HCW
method; and CausalImpact for the CIM. The code we
used for our real data analysis is available online.3

We fitted the linear DID model (3.1). For the method
of Xu (2017) we set f1t = 1 for all t and λi2 = 1
for all i in order to have time and country fixed ef-
fects, respectively. The total number of latent factors
was set via cross-validation. For the SCM, we esti-
mated the weights using the whole vector of outcomes
yi,1:T1

in the pre-intervention period (rather than sum-
maries of the outcomes). The HCW method was imple-
mented using all control countries and pre-intervention
time points. Finally, for the CIM we fitted the model
of equation (3.7) but without the term δt because we
found that inclusion of this term did not improve the fit
and led to substantially wider credible intervals for the
causal effect of interest. The prior distributions for all
model parameters were set to the software defaults. We
fitted the linear DID method for illustration purposes
even though DID should not be used here.

Before examining the causal estimates, we per-
formed the remaining diagnostic checks. Figure 3
shows the difference between the actual and estimated
counterfactual West German GDP, y17,· − ŷ17,· for the
entire study period. We see that all methods except
for the linear DID almost perfectly reproduce West
Germany’s GDP before reunification. Thus, the pre-
intervention goodness-of-fit diagnostic provides no in-
dication against any of the methods except for lin-
ear DID. The estimated factor loadings for the 17
countries in the dataset are shown in Table 2 of Ap-
pendix B. The estimated loadings for West Germany
are not extreme compared to the estimated loadings of
the control countries, hence suggesting that the pre-
dicted counterfactual is not obtained by extrapolation.

3https://osf.io/b5fv3/

Overall we see that the only method that fails our diag-
nostic checks is the linear DID.

Figure 3 reveals that the other four methods pro-
vide similar estimates of the causal effect. In partic-
ular, the difference between the observed and counter-
factual outcomes is positive during the first three years
after 1989, suggesting that reunification initially had
a positive impact on West Germany’s GDP. Abadie,
Diamond and Hainmueller (2015) attribute this to a
‘demand boom’. The estimated impact reduces there-
after, and is negative for all four methods in year 2003.
The estimated average reduction in annual GDP over
the period 1990–2003 due to the reunification (we also
show DID for completeness) is shown in Table 1.

Figure 3 presents 95% intervals for the LFM of Xu
(2017) and the CIM. These exclude zero in all years
after 1993 thus suggesting a significant intervention ef-
fect. The placebo test of no intervention effect in any
of the years 1990–2003 described by Abadie, Diamond
and Hainmueller (2010, 2015) is also suggestive of a
nonzero intervention effect. In particular, the r statis-
tic defined in equation (4.1) is r17 = 30.72 for West
Germany, larger than all the ri values obtained for the
16 control countries. We further implemented this test
with the HCW method. The rank of the r statistic for
West Germany is 16, that is, there is only one coun-
try whose r statistic is higher. Table 3 in Appendix B
shows the r statistics obtained by applying the SCM
and HCW methods. Overall, taking into consideration
all tests conducted, we conclude that there is evidence
that reunification had a negative long-term impact on
West Germany’s per-capita GDP, although it may have
had a positive short-term impact.

7. DISCUSSION

7.1 Connections Between Methods

There are several ways in which the methods de-
scribed in this paper relate to one another.

First, for the case of a single treated unit and no co-
variates, most of them propose counterfactual estima-
tors of the form ŷ

(0)
n1+1,t = αt + ∑n1

i=1 βiyit (t > T1)
with αt and βi being estimated using the data from
the pre-intervention period (i.e., t ≤ T1). For the DID
method, the parallel trends assumption implies that
αt = 1

T1

∑T1
s=1(yn1+1,s − 1

n1

∑n1
i=1 yis) for all t > T1 and

βi = 1
n

for all i ≤ n1 (Chernozhukov, Wüthrich and
Zhu, 2017). The SCM assumes αt = 0 for all t and re-
quires that β1, . . . , βn are nonnegative and sum to one.
The HCW and DI methods impose the constraint that

https://osf.io/b5fv3/
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FIG. 3. Annual estimates of the effect of the German reunification on West Germany’s per-capita GDP obtained using the linear DID model
(red), the LFM (green), the SCM method (light blue), the HCW method (blue) and the CIM (purple). The dashed lines (when applicable)
represent the 95% confidence/credible intervals.

the intercept is constant over time, that is, αt = α for all
t . Finally, the CIM assumes that αt obeys a time-series
model (e.g., a random walk model). When there are co-
variates these similarities break down because methods
account for covariates in a different way.

Second, most of the methods relate to the LFM. We
have already seen that the linear DID model (3.1) is
a special case of the LFM (3.2). As discussed in Ap-
pendix A, the SCM and HCW estimators are asymptot-
ically unbiased when the true data-generating mecha-
nism obeys a LFM. We expect that due to their similar-

ities with the HCW estimator just explained, both DI
and CIM estimators will be unbiased under the same
LFM.

7.2 Recommendations for Implementation

None of the methods is universally superior to the
others. Extensive simulation experiments comparing
the relative performance of a subset of them have been
conducted by multiple authors including Gobillon and
Magnac (2016), O’Neill et al. (2016), Gardeazabal and
Vega-Bayo (2017), Xu (2017) and Kinn (2018). They
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TABLE 1
Average (over the period 1990–2003) reduction in West

Germany’s annual per capita GDP, as estimated by the five
methods. All values are in United States dollars

Method GDP decrease

Linear DID −604
LFM (XU) 1546
SCM 1322
HCW 1473
CIM 1629

all find settings in which one of the methods outper-
forms the others. However, the findings from these sim-
ulation studies may not generalise to other data gen-
erating mechanisms. Practitioners should choose the
method to apply on the basis of the characteristics of
the dataset and, in particular the values, of n1, T1 and
their ratio n1/T1.

The DID method can be used for any n1 and T1.
As explained in Sections 3.1 and 7.1, the DID method
arguably requires the strongest assumptions. As a re-
sult, it may provide more precise estimates of the inter-
vention effects compared to the other methods. How-
ever, these estimates might be severely biased when the
parallel trends assumption does not hold (see simula-
tion studies by O’Neill et al., 2016 and Gobillon and
Magnac, 2016). This occurred in our application (Sec-
tion 6), where the DID estimate of the average reuni-
fication effect had opposite sign compared to all the
other estimates. Hence, it is essential to test the plau-
sibility of parallel trends in the pre-intervention period
before applying DID to a dataset. This is easy when
there are no covariates.

The LFM can be used for any value of n1/T1. How-
ever, both n1 and T1 should be at least moderate in size
in order to accurately estimate the factors and loadings,
respectively. For example, for the asymptotic unbiased-
ness property of Xu’s method (see Appendix A) to be
relevant to a finite sample, they recommend T1 > 10
and n1 > 40.

Synthetic control approaches are mostly suited for
applications where T1 is large. This is required to accu-
rately estimate the relationships between the outcome
of the treated unit and the outcomes of control units.
When n1 ≥ T1 regularisation is required because the
number of parameters exceeds the number of obser-
vations.4 Regularisation is possible for both the HCW

4Synthetic control approaches regress the outcome of the treated
unit on the outcomes of the control units. Therefore we can think
of y1:n,t as a single data point (observation) in a regression model.

and DI estimators, as described in Section 5.1, but not
for the SCM. The SCM should not be used when the
outcome of the treated unit does not lie in the convex
hull of the outcomes of control units.

The CIM is similar in spirit to synthetic control ap-
proaches and also requires large T1. Because of its
time-series component it can work even in cases when
the outcome of treated unit is not correlated to the out-
comes of control units. However, it requires larger T1
than synthetic control-type approaches to estimate the
additional time-series parameters. In practice, the value
of T1 required will depend on the complexity of the
time-series model. When n1 > T1 regularisation can be
achieved via a spike-and-slab prior on the regression
coefficients.

In applications where certain covariates are known
to be highly predictive of the outcome, it is preferable
to use the linear DID or LFM. This is because they
use the covariates of control units and therefore can es-
timate the regression parameters of the predictive co-
variates with higher precision compared to the HCW,
DI and CIM.5 This can in turn lead to more precise es-
timates of the counterfactuals. Covariates that are po-
tentially affected by the intervention should not be in-
cluded when using any of the methods except the SCM,
because the treatment-free values of the covariate are
not observed in the post-intervention period. The SCM
can use these covariates in the pre-intervention period
to estimate the weights.

There will be applications where more than one
method is appropriate. This is to be expected consid-
ering their connections explained in Section 7.1. For
example, the SCM, HCW, DI and CIM estimators are
all well-suited when T1 is large and there are few con-
trol units. In such cases, users might choose any of
these methods. However, it is still worth applying the
remaining methods in order to check that conflicting
results are not obtained. Methods that perform poorly
on diagnostic checks or are based on assumptions that
seem unrealistic for the dataset of interest should not
be considered. Even within the same method a sen-
sitivity analysis is recommended. This can be carried
out by implementing the method using different model
specifications as explained in Section 5.1. Ideally, re-
sults obtained from the different models should not
conflict. For the SCM, HCW, DI and CIM, one can re-
implement these methods excluding control units that

5Although one might argue that for the HCW, DI and CIM, the
effect of covariates is taken into account through the outcomes of
control units which the covariates affect.



498 P. SAMARTSIDIS ET AL.

received large coefficients (or weights for the SCM) in
the first implementation, to provide reassurance that re-
sults are not driven by a single control unit.

7.3 Connections with Matching

Our review does not cover matching methods even
though some forms of matching are suitable for appli-
cation in the setting that we are investigating. This is
because we view the SCM as the best suited matching
method in this setting: by using data on all control units
it attempts to construct an exact match for the treated
unit.6

However, matching can be used prior to applying
the methods described in this paper, to restrict the
pool of controls to those with similar characteristics
to the treated units. This approach has been adopted
for the DID (O’Neill et al., 2016), LFM (Gobillon
and Magnac, 2016) and CIM (Schmitt, Tull and At-
water, 2018). For the DID method, Ryan et al. (2018)
showed that matching can reduce biases that occur
when the parallel trends assumption is violated. For
a detailed overview of the matching literature in the
context of causal inference with observational data, see
Rosenbaum (2002), Chapter 10, or Stuart (2010). See
Imai, Kim and Wang (2018) for matching techniques
for time-series data.

8. PROPOSALS FOR FUTURE RESEARCH

There remain several open problems. Most existing
methods do not fully account for autocorrelation in the
outcome of the treated unit measured over time. In par-
ticular, the treatment effect estimates obtained by any
of the methods except for the CIM are invariant to
permutation of the time labels in the pre-intervention
period. There may be potential gains in efficiency by
extending these methods to account for structure over
time.

The SCM, HCW, DI and CIM assume a linear rela-
tionship between the outcome of the treated unit and
the outcomes of control units but this is a strong as-
sumption. Carvalho, Masini and Medeiros (2018) ac-
count for nonlinear relationships by regressing yn1+1,t

on transformations of the outcomes of control units
but it is hard to choose which transformations to use.
Therefore, it would be worth estimating the relation-
ship between yn1+1,t and the outcomes of the control

6HCW, DI and CIM also attempt to construct an exact match for
the treated units. However, these methods may rely on extrapola-
tion, which is not done in matching approaches.

units nonparametrically using, for example, machine
learning techniques.

The methods we have described are designed to be
applied to a single outcome. In the majority of applica-
tions there are several outcomes that may be affected
by the intervention. For example, in the case study of
Section 2.3 we have considered per-capita GDP but
there are alternative indexes, such as the unemploy-
ment rate, which we could instead be examined. Mod-
elling of all outcomes jointly may provide a more pre-
cise estimate of the causal effect of intervention on any
one of them. Although Robbins, Saunders and Kilmer
(2017) provide an extension of the SCM method for
multiple outcomes, the other methods could also bene-
fit from being extended to handle multiple outcomes.

Another possible direction for future research is to
develop models that take into account geographic lo-
cation of units. In many applications, one might ex-
pect the outcomes on units with spatial proximity to
be correlated. It would be useful to develop models
that incorporate these correlations. Lopes, Salazar and
Gamerman (2008) present a Bayesian LFM that mod-
els the correlation between the loadings of any two
units as a function of the distance between these units.
Their model could be used to estimate intervention ef-
fects with minor modifications.

We will investigate some of these problems in our
future work.

APPENDIX A: UNBIASEDNESS AND
CONSISTENCY

Unbiased or asymptotically unbiased estimates of τit

can be obtained with all four methods described in
this review. For each one of them, we now describe
the sampling framework and the main assumptions for
the unbiasedness to hold. For ease of exposition, we
choose not to list some technical regularity conditions
required for the results presented to hold; readers can
refer to the original publications for these.

DID. For the linear DID estimator, we make use of
some well-known results for OLS regression, see e.g.
Wooldridge (2013). If the DID model of equation (3.1)
holds then τ̂DID

it is unbiased, that is,

E
[
τ̂DID
it

] = τit ,

where the expectation is taken with respect to the con-
ditional distribution of ε = (ε11, . . . , ε1T , . . . , εn1, . . . ,

εnT )� given Sn, where Sn = (x�
11, . . . ,x

�
1T , κ1,d

�
1 ,

. . . ,x�
n1, . . . ,x

�
nT , κn,d

�
n )�. That is, Sn is common to

the repeated samples but the errors ε differ in each re-
peated sample.
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LFM. Xu (2017) studies the properties of τ̂XU
it . If the

LFM of equation (3.2) holds then under some regular-
ity conditions (which include weak serial correlation of
the error terms within each unit) τ̂XU

it is asymptotically
unbiased, that is,

E
[
τ̂XU
it

] → τit

as n1 → ∞ and T1 → ∞, where the expectation is
taken with respect to the conditional distribution of ε
given Sn, where Sn = (x�

11, . . . ,x
�
1T ,λ�

1 ,d�
1 , . . . ,x�

n1,

. . . ,x�
nT ,λ�

n ,d�
n ,f �

1 , . . . ,f �
T )�. Intuitively, we re-

quire that both n1 and T1 are large in order to accu-
rately estimate factors at each post-intervention time
point and loadings for the treated units, respectively,
which we need in order to predict the counterfactual
outcomes.

Synthetic control-type approaches. These methods
do not assume a generative model, but rather exploit
linear relationships between the data on the treated
and control units in order to construct a counterfac-
tual. Such relationships may arise from various data-
generating mechanisms. Hence, their unbiasedness
properties can be studied under any of these.

Assume that the LFM

yit = y
(0)
it + τitdit ,

(A.1)
y

(0)
it = μt + x�

i θ t + λ�
i f t + εit ,

holds, the error terms εit have zero mean given Sn

and εit ⊥⊥ εjs given Sn (i �= j and t �= s), where μt

are time fixed-effects, xi = (xi1, . . . , xiK)� are time-
invariant covariates and Sn = (x�

1 ,λ�
1 ,d�

1 , . . . ,x�
n ,

λ�
n ,d�

n ,f �
1 , . . . ,f �

T ,μ1, . . . ,μt )
�. Abadie, Diamond

and Hainmueller (2010) show that if there exist �1, . . . ,

�n1 such that

λn1+1 =
n1∑
i=1

�iλi ,

(A.2)

xn1+1 =
n1∑
i=1

�ixi ,

then under some regularity conditions τ̂SC
n1+1,t is asymp-

totically unbiased, that is,

E
[
τ̂SC
n1+1,t

] → τn1+1,t

as T1 → ∞, where the expectation is taken with re-
spect to the conditional distribution of ε given Sn. The
conditions (A.2) imply that both observed (xn1+1) and
unobserved (λn1+1) characteristics of the treated unit
lie in the convex hull of the characteristics of control

units, thus allowing interpolation. When this is not true
(i.e., when such �1, . . . ,�n1 do not exist, thus forcing
extrapolation to be used), the SCM estimator will be
generally biased (Gobillon and Magnac, 2016; Ferman
and Pinto, 2016).

Assume the following variant of the LFM:

(A.3) y
(0)
it = κi + λ�

i f t + εit ,

where κi are unit fixed effects and εit are zero-mean,
homoscedastic error terms which are independent of
f s for all t , s and independent of djs for all i �= j .
Hsiao, Ching and Wan (2012) prove that if there exist
γ1, . . . , γn1 such that

(A.4) λn1+1,j =
n1∑
i=1

γiλij

is true for every j = 1, . . . , J (along with some techni-
cal conditions), then τ̂HCW

n1+1,t is unbiased, that is,

E
[
τ̂HCW
n1+1,t

] = τn1+1,t ,

where the expectation is taken with respect to the
conditional distribution of ε given Sn, where Sn =
(κ1,λ

�
1 ,d�

1 , . . . , κn,λ
�
n ,d�

n ,f �
1 , . . . ,f �

T )�.
CIM. If the CIM of equations (3.7) is the true

data-generating model and the prior on the vector of
model parameters ϑ = (β1, . . . , βn1, σ

2
ε , σ 2

η , σ 2
ζ )� as-

signs nonzero probability to its true value, then the pos-
terior distribution of ϑ will converge to a point mass on
its true value as T1 → ∞. Consequently, the posterior
mean of y

(0)
n1+1,t will converge to its true value, and

so τ̂CIM
n1+1,t is an asymptotically unbiased estimate of of

τn1+1,t (as T1 → ∞).
The above results concern (asymptotic) unbiasede-

ness. Consistent estimation of τit is not feasible, un-
less it is assumed that τit = τi or τit = τt , that is,
that the unit-specific treatment effects are the same
at all post-intervention times or (when n > n1 + 1)
are the same at each time for all treated units. This
is because, regardless of how many units and time-
points there are, y

(1)
it is only measured once for each

i > n1 and t > T1. It is not uncommon to assume that
τit = τ (e.g., Angrist and Pischke, 2009; Gobillon and
Magnac, 2016). When this is done, existing results for
the linear DID model (e.g., Wooldridge, 2013) and the
LFM method of Xu (2017) (e.g., Bai, 2009) imply con-
sistency of the estimator of τ when either of those
methods are used. These results, though, require some
additional technical assumptions to hold. Alternatively,
a looser structure could be imposed on τit . For exam-
ple, HCW assume that τn1+1,T1+1, . . . , τn1+1,T , is an
auto-regressive moving-average process. This enables
the mean of this process to be consistently estimated.



500 P. SAMARTSIDIS ET AL.

TABLE 2
Factor loadings for the 17 countries, as obtained by fitting the LFM of Xu (2017) to the West German reunification data

Factor

Country 1 2 3 4 5 6 7 8 9 10

West Germany −0.75 −0.16 0.29 0.26 −0.15 −0.12 −0.80 0.35 −0.42 −1.42
Australia −0.14 0.47 0.91 −0.55 1.71 −0.62 −0.34 −0.64 −0.25 0.93
Austria −0.50 −0.52 −0.17 0.18 −0.69 −1.06 0.26 0.45 −2.28 0.21
Belgium −0.22 −0.46 0.10 1.02 −0.44 −0.32 0.98 1.61 −0.43 −0.20
Denmark −0.34 0.24 0.21 −1.34 0.09 −1.01 −0.93 −0.25 1.24 0.02
France −0.14 −0.33 0.05 0.11 −0.45 −0.18 −0.95 1.12 −0.19 −0.92
Greece 1.95 −0.02 1.52 1.10 −0.55 −0.88 0.17 −1.99 −0.01 −1.54
Italy −0.03 −0.72 −0.62 −0.65 −0.39 −0.26 −0.49 0.48 −0.85 −1.14
Japan −0.33 −1.18 −2.04 −0.30 −0.07 −0.53 2.30 −1.28 1.15 0.12
Netherlands −0.45 0.31 0.02 1.30 0.07 −1.68 −0.83 1.08 1.99 0.74
New Zealand 1.32 −0.12 1.40 −2.35 −0.26 0.35 1.24 1.10 0.14 0.96
Norway −1.60 2.55 0.29 −0.15 −2.04 0.83 0.53 −0.70 0.08 −0.05
Portugal 1.73 0.49 −2.18 −0.58 −0.53 0.92 −1.74 −0.17 0.02 0.14
Spain 0.98 0.85 −0.44 1.57 0.74 0.54 0.37 −0.16 −0.93 2.16
Switzerland −0.71 −2.19 1.10 0.70 −0.71 2.23 −0.77 −0.49 0.77 0.77
UK 0.10 0.89 −0.10 0.49 1.92 1.58 0.88 1.04 0.61 −1.92
USA −1.63 −0.24 −0.05 −0.55 1.58 0.07 −0.68 −1.20 −1.05 −0.28

APPENDIX B: REAL DATA SUPPLEMENTARY
ANALYSIS

In this section, we provide supplementary material
for the data analysis of Section 6. Figure 4 shows
the parallel trends diagnostic check described in Sec-
tion 5.2. The estimated factor loadings obtained by ap-
plying the LFM method of Xu (2017) are shown in Ta-
ble 2. Finally, the r statistics obtained by applying the
empirical test of Abadie, Diamond and Hainmueller
(2015) with the SCM and HCW methods are shown
in Table 3.

FIG. 4. Difference over time between West Germany’s per capita
GDP and the average of control countries. Rather than being con-
stant, the difference increases over time thus suggesting that the
DID parallel trends assumption might not be plausible.
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