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Conditionally Conjugate Mean-Field
Variational Bayes for Logistic Models
Daniele Durante and Tommaso Rigon

Abstract. Variational Bayes (VB) is a common strategy for approximate
Bayesian inference, but simple methods are only available for specific classes
of models including, in particular, representations having conditionally con-
jugate constructions within an exponential family. Models with logit compo-
nents are an apparently notable exception to this class, due to the absence of
conjugacy among the logistic likelihood and the Gaussian priors for the coef-
ficients in the linear predictor. To facilitate approximate inference within this
widely used class of models, Jaakkola and Jordan (Stat. Comput. 10 (2000)
25–37) proposed a simple variational approach which relies on a family of
tangent quadratic lower bounds of the logistic log-likelihood, thus restoring
conjugacy between these approximate bounds and the Gaussian priors. This
strategy is still implemented successfully, but few attempts have been made
to formally understand the reasons underlying its excellent performance. Fol-
lowing a review on VB for logistic models, we cover this gap by providing a
formal connection between the above bound and a recent Pólya-gamma data
augmentation for logistic regression. Such a result places the computational
methods associated with the aforementioned bounds within the framework of
variational inference for conditionally conjugate exponential family models,
thereby allowing recent advances for this class to be inherited also by the
methods relying on Jaakkola and Jordan (Stat. Comput. 10 (2000) 25–37).

Key words and phrases: EM, logistic regression, Pólya-gamma data aug-
mentation, quadratic approximation, variational Bayes.

1. INTRODUCTION

The increasing availability of high-dimensional and
massive datasets has motivated a wide interest in strate-
gies for Bayesian learning of posterior distributions,
beyond the classical MCMC methods (e.g., Gelfand and
Smith, 1990). Indeed, sampling algorithms can face
severe computational bottlenecks in complex statisti-
cal models, thus motivating alternative solutions based
on scalable and efficient optimization of approximate
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posterior distributions. Notable methodologies within
this class are the Laplace approximation (e.g., Bishop,
2006, Chapter 4.4), variational Bayes (e.g., Bishop,
2006, Chapter 10.1) and expectation propagation (e.g.,
Bishop, 2006, Chapter 10.7), with variational inference
providing a standard choice in several fields, as dis-
cussed in recent reviews by Blei, Kucukelbir and Mc-
Auliffe (2017) and Ormerod and Wand (2010). Refer
also to Jordan et al. (1999) for a seminal introduction
of variational inference from a statistical perspective.

Adapting the notation in Blei, Kucukelbir and Mc-
Auliffe (2017), VB aims at obtaining a tractable ap-
proximation q∗(θ) for the posterior p(θ |y) of the ran-
dom parameters θ = (θ1, . . . , θm)ᵀ, in the model hav-
ing joint density p(y, θ) = p(y|θ)p(θ) for θ and the
observed data y = (y1, . . . , yn)

ᵀ, with p(θ) denoting
the prior for θ . This optimization problem is formally
stated by minimizing the Kullback–Leibler (KL) diver-
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gence (Kullback and Leibler, 1951)

KL
[
q(θ)‖p(θ |y)

] =
∫
�

q(θ) log
q(θ)

p(θ |y)
dθ

=
∫
�

q(θ) log
q(θ)p(y)

p(y, θ)
dθ ,

(1.1)

with respect to q(θ) ∈ Q, where Q is a tractable, yet
sufficiently flexible, class of approximating densities.
As is clear from equation (1.1), the calculation of the
KL divergence between q(θ) and the posterior p(θ |y)

requires the evaluation of the normalizing constant
p(y). Due to this, the above minimization problem is
equivalently stated as the maximization of the evidence
lower bound (ELBO) function

ELBO
[
q(θ)

] =
∫
�

q(θ) log
p(y, θ)

q(θ)
dθ

= −KL
[
q(θ)‖p(θ |y)

] + logp(y),

(1.2)

which does not require the evaluation of logp(y). In
fact, since logp(y) does not depend on θ , maximiz-
ing (1.2) is equivalent to minimizing (1.1). Rewriting
(1.2) as logp(y) = ELBO[q(θ)] + KL[q(θ)‖p(θ |y)] it
can be additionally noticed that the ELBO provides a
lower bound of logp(y) for every q(θ) ∈ Q, since the
Kullback–Leibler divergence in (1.1) is always non-
negative (Kullback and Leibler, 1951).

The above setup defines the general rationale under-
lying VB. However, recalling equation (1.2), the practi-
cal feasibility of the variational optimization requires a
tractable form for the joint density p(y, θ) along with
a simple, yet flexible, approximating family Q. This
is the case of mean-field VB for conditionally conju-
gate exponential family models having global and local
variables (Wang and Titterington, 2004, Bishop, 2006,
Hoffman et al., 2013, Blei, Kucukelbir and McAuliffe,
2017). Letting θ = (β, z) and Q = {q(β, z) : q(β, z) =
q(β)

∏n
i=1 q(zi)}, these methods focus on obtaining a

mean-field approximation

q∗(β, z) = argmin
q(β,z)∈Q

{
KL

[
q(β, z)‖p(β, z|y)

]}
= argmax

q(β,z)∈Q
{

ELBO
[
q(β, z)

]}
,

(1.3)

for the joint posterior density p(β, z|y) of the global
parameters β = (β1, . . . , βp)ᵀ and the local variables
z = (z1, . . . , zn)

ᵀ in the model having joint density

(1.4) p(y,β, z) = p(β)

n∏
i=1

p(yi, zi |β),

where p(yi, zi |β) = p(zi |β)p(yi |zi,β) is from an ex-
ponential family and p(β) defines a conjugate prior for
such a density. The latent quantities z, when present,
typically denote random effects or unit-specific aug-
mented data within a hierarchical formulation, such as
in mixture models.

Although the above assumptions appear restrictive,
the factorization of q(β, z)—characterizing the mean-
field variational family Q—provides a flexible class in
several applications and also allows direct implemen-
tation of simple coordinate ascent variational inference
(CAVI) routines (Bishop, 2006, Chapter 10.1.1) which
sequentially maximize the ELBO in (1.3) with respect
to each factor in q(β, z) = q(β)

∏n
i=1 q(zi)—fixing the

others at their most recent update. Moreover, the ex-
ponential family and the conjugacy assumptions fur-
ther simplify calculations by providing approximating
densities q∗(β) and q∗(zi), i = 1, . . . , n from tractable
classes of random variables. These advantages have
further motivated some recent computational improve-
ments (Hoffman et al., 2013) and theoretical studies
(Wang and Titterington, 2004). We refer to Hoffman et
al. (2013) and Blei, Kucukelbir and McAuliffe (2017)
for details on the methods related to the general for-
mulation in (1.3)–(1.4), and we focus here on models
having logistic likelihoods as building blocks. Indeed,
although the conjugacy and the exponential family as-
sumptions are common to a variety of machine learn-
ing representations (e.g., Blei, Ng and Jordan, 2003;
Airoldi et al., 2008; Hoffman et al., 2013) classical
Bayesian logistic regression models

(yi |β) ∼ Bern
[

exp(xᵀi β)

1 + exp(xᵀi β)

]
, i = 1, . . . , n,

β ∼ Np(μ0,�0),

(1.5)

do not enjoy direct conjugacy between the likelihood
for the binary responses yi ∈ {0,1} and the Gaussian
prior for the coefficients β in the linear predictor (e.g.,
Wang and Blei, 2013). This apparently notable ex-
ception to conditionally conjugate exponential family
models also holds, as a direct consequence, for a wide
set of formulations which incorporate Bayesian logis-
tic regressions at some layer of the hierarchical speci-
fication. Some relevant examples are classification via
Gaussian processes (Rasmussen and Williams, 2006),
supervised nonparametric clustering (Ren et al., 2011)
and hierarchical mixture of experts (Bishop and Sven-
sén, 2003).

To implement tractable VB for nonconjugate mod-
els, several routines beyond conjugate mean-field VB
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have been proposed (e.g., Jaakkola and Jordan, 2000;
Braun and McAuliffe, 2010; Wand et al., 2011, Wang
and Blei, 2013). In the context of logistic regression,
Jaakkola and Jordan (2000) developed a seminal VB

algorithm based on the quadratic lower bound

log p̄(yi |β) = (yi − 0.5)xᵀi β − 0.5ξi

− 0.25ξ−1
i tanh(0.5ξi)

[(
xᵀi β

)2

− ξ2
i

] − log
[
1 + exp(−ξi)

]
,

(1.6)

for the log-likelihood logp(yi |β) = yi(x
ᵀ
i β)− log[1 +

exp(xᵀi β)] ≥ log p̄(yi |β) of every yi ∈ {0,1} from a lo-
gistic regression. In equation (1.6), xi = (xi1, . . . , xip)ᵀ

comprises the covariates measured for the i-th unit,
whereas β = (β1, . . . , βp)ᵀ denote the associated co-
efficients. The vector ξ = (ξ1, . . . , ξn)

ᵀ represents in-
stead unit-specific variational parameters defining the
location where log p̄(yi |β) is tangent to logp(yi |β). In
fact, log p̄(yi |β) = logp(yi |β) when ξ2

i = (xᵀi β)2.
Using equation (1.6), Jaakkola and Jordan (2000) de-

veloped an expectation-maximization (EM) algorithm
(Dempster, Laird and Rubin, 1977) in order to approx-
imate the posterior density p(β|y) of β . At the generic
iteration t , such a routine alternates between an E-
step in which the conditional density of the random
coefficients β—given the current value ξ (t−1)—is up-
dated to obtain q(t)(β), and an M-step which calculates

the expectation of the augmented approximate log-
likelihood log p̄(y,β) = logp(β) + ∑n

i=1 log p̄(yi |β)

with respect to q(t)(β) and then maximizes it as a func-
tion of ξ . Recalling the general presentation of EM by
Bishop (2006) in Chapter 9.4, and Appendices A–B in
Jaakkola and Jordan (2000), this strategy ultimately
maximizes log p̄(y) = log

∫
�p p(β)

∏n
i=1 p̄(yi |β)dβ

with respect to ξ , by sequentially optimizing the lower
bound

(1.7)
∫
�p

q(β) log
p(β)

∏n
i=1 p̄(yi |β)

q(β)
dβ,

as a function of the unknown density q(β) and of the
fixed parameters ξ , where p(β) defines the density of
the Gaussian prior for β . Hence, as is clear from Al-
gorithm 1, this EM routine produces an optimal esti-
mate ξ∗ of ξ and, as a direct byproduct, also a density
q∗(β), which is regarded as an approximate posterior
in Jaakkola and Jordan (2000). Indeed, recalling the EM

structure, q∗(β) coincides with the conditional den-
sity p̄∗(β|y) obtained by updating the prior p(β) with
the approximate likelihood

∏n
i=1 p̄∗(yi |β) induced by

(1.6) and evaluated at the optimal variational parame-
ters ξ∗ = (ξ∗

1 , . . . , ξ∗
n )ᵀ.

However, although this routine is successfully im-
plemented in the machine learning and statistical liter-
ature (e.g., Bishop and Svensén, 2003; Rasmussen and

Algorithm 1: EM algorithm for approximate Bayesian inference by Jaakkola and Jordan (2000)

Initialize ξ
(0)
1 , . . . , ξ

(0)
n .

for t = 1 until convergence of (1.7) do
Expectation. Update q(t)(β) = p̄(t−1)(β|y) ∝ p(β)

∏n
i=1 p̄(t−1)(yi |β) to obtain a Np(μ(t),�(t)) density

with

�(t) = (
�−1

0 + XᵀZ̄(t−1)X
)−1

, μ(t) = �(t)[Xᵀ(y − 0.5 · 1n) + �−1
0 μ0

]
,

where Z̄(t−1) = diag[0.5(ξ
(t−1)
1 )−1 tanh(0.5ξ

(t−1)
1 ), . . . ,0.5(ξ

(t−1)
n )−1 tanh(0.5ξ

(t−1)
n )] and

1n = (1, . . . ,1)ᵀ. Note that the quadratic form of (1.6) restores conjugacy between the Gaussian prior for β
and the approximated likelihood. To clarify this result note that, for every ξi , p̄(yi |β) is proportional to the
kernel of a Gaussian variable with mean xᵀi β and variance 2ξi tanh(0.5ξi)

−1 for the transformed data
2ξi tanh(0.5ξi)

−1(yi − 0.5).
Maximization. Compute ξ (t) = argmaxξ

∫
�p q(t)(β) log p̄(y,β)dβ to obtain the solutions

ξ
(t)
i = {

Eq(t)(β)

[(
xᵀi β

)2]}1/2 = [
xᵀi �

(t)xi + (
xᵀi μ

(t))2]1/2
, for every i = 1, . . . , n.

Note that
∫
�p q(t)(β) log p̄(y,β)dβ = const + ∑n

i=1
∫
�p q(t)(β) log p̄(yi |β)dβ . Hence, it is possible to

maximize the expected log-likelihood associated with every yi separately, as a function of each ξi , for
i = 1, . . . , n. This result leads to the above solution.

Output of the algorithm: ξ∗ and, as a byproduct, the approximate posterior q∗(β) = p̄∗(β|y).
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Williams, 2006; Lee, Huang and Hu, 2010; Ren et al.,
2011; Carbonetto and Stephens, 2012; Tang, Browne
and McNicholas, 2015; Wand, 2017), it is still not clear
how the solution q∗(β) relates to the formal VB setup
in (1.1)–(1.2). Indeed, p̄∗(β|y) is not the posterior in-
duced by a Bayesian logistic regression. This is due
to the fact that every p(yi |β) in the kernel of p(β|y)

is replaced with the approximate likelihood p̄∗(yi |β)

evaluated at the optimal variational parameters ξ∗ max-
imizing log p̄(y). This last result, which is inherent to
the EM (Dempster, Laird and Rubin, 1977), suggests
an heuristic intuition for why q∗(β) may still provide a
reasonable approximation. Indeed, since log p̄(yi |β) ≤
logp(yi |β) for every ξi and i = 1, . . . , n, the same
holds for log p̄(y) and logp(y). Thus, since logp(y)

does not vary with ξ , maximizing log p̄(y) with respect
to ξ is expected to provide the tightest approximation
of each logp(yi |β) via the lower bound in (1.6) eval-
uated at the optimum ξ∗

i , for i = 1, . . . , n. This could
guarantee similar predictive densities p(y) and p̄∗(y).
Hence, in correspondence to ξ∗, the minimization of
KL[q(β)‖p̄∗(β|y)] in the E-step, would hopefully pro-
vide a solution q∗(β) = p̄∗(β|y) close to the true pos-
terior p(β|y).

Although the above discussion provides an intuition
for the excellent performance of the methods proposed
by Jaakkola and Jordan (2000), it is important to notice
that finding the tightest bound within a class of func-
tions might not be sufficient if such a class is not flex-
ible enough. Indeed, the quadratic form of (1.6) might
be restrictive for logistic log-likelihoods, and therefore
even the optimal approximation could fail to mimic
logp(yi |β). Moreover, according to (1.1), a formal VB

setup requires the minimization of a well-defined KL

divergence between an exact posterior and an approxi-
mating density from a specified variational family. In-
stead, Jaakkola and Jordan (2000) seem to minimize
the divergence between an approximate posterior and
a prespecified density. If this were the case, then their
methods could be only regarded as an approximate so-
lution to formal VB. Indeed, although (1.6) has been
recently studied (de Leeuw and Lange, 2009; Browne
and McNicholas, 2015), this is currently the main view
of the EM summarized in Algorithm 1 (e.g., Blei, Ku-
cukelbir and McAuliffe, 2017; Wang and Blei, 2013;
Bishop, 2006).

In Section 2, we prove that this is not true and that
(1.6), although apparently supported by purely mathe-
matical arguments, has indeed a clear probabilistic in-
terpretation related to a recent Pólya-gamma data aug-
mentation for logistic regression (Polson, Scott and

Windle, 2013). In particular, let q(zi) be the density
of a Pólya-gamma PG(1, ξi), then (1.6) is a proper ev-
idence lower bound associated with a VB approxima-
tion of the posterior for zi in the conditional model
p(yi, zi |β) for data yi from (1.5) and the Pólya-gamma
variable (zi |β) ∼ PG(1,xᵀi β), with β kept fixed. Com-
bining such a result with the objective function defined
in equation (1.7), allows us to formalize Algorithm 1
as a pure CAVI which approximates the joint posterior
for β and the augmented Pólya-gamma data z1, . . . , zn,
under a mean-field variational approximation within
the conditionally conjugate exponential family frame-
work. These results are discussed in Section 3, and
are further generalized to allow stochastic variational
inference (Hoffman et al., 2013) in logistic models,
thus covering an important computational gap. A final
discussion can be found in Section 4. Codes and ad-
ditional empirical assessments are available at https:
//github.com/tommasorigon/logisticVB. Although we
focus on Bayesian inference, it shall be noticed that
(1.6) motivates also an EM for maximum likelihood es-
timation of β (Jaakkola and Jordan, 2000). We study
the properties of this EM in the Appendix.

2. CONDITIONALLY CONJUGATE VARIATIONAL
REPRESENTATION

This section discusses the theoretical connection be-
tween equation (1.6) and a recent Pólya-gamma data
augmentation for conditionally conjugate inference in
Bayesian logistic models (Polson, Scott and Windle,
2013), thus allowing us to recast the methods proposed
by Jaakkola and Jordan (2000) within the wider frame-
work of mean-field variational inference for condition-
ally conjugate exponential families. We shall empha-
size that, in a recent manuscript, Scott and Sun (2013)
proposed an EM for maximum a posteriori estimation
of β in (1.5), discussing connections with the varia-
tional strategies in Jaakkola and Jordan (2000). Their
findings are however limited to computational differ-
ences and similarities between the two methods and
the associated algorithms. We instead provide a fully
probabilistic connection between the contribution by
Jaakkola and Jordan (2000) and the results in Polson,
Scott and Windle (2013), thus opening new avenues for
advances in VB for logistic models.

To anticipate Lemma 2.1, note that the core contri-
bution of Polson, Scott and Windle (2013) is in show-
ing that p(yi |β) in model (1.5) can be expressed as
a scale-mixture of Gaussians with respect to a Pólya-
gamma density. This result facilitates the implemen-
tation of MCMC algorithms which update β and the

https://github.com/tommasorigon/logisticVB
https://github.com/tommasorigon/logisticVB
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Pólya-gamma augmented data z = (z1, . . . , zn)
ᵀ from

conjugate full conditionals. In fact, the joint density
p(y, z|β) has a Gaussian kernel in β , thereby restoring
Gaussian-Gaussian conjugacy in the full conditional.
As discussed in Lemma 2.1, this data augmentation, al-
though developed a decade later, was implicitly hidden
in the bound of Jaakkola and Jordan (2000).

LEMMA 2.1. Let log p̄(yi |β) denote the quadratic
lower bound in (1.6) proposed by Jaakkola and Jor-
dan (2000) for the logistic log-likelihood logp(yi |β)

of model (1.5). Then, for every i = 1, . . . , n, we have

log p̄(yi |β) =
∫
�+

q(zi) log
p(yi, zi |β)

q(zi)
dzi

= Eq(zi)

[
log

p(yi, zi |β)

q(zi)

]
,

(2.1)

where p(yi, zi |β) = p(yi |β)p(zi |β) and p(yi |β) =
exp(yix

ᵀ
i β)[1 + exp(xᵀi β)]−1, while q(zi) and p(zi |β)

are the densities of the Pólya-gamma random variables
PG(1, ξi) and PG(1,xᵀi β), respectively.

PROOF. To prove Lemma 2.1, first note that 0.5ξi +
log[1+exp(−ξi)] = log[2 cosh(0.5ξi)] and 0.5(xᵀi β)=
log[1 + exp(xᵀi β)] − log{2 cosh[0.5(xᵀi β)]}. Replacing
these quantities in (1.6), we obtain

yix
ᵀ
i β − 0.25ξ−1

i tanh(0.5ξi)
[(

xᵀi β
)2 − ξ2

i

]
+ log

{
cosh(0.5ξi)

−1 cosh
[
0.5

(
xᵀi β

)]}
− log

[
1 + exp

(
xᵀi β

)]
.

To highlight equation (2.1) in the above expression,
first notice that −0.25ξ−1

i tanh(0.5ξi)[(xᵀi β)2 − ξ2
i ] =

Eq(zi)[−0.5zi(x
ᵀ
i β)2] − Eq(zi )(−0.5ziξ

2
i ), where the

expected value is taken with respect to zi ∼ PG(1, ξi)

(Polson, Scott and Windle, 2013). Hence, log p̄(yi |β)

can be expressed as

Eq(zi)

[
log

[
exp(yix

ᵀ
i β)

1 + exp(xᵀi β)

· exp[−0.5zi(x
ᵀ
i β)2] cosh[0.5(xᵀi β)]p(zi)

exp(−0.5ziξ
2
i ) cosh(0.5ξi)p(zi)

]]
.

Based on this expression, the proof is concluded after
noticing that exp(yix

ᵀ
i β)[1 + exp(xᵀi β)]−1 = p(yi |β),

whereas exp[−0.5zi(x
ᵀ
i β)2] cosh[0.5(xᵀi β)]p(zi) and

exp(−0.5ziξ
2
i ) cosh(0.5ξi)p(zi) characterize the den-

sities p(zi |β) and q(zi) of the Pólya-gamma random
variables PG(1,xᵀi β) and PG(1, ξi), respectively, with
p(zi) the density of a PG(1,0). �

According to Lemma 2.1, the expansion in equation
(1.6) is a proper ELBO for p(yi |β) related to a VB ap-
proximation of the posterior for zi in the conditional
model p(yi, zi |β) for the response data yi from (1.5)
and the local variable (zi |β) ∼ PG(1,xᵀi β), with β kept
fixed. Note that, although some intuition on the re-
lation between log p̄(yi |β) and Eq(zi)[logp(yi, zi |β)]
can be deduced from Scott and Sun (2013), the au-
thors leave out additive constants not depending on β
in log p̄(yi |β) when discussing this connection. Ac-
cording to Lemma 2.1, these quantities are crucial to
formally interpret log p̄(yi |β) as a genuine ELBO, since
they coincide with −Eq(zi)[logq(zi)]. Besides this re-
sult, Lemma 2.1 provides a formal characterization for
the approximation error logp(yi |β) − log p̄(yi |β). In-
deed, adapting (1.2) to this setting, such a quantity is
the KL divergence between a generic Pólya-gamma and
the one obtained by conditioning on β . This allows to
complete logp(yi |β) ≥ log p̄(yi |β), as

logp(yi |β)

= log p̄(yi |β) + KL
[
q(zi)‖p(zi |yi,β)

]
= log p̄(yi |β) + KL

[
q(zi)‖p(zi |β)

]
,

(2.2)

where the last equality follows directly from the fact
that p(yi, zi |β) = p(yi |β)p(zi |β) and, hence, p(zi |yi,

β) = p(zi |β). This result sheds light on the heuristic
interpretation of q∗(β) in Section 1. Indeed, as is clear
from equation (2.2), if q(zi)—evaluated at the opti-
mal ξ∗

i —is globally close to p(zi |β) for every β and
i = 1, . . . , n, then (1.6) ensures accurate approximation
of logp(yi |β), thus providing approximate posteriors
q∗(β) close to p(β|y). Theorem 2.1 formalizes this re-
sult, proving that Algorithm 1 maximizes the ELBO of
a well-defined model under a mean-field VB.

THEOREM 2.1. The lower bound in equation (1.7)
maximized by Jaakkola and Jordan (2000) in their EM

for approximate Bayesian inference in model (1.5) co-
incides with the evidence lower bound ELBO[q(β, z)]
defined as ∫

�p×�n+
q(β, z) log

p(y,β, z)
q(β, z)

dz dβ

= Eq(β,z)

[
log

p(y,β, z)
q(β, z)

]
,

(2.3)

where the joint density p(y,β, z) can be factorized as
p(β)

∏n
i=1 p(yi, zi |β) = p(β)

∏n
i=1 p(yi |β)p(zi |β),

whereas q(β, z) = q(β)
∏n

i=1 q(zi), with q(zi) and
p(zi |β) denoting the densities of the two Pólya-gamma
variables PG(1, ξi) and PG(1,xᵀi β), respectively.
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PROOF. The proof follows easily from Lemma 2.1.
More specifically, let

∫
�p q(β)

∑n
i=1 log p̄(yi |β)dβ +∫

�p q(β) log[p(β)q(β)−1]dβ denote an expanded rep-
resentation of (1.7). Then, replacing log p̄(yi |β) with
its probabilistic definition in (2.1) and performing sim-
ple mathematical calculations, we obtain

n∑
i=1

∫
�p×�+

q(β)q(zi) log
p(yi, zi |β)

q(zi)
dzi dβ

+
∫
�p

q(β) log
p(β)

q(β)
dβ.

Notice now that the second summand does not depend
on z, thereby allowing us to replace this integral with∫
�p×�n+ log[p(β)q(β)−1]q(β)

∏n
i=1 q(zi)dz dβ . Simi-

lar arguments can be made to incorporate
∏n

i=1 q(zi) =
q(z) in the first integral. Making these substitutions in
the above equation we obtain∫

�p×�n+
q(β)q(z) log

p(β)
∏n

i=1 p(yi, zi |β)

q(β)q(z)
dz dβ

=
∫
�p×�n+

q(β, z) log
p(y,β, z)
q(β, z)

dz dβ

= Eq(β,z)

[
log

p(y,β, z)
q(β, z)

]
,

proving Theorem 2.1. Recall that q(β, z) = q(β)q(z)
with q(z) = ∏n

i=1 q(zi) and
∫
�+ q(zi)dzi = 1. �

As clarified by Theorem 2.1, the methodology pro-
posed by Jaakkola and Jordan (2000) coincides with
a pure VB which minimizes the KL[q(β, z)‖p(β, z|y)]
within the mean-field variational family Q = {q(β, z) :
q(β, z) = q(β)

∏n
i=1 q(zi)} in the conditionally conju-

gate exponential family model having:

1. Global variables

(2.4) β ∼ Np(μ0,�0).

2. Local variables

(2.5) (zi |β) ∼ PG
(
1,xᵀi β

)
,

independently for i = 1, . . . , n.
3. Binary response data

(2.6) (yi |β) ∼ Bern
[

exp(xᵀi β)

1 + exp(xᵀi β)

]
,

independently for i = 1, . . . , n.

We refer to Section 2 in Choi and Hobert (2013) for this
specific formulation of the Pólya-gamma data augmen-
tation procedure which highlights how, unlike for the

general specification in equation (1.4), the conditional
distribution of each yi does not depend on zi . Recalling
Section 1, this is not a necessary requirement. Indeed,
what is important is that the joint density p(yi, zi |β) =
p(yi |β)p(zi |β) of (2.5)–(2.6) is within an exponential
family and the prior p(β) is conjugate to it. Recalling
Section 2 in Choi and Hobert (2013), and noticing that
cosh[0.5(xᵀi β)] = 0.5[1 + exp(xᵀi β)] exp[−0.5(xᵀi β)],
this is the case of model (2.5)–(2.6). In fact

p(yi, zi |β)

= exp
(
yix

ᵀ
i β

)[
1 + exp

(
xᵀi β

)]−1

· exp
[−0.5zi

(
xᵀi β

)2]
cosh

[
0.5

(
xᵀi β

)]
p(zi)

= 0.5 exp
[
(yi − 0.5)xᵀi β

− 0.5zi

(
xᵀi β

)2]
p(zi),

(2.7)

is proportional to the Gaussian kernel exp[(yi − 0.5) ·
xᵀi β−0.5zi(x

ᵀ
i β)2], which is conjugate to the Gaussian

prior for β in (2.4).

3. CAVI AND SVI FOR LOGISTIC MODELS

The results outlined in Section 2 recast the methods
by Jaakkola and Jordan (2000) within a much broader
framework motivating a formal CAVI and generaliza-
tions to stochastic variational inference (SVI).

3.1 Coordinate Ascent Variational Inference

As discussed in Section 1, the mean-field assumption
allows the implementation of a simple CAVI algorithm
(Blei, Kucukelbir and McAuliffe, 2017; Bishop, 2006,
Chapter 10.1.1) which sequentially maximizes the evi-
dence lower bound in (2.3) with respect to each factor
in q(β)

∏n
i=1 q(zi), via the following updates:

q(t)(β) = exp{Eq(t−1)(z)[logp(β|y, z)]}
cβ(y)

,

q(t)(zi) = exp{Eq(t)(β)[logp(zi |y,β)]}
czi

(y)
,

i = 1, . . . , n,

(3.1)

at each iteration t—until convergence of the ELBO. In
the above expressions, cβ(y) and czi

(y), i = 1, . . . , n,
denote constants leading to proper densities. Note that
in our case p(zi |y,β) = p(zi |y, z−i ,β).

To clarify why (3.1) produces a routine which iter-
atively improves the ELBO, and ultimately maximizes
it, note that, keeping fixed q(t−1)(z1), . . . , q

(t−1)(zn),
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equation (2.3) can be rewritten as

Eq(β)

[
Eq(t−1)(z)

[
log

p(y,β, z)
q(β)p(y, z)

]]
+ const

= Eq(β)

[
Eq(t−1)(z)

[
log

p(β|y, z)
q(β)

]]
+ const

= Eq(β)

[
log

exp{Eq(t−1)(z)[logp(β|y, z)]}
q(β)cβ(y)

]

+ const,

where the last term is the negative KL among q(β) and
exp{Eq(t−1)(z)[logp(β|y, z)]}cβ(y)−1, thus motivating
the CAVI update for q(β) in (3.1). Similar derivations
can be done to obtain the solutions for q(z1), . . . , q(zn)

in (3.1). As is clear from (3.1), the CAVI solution iden-
tifies both the form of the approximating densities—
without prespecifying them as part of the mean-field
assumption—and the optimal parameters of these den-
sities. As discussed in Section 1, these solutions are
particularly easy to obtain under conditionally conju-
gate exponential family representations (Hoffman et
al., 2013), including model (2.4)–(2.6). In fact, recall-
ing Polson, Scott and Windle (2013), the full condition-
als for the local and global variables in model (2.4)–
(2.6) can be obtained via conditional conjugacy prop-
erties, which lead to

(β|y, z) ∼ Np(μ,�),

(zi |y,β) ∼ PG
(
1,xᵀi β

)
, i = 1, . . . , n,

(3.2)

where � = (�−1
0 + XᵀZX)−1 and μ = �[Xᵀ(y − 0.5 ·

1n) + �−1
0 μ0], with Z = diag(z1, . . . , zn) and X the

n × p design matrix with rows xᵀi , i = 1, . . . , n. More-
over, recalling (3.2), both (β|y, z) and (zi |y,β) have
the exponential family representation

p(β|y, z) ∝ exp
{
η1(y)ᵀβ + vec

[
η2(z)

]ᵀ
· vec

(
ββᵀ) − α

[
η1(y),η2(z)

]}
,

p(zi |y,β) ∝ exp
{
ηi(β)zi − α

[
ηi(β)

]}
p(zi),

i = 1, . . . , n,

(3.3)

with η1(y) = Xᵀ(y − 0.5 · 1n) + �−1
0 μ0, η2(z) =

−0.5(�−1
0 + XᵀZX) and ηi(β) = −0.5(xᵀi β)2, denot-

ing the natural parameters. Replacing these expressions
in (3.1), it can be easily noticed that the CAVI solutions
have the same density of the corresponding full condi-

tionals with optimal natural parameters

λ
(t)
1 = Eq(t−1)(z)

[
η1(y)

]
,

λ
(t)
2 = Eq(t−1)(z)

[
η2(z)

]
,

φ
(t)
i = Eq(t)(β)

[
ηi(β)

]
, i = 1, . . . , n.

As outlined in Algorithm 2, the above expected val-
ues can be easily computed in closed form since q(β)

and q(z1), . . . , q(zn) are already known to be Gaussian
and Pólya-gammas, thereby requiring only the sequen-
tial optimization of the natural parameters. This form
of CAVI, which is discussed in Hoffman et al. (2013)
and is known in the literature as variational Bayesian
EM (Beal and Ghahramani, 2003), clarifies the link be-
tween CAVI and the EM in Jaakkola and Jordan (2000).
Indeed, recalling Section 2, both strategies optimize
the same objective function and rely, implicitly, on the
same steps. In particular, due to Lemma 2.1, the E-step
in Algorithm 1 is in fact maximizing the conditional
ELBO[q(β)

∏n
i=1 q(t−1)(zi)] with respect to q(β) as in

the first maximization of Algorithm 2. Similarly, the
M-step solution for ξ in Algorithm 1 is actually the one
maximizing the conditional ELBO[q(t)(β)

∏n
i=1 q(zi)]

with respect to
∏n

i=1 q(zi) in the second optimization
of the CAVI in Algorithm 2.

3.2 Stochastic Variational Inference

Algorithm 2 and model (2.4)–(2.6) motivate further
generalizations in large n studies when CAVI can face
severe computational bottlenecks. Indeed, each itera-
tion of Algorithm 2 requires optimization of the whole
local natural parameters φi , i = 1, . . . , n and a sum-
mation over the entire dataset when updating (λ1,λ2).
This issue has been addressed by Hoffman et al. (2013)
via computationally cheaper updates under a SVI rou-
tine for scalable mean-field VB in conditionally conju-
gate exponential family models. Leveraging the prob-
abilistic results in Section 2, we adapt this strategy to
Bayesian logistic regression, thus covering an impor-
tant computational gap.

To clarify the fundamental results underlying SVI,
note that, by joining equations (3.1)–(3.3) and recalling
Section 2.2 in Hoffman et al. (2013), the CAVI solutions
for (λ1,λ2) at iteration t are indeed those maximizing
the function Eq(β)(Eq(t−1)(z){log[p(β|y, z)q(β)−1]})+
const, where p(β|y, z) and q(β) have the same expo-
nential family representation with natural parameters
[η1(y),η2(z)] and λ = (λ1,λ2), respectively. Recalling
Section 2.2 in Hoffman et al. (2013), this optimization
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Algorithm 2: CAVI for logistic regression

Initialize ξ
(0)
1 , . . . , ξ

(0)
n .

for t = 1 until convergence of the evidence lower bound ELBO[q(β, z)] do
Maximization. Maximize ELBO[q(β)

∏n
i=1 q(t−1)(zi)] with respect to q(β). As discussed in Section 3.1,

this maximization provides a Gaussian density for q(t)(β) having natural parameters

λ
(t)
1 = Eq(t−1)(z)

[
η1(y)

] = Xᵀ(y − 0.5 · 1n) + �−1
0 μ0,

λ
(t)
2 = Eq(t−1)(z)

[
η2(z)

] = −0.5
(
�−1

0 + XᵀZ̄(t−1)X
)
,

with Z̄(t−1) = diag[0.5(ξ
(t−1)
1 )−1 tanh(0.5ξ

(t−1)
1 ), . . . ,0.5(ξ

(t−1)
n )−1 tanh(0.5ξ

(t−1)
n )]. Hence, the

approximating density is that of a Np(μ(t),�(t)) with μ(t) = (−2λ
(t)
2 )−1λ

(t)
1 and �(t) = (−2λ

(t)
2 )−1.

Maximization. Maximize ELBO[q(t)(β)
∏n

i=1 q(zi)] with respect to
∏n

i=1 q(zi). As discussed in
Section 3.1, this maximization provides a Pólya-gamma density for each q(t)(zi), i = 1, . . . , n, having
natural parameter

φ
(t)
i = Eq(t)(β)

[
ηi(β)

] = −0.5
[
xᵀi �

(t)xi + (
xᵀi μ

(t))2]
, i = 1, . . . , n.

Thus, each q(t)(zi) is the density of a PG(1, ξ
(t)
i ) with ξ

(t)
i = (−2φ

(t)
i )1/2. Note that ξ

(t)
i and −ξ

(t)
i induce

the same Pólya-gamma density. Hence, there is no ambiguity in the above square root. A similar remark,
from a different perspective, is found in footnote 3 of Jaakkola and Jordan (2000).

Output of the algorithm: q∗(β, z) = q∗(β)
∏n

i=1 q∗(zi).

can be solved by equating to 0 the gradient

∇λEq(β)

[
log

p(β)

q(β)
+

n∑
i=1

Eq(t−1)(zi )

[
logp(yi, zi |β)

]]
,

which coincides—under model (2.4)–(2.6)—with

∇λEq(β)

[
log

p(β)

q(β)

]
+

n∑
i=1

{
(yi − 0.5)∇λEq(β)

(
xᵀi β

)

− 0.5Eq(t−1)(zi )
(zi)∇λEq(β)

[(
xᵀi β

)2]}
.

This strategy leads to the estimating equations

Eq(t−1)(z)
[
η1(y)

] − λ1 = 0,

Eq(t−1)(z)
[
η2(z)

] − λ2 = 0,
(3.4)

whose solution provides λ
(t)
1 and λ

(t)
2 as in the CAVI.

See Hoffman et al. (2013) for a detailed derivation of
(3.4) under a general exponential family framework.

Leveraging this view of CAVI, Hoffman et al. (2013)
proposed a scalable SVI routine based on stochastic op-
timization (Robbins and Monro, 1951) of the ELBO in
(2.3) as a direct function of the global parameters λ.
Specifically, let q(β) the Gaussian approximating den-
sity parameterized by λ, and qopt(z1), . . . , qopt(zn) the
Pòlya-gamma densities with optimal natural parame-
ters φ1(λ) = Eq(β)[η1(β)], . . . , φn(λ) = Eq(β)[ηn(β)],

then optimizing the locally maximized ELBO

L(λ) = Eq(β)

[
log

p(β)

q(β)

]
+

n∑
i=1

Eq(β)

{
Eqopt(zi )

[

logp(yi, zi |β) − logqopt(zi)
]}

,

(3.5)

leads to the optimal solutions for the global parame-
ters in λ and, as a direct consequence, for the locally
optimized ones φ1(λ), . . . , φn(λ). This ensures maxi-
mization of (2.3). Before deriving the SVI routine, let
us highlight a key connection between the CAVI solu-
tions in (3.4) and those arising from the optimization
of L(λ). To do this, note that recalling Lemma 2.1 and
its proof, the functions within the summation term in
(3.5) coincide with the expected values of the condi-
tional ELBOs in (2.1) evaluated at the optimal Pòlya-
gamma densities with ξi(λ) = [−2φi(λ)]1/2. In partic-
ular, Eq(β){Eqopt(zi )[logp(yi, zi |β)− logqopt(zi)]} coin-
cides with

(yi − 0.5)Eq(β)

(
xᵀi β

) − 0.5Eqopt(zi)(zi)
{
Eq(β)

[(
xᵀi β

)2]
+ 2φi(λ)

} − log cosh
{
0.5

[−2φi(λ)
]1/2} + const

= (yi − 0.5)Eq(β)

(
xᵀi β

) + α
[
φi(λ)

] + const,

for i = 1, . . . , n, where the last equality follows by not-
ing that φi(λ) = Eq(β)[ηi(β)] = Eq(β)[−0.5(xᵀi β)2]
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and that − log cosh{0.5[−2φi(λ)]1/2} defines the func-
tion α[φi(λ)] in the exponential family representation
for the density of the Pòlya-gamma with parameters 1
and [−2φi(λ)]1/2. Since our final goal is to maximize
L(λ), let us substitute the above equation in (3.5) and
compute ∇λL(λ). This leads to

∇λEq(β)

[
log

p(β)

q(β)

]
+

n∑
i=1

{
(yi − 0.5)∇λEq(β)

(
xᵀi β

)

+ ∇φi(λ)α
[
φi(λ)

]∇λφi(λ)
} = ∇λL(λ),

where

∇φi(λ)α
[
φi(λ)

]∇λφi(λ)

= −0.5Eqopt(zi )(zi)∇λEq(β)

[(
xᵀi β

)2]
.

To clarify the above expression, recall that φi(λ) =
Eq(β)[−0.5(xᵀi β)2], whereas from the properties of ex-
ponential families we also have that ∇φi(λ)α[φi(λ)] =
Eqopt(zi )(zi). This expression for ∇λL(λ) provides an
optimization partially related to CAVI. Indeed, by com-
paring the above gradient with the one leading to equa-
tions (3.4), it can be noticed that these quantities co-
incide after replacing Eq(t−1)(zi )

(zi) with Eqopt(zi)(zi).
Hence, the maximum of L(λ) can be obtained solving
equations (3.4), where the expected value is now com-
puted with respect to qopt(z) instead of q(t−1)(z).

To derive the SVI algorithm, let us first re-express
Eqopt(z)[η1(y)] − λ1 = 0 and Eqopt(z)[η2(z)] − λ2 = 0 as

�−1
0 μ0 +

n∑
i=1

xi (yi − 0.5) − λ1 = 0,

−0.5

[
�−1

0 +
n∑

i=1

xiEqopt(zi)(zi)x
ᵀ
i

]
− λ2 = 0,

(3.6)

to highlight how the evaluation of (3.6) requires stor-
ing the entire dataset and summing over all the units.
Such a step could be a major computational bottleneck
when the sample size n is massive, thereby motivat-
ing the optimization of L(λ) (Hoffman et al., 2013) via
stochastic approximation of (3.6) (Robbins and Monro,
1951). This is obtained by constructing a random ver-
sion of {�−1

0 μ0 +∑n
i=1 xi (yi −0.5)−λ1,−0.5[�−1

0 +∑n
i=1 xiEqopt(zi )(zi)x

ᵀ
i ]−λ2} whose expected value co-

incides with these functions, but its realizations are
cheaper to compute. A simple solution is to rely on the
discrete random variable B(λ) taking values {Bi(λ1) =
�−1

0 μ0 + nxi (yi − 0.5) − λ1,Bi(λ2) = −0.5[�−1
0 +

nxiEqopt(zi)(zi)x
ᵀ
i ] − λ2}, for i = 1, . . . , n with equal

probability n−1, thus implicitly relying on a mecha-
nism which samples a unit i uniformly and then com-
putes (3.6) as if such a unit was observed n times. This

allows the application of Robbins and Monro (1951) to
solve (3.6) via the iterative updates

λ
(t)
1 = λ

(t−1)
1 + ρtBt

(
λ

(t−1)
1

)
,

λ
(t)
2 = λ

(t−1)
2 + ρtBt

(
λ

(t−1)
2

)
,

(3.7)

for every iteration t , where [Bt(λ
(t−1)
1 ),Bt (λ

(t−1)
2 )] de-

notes an independent draw from B(λ), evaluated at
(λ

(t−1)
1 ,λ

(t−1)
2 ), whereas ρt characterize step-sizes en-

suring convergence to the solution of (3.6)—and hence
to the maximum of L(λ)—when

∑
t ρt = +∞ and∑

t ρ
2
t < +∞ (Robbins and Monro, 1951, Spall, 2003).

Hoffman et al. (2013) set ρt = (t + τ)−κ , with κ ∈
(0.5,1] denoting the forgetting rate, and τ ≥ 0 the de-
lay down-weighting early iterations. These settings en-
sure the convergence conditions on ρt . Algorithm 3
provides the pseudo-code to perform SVI in logistic re-
gression under model (2.4)–(2.6). As it can be noticed,
this routine relies on updating steps which are cheaper
to compute than those of CAVI. In fact, each iteration
of Algorithm 3 does not require to sum over the entire
dataset, but relies instead on a single observation sam-
pled uniformly. These gains are fundamental to scale-
up calculations in massive datasets.

Figure 1 provides a summarizing quantitative assess-
ment for the performance of CAVI and SVI in the lo-
gistic regression with logit[pr(yi = 1|β)] = β1 + β2xi

for each i = 1, . . . , n. To study the performance un-
der different dimensions, we generate data for an in-
creasing sample size n ∈ (20,100,1000,10,000) from
a logistic regression with true coefficients set equal to
1 and covariates x1, . . . , xn from a UNIF(−2,2). We
perform Bayesian inference under a moderately diffuse
prior β ∼ N2(0,10 · I2) and approximate the posterior
via CAVI and SVI, with (τ, κ) = (1,0.75). As high-
lighted in Figure 1, although SVI is based on noisy gra-
dients, the final approximations q∗

SVI(β1) and q∗
SVI(β2)

are similar to the optimal solutions q∗(β1) and q∗(β2)

from the CAVI. These approximate posteriors increas-
ingly shrink around the true coefficients when n grows,
thus suggesting desirable asymptotic behavior of the
CAVI and SVI solutions. Code and tutorials to repro-
duce this analysis are available at https://github.com/
tommasorigon/logisticVB.

4. DISCUSSION

Motivated by the success of the lower bound devel-
oped by Jaakkola and Jordan (2000) for logistic log-
likelihoods, and by the lack of formal justifications for
its excellent performance, we introduced a novel con-
nection between their construction and a Pólya-gamma

https://github.com/tommasorigon/logisticVB
https://github.com/tommasorigon/logisticVB
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Algorithm 3: SVI for logistic regression

Initialize (λ
(0)
1 ,λ

(0)
2 ) randomly and set the step-size sequence ρt appropriately.

for t = 1 until a large number of iterations (in the illustrative application we rely on 104 iterations) do
Sampling. Sample a data point (yi,xi ) randomly from the dataset.
Local maximization. Calculate the locally optimized density for zi as a function of the latest value λ(t−1)

for λ, thus obtaining a Pólya-gamma with natural parameter

φi

(
λ(t−1)) = −0.5

[
xᵀi �

(t−1)xi + (
xᵀi μ

(t−1))2] = −0.5
{
xᵀi

(−2λ
(t−1)
2

)−1xi + [
xᵀi

(−2λ
(t−1)
2

)−1
λ

(t−1)
1

]2}
.

Therefore, the optimal solution is the density of a PG[1, ξi(λ
(t−1))], with ξi(λ

(t−1)) = [−2φi(λ
(t−1))]1/2.

Global parameters updates. Update the global parameters according to Robbins and Monro (1951)
iterative procedure outlined in (3.7). This approach provides the solutions

λ
(t)
1 = (1 − ρt )λ

(t−1)
1 + ρt

[
�−1

0 μ0 + nxi (yi − 0.5)
]
,

λ
(t)
2 = (1 − ρt )λ

(t−1)
2 − ρt0.5

(
�−1

0 + nxi z̄i
(t−1)xᵀi

)
,

with z̄
(t−1)
i = 0.5[ξi(λ

(t−1))]−1 tanh[0.5ξi(λ
(t−1))]. Hence, the approximating density is that of a Gaussian

with mean μ(t) = (−2λ
(t)
2 )−1λ

(t)
1 and variance-covariance matrix �(t) = (−2λ

(t)
2 )−1.

Output of the algorithm: q∗
SVI(β).

data augmentation developed in the recent years for
logistic regression (Polson, Scott and Windle, 2013).
Besides providing a probabilistic interpretation of the
bound derived by Jaakkola and Jordan (2000), this con-
nection crucially places the variational methods asso-
ciated with the proposed lower bound within a more

general framework having desirable properties. More
specifically, the EM for variational inference proposed
by Jaakkola and Jordan (2000) maximizes a genuine
ELBO associated with a conditionally conjugate expo-
nential family model and, hence, provides the same ap-
proximation of the CAVI for VB in this model.

FIG. 1. For increasing n, boxplots of the CAVI and SVI solutions for the coefficients in a Bayesian logistic regression with a single co-
variate. The dotted horizontal line refers to the true coefficients. The boxplots are constructed using 104 samples from the optimal Gaussian
approximations under the different variational strategies and sample sizes.
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The above finding motivates further generalizations
to novel computational methods, including the SVI al-
gorithm in Section 3.2. On a similar line of research,
an interesting direction is to incorporate the methods
of Giordano, Broderick and Jordan (2015) to correct
the variance-covariance matrix in q∗(β) from Algo-
rithms 1–3, which is known to underestimate variabil-
ity. Besides this, the results in Figure 1 motivate also
future theoretical studies on the quality of the CAVI and
SVI approximations in asymptotic settings. This can be
done by adapting the available theory on mean-field VB

for conditionally conjugate exponential family models
(e.g., Wang and Titterington, 2004). Finally, we shall
also emphasize that although our focus is on classical
Bayesian logistic regression, the results in Sections 2–
3 can be easily generalized to more complex learning
procedures incorporating logistic models as a building
block, as long as such formulations admit conditionally
conjugate exponential family representations.

APPENDIX: MAXIMUM LIKELIHOOD ESTIMATION

Although maximum likelihood estimation for the co-
efficients of a logistic regression is well established,
there is still active research within this class of mod-
els to address other important open questions. For in-
stance, the classical Newton–Raphson does not guar-
antee monotone log-likelihood sequences, thus poten-
tially affecting the stability of the maximization rou-
tine (Böhning and Lindsay, 1988). This issue has mo-
tivated other methods leveraging alternative quadratic
approximations which uniformly minorize the logistic
log-likelihood while being tangent to it (Böhning and
Lindsay, 1988; de Leeuw and Lange, 2009; Browne
and McNicholas, 2015), thus guaranteeing monotone
convergence (Hunter and Lange, 2004). As discussed
in Sections 1–2, this is the case of the bound (1.6) in
Jaakkola and Jordan (2000).

Motivated by this result, Jaakkola and Jordan (2000)
provided in Appendix C of their article an iterative rou-
tine for maximum likelihood estimation of β that has
monotone log-likelihood sequences and simple maxi-
mizations. In particular, letting β(t−1) be the estimate
of the coefficients at the iteration t − 1 and simplifying
the calculations in Appendix C of Jaakkola and Jor-
dan (2000), their routine first maximizes (1.6) with re-
spect to each ξ1, . . . , ξn, obtaining ξ̂

(t−1)
i = xᵀi β

(t−1),
for i = 1, . . . , n, and then derive β(t) by maximizing

log p̄(t−1)(y|β) =
n∑

i=1

log p̄(t−1)(yi |β),

with ξi replaced by ξ̂
(t−1)
i = xᵀi β

(t−1). This last opti-
mization is straightforward due to the quadratic form
of (1.6), thus providing

β(t) = (
XᵀẐ(t−1)X

)−1Xᵀ(y − 0.5 · 1n),(A.1)

where Ẑ(t−1) denotes a diagonal matrix having entries
Ẑ(t−1)

[ii] = 0.5(xᵀi β
(t−1))−1 tanh[0.5(xᵀi β

(t−1))].
Analyzing such a strategy in the light of (2.2), it can

be noticed that ξ̂
(t−1)
i leads to the solution q̂(t−1)(zi)

minimizing the KL divergence KL[q(zi)‖p(zi |β(t−1))]
in (2.2), for i = 1, . . . , n, whereas the function

log p̄(t−1)(y|β) =
n∑

i=1

log p̄(t−1)(yi |β)

=
n∑

i=1

Eq̂(t−1)(zi )

[
log

p(yi, zi |β)

q̂(t−1)(zi)

]
,

maximized with respect to the parameters comprising
β is equal, up to an additive constant, to the expectation
Q(β|β(t−1)) of the complete log-likelihood function
logp(y, z|β) = ∑n

i=1 logp(yi, zi |β) computed with
respect to the conditional distribution of the augmented
Pólya-gamma data (zi |β(t−1)) ∼ PG(1,xᵀi β

(t−1)), for
i = 1, . . . , n. Combining these results with the EM ra-
tionale (Bishop, 2006, Chapter 9.4), it follows that
the routine in Appendix C of Jaakkola and Jordan
(2000) is an EM based on Pólya-gamma augmented
data. This algorithm first computes the expected value
Q(β|β(t−1)) = ∑n

i=1 Eq̂(t−1)(zi )
[logp(yi, zi |β)] and then

maximizes it with respect to β . See also Scott and Sun
(2013).

As discussed by Jaakkola and Jordan (2000), the
above maximization strategy guarantees a monotone
log-likelihood sequence, ensuring stable convergence.
Indeed, leveraging equations (1.6) and (2.2), it can be
noticed that this routine provides a minorize-maximize
(MM) algorithm (e.g., Hunter and Lange, 2004), pro-
vided that

∑n
i=1 logp(yi |β) ≥ ∑n

i=1 log p̄(t−1)(yi |β)

for every vector β , and that
∑n

i=1 logp(yi |β(t−1)) =∑n
i=1 log p̄(t−1)(yi |β(t−1)). We shall notice that also de

Leeuw and Lange (2009) and Browne and McNicholas
(2015) highlighted this relation with the MM under a
mathematical argument and discussed the sharpness of
(1.6). Exploiting results in Section 2, we also show that
the MM algorithm relying on (1.6) improves the conver-
gence rate of the one in Böhning and Lindsay (1988).
To our knowledge, this is the only tractable MM alter-
native to Jaakkola and Jordan (2000).
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In addressing the above goal, let us first rewrite (A.1)
to facilitate a direct comparison with the solution from
Böhning and Lindsay (1988), given by

β(t) = β(t−1)

+ (
Xᵀ	X

)−1Xᵀ(y − π (t−1)),(A.2)

where 	 = 0.25 ·In and π (t−1) = (π
(t−1)
1 , . . . , π

(t−1)
n )ᵀ

with

π
(t−1)
i = [1 + exp(−xᵀi β

(t−1))]−1.

Indeed, adding and subtracting Ẑ(t−1)Xβ(t−1) in (y −
0.5 · 1n), equation (A.1) reduces to

β(t) = β(t−1)

+ (
XᵀẐ(t−1)X

)−1Xᵀ(y − π (t−1)),(A.3)

after noticing that every single element yi − 0.5 −
0.5 tanh[0.5(xᵀi β

(t−1))] in y − 0.5 · 1n − Ẑ(t−1)Xβ(t−1)

can be alternatively re-expressed as

yi − 0.5
[
1 + 1 − exp(−xᵀi β

(t−1))

1 + exp(−xᵀi β
(t−1))

]
= yi − π

(t−1)
i .

A closer inspection of the two equations in (A.2) and
(A.3) shows that the updating underlying Böhning and
Lindsay (1988) and Jaakkola and Jordan (2000) coin-
cides with the one arising from the Newton–Raphson,
after replacing the Hessian H(t−1) = −Xᵀ�(t−1)X =
−Xᵀdiag[π(t−1)

1 (1−π
(t−1)
1 ), . . . , π

(t−1)
n (1−π

(t−1)
n )]X

of the logistic log-likelihood, with −Xᵀ	X in (A.2)
and −XᵀẐ(t−1)X in (A.3). Recalling Böhning and
Lindsay (1988), both matrices define a lower bound
for the Hessian and guarantee that the updates in (A.2)
and (A.3) induce a monotone sequence for the log-
likelihood. In Böhning and Lindsay (1988) the uniform
bound follows after noticing that π (t−1)(1 − π (t−1)) ≤
0.25 · 1n for any π (t−1) ∈ (0,1)n, whereas, according
to Lemma 2.1, the adaptive bound induced by Jaakkola
and Jordan (2000) is formally related to an exact data
augmentation, thus suggesting that (A.3) may provide
more efficient updates than (A.2). This claim is formal-
ized in Proposition A.1 by comparing the convergence
rates of the two algorithms. Refer to McLachlan and
Krishnan (1997), Chapter 3.9, for details regarding the
definition and the computation of the convergence rate
associated with a generic iterative routine.

PROPOSITION A.1. Assume that β∗ characterizes
the limit, if it exists, of {β(t) : t ≥ 1}, and let MB(·) =
{MB

1(·), . . . ,MB
p(·)} and MJ(·) = {MJ

1(·), . . . ,MJ
p(·)}

denote the functions which update the estimate of β

at iteration t − 1 to that at iteration t in (A.2) and
(A.3), respectively. Then rB ≥ rJ, with rB = ‖J ∗

B‖2 and
rJ = ‖J ∗

J ‖2 being the maximum eigenvalues of the Ja-
cobians J B = ∂MB(β)/∂β and J J = ∂MJ(β)/∂β , re-
spectively, computed in β∗.

To prove Proposition A.1, first note that J ∗
B = Ip +

(Xᵀ	X)−1H∗ can be easily computed as in Böhning
and Lindsay (1988), since 	 does not depend on β

in (A.2). It is instead not immediate to calculate J ∗
J

via direct differentiation of MJ(β), because (A.3) con-
tains more complex hyperbolic transformations of β .
However, exploiting the probabilistic findings in Sec-
tion 2, this issue can be easily circumvented by lever-
aging the EM interpretation of the routine in Jaakkola
and Jordan (2000) via Pólya-gamma augmented data.
Indeed, following McLachlan and Krishnan (1997),
Chapter 3.9.3, the rate matrix of an iterative rou-
tine relying on EM methods, coincides with J ∗

J =
Ip + Ic(β

∗)−1H∗, where Ic(β
∗) denotes the expecta-

tion, taken with respect to the augmented data, of the
complete-data information matrix Ic(β∗). This quan-
tity can be easily computed in our case, provided that
the complete log-likelihood is equal, up to an addi-
tive constant, to the quadratic function

∑n
i=1[(yi −

0.5)xᵀi β − 0.5zi(x
ᵀ
i β)2] of β , which is also linear in

the augmented Pólya-gamma data zi . Due to this, it
is easy to show that Ic(β

∗) = XᵀẐ∗X, where Ẑ∗ de-
notes the n × n diagonal matrix with entries Ẑ∗[ii] =
0.5(xᵀi β

∗)−1 tanh[0.5(xᵀi β
∗)].

PROOF. Recalling the above discussion, the proof
of Proposition A.1 requires comparing the maximum
eigenvalues of

J ∗
B = Ip + (

Xᵀ	X
)−1H∗

= Ip − (
Xᵀ	X

)−1(
Xᵀ�∗X

)
and

J ∗
J = Ip + (

XᵀẐ∗X
)−1H∗

= Ip − (
XᵀẐ∗X

)−1(
Xᵀ�∗X

)
.

To address this goal, first note that
∥∥J ∗

B

∥∥
2 = 1 − ∥∥(

Xᵀ	X
)−1(

Xᵀ�∗X
)∥∥

2,∥∥J ∗
J

∥∥
2 = 1 − ∥∥(

XᵀẐ∗X
)−1(

Xᵀ�∗X
)∥∥

2.

Therefore, rB ≥ rJ if ‖(XᵀẐ∗X)−1(Xᵀ�∗X)‖2 ≥
‖(Xᵀ	X)−1(Xᵀ�∗X)‖2. This inequality can be proved
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by noticing that

∥∥(
Xᵀ	X

)−1(
Xᵀ�∗X

)∥∥
2

= ∥∥(
Xᵀ	X

)−1(
XᵀẐ∗X

)(
XᵀẐ∗X

)−1(
Xᵀ�∗X

)∥∥
2

≤ ∥∥(
Xᵀ	X

)−1(
XᵀẐ∗X

)∥∥
2

∥∥(
XᵀẐ∗X

)−1(
Xᵀ�∗X

)∥∥
2.

Hence, a sufficient condition for the above inequality
to be true is that ‖(Xᵀ	X)−1(XᵀẐ∗X)‖2 ≤ 1 or, alter-
natively, that Ẑ∗[ii] = 0.5(xᵀi β

∗)−1 tanh[0.5(xᵀi β
∗)] ≤

0.25 for each i = 1, . . . , n; recall also that 	 = 0.25 ·In.
Letting u = 0.5(xᵀi β

∗), and rewriting the inequality
u−1sinh(u) ≤ cosh(u) (Zhu, 2012) as u−1tahn(u) ≤ 1,
it directly follows that 2(xᵀi β

∗)−1 tanh[0.5(xᵀi β
∗)] ≤ 1,

thus guaranteeing that 0.5(xᵀi β
∗)−1 tanh[0.5(xᵀi β

∗)] ≤
0.25. This concludes the proof. �

Proposition A.1 ensures that the mapping in (A.3)
improves the convergence rate of (A.2). In fact, higher
values of r imply slower convergence. We shall how-
ever emphasize that the EM in Appendix C of Jaakkola
and Jordan (2000) does not reach the quadratic con-
vergence of the Newton–Raphson strategy, but guaran-
tees a monotone log-likelihood sequence. It is also im-
portant to highlight that although the MM in Böhning
and Lindsay (1988) has slower convergence, the ma-
trix Xᵀ	X in (A.2) does not depend on β(t−1), thus
requiring inversion only once during the iterative pro-
cedure. This result reduces computational complexity,
especially in high-dimensional problems, compared to
the updating in (A.3), which requires, instead, the in-
version of XᵀẐ(t−1)X at every iteration. We refer to
the tutorial em_logistic_tutorial.md in https:
//github.com/tommasorigon/logisticVB for illustrative
simulations.

Although the above focus has been on the maximum
likelihood estimation method, the probabilistic inter-
pretation (2.1) of the quadratic bound in Jaakkola and
Jordan (2000) motivates simple adaptations to include
the maximum a posteriori estimation problem under a
Bayesian framework. This routine has been carefully
studied by Scott and Sun (2013) and we refer to their
contribution for details.
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