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Comment: Empirical Bayes Interval
Estimation
Wenhua Jiang

Abstract. This is a contribution to the discussion of the enlightening paper
by Professor Efron. We focus on empirical Bayes interval estimation. We
discuss the oracle interval estimation rules, the empirical Bayes estimation
of the oracle rule and the computation. Some numerical results are reported.
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We congratulate Professor Efron on the enlightening
article and thank him for illuminating the oracle and
finite Bayes faces of empirical Bayes inference. Our
comments below, focused on empirical Bayes interval
estimation, is very much inspired by his discussion on
the topic.

An interesting aspect of the interval estimation prob-
lem is its lack of a purely posterior-based oracle
rule in the compound framework. Suppose Xi |θi ∼
f (x|θi)ν(dx) and for simplicity confine our discus-
sion of oracle rules to making inference about θi by
decision rules as a function of Xi only, that is, rules
of the form [a(Xi), b(Xi)] as we are interested in in-
terval estimation. The objective of compound interval
estimation could then be written as

minimize n−1
n∑

i=1

E
{
b(Xi) − a(Xi)

}
+

subject to n−1
n∑

i=1

P
{
a(Xi) ≤ θi ≤ b(Xi)

}

= 1 − α

(1)

with a prespecified α ∈ (0,1). Robbins (1951), Han-
nan and Robbins (1955) and Robbins (1956) argued
that for any loss function L(t (Xi), θi) and decision
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rule t (x), the compound risk is identical to the Bayes
risk for the empirical prior Gn, defined by Gn(A) =
n−1 ∑n

i=1 I{θi∈A} for any Borel set A. This funda-
mental theorem of empirical Bayes can be written
as

1

n

n∑
i=1

EL
(
t (Xi), θi

)

=
∫∫

L
(
t (x), θ

)
f (x|θ)ν(dx)Gn(dθ),

which directly provides the oracle Bayes rule

tGn(x) = arg min
t

∫
L(t, θ)Gn(dθ |x),

where Gn(dθ |x) = f (x|θ)Gn(dθ)/
∫

f (x|θ)Gn(dθ)

is the posterior distribution. For the interval esti-
mation problem (1), this leads to the oracle Bayes
rule

[
aGn,λ(x), bGn,λ(x)

]

= arg min
[a(x),b(x)]

∫ [{
b(x) − a(x)

}
+

− λI{a(x)≤θ≤b(x)}
]
Gn(dθ |x)

with a λ satisfying∫∫
I{aGn,λ(x)≤θ≤bGn,λ(x)}

× f (x|θ)Gn(dθ)ν(dx) = 1 − α.

(2)

However, the constraint in (2) still involves an integra-
tion with respect to the joint measure.
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In the finite Bayes setting, where θi are i.i.d. vari-
ables from a (nonempirical) prior Gn, one may solve
instead of (2) the HPD (highest posterior density) cred-
ible interval problem

[
aGn(x), bGn(x)

]

= arg min
[a(x),b(x)]

∫ {
b(x) − a(x)

}
+Gn(dθ |x)

subject to
∫

I{a(x)≤θ≤b(x)}Gn(dθ |x) = 1 − α

(3)

based on the posterior alone. Indeed, the credible in-
terval (3) provides a feasible solution to the optimiza-
tion problem (1), but the solution is unfortunately sub-
optimal in general. Nevertheless, due to the optimality
of (3) under the more stringent posterior coverage con-
straint, we may still use its performance as a bench-
mark to gauge the performance of empirical Bayes in-
terval estimators under the two criteria in (1). From this
point of view, the Bayes credible interval has a frequen-
tist face. We shall call (3) the oracle Bayes rule as it is
expected to outperform empirical Bayes methods due
to its dependence on the oracular knowledge of Gn and
its optimality in the sense of (3).

We shall discuss now empirical Bayes methods, that
is, interval estimators based on estimated priors Ĝn.
For simplicity, we confine this discussion to the nor-
mal case where Xi |θi ∼ N(θi,1). Efron’s paper of-
fers interesting insights into Morris’ (1983) approach
with normal prior, the broader g-modeling methods
(Efron, 2014, 2016) and an ingenious bootstrap cor-
rection (Laird and Louis, 1987). We shall add the gen-
eral maximum likelihood empirical Bayes (GMLEB,
Jiang and Zhang, 2009) to this mix in our simulation
study.

We note that the empirical Bayes interval estima-
tion problem does not admit simple f -modeling in the
nonparametric setting in general, at least for one-sided
credible intervals, as Gn(dθ) can be recovered by dif-
ferentiating 1 − α = ∫ t

−∞ Gn(dθ |x).
An interesting aspect of the Gaussian prior Gn ∼

N(0,A) is that the oracle Bayes rule (3) is also an op-
timal solution of the compound problem in (1). This
can be seen as follows. When Gn ∼ N(0,A), both
the interval length and posterior coverage probabil-
ity in (3) are not dependent on x, so that the cred-
ible interval [aGn(x), bGn(x)] is identical to the or-
acle solution [aGn,λ(x), bGn,λ(x)] in (2) for a fixed
λ = λα not depending on x. Thus, when Gn ≈ N(0,A)

and Ĝn ≈ N(0,A), the plug-in empirical Bayes cred-

ible interval [a
Ĝn

(x), b
Ĝn

(x)] is an approximately op-
timal solution of the compound problem (1). However,
when Gn ≈ N(0,A) fails to hold, parametric estimates
of Gn may not provide sufficient coverage probabil-
ity.

Let fG(x) = ∫
f (x|θ)G(dθ) denote the mixture of

the density f (x|θ) with prior G. In the GMLEB ap-
proach, we simply replace the empirical prior in the
oracle rule with the generalized maximum likelihood
estimator (GMLE, Kiefer and Wolfowitz, 1956),

Ĝn = arg max
G

n∏
i=1

fG(Xi).

This can be viewed as nonparametric g-modeling as no
constraint is imposed on G in the above maximization.
Corresponding to the oracle rule (3), the resulting HPD
credible interval is[

a
Ĝn

(x), b
Ĝn

(x)
]

= arg min
[a(x),b(x)]

∫ {
b(x) − a(x)

}
+Ĝn(dθ |x)

subject to
∫

I{a(x)≤θ≤b(x)}Ĝn(dθ |x) = 1 − α.

(4)

The computation of the credible interval (4) is a deli-
cate matter. The GMLE Ĝn is usually implemented by
the EM algorithm: putting a large number of equally
spaced grids in the range of observations and up-
dating the weights in iterations. Koenker and Miz-
era (2014) proposed a convex optimization approach
to computing the GMLE, which reduces the compu-
tational effort by several orders of magnitude. The
efficiency of their algorithm (R package REBayes)
has been demonstrated in Koenker and Mizera (2014)
and later research (e.g., Jiang and Zhang, 2016). In
Figure 1, n = 1000 parameters θi were drawn from
N(0,1) distribution. The GMLE seems to overfit as
the solution calculated by the REBayes package is sup-
ported on three points (red dashed). The EM algo-
rithm with 100 iterations yields a smooth density ĝ(θ)

(green dotted). This seems to suggest early stopping
of the EM or a penalized EM with the objective func-
tion

(5) −
n∑

i=1

logfG(Xi) + λ

∫ (
g′′(x)

)2
dx

as a smooth version of the GMLE. An early suc-
cess story of such smooth EM is its application in
tomography (Vardi, Shepp and Kaufman, 1985). In
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FIG. 1. Black solid line represents the density of prior N(0,1).
Red dashed is the estimated prior density ĝ(θ) by the REBayes
package; green dotted curve from the 100 EM-iterations; blue
dotdash curve from the minimum of penalized log-likelihood (5)
among the first 100 EM-iterations.

Figure 1, the blue curve represents the ĝ(θ) from
the minimum of penalized log-likelihood (5) among
the first 100 EM-iterations. It is much closer to the
true N(0,1) prior density, that is, it controls overfit-
ting. Actually, the minimum appeared at a pretty early
stage.

SOME NUMERICAL RESULTS

Here we evaluate the coverage probability of several
empirical Bayes credible intervals. Two omnibus mea-

sures of accuracy: the average coverage probability and
average length,

1

n

n∑
i=1

I
{
a(Xi) ≤ θi ≤ b(Xi)

}
,

1

n

n∑
i=1

{
b(Xi) − a(Xi)

}
+

(6)

are reported. The classical 100(1 −α)% confidence in-
terval is xi ± zα/2, where zα/2 is the upper (α/2)-point
of the standard normal distribution. The James–Stein-
based credible interval is

(7) θ̂ JS
i ± zα/2

{
1 − (

(k − 1)/k
)
B̂

}1/2
,

where θ̂ JS
i = (1 − B̂)xi + B̂x̄, B̂ = ((k − 3)/(k −

1))/(1 + Â+), Â = S/(k − 1) − 1 and S = ∑n
i=1(xi −

x̄)2. Morris’ (1983) correction to (7) gives a wider in-
terval θ̂ JS

i ± zα/2si where s2
i = 1 − ((k − 1)/k)B̂ +

(2/(k − 3))B̂2(xi − x̄)2. For the GMLEB and the
g-modeling, we report their HPD intervals. As a
benchmark, the oracle interval [aGn(Xi), bGn(Xi)] in
(3) is included, where Gn(u) = n−1 ∑n

i=1 I {θi ≤ u}
is the empirical distribution of the unknown means.
Throughout the simulation we set λ = 20 for the
GMLEB. We used R package deconvolveR with de-
fault settings to compute the g-modeling intervals.

We first use a lognormal-normal example. We drew
n = 25,100,400 and 1600 values of θi from a
lognormal(0,1) distribution and n corresponding ob-

servations Xi
ind∼ N(θi,1). Each interval uses a nom-

TABLE 1
Coverage probabilities and lengths of empirical Bayes credible intervals with nominal coverage level of 95%. The true prior is

lognormal(0,1)

25 100 400 1600

n C L C L C L C L

Classical 0.949 3.920 0.948 3.920 0.951 3.920 0.950 3.920
James-Stein 0.936 3.250 0.950 3.422 0.953 3.535 0.953 3.544
James-Stein corrected 0.944 3.314 0.951 3.433 0.954 3.537 0.953 3.544
G-modeling 0.941 3.145 0.954 3.153 0.961 3.298 0.957 3.415
GMLEB 0.940 3.069 0.955 3.082 0.961 2.991 0.963 2.894
Oracle 0.961 2.227 0.950 2.495 0.951 2.545 0.951 2.566
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TABLE 2
Coverage probabilities and lengths of the corrected g-modeling and GMLEB

credible intervals by the bootstrap algorithm

15 25

n C L C L

G-modeling 0.933 3.125 0.941 3.145
G-modeling corrected 0.951 3.507 0.960 3.521
GMLEB 0.927 2.978 0.940 3.069
GMLEB corrected 0.953 3.357 0.959 3.385

inal coverage level of 95%. We report the average
coverage probability and the average interval length
based on 100 replications. The results are summa-
rized in Table 1. The classical confidence intervals are
guaranteed to attain the nominal level. The widths of
them are all 3.920 under 95% level. The uncorrected
James–Stein intervals attain the nominal level except
n = 25. Morris’ correction works well for small n.
Both James–Stein intervals are more compact than the
classical intervals. Because the lognormal(0,1) distri-
bution is quite asymmetry, it is expected that there is
still room to improve upon the interval length. This is
achieved by the g-modeling and the GMLEB credi-
ble intervals. Especially, the GMLEB provides much
more compact intervals although the level of coverage
is slightly conservative. For small sample sizes, the g-
modeling and the GMLEB intervals could be corrected
by the bootstrap procedure as in Section 6 of Efron’s
paper. In Table 2, we display the corrections for n = 15
and 25 based on B = 500 bootstrap replications. It is
clear that the bootstrap correction improves the cover-
age.

A more difficult case is as follows. The prior dis-
tribution is a mixture: 90% of a degenerate distribu-
tion at zero and 10% of a uniform distribution over
[−3,3]. The g-modeling can accommodate the possi-
ble big atom at θ = 0 by including in model matrix Q

a column e0 = (0, . . . ,1, . . . ,0), with the 1 at θ = 0.
The GMLEB can also take into consideration of the
sparsity. We initialized the weight at zero by a Fourier
method as in Jiang and Zhang (2009) and put the re-
maining weights uniformly. In Table 3, the g-modeling
method gives more precise estimates than the James–
Stein in terms of interval size, while the performance
of the GMLEB is stronger, both benefiting from a good
starting mass at 0.
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TABLE 3
Coverage probabilities and lengths of empirical Bayes credible intervals with nominal coverage level of 95%, θi ∼ 0.9δ0 + 0.1 Unif[−3,3],

i = 1, . . . , n

n 200 400 800 1600

C L C L C L C L

Classical 0.948 3.920 0.949 3.920 0.950 3.920 0.950 3.920
James–Stein 0.943 1.810 0.944 1.856 0.942 1.851 0.941 1.859
James–Stein corrected 0.944 1.846 0.945 1.873 0.943 1.859 0.941 1.863
G-modeling 0.968 1.608 0.967 1.529 0.967 1.483 0.965 1.495
GMLEB 0.946 1.092 0.951 1.104 0.955 1.050 0.956 1.017
Oracle 0.963 1.019 0.962 1.036 0.963 1.032 0.962 1.048
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