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view four popular PLS methods for two blocks of data. A unified algorithm
is proposed to perform all four types of PLS including their regularised
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1. Introduction

In this article, we review the Partial Least Squares (PLS) approach to big data.
When one faces the task of statistically analysing data resulting from the ob-
servation of cases on a large number of variables, interpretation of the results
can be difficult. Analysing each variable separately is time consuming, and de-
scribing the results using graphs and numerical indicators is space consuming.
One way to circumvent this problem is to select a few of the more important
variables while discarding the others. However, selecting the best variables is
not easy, not to mention that interesting interactions between these variables
will remain unexplored. A better approach is to create a few new variables that
combine in a clever way the original ones. Using linear combinations is a good
strategy. Indeed, such new variables are easy to compute. (Being composed of
all the original variables, they are called components and, being not directly
observed, often also called “latent variables”.) Furthermore, the weights of each
component fully characterise the relationships between the new variables and
the original ones, which makes interpretation of the former in terms of the lat-
ter easy. This approach is for example at the core of Principal Components
Analysis (PCA), a statistical technique that computes weights (of each linear
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combination) in such a way that the variance of each component is maximal,
under the constraint that components are orthogonal. Geometrically, construct-
ing the first component consists in finding the one-dimensional subspace (i.e.,
a line) such that projected data onto this subspace will have, after projection,
maximal variance. (Broadly speaking, this line gives the direction in which the
cloud of data points is most elongated.) The second component is obtained by
finding another one-dimensional space that is orthogonal to the first one while
maximising the variance of data projected onto the former. And so on for sub-
sequent components, stopping after a small number of components have been
extracted. In many cases, these few first components are sufficient to recover a
large proportion of the overall multidimensional variability present in the orig-
inal data set, thereby performing a reduction of dimension while keeping most
of the information. In practice, these directions (given by the weights of each
linear combination) are easily obtained thanks to a linear algebra tool called the
Singular Value Decomposition (SVD); see (Meyer 2000, Figure 5.12.1, page 413)
for a very nice geometric explanation of how the SVD of a matrix A describes
the ellipsoid that one gets when a unit sphere is distorted by the linear trans-
formation associated to A. Note that if the original data have been centered
first, the requested orthogonality between components translates directly into
their uncorrelatedness, rendering the information brought by each component
independent from each other (at least in the ideal world of Gaussian distri-
butions). This facilitates their interpretation. Also, an interesting graph often
used in PCA, the so-called correlation circle, enables one to rapidly grasp how
PCA components are linked (i.e., correlated) to the original variables, making
interpretation in terms of the original variables possible.

The above description focuses on the analysis of a single set of data. Some-
times, however, one is interested in the simultaneous analysis of multiple blocks
of data, each comprising a large number of variables. The strategy used in PCA
can be extended to this situation, giving rise to a statistical method called Pro-
jection to Latent Structures (PLS). Originally developed by Wold (1966) as a
set of iterative algorithms involving optimisation of quantities as in the classi-
cal Least Squares method, it was termed Partial Least Squares (PLS), a name
still often used nowadays. PLS methods perform a wide range of multivariate
supervised and unsupervised statistical techniques on multiple blocks of data.
Their goal is thus to analyse multiple relationships among several sets of vari-
ables measured on the same objects. They construct new variables known as
scores (or components), which are linear combinations of the original variables.
Instead of maximising variances as in PCA, and since PLS focuses on relation-
ships between sets of data, linear combinations are here obtained by maximising
a covariance (or correlation) criterion. Once again, this maximisation is easily
achieved in practice using an SVD; see Lafaye de Micheaux et al. (2017) for a
rigorous mathematical description of this link along with its proof. The current
article focuses on PLS modeling when there are only two blocks of data. One
distinguishes between the case when the two blocks are interchangeable (sym-
metric situation) and when they are not (asymmetric situation). In the latter
case, the goal is to predict one set of data from the other. (As a simple analogy,
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think about “correlation between two variables” versus “simple linear regression
between two variables”.) In the two-block case, the PLS acronym (for Partial
Least Squares or Projection to Latent Structures) usually refers to one of four
related methods, which are detailed in Section 2.2:

(i) Partial Least Squares Correlation (PLSC) also called PLS-SVD (Krishnan
et al. 2011, Abdi & Williams 2013, Rohlf & Corti 2000),

(ii) PLS in mode A (PLS-W2A, for Wold’s Two-Block, Mode A PLS) (Vinzi
et al. 2010, Cak et al. 2016, Wegelin 2000),

(i) PLS in mode B (PLS-W2B) also called Canonical Correlation Analysis
(CCA) (Guo & Mu 2013, Hardoon et al. 2004, Hotelling 1936), and

(iv) Partial Least Squares Regression (PLS-R, or PLS2) (Wold et al. 2001,
Rosipal & Kramer 2006, Geladi & Kowalski 1986).

The first three methods model a symmetric relationship between the data, aim-
ing to explain the shared correlation or covariance between the data sets, while
the fourth method (PLS-R), models an asymmetric relationship, where one block
of predictors is used to explain the other block. These methods are now widely
used in many fields of science, such as genetics (Boulesteix & Strimmer 2007, Ji
et al. 2011, Liquet et al. 2016), neuroimaging (McIntosh et al. 1996, Roon et al.
2014) and imaging-genetics (Lorenzi et al. 2016, Liu & Calhoun 2014).

Recently, some authors have started to modify these methods using sparse
modelling techniques; see e.g., (Lé Cao et al. 2008, Dhanjal et al. 2009, Witten
et al. 2009, Chung & Keleg 2010, Chun & Keles 2010). These techniques refer to
methods in which a relatively small number of covariates influence the model.
They are powerful methods in statistics that provide improved interpretability
and better estimators, especially for the analysis of big data. For example, in
imaging-genetics, sparse models demonstrated great advantages for the identi-
fication of biomarkers, leading to more accurate classification of diseases than
many existing approaches (Lin et al. 2014).

This is not really surprising. Indeed, as nicely summarised by Wegelin (2000):
“The coefficients computed in a PLS analysis are well-defined and easy to in-
terpret. PLS is especially useful when the columns of X or of Y are collinear
or nearly collinear, or when there are more variables than observations (p > n
or ¢ > n), since few other methods are available in such a case.” Among the
few statistical methods that can deal with two blocks of data, one can obviously
mention classical multivariate linear regression (a direct competitor of case (iv)
when ¢ > 1). Nevertheless, this method fails in the presence of collinearity or
when there are more variables than observations, since the least squares esti-
mator is not unique in that case (X7 X is not invertible). A way to circumvent
this problem is to impose sparsity on the coefficients through a shrinkage lasso
approach; see Friedman et al. (2010) and their associated R package glmnet
(Friedman et al. 2018). By imposing the assumption of sparsity these methods
provide stable estimates of the coefficients, and often have improved predic-
tive performance. However, ultra high dimensional data sets (p >> n) pose a
computational challenge in fitting these methods. This problem has only been
addressed recently by Zeng & Breheny (2017a) but only for an univariate re-
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sponse (see their R package biglasso (Zeng & Breheny 20175)).

In this article, we consider big data extensions to PLS methods which incor-
porate sparsity in fitting the PLS weights. Similarly to standard PLS methods,
these sparse approachs permit dimension reduction by constructing components
as linear weighted combinations of the original data. However, sparse PLS ap-
proachs allow for some of these weights to be set to zero. Consequently, a vari-
able in the original dataset might well be used in constructing only a subset of
the PLS components. An advantage of having several components in PLS is to
visualise the data projected on various 2D planes spanned by pairs of compo-
nents (as illustrated on our Figure 3) in order to gain better insight into the
underlying structure of the data. Also, these sparse approaches are often only
considered for two blocks of data in a regression context, whereas standard PLS
can deal with several blocks of data in a more general analysis. Closely related
to Lasso regression is (multivariate) ridge regression (Brown & Zidek 1980) that
shrinks the coefficients using a L? norm (instead of a L! norm for the Lasso).
This different type of shrinkage does not lead to sparsity of the coefficients
though, and consequently does not perform a reduction of dimension. Another
potential competitor of PLS worth mentioning is Principal Component Regres-
sion (PCR). Once again, this method is only applicable in a regression context.
It solves the problem of data collinearity and reduces the number of regres-
sor variables by replacing the original regressor variables by a few orthogonal
(hence non-collinear) principal components obtained via a PCA of X. Com-
pared to PLS, these X-components are obtained independently of the response
Y which seems to lead to lower prediction performances than PLS (Yeniay &
Goktas 2002). A nice discussion that explores the relationships between PLS,
PCR, Ridge and the Lasso can be found in (Hastie et al. 2009, Section 3.6). A
last competitor method worth mentioning is the Vector Generalised Additive
Model (VGAM); see Yee & Wild (1996) for details, and the VGAM R package
(Yee 2018). This very flexible technique relates the response to the regressors
through a sum of non-linear transformations of the original regressors. Results
are difficult to interpret though, all the more when the number of variables is
large. Finally, note that inference in PLS is done either by using resampling or
Bootstrap techniques (see Abdi & Williams (2013, Chapter 23)) or by compu-
tation of its degrees of freedom (Kraemer & Sugiyama 2011) thanks to the R
package plsdof (Nicole Kraemer 2018). Inference for the Lasso can also be done
using resampling techniques, or by using a covariance test statistic (Lockhart
et al. 2014) thanks to the R package selectiveInference (Tibshirani et al.
2017).

In Section 2, we survey the standard PLS methods. The optimisation criteria
and algorithmic computation are detailed. Gathering an accurate description of
all these methods in a single document, along with their complete mathemati-
cal proofs, constitutes a valuable addition to the literature; see also (Lafaye de
Micheaux et al. 2017, Wegelin 2000). In Section 3 we present the sparse versions
of the four types of PLS, as well as a recent group and sparse group version. A
new unified algorithm is then presented in Section 4 to perform all four types
of PLS including the regularised versions. Various approaches to decrease the
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computation time are proposed. We explain how the whole procedure can be
made scalable to big data sets (any number of measurements, or variables). In
Section 5, we demonstrate the performance of the method on simulated data
sets including the case of a categorical response variable. Our algorithm is im-
plemented in the R programming language (R Core Team 2017) and is available
at https://github.com/matt-sutton/bigsgPLS as a comprehensive package
called bigsgPLS that implements parallel computations, either using several
cores or a GPU device.

2. Partial Least Squares family
2.1. Notation

Let X :=Xp:nxpand Y :=Y:n X g be the two matrices (or “blocks”) of
data. They comprise n observations collected on p and ¢ variables, respectively.
Before analysis, the X and Y matrices are transformed by subtracting their
column averages. Scaling each column by their standard deviation is also often
recommended (Geladi & Kowalski 1986). To make explicit the columns of a

n X r matrix A, we write A := [a1,...,a,] := (a;). We also note A, :=
[ai,...,ap] for the submatrix of the first h columns (1 < h < r), and A,j, :=
[@nt1,--.,a,] for the remaining ones. For two zero-mean vectors @ and @ of the

same size, we note Cov(@,?) = @'® and Cor(w,d) = @' 9/1/ (@' @)(d"9). The
scaling factor (n—1)~! is omitted. Let X be the Moore-Penrose (generalised)
inverse of X. We denote the space spanned by the columns of X by Z(X).
The orthogonal projection matrix onto Z(X) is denoted Px = XX, and
Px 1 = I—Px denotes the orthogonal projection matrix on the space orthogonal

to Z(X). When the inverse of X' X exists, we have X = (XTX)"1XT. The

Ly, vector norm (p = 1,2) of an n-length vector x, is [z, = (3, |xi|”)1/p.

The Frobenius norm of a n x r matrix A is ||A| = ||vec(A)||2, where the vec
operator transforms A into an nr x 1 vector by stacking its columns. The soft
thresholding function is g (z, \) = sign(x)(|z| — \)+, where (a)4 = max(a,0).
Finally, ® denotes the Kronecker product (Liitkepohl 2005, (3), p. 662).

2.2. The four standard PLS methods

In this subsection, we survey the four standard PLS methods (i)—(iv) introduced
in Section 1. The PLS methods are used to iteratively construct a small number
H of pairs of meaningful linear combinations &;, = Xowj, and wy, = Yoz, (h =
1,..., H), of the original X- and Y-variables, in the sense that they should have
maximal covariance (or correlation). These linear combinations reveal the
linear relationships between the two blocks of data. They are called component
scores, or latent variables, while w, and z, are the (adjusted) weights. The
construction of the components leads to decompositions of the original matrices
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X and Y of the form:
X =EyCL +F3, Y =QuDJ, +Fy, (1)

where By = (§;), Qu = (w;) are called the X- and Y-scores, Cy = (c;),
Dy = (d;) are the X- and Y-loadings, and F3 FY; are the residual matrices.
The decomposition model states that the blocks X and Y can be expressed as
a weighted combination of H latent features plus some noise. For any set of X
and Y-scores we have the decomposition:

X =Pz, X+Pz,X, and, Y =7Pq,Y +Pg, Y.
Thus the elements of the decomposition model can always be written as

Cu=X'Ej;, Dy=Y'Q},
X 1 Y 1
F :PEHX7 F = PQHY’

which may be simplified when certain orthogonality properties hold for Zg and
Q. We can interpret the X and Y loading matrices C g and Dy as regression
coefficients in the reconstruction of the X and Y blocks. In this way, the size of
the loadings describes the importance of the score for reconstructing the original
data.

Although the four PLS methods all conform to the unified framework, the
methods provide different loadings and error matrices due to the calculation of
the scores. We now detail the four classical cases (i)-(iv). For each method, the
scores may be calculated as linear combinations §;, = Xw), and wy, =Y z;. We
state the PLS objective functions in terms of the data X and Y for the adjusted
weights wj, and zj, (or wy and 2, for unnormalised versions). We comment
on the focus of the analysis in each of these methods and survey important
properties. Additional technical details may be found in Wegelin (2000) and
Lafaye de Micheaux et al. (2017).

(i) For PLS-SVD, the roles of X and Y are symmetric, and the analysis
focuses on modeling shared information (rather than prediction) as mea-
sured by the cross-product matrix R = X"Y. Note that R is propor-
tional to the empirical covariances between X- and Y -variables when the
columns of X and Y are centered. When the columns are standardised, R
is proportional to the empirical correlations between X- and Y-variables.
In this setting, the method is sometimes called PLSC, for Partial Least
Squares Correlation (Krishnan et al. 2011).

For PLS-SVD, the weights at step h, (wy, z1,), are defined as the solution
to the optimisation problem:

maximise Cov(Xw,Y z), s.t. wT'wj = szj =0,
lwlly=lzl,=1

for 1 < j < h. PLS-SVD searches for orthonormal directions wy; and
orthonormal directions z;, (h = 1,..., H), such that the score vectors have
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maximal covariance. In contrast to the other PLS methods, the X-scores
&, and Y-scores wj, are in general not mutually orthogonal (Rosipal &
Kramer 2006) which can make interpretation of the results more delicate.
For PLS-W2A, the weights at step h, (W, Z,), are defined as the solution
to the optimisation problem:

maximise Cov(Xw,Y z),
IPg.  wl= IPL =1

s.t. OOU(EhaSj) - COU(W}L,UJ]’) = 07

for 1 < j < h. PLS-W2A thus searches for successive X-score vectors
(resp. Y-score vectors) that are orthogonal to the previous ones. The first
pair (&;,w1) of X- and Y- score vectors is the one with maximal co-
variance. The next pairs are searched for using successively deflated (i.e.,
after removing the information contained in the previous pairs of scores)
versions of X and Y.

For CCA, the weights at step h, (W, 25), are defined as the solution to
the optimisation problem:

maximise Cor(Xw,Y 2),
WERP, ZERY

subject to  Cov(Xw, Xw;) = Cov(Y2,YZ%;) =0,

for 1 < j < h. Classical CCA relates X and Y by maximising the
correlation between the scores (also called canonical variates) &, = Xwy,
and wy, =Y z5, but without imposing a unit norm to the adjusted weights
(or canonical) vectors w), and Zj. Using the change of variables w =
(XTX) 12w and 2 = (YY) /22 we have the following equivalent
objective for (wp, zp):

maximise Cov(X(XTX)*1/2w7 Y(yTY)ﬂ/zz)’

llwll=z]=1

subject to wT'wj = szj =0,

for 1 < j < h. However, when p > n, this optimisation is not feasible
because (XTX)™! and (YTY)~! are not uniquely defined. A common
approach to this problem is to use the Moore-Penrose inverse (Mardia et al.
1979, p. 287)(Nielsen 2002, p. 75). However, this approach can produce a
meaningless solution, with correlations trivially equal to one. Moreover,
in this case, a small change in the data can lead to large changes in the
weights and scores (Wegelin 2000, pp. 26-27).

An alternative approach is to perform regularisation on the sample covari-
ance matrices. Regularisation was first introduced to the CCA method by
Vinod (1976) and later refined by S. E. Leurgans (1993). This method
is known as regularised CCA (rCCA) or canonical ridge analysis. This
regularisation is imposed by replacing the matrices X' X and Y'Y with
X'X + AT, and Y'Y + AyI 4 respectively in the optimisation criterion.
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The regularisation parameters A, and A, should be nonnegative and if
they are nonzero, then the regularised covariance matrices may be nonsin-
gular. Note that ordinary CCA is obtained at A} = A} = 0, and PLS-SVD
is obtained with A} = Aj = 1. Other approaches exist; see e.g., (Witten
et al. 2009, eq. (13)).

PLS-R (also called PLS1 if ¢ = 1 or PLS2 if ¢ > 1) is a regression tech-
nique that predicts one set of data from another, hence termed asym-
metric, while describing their common structure. It finds latent variables
(also called component scores) that model X and simultaneously predict
Y. While several algorithms have been developed to solve this problem,
we focus on the two most well known variants. The first is an extension
of the Nonlinear estimation by Iterative PArtial Least Squares (NIPALS),
modified by Wold et al. (1984) to obtain a regularised component based
regression tool. The second is the Statistically Inspired Modification of
PLS (SIMPLS) developed by de Jong (1993). Other PLS regression al-
gorithms can be found in Lindgren & Rénnar (1998), and see also Alin
(2009) for a numerical comparison.

The h-th set of PLS regression weights (wy,, z5) given by NIPALS solve
the optimisation problem (ter Braak & de Jong 1998, eq. (15))

maximize Cov(Xw,Y z), subject to Cov(Xw, Xw;) =0,

PL wl|=|z||=1
1Pg,, wl=l=]

for 1 < j < h. The first pair (§;,w1) of X- and Y- score vectors is
the one with maximal covariance. The next pairs are searched for using
successively deflated versions of Xy and Y.

Two equivalent versions of the NIPALS algorithm are found in the lit-
erature; whether z; is scaled (Hoskuldsson 1988), or not (Wold et al.
1984, Tenenhaus 1998). We note that both algorithms provide equivalent
regression parameters, and only differ in the calculation of the Y-scores
and loadings. At the end of both algorithms, the fitted values Y i are
computed (Phatak & de Jong 1997, Equ. (20))

Yy ="P=,Y =E4(ELEy) ELY.

In addition to the usual decomposition equations (1) that will be expli-
cated below, the PLS regression algorithm includes an additional “inner
relationship” which relates the Y-scores €2,; to the X-scores 2,1, explic-
itly:

Qe = EnPp+ Rep, (2)

where Qo5 = (w;)1<j<n, Pr = diag(pj)i<j<n is a diagonal matrix, and
where R, is a matrix of residuals. We have

Y = QuD} +F);=XBpys+Ey,

where Dy = [vy,...,vH], ﬁpLS = WHPHDL, and where the matrices
of residuals are Fy, = EgGy; — Qu Dl +Y 5 and EY;, = RyD), + FY,.
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The second commonly used PLSR algorithm, called SIMPLS (de Jong
1993), calculates the PLS latent components directly as linear combina-
tions of the original variables. The objective function to optimise is (Chun
& Keles 2010, eq. (3))

(wp,zp) = argmax Cov(Xw,Yz), subjectto Cov(Xw,Xw;)=0,

llwll=[1z[=1

for 1 < j < h. It is important to note that both algorithms maximise
the same covariance function but have different constraints and thus yield
different sets of direction vectors.

The decomposition model for SIMPLS is identical to the decomposition
of PLS2, the only difference being in how the weights are calculated. In
both models we have Eq, = X W, (or Eop = XW.h), but the different
constraints on the adjusted weights wy, (or wy,) give different score vectors;
namely [lwp|l2 =1 or ||77th 1'117hH2 =1.

2.3. Computational details

As described in Section 2.2, the PLS algorithms iteratively construct linear com-
binations of the original data. These quantities are calculated recursively using
deflated matrices X j,_1 and Y'j,_1. At the h-th iteration (h = 1, ..., H), we com-
pute &, = Xp_1up = Xwj, and wy, = Y,_1vp, = Yz, The (normed) weights
up, and vy, are called the weight vectors (also direction vectors, saliences, or ef-
fective loading weight vectors), while wy, and zj, are called the adjusted weights.
Since the adjusted weights define the score vectors in terms of the original data
matrices (as opposed to the deflated matrices), the size of the elements of the
weight vector can be interpreted as the effect of the corresponding variables
in the component score. On the other hand, the weight vectors u; and v; are
defined in terms of the deflated matrices and cannot be interpreted this way.
However, these deflated weights offer easier computational implementation.
Each of the four PLS methods can be described as an optimisation problem
for the weights (up, v;,) coupled with a deflation method to ensure the required
orthogonality. Generally, this optimisation problem can be stated as:

maximise u' M), _q1v (3)
llull,=llvll,=1
where Mj,_1 = X271Yh71 and u"Mj,_jv = Cov(Xp_1u,Y,_1v). One can

show (Lafaye de Micheaux et al. 2017, Appendix A) that computation of the
h-th pair of PLS weight vectors, from equation (3), is equivalent to solving

(un,vn) = argmin | Mp_1 — duvT|%.
lull,=llv[l,=1, 6>0

The solution to this problem may be calculated by taking the first left and right
singular vectors from the SVD of M,_;. The remaining deflation methods and
initialisations for the PLS methods are given in Table 1.
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TABLE 1
Computational details for the four PLS methods. The optimisation (3) is solved for
My 1= Xzith_l with the corresponding initialisation and deflation steps.

Method initialise Deflation Deflation M

X(]:X Xh,:Xh_l(If’u/h,’u,.lh-) M;L:Mh_lfzShuhv;r,
PLS-SVD ) 3

Yo=Y Y,=Yn 1(I—v,v}) Sn = upnMpu_1v],

Xo=X Xn =1 &, (£6) '€ 1Xn1 My = (chuy —Ip)
PLS-W2A h\ShSh B h h P

Yo=Y Y, =[I—wp(wwy) tw]Y o1 X Mh,l('uhd,T1 —1,)
coA Xo=X(X"X)"2 X}, = X),_1(I —upu}) M), = M _1 — Spupv),

Yo=YXY'Y)"'? Y, =Ys 1(I—vnv}) S = unMp_1vj,

Xo=X M), = (I - chuy,) .
PLSR  Yo—Y Xn =1 €,(€8,)" €)1 X X (Mp—1 — Nn—1undy)

No— XTX Yy =1 —&,(€h6,) €LY 01 Ny = (epup — 1)

X Nh,l(uhc; — I)

3. Penalised PLS

All of the previous PLS methods can be written in terms of a single optimisa-
tion problem coupled with an appropriate deflation to ensure the appropriate
orthogonal constraints. In this section, we introduce the framework for penalised
partial least squares in the unified PLS methodology. Several penalisations are
then considered and presented in a unified algorithm that can perform all four
PLS methods, and their regularised versions.

3.1. Finding the PLS weights

We focus on a particular class of algorithm designed to induce sparsity for the
PLS weights. For this class of algorithm the weights, (up,v)) at step h, are
defined as the solution to the optimisation problem:

maximise u' M}, v — Py, (u) — Py,(v) subject to |lully <1, ||vfly, <1, (4)

where P, and P, are convex penalty functions with tuning parameters A;
and Ag, and the matrix M,_; is defined using the appropriate deflation (see
Table 1). The resulting objective function can be recognised as the Lagrangian
of the penalised matrix decomposition introduced by Witten et al. (2009). If the
penalty functions are homogenous of order one: P(cx) = c¢P(x) for all ¢ > 0,
then the weights (up,vy) can be found by iteratively calculating

@y, =argmin {|M,_1 —av' |} + Py, (@)}, (5)
ueRP

on =argmin {[|M]_, —ou"|[} + Py, (@)} (®)
veR?

and scaling; up = @p/||un||2 if ||Ur||2 > 0 and up, = 0 otherwise, v, = Oy /||Un||2
if || Up]|2 > 0 and v;, = 0 otherwise. This algorithm for finding penalised weights
was studied in Allen et al. (2014) for regularised principal component analysis.
We note that similar variants of this process have been proposed elsewhere,
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but these methods are presented as stand-alone methods such as sparse PCA
(Shen & Huang 2008), sparse CCA (Witten et al. 2009), sparse PLS regression
or sparse canonical PLS (Lé Cao et al. 2008). Our work provides a clear, unified
framework for multiple PLS methods that allows for calculation of the weights
with sparsity-inducing penalisations.

Note that the optimisation problem (4) is a biconvex problem and thus mul-
tiple optimal solutions may exist (Tseng 1988). By iteratively solving the op-
timisation problems in (5) and (6) we are guaranteed to improve or retain the
same objective value in problem (4). However, if the initial values for u and v
are poorly chosen, it is possible for the method to get caught in a local opti-
mum or to end up oscillating between solutions (Netrapalli et al. 2015). We use
the SVD solution to initialise our algorithm, an approach that is common for
implementing these types of algorithms (Allen & Tibshirani 2010, Witten et al.
2009).

3.2. Deflation and the PLS weights

Computing the penalised versions of the four different PLS methods is achieved
by alternating between two subtasks: solving (5) and (6) for the weights, and ma-
trix deflation. Without the penalties, P, and P,,, the matrix deflation enforces
certain orthogonality constraints for each of the four standard PLS methods.
However, with either penalty P, or P),, these deflations do not ensure any
orthogonal constraints. Although these constraints are lost, Witten et al. (2009)
state that it is not clear that orthogonality is desirable as it may be at odds with
sparsity. That is, enforcing the additional orthogonality constraints may result
in less sparse solutions. Similar to Witten et al. (2009) and Lé Cao et al. (2008)
we use the standard deflation methods in our implementation of the penalised
PLS methods. Alternative matrix deflations have been proposed for sparse PCA
(Mackey 2009). However, these methods have not been extended in the general
penalised PLS framework.

Another key observation is that for the NIPALS PLS regression, PLS-W2A
and CCA the scores were defined in terms of the deflated matrices §;, = X ,_1uy,
and wy, = Y, _1vy. Consequently, the sparse estimators given by solving (5) and
(6) perform variable selection of the deflated matrices. Thus the latent compo-
nents formed using these methods have the interpretation given by Remark 1
below. In our implementation, we also calculate the adjusted weights wj; and
zp (or wy and 2zp), where €, = Xwy, and wp = Y zp. These weights allow
for direct interpretation of the selected variables in the PLS model. Note that
although wj, and zj allow for direct interpretation of the selected variables, the
sparsity is enforced on uj, and wvy. So if u, and v, are sparse, this does not
necessarily mean that the adjusted weights wy and z; will be sparse.

Remark 1 The first latent variable &, = Xwuq is built as a sparse linear com-
bination (with weights in wy) of the original variables. The next latent variable
&y = Per Xuyp is the part of the sparse linear combination (with weights in us)
of the original variables that has not been already explained by the first latent
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variable. And more generally, the h-th latent variable is built as a sparse linear
combination of the original variables, from which we extract (by projection) the
information not already brought by the previous latent variables.

We note that an alternative SIMPLS formulation for the penalised PLS meth-
ods was proposed in a regression setting by Allen et al. (2013). In the SIMPLS
method the weights are directly interpreted in terms of the original variables, so
wyp, = up and z; = vy. Although this method allows for direct penalisation of
the weights, the orthogonality conditions still do not hold. We have incorporated
this method and a similar variant for PLS-W2A into our R package bigsgPLS
to allow for direct penalisation of the weights.

3.3. The penalised PLS methods

Computationally, the PLS method is an efficient approach to sparse latent vari-
able modeling. The main computational cost is in solving for the PLS weights
as described in equations (5) and (6). The cost of solving for these weights is
penalty-specific but can be minimal in a number of useful applications. We de-
tail a few examples where these equations have been solved analytically and
provide an algorithm that treats the penalised versions of the four PLS cases

(i)-(iv)-
8.8.1. Sparse PLS

The (original) sparse PLS version sPLS (Lé Cao et al. 2008, Chun & Keles 2010)
considers the following penalty functions

p q
Py (@) =Y 2\)i]  and Py, (B) = 2X|i;]. (7)
i=1 j=1

These penalties induce the desired sparsity of the weight vectors uy, = @ /|| ||2
and vy, = 0,/||0n |2, thanks to the well known properties of the £;-norm or lasso
penalty (Tibshirani 1994). The closed form solution for this problem is:

u = gSOft(Mva A1)7 v = gSOft(MTua AQ) (8)

where ¢g*°™(-, A1) is the soft thresholding function, with the understanding that
the function is applied componentwise. To unify these results with the ones to
come, we introduce the sparsifier functions S, and S, to denote analytical func-
tions that provide the solution for the weights. The sparsifiers are functions of
the data M, the fixed weight u (or v) and additional penalty specific parameters
0., (or 8,). For sparse PLS we have,

@y = Sy(v; M, 0,) = ¢°%(Mwv, ), o, =S,(u; M,0,) = g*° (M u,\y),

9)
where 6, = A1 and 0, = ;.
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3.8.2. Group PLS

There are many statistical problems in which the data has a natural grouping
structure. In these problems, it is preferable to estimate all coefficients within
a group to be zero or nonzero simultaneously. A leading example is in gene
expression data, where genes within the same gene pathway have a similar bi-
ological function. Selecting a group amounts to selecting a pathway (Palermo
et al. 2011). Variables can be grouped for other reasons, for example, when we
have categorical covariates in our data. The categorical data is coded by its
factor levels using dummy variables, and selection or exclusion of this group of
dummy variables is equivelant to selection of the categorical covariate (Nguyen
& Rocke 2002).

Let us consider a situation where both matrices X and Y can be divided
respectively into K and L sub-matrices (i.e., groups) X®) px pr and y® .
n X g, where py, (resp. ¢;) is the number of covariates in group k (resp. [). The
aim is to select only a few groups of X which are related to a few groups of Y.
We define M*) = X®'y and MOD =y ' X,

Group selection is accomplished using the group lasso penalties (Yuan & Lin
2006) in the optimisation problems (5) and (6):

K L
Py(@) =M veela®ll Pu@) =) vallsl,,  (10)

k=1 =1

where @®) and @) are the sub vectors of the (unscaled) weights @ and ©
corresponding to the variables in group k of X and group ! of Y respectively.
This penalty is a group generalisation of the lasso penalty. Depending on the
tuning parameter A\; > 0 (or Ay > 0), the entire weight subvector a® (or ﬁ(l))
will be zero, or nonzero together. The closed form solution for the group PLS
method for the k-th subvector of w, and the I-th subvector of v is given by
a® = S&k) (v; M, 0,,) and oW = Sl(,l)(ft; M, 0,) respectively, where

Sk (o, M,0,)=(1- ﬁi\/kp_ﬂ Mg, (11)
2 | M*s), ),

A
Sq()l)(ﬁvMaev) = (1 - 2@) M(’l)ﬁ’ (12)
2 arVal, )

The sparsifier functions are applied groupwise

@ =S, (9:M,0,) = (SgU(f;; M,8.),...,SU) (&; M, eu))

with 0, = (p1,...,pK, 1) and 8, = (q1,...,q5, A2). A proof of these equations
is given in (Liquet et al. 2016).
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3.8.3. Sparse group PLS

One potential drawback of gPLS is that it includes a group in the model only
when all individual weights in that group are non-zero. However, sometimes we
would like both sparsity of groups and sparsity within each group. For example,
if the predictor matrix contains genes, we might be interested in identifying par-
ticularly important genes in pathways of interest. The sparse group lasso (Simon
et al. 2013) achieves this within group sparsity. The sparse group selection in
the PLS methodology is accomplished using the sparse group lasso penalty in
the optimisation problem (5) and (6):

K

Py(@) = (1—a)h ) voela™]y +ahal,,
k=1
L

Pp(®) = (1—a2)da Y va|oW s+ azde|d],.

=1

The sparse group penalty introduces tuning parameters oy and as which provide
a link between the group lasso penalty (ay = 0, ae = 0) and the lasso (a3 =
1, ag = 1). Depending on the combination of a; and A; (or ae and Ay) the
(unscaled) weight subvector @®) (or *)) will be eliminated entirely, or sparsely
estimated. The adaptation of the sparse group penalty for the PLS method was
first considered in (Liquet et al. 2016). The closed form solution of the sparse
group PLS method for the k-th subvector of a® is given by

if llgsll2 <\

0
k) (5 M _ (1—a1)/pk
qu )(’U; ,Ou) - {9_1 . Al(l—ﬁl)il/pkgl otherwise g
2 2|lgx

where g; = g*®°ft (M(k")f), )\1041/2). Similarly, the I-th subvector of v is given
by

0 if llg21l2 < /\2
SO (9; M, 8,) = (I-a2)var =
v ) 2 — 4)‘2(15‘(?;2)"‘/‘1792 otherwise

where gp = g*°f (M CDa, Aaars / 2). The sparsifier functions for these penalties
are:

@ =S,(v;M,0,) = (S&”(ff; M.6,),...,5) (®; M, 0u>)
o= S,(a; M,0,) = (5,5”(&; M.0,),...,5P (@ M, av))

with 8, = (p1,...,pKr,A1,a1) and 0, = (q1,...,qL, A2, @2).

3.3.4. Other penalties

The penalties discussed so far have enforced general sparsity or sparsity for
a known grouping structure in the data. Extensions to the group structured
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sparsity in partial least squares setting have also been considered in terms of
overlapping groups (Chen & Liu 2012), or additional grouping restrictions (Sut-
ton et al. 2018). The penalisations considered so far have all resulted in closed
form solutions for the updates of u and v. We note here that this is not always
the case. The fused lasso penalty (Tibshirani et al. 2005) is defined by:

P

Py (@) = Mon ) i — |+ (1= a)h @],
=2
q

Pr(®) = Max Y |5 — Bia] + (1= an) A ||,
=2

The first term in this penalty causes neighboring coefficients to shrink together
and will cause some to be identical, and the second causes regular lasso shrinkage
of the parameters for variable selection. Unlike the previous methods, a closed
form solution for the fused lasso cannot be directly achieved. This is because
the penalty is not a separable function of the coordinates. Because there is no
closed form solution for the fused lasso, we cannot write a sparsifier function, so
we have not considered this method. We note that methods exist that can solve
the fused lasso problem, either by reparameterisation, dynamic programming
or path based algorithms. In particular, Witten et al. (2009) have considered
solving problems of the form (5) and (6) with the fused lasso penalty. In their
paper, they propose a sparse and fused penalised CCA, however in their deriva-
tion they assume X'X = I and Y'Y = I. In our framework, this method
would be sparse and fused penalised PLS-SVD.

4. The unified algorithm

Algorithm 1 allows for a unified computation of all four PLS versions (i)—(iv),
with a possibility to add sparsity. Adjusted weights can also be computed and,
if the number of requested components H is greater than 1, a deflation step is
executed. Note that, if Y is taken equal to X, this algorithm performs PCA,
as well as sparse PCA versions. If this is the case, the optimised criteria are
simply restated in terms of variance instead of covariance. We now have all the
ingredients to propose a unifying algorithm.

Remark 2 On line 10, we impose that |[u1lly = ||villy = 1 and uy; > 0 where
i = argmaz < j<,|u1, ;| to ensure uniqueness of the results.

Note that wy, and zj, of lines 22, 24 and 28 correspond to wy, and Zy, in the
text.

At this point, it is worthwhile noting that when p and ¢ are small compared to
n, one can slightly modify Algorithm 1 by using the recursive equations that
express M, in terms of M _1, instead of using the recursions on X, and Yy,.
These recursions are provided in Table 1 of Section 2.3. This should increase
speed of execution of the algorithm.
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Algorithm 1 Sparse and non-sparse PLS algorithm for the four cases (i)—(iv)

Require: Xg = X (with n rows), Yg =Y, H, Case, €, 0., 0y, Su, Sy

G W

[=2]

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:

. Extract Az and )y as the first element of 8, and 6, respectively

Mo+ X{Yo/(n—1); P+ I,and Q + I, > Initialisation

u0<—0p;c10-<—0;;'v0<—0q;eg<—0;andﬁo<—wo<—1n

: If Case (iii) then

A V/n—I(X]Xo+XP)" V2, B /n—1(YIY0+2Q)" /2 ; Xo + XoA;
Yo+ YoB and Mg + AM()B

: end if
:for h=1,...,H do

Apply the SVD to M, _1 and extract the first triplet (61, u1,v1) of singular value and
vectors.
Set up, + uwy and vy, + v

while u, has not converged®™) do > Sparsity step if Ay > 0 or Ay >0
Uy, < Su(vp; Mp_1,0z);  wp < ap/l|ap]ly
Op < So(un; Mp—1,0y);  vh < O/[|Tnlly
end while > End of sparsity step
& — Xy, > X-score
wWhr <~ Yp vy > Y-score
If Case (i) then > Adjusted weights step
wyp, < up and zp < vy
end if

If Case (ii) then
P+ P(I, —up_1c]_,)
Q<+ Qg — Uh—le-}rl_1)
wyp, < Puy, and zp < Qup,
end if
If Case (iii) then wj + Auj and zp, + Bvy,
If Case (iv) then
P« P(I, —up_1c]_,)
wp Puh
Zh < Up
end if > End of adjusted weights step
If Case (i) or (iii) then > Deflation step
c,TL — u{b and ez — v{
end if
If Case (i) or (iv) then ¢] + ENXp_1/11€13
If Case (ii) then e] + w]Y,_1/|lwp3
If Case (iv) then d] < £]Y 1 /||€,113
Xh «— thl —€hc;rl
If Case (iv) then

Y+ Y1 —&,d} > PLSR
Else
Yh — Yh,1 — whe-{b
End If
M, + XILYh > End of deflation step
Store &, wp, Up, Vp, Wh, Zp, c;rl and (d}; or e-{L)
end for

(%) Convergence of a vector t is tested on the change in ¢, i.e., |[to1d — tnew||2/]|tnew]||2 < €,

where € is “small”, e.g., 1076.

Moreover, one can use various approaches to deal with the cases when n,

p or q are too large in our algorithm, making some objects too large for the
computer’s memory. These can be divided into chunk approaches and streaming
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(or incremental) approaches, which are presented in the next subsections. Of
course, any combinations of these approaches can be used if necessary. Some of
these approaches might also increase the computation speed, even in a context
where all objects would fit into memory.

4.1. Matrix multiplication using chunks

To scale Algorithm 1 to big data (i.e., very large n > p and ¢), we can use a
simple idea to multiply two very large matrices that are too big to fit into the
computer’s memory.

Let us divide the total number n of rows of X (resp. of Y') into blocks X ()
(resp. Y(y)), 9 =1,...,G, of (approximatively) the same size. We have

a
T T
XY = ZX(Q)Y(Q)‘

g=1

The number of blocks G has to be chosen so that each product X(TQ)Y(g) 1P Xq
can be done within the available RAM. Note that all these products can be
performed in parallel if the required computing equipment is available.

4.2. SVD when p or q is very large

The main step of our algorithm is the computation of the first triplet (é1, w1, v1)
in the SVD of the (p X ¢) matrices M _;. The irlba (Baglama & Reichel 2015)
R package can be used to compute quite easily this triplet for values of p and
q as big as 50,000. This package is based on an augmented implicitly restarted
Lanczos bidiagonalisation method.

When p (or ¢) is much larger, another approach is necessary to compute the
SVD of M,_1; see e.g., (Liang et al. 2016). Suppose that p is large but not
q, which is common in several applications. We thus suppose that p > ¢. The
Algorithm 1 in Liang et al. (2016) is now presented to highlight the elements
needed in our algorithm. We can partition a large matrix M : p X ¢ by rows
into a small number s of submatrices (or chunks):

MT—(M] M o MT).

Let M; = UiDiVI denote the SVD of M; : g X ¢ such that gs = p (w.lo.g.).
We can take g much larger than g as long as it is still possible to compute the
SVD of these submatrices. Define U : p x p and H : p X ¢ by

U, D,V]
U2 D2V-2r
and H = .

<
Il

U, D,V



PLS for Big Data 137

where U; : g x g and D; : g x ¢ and V; : ¢ X ¢, so that M = UH. Let
H = UHDHVL be the SVD of H. Note that this matrix is as large as M so
one may wonder what has been gained with this approach. But D; being a g X g
diagonal rectangular matrix, DZ-V;-'- has g — q zero row-vectors in its bottom.
Consequently, the matrix H contains only sq non-zero row vectors. Now let

H = RH : p x q be a rearrangement in rows for H such that its first sq row
vectors are non-zero and p — sq row vectors are in its bottom. We now have to
T
compute U*D*V™* | the SVD of a (much smaller) sq x ¢ matrix!:
* *
H - RRg-g"| YU 0 D™yt
0 Ip,Sq 0 ~~
VT
H

Un Du

We obtain M = (UU y)DyV'}; which forms a SVD of M.

Now, let 1 be a vector containing only Os but a 1 in the first position. For
our PLS algorithm, we only need to compute the first triplet in the SVD of M,
namely §; = 1;DH1q = D’{,l, v1 = Ve = Vyl, = V1, and the first column
of (UUg):

Ul,-q([*]fl)l,u-,q
U* 0 ] 1 Us,eq(Ug1)gs1,....29

w = (OUm1, = UR' {
Us,'q(U:Fl)(5—1)4+1,...,sq

It is seen above that only the ¢ first triplets of the SVDs of the M ;s are required.
So, overall we “only” have to compute s truncated (¢ x q) SVDs (of the M;s)
and one truncated (1 x 1) SVD (of the sq first lines of H, which are easily
obtained from these truncated SVDs).

Moreover, we can compute w; from w; using the simple formula u; =
Mwv,/||Mwv| (using a chunk approach).

When g is larger than p, we just partition M in columns instead of rows.
When both p and ¢ are large, one can adapt Algorithm 2 in Liang et al. (2016)
which generalises the above. They even propose a third algorithm for the case
of online (streaming) SVDs.

Note that these algorithms based on the split-and-merge strategy possess an
embarrassingly parallel structure and thus can be efficiently implemented on a
distributed or multicore machine.

4.3. Incremental SVD when n is large

We want to compute the truncated SVD of the matrix M) = XZYh when n
is very large (and the X- and Y-matrices are split in blocks, or chunks, of size
n/G for some given G). One can use the divide and conquer approach presented

IThe transpose sign on R is missing in Liang et al. (2016).
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in subsection 4.1 to compute first the matrix M, = X ZY;L and then evaluate
the SVD of this matrix. We present here an alternative approach to Cardot &
Degras (2017) by considering an incremental version of the SVD.

Let X" =[2z],...,2) and YT = [y],..., 9] be non-centered data matrices.
We note

n

LT
M, =X, Y= (@ —px,) (Y — ty,)"

i=1

with the centered data matrices
_ T L T
Xn - Xn - 1n/JJX,n7 Yn - Yn - ]-nll/Y,n

where gy, =n "' X1, =n Y0 @] and py, =07V, =n Y0yl
We have the streaming updating formulas

1
KX nt1 = nt INX’“ + T 1wn+1,
1
H‘Y,n+1 = n —+ 1H‘Y,n + n 4+ 1yn+17
and
n
Mu,t1 = M,+ m@?m—l —txn) Ypir — Hy,n)T~ (13)

Now, let the H-rank truncated SVD of M, be MSIH) = Un,.HAn7HVZ7,H.

- ~ . T
Let @y 41 =Tpy1 — px, and Yy = Yy pq — By, Since Uy, qyUyon = I, we
have

Tpi1 = Pun.a®os1i T PyL  To
T ~ -
- Un,oHUn,.Hwn+1 +,PU# .HwnJrl
- U <L
= n,0HCn+1 T Ty

with €1 = Uy, opy@ns1 and @,y = Py &npi. Similarly,
9 n,e

'!~Jn+1 =Viendny + @i—kl

with dni1 = V) oy¥,41 and 54y = Pys | §,0q. Now, in view of (13), we
have the approximation

H no . -

Remark 3 Note that this approzimation is in fact exact when H = rank(M,,).
So if we want to use this approach in our algorithm, we would have to compute all
the singular elements and not only the first triplet. This being said, if for example
q 1s not too large (e.g., ¢ = 1 which is common in applications) this is not a
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problem anymore. Moreover, one can easily find that u; = X Y v, /|| X Y v, ||
and vy =Y Xu,/||Y T Xu,| (Lafaye de Micheauz et al. 2017). Note also that
uy s the first eigenvector of the p X p matrix (YTX)TYTX whereas vy is the
first eigenvector of the q¢ X q matriz (XTY)TXTY. We only need to compute
either uy (if p < q) or vy (if ¢ < p), from which we obtain the other one.

At this point, one can write

i &t gta 1
1 1

M = Uperr, — 1 Qiy | Viorr, —1t
[y | |Uniall2

with
Qnir = _n < %%E + Cnﬁldlﬂ J'JQ?TJ;+1||2FE+1 ) .
n+1 &0 1llodnr & ll2llgnialle
It then suffices to perform the SVD of the matrix @, of dimension (H +1) x
(H +1). Writing Q,,,1 = An+1Sn+1B] 1, we have

H
M7(1+)1 = Un+1An+1Vl+1

with An-‘,—l = Sn_;,_l,

L1
Zr

Un—i-l: Un7~fi+l An+1
||:B7L+1||2

and

gJ_
VnJrl: Vn7~n4+1 Bn+1~
||yn+1H2

To keep the approximation M ﬂ’l of M, at rank H, the row and column

of A, 41 containing the smallest singular value are deleted and the associated
singular vectors are deleted from U, 41 and V1.

This incremental way to compute the SVD provides a promising alterna-
tive for handling very large sample sizes (especially when ¢ is not too large).
Moreover, the incremental SVD is well suited to a data stream context.

5. Numerical Experiments

In this section, we use the previously mentioned packages and our new R package
to carry out a short simulation study in order to illustrate the numerical behavior
of the new proposed approach. The experiments have been conducted using a
laptop with a 2.53 GHz processor and 8 GB of memory. The parallel strategy
utilises four processor cores.

We present two simulations to illustrate the good performance of the proposed
approaches and the scalability to large sample sizes of our algorithm. The first
simulation considers the PLS-R model (case (iv)) on group structure data while
the second simulation presents an extension of PLS approaches to discriminant
analysis.
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5.1. Group PLS model

We generate data with a group structure: 20 groups of 20 variables for X (p =
400) and 25 groups of 20 variables for Y (¢ = 500). To highlight the scalability
of our algorithm, we generate two big matrices from the following models linked
by H = 2 latent variables:

X =8yCL+FY, Y =84DL+FY), (14)

where the matrix 2y = (§;) contains 2 latent variables &; and £,. The entries
in these vectors have all been independently generated from a standard normal
distribution. The rows of the residual matrix F'3 (respectively, F'5;) have been
generated from a multivariate normal distribution with zero mean py (resp.
iy ) and covariance matrix Xy = 1.52I, (resp. &y = 1.521,).

Among the 20 groups of X, only four groups each containing 15 true variables
and five noise variables are associated with the response variables of Y. We set
the p-vector ¢; (first column of the C'y matrix) to have 15 1’s, 30 —1’s and
15 1.5’s, the other entries being all set to 0. All 15 non-zero coefficients are
assigned randomly into one group along with the remaining 5 zero coefficients
corresponding to noise variables. The vector c; is chosen in the same way as c;.
The two columns of Dy are g-vectors containing 15 —1’s, 15 —1.5’s and 30 1’s
and the rest are 0’s such that the matrix Y has a similar group structure for
four groups containing the signal. Finally, the sample size is set to n = 560, 000
observations which corresponds to storage requirements of approximately 5 GB
for each matrix, thus with a total exceeding the 8 GB of memory available on
our laptop.

The top four plots of Figure 1 show the results of the group PLS estimated
with only n = 100 observations. For such a sample size, the usual group PLS can
be used without any computational time or memory issues. In this case, group
PLS manages to select the relevant groups and performs well to estimate the
weight vectors u; and v related to the first component and the weight vectors
ug and wvs related to the second component.

The bottom four plots of Figure 1 show the results of the group PLS esti-
mated on the full data set which can be only analysed by using the extended
version of our algorithm for big data. In this run, we use G = 100 chunks
for enabling matrix multiplication. The execution time was around 15 min-
utes for two components (H = 2) and took less than 2 minutes to get the
first component. We can observe that the signal has been perfectly identi-
fied and estimated, which is expected for such a huge amount of informa-
tion.

Note that for validation purposes, the extended version of our algorithm for
big data has been executed and exactly matched the usual algorithm on the
small data set (n = 100).
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5.2. Case of regularised PLS-DA

We consider here the case of qualitative response variables for discrimination
analysis. In this framework, PLS approaches have often been used (Nguyen &
Rocke 2002) by recoding the qualitative response as a dummy block matrix
Y : n X ¢ indicating the class of each sample (¢ being the number of categories).
One can also directly apply PLS regression on the data as if Y was a matrix with
continuous entries (from now on called PLS-DA). Note that Barker & Rayens
(2003) give some theoretical justification for this approach. A group and a sparse
group version have been proposed by Liquet et al. (2016) using only penalties on
the loading related to the variables in X . Our unified algorithm is then naturally
extended in the same way to deal with categorical variables. We illustrate it on
a big data set defined as follows. Let Ay be the set of indices (4, j) of the i-th
observation and j-th variable that are associated with the corresponding gray
cell as shown in Figure 2.
We have Vk=1,...,6, Vi=1,...,n,Vj=1,...,p

Xij =tk X LG jeay + €

where pu" = (u1,...,u6) = (—1.0,1.5,1.0,2.5,—0.5,2.0), and ¢, ; u N(0,1). As
illustrated on Figure 2, the matrix X is composed of 6 groups of p; = 100 vari-
ables (p = 22:1 pr = 600) and each of the 3 categories of the response variable
are linked to two groups of variables. We used a sample size of n = 486,000
which corresponds to storage requirements of approximately 5 GB for the X
matrix. We use G = 100 chunks for computing the different matrix products.
The run took around 9 minutes for a model using 2 components. The relevant
groups have been selected in both components. We randomly sample 9,000
observations and present in Figure 3 their projection on the two components
estimated on the full data set. A nice discrimination of the 3 categories of the
response variable is observed.
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5.3. The EMNIST data set

The now famous MNIST data set (LeCun & Cortes 2010) has become a stan-
dard benchmark for classification systems. The Extended MNIST (EMNIST),
another freely available data set, “constitutes a more challenging classification
task involving letters and digits, and that shares the same image structure and
parameters as the original MNIST task” (Cohen et al. 2017). This data set con-
sists of n = 280,000 handwritten digit images. It contains an equal number of
samples for each digit class (0 to 9). The images are already split into a training
set of 240,000 cases and a test set of 40,000 cases. Each case is a 28 x 28 pixels
gray-scale image whose intensity values range in [0, 255]. Overall, if imported
into R, they would use around 1.6 GB. We applied our PLS-DA algorithm on
this data set, where the matrix X : n x p (p = 784) contains the images, and the
matrix Y : n x ¢ (¢ = 10) indicates the label of each image. We ran a PLS-DA
model with 20 latent components which enabled us to get an accuracy (percent-
age of correct classification) of 86% in around 3 minutes using 2 cores. Note that
in Cohen et al. (2017), linear classifiers produced an accuracy of around 85% for
the EMNIST data. We also considered a larger version of the EMNIST data set
where each image in the training set is rotated 5 and 10 degrees in both a clock-
wise and counterclockwise direction. The enlarged data set contains 1,200,000
images and uses 7.5 GB of memory. It is more representative of data sets which
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Fi1Gc 4. Wine plot of the elapsed computation time for fitting a single component of the PLS
discriminant analysis algorithm using 2, 4 or 6 cores (on a laptop equipped with 8 cores). On
the vertical axis, ngx indicates that © chunks were used in our algorithm. The wine plot is
obtained from ten independent runs on the same data set.

are too big to be loaded into a standard R session. The PLS-DA model with 20
latent components obtained an accuracy of 85.5% in around 18 minutes with 2
cores.

We also explored different versions of our algorithm by varying the number
of chunks (ng option) to compute the different cross product matrices required
during the run. The algorithm was run 10 times on the rotated data set and we
investigated the effect of using 2 to 6 cores on the computation time to obtain
the first component.

The results illustrated in Figure 4 indicate that increasing the number of
chunks (for a fixed number of cores) leads to better computational performance.
However, it is worth noticing that for ng set to a small value (5 say), increasing
the number of cores had a negative effect on computation time. This increase
may be due to an increased computational overhead involved with splitting and
recombining the data sets with more cores. This computational trade-off can be
hard to predict, but we have found that using more cores and a larger ng for
big data improves the computational performance.

6. Conclusion and future work

This paper surveys four popular partial least squares methods and unifies these
methods with recent variable selection techniques based on penalised singular
value decomposition. We present a general framework for both symmetric and
asymmetric penalised PLS methods and showcase some possible convex penal-
ties. A unified algorithm is described and implemented for the penalised PLS
methods, and we offer further extensions to deal with massive data sets (n, p and
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q very large). A full comparison in terms of time and memory of the different
proposed extensions is an open area of future research.

Aside from computational issues, it is unclear if retaining the deflations of
the usual PLS methods is appropriate when there is penalisation. In particular,
we note that the orthogonality constraints of the original PLS methods are not
retained for the penalised methods. Further development of our methods could
seek to preserve the orthogonality constraints. We are perusing this open area
using ideas from Tibshirani & Taylor (2011), and Mackey (2009) for the simple
lasso penalty. However, further investigation is required in the context of more
complex penalties such as group or sparse group penalties.
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