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Abstract: The Horton laws originated in hydrology with a 1945 paper by
Robert E. Horton, and for a long time remained a purely empirical finding.
Ubiquitous in hierarchical branching systems, the Horton laws have been
rediscovered in many disciplines ranging from geomorphology to genetics
to computer science. Attempts to build a mathematical foundation behind
the Horton laws during the 1990s revealed their close connection to the
operation of pruning – erasing a tree from the leaves down to the root.
This survey synthesizes recent results on invariances and self-similarities of
tree measures under various forms of pruning. We argue that pruning is
an indispensable instrument for describing branching structures and rep-
resenting a variety of coalescent and annihilation dynamics. The Horton
laws appear as a characteristic imprint of self-similarity, which settles some
questions prompted by geophysical data.
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1. Introduction

Invariance of the critical binary Galton-Watson tree measure with respect to
pruning (erasure) that begins at the leaves and progresses down to the tree root
has been recognized since the late 1980s. Both continuous [123] and discrete
[34] versions of prunings have been studied. The prune-invariance of the trees
naturally translates to the symmetries of the respective Harris paths [80]. The
richness of such a connection is supported by the well-studied embeddings of the
Galton-Watson trees in the excursions of random walks and Brownian motions
(e.g. [125, 105, 135]). These observations provide a point of departure for this
survey of recent results on prune-invariance and self-similarity of tree measures
and related stochastic processes on the real line. The prune-invariant measures
are abundant; they allow a concise parameterization via Tokunaga sequences
(Sect. 3) and reveal a variety of structures and symmetries (e.g. Thms. 1, 9, 14,
17, 25, 26). Looking at random trees through a prism of self-similarity, one rec-
ognizes the renowned critical binary Galton-Watson tree (Sect. 5) as a boundary
point of a general family of invariant Galton-Watson measures (Sect. 6), and a
member of the most symmetric class of prune-invariant binary tree measures –
critical Tokunaga trees (Sect. 7). The main attention is paid here to a combina-
torial Horton pruning for finite trees (Sects. 2–9), yet we also consider infinite
and real trees, and more general forms of pruning (Sects. 10–12). The surveyed
results suggest that particular forms of pruning may underline the evolution of
familiar dynamical systems, such as Kingman’s coalescent (Sect. 9) or ballistic
annihilation (Sect. 11), allowing their efficient analytical treatment. The survey
also poses new questions related to random self-similar trees.

We begin by summarizing the key empirical observations that provided an
impetus for the topic (Sect. 1.1) and discussing the structure and main results
of this survey (Sect. 1.2). Here, we keep references to a minimum, and indicate
survey sections where one can find future information.

1.1. Early empirical evidence: self-similar river networks

The theory of random self-similar trees originates from hydrogeomorphology,
which supplied the key empirical observations related to analysis of river net-
works. The river studies commonly represent a stream network that drains a
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Fig 1. Horton-Strahler orders in a binary tree. Different colors correspond to different orders
of vertices and edges, as indicated in legend. (a) Perfect binary tree – orders are inversely
proportional to vertex/edge depth. (b) General binary tree – orders are assigned according to
the Horton-Strahler rule.

single basin as a binary tree with planar embedding. The basin outlet (point
furthest downstream) corresponds to the tree root, sources (points furthest up-
stream) to leaves, junctions (points where two streams meet) to internal vertices,
and links (stream segments between two successive nodes) to edges. We use the
graph-theoretic nomenclature below, although the original works commonly use
the hydrologic terms italicized above.

Horton-Strahler orders (Sects. 2.4, 2.5). Informally, the aim of orders
is to quantify the importance of vertices and edges in the tree hierarchy. It is
natural to agree that the orders of a vertex and its parental edge are the same.
Hence, we are only concerned with ordering vertices. In a perfect binary tree
(where all leaves are located at the same depth, i.e., at the same distance from
the root) one can assign orders inversely proportional to the vertex depth; see
Fig. 1(a). In other words, we start with order 1 at the leaves and increase the
order by unity with every step towards the root.

A celebrated ordering scheme that generalizes this idea to an arbitrary tree
(not necessarily binary) was originally developed by Robert E. Horton [85],
and later redesigned by Arthur N. Strahler [151] to its present form. It assigns
integer orders to tree vertices and edges, beginning with order 1 at the leaves
and increasing the order by unity every time a pair of edges of the same order
meets at a vertex; see Fig. 1(b). A sequence of adjacent vertices/edges with the
same order is called a branch (in hydrologic studies – stream or channel).

An example of Horton-Strahler ordering is shown in Fig. 2(a) for a small river
network in the south-central US. Here, the orders serve as a good proxy for (a
logarithm of) various physical characteristics of river streams: length, the area
of the contributing basin, etc. The Horton-Strahler orders (a.k.a. Strahler num-
bers) provide an efficient ranking of the tree branches and have proven essential
in numerous fields (see Sect. 4.4). As an example, the highest-order stream in a
river basin commonly coincides with the basin’s namesake river (e.g., Amazon
river is the highest-order stream of the Amazon basin). One may find it quite
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Fig 2. Stream network of Beaver creek, Floyd County, KY. (a) Streams (branches) of orders
K = 2, . . . , 6 are shown by different colors (see legend on the right). Streams of order 1 are
not shown for visual convenience. (b)–(e) Consecutive Horton prunings of the river network;
uses the same color code for branch orders as panel (a). The channel extraction is done using
RiverTools software (http: // rivix. com ).

impressive that such an identification can be done using purely combinatorial
properties of the river network. Further examples of Horton-Strahler ordering
are shown in Figs. 10, 11, 12.

The Horton-Strahler orders are instrumental in describing geometry of river
networks and connecting it to the river runoff and other surficial processes, as
we discuss next.

Horton law and its implications (Sect. 4). In his pioneering study “of
streams and their drainage basins” [85], Robert E. Horton described a geometric
decay of the number NK of branches (streams) of increasing Horton-Strahler
order K. Specifically, the observed counts NK in a large basin are closely ap-
proximated by

NK

NK+1
= RB ⇔ NK ∝ R−K

B (1)

for some Horton exponent1 RB ≥ 2. The lower bound on RB follows immediately
from the definition of Horton-Strahler orders, since it takes at least two streams
of order K to create a single stream of order K + 1. Figure 3(a) illustrates
Horton law (1) for branch numbers in the Beaver creek network of Fig. 2(a);
here RB ≈ 4.55.

Similar geometric relations, commonly referred to as Horton laws [131, 141],
are found for multiple other stream statistics. This includes basin contribut-
ing area, basin magnitude (the number of sources), stream length, link slope,
mean annual discharge, energy expenditure, etc. [141]. Figure 3(b) illustrates
the Horton laws for the average magnitude MK in a subbasin of order K, and
the average number LK of edges in a stream of order K in the Beaver creek
network of Fig. 2(a). The respective Horton exponents here are RM ≈ 4.55 (for
magnitude) and RL ≈ 2.275 (for edge number).

Horton laws play elemental role in statistical modeling of river basins, which

1Later in this survey, we only examine this Horton exponent and denote it simply by R.

http://rivix.com
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rests upon empirical regularities that describe the frequencies of and relations
among the key geometric and physical characteristics of individual streams.
Remarkably, many such regularities heuristically follow from Horton laws and
are parameterized by the respective Horton exponents. We give below several
key examples, which are further discussed in Sect. 4:

• Power-law frequencies of link statistics, such as upstream contributing
area, water discharge, or energy expenditure. Specifically, analysis [140] of
river basins extracted from digital elevation models (DEM’s) suggests

#{i : A(i) ≥ x} ∝ x−β and #{i : E(i) ≥ x} ∝ x−2β ,

where A(i) is the area upstream of link i, E(i) is the energy expenditure
at link i, and β ≈ 0.45. These power law frequency distributions, as well
as a deterministic relation between the respective exponents (β and 2β),
are explained by Horton laws for the involved quantities (area, energy
expenditure, link slope).

• Power law relations among river statistics. A well studied example is
Hack’s law that relates the length L of the longest stream in a basin
to the basin area A via L ∝ Ah with h ≈ 0.6 [78, 139]. The parameter h
is expressed via the Horton exponents for length L and area A.

• Modeling physical characteristics of a stream. Classical hydrologic and ge-
omorphologic studies of the mid 20-th century revealed that the key phys-
ical characteristics of streams – such as stream width, depth, slope, and
flow velocity, can be modeled as power functions of the stream magnitude
(number of upstream sources) [141, Chapter 1]. Hence, rather unexpect-
edly, essential physical characteristics of a river network can be calculated
from purely combinatorial statistics of its tree representation. Horton laws
for the stream magnitude and branch counts supply important constraints
for the examined physical quantities.

It has been long recognized that Horton laws are related to self-similar (frac-
tal) structure of river networks [154, 74]. Theorem 1 in Sect. 4 states a most
general (to date) result on the topic; it shows that (a properly defined) Horton
law for branch numbers necessarily holds in mean self-similar trees (Sect. 3).
Section 7 introduces the Hierarchical Branching Process – a self-similar tree
model that can reproduce arbitrary Horton exponents.

Horton pruning and its generalizations (Sects. 2.3, 10). The Horton-
Strahler orders are naturally connected to the Horton pruning operation, which
erases the leaves of a tree together with the adjacent edges, and removes the
degree-2 vertices that might result from such erasure. Figure 2 illustrates a
consecutive application of the Horton pruning to the Beaver creek network.
The branches (streams) of order K are being erased at the K-th iteration of
the Horton pruning. The mathematical theory of Horton laws concerns the
tree measures that are invariant with respect to the Horton pruning. We also
introduce a generalized dynamical pruning that allows one to erase a metric tree
from the leaves down to the root in different ways, both continuous (metric) and
discrete (combinatorial), and consider the respective prune-invariance.
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Fig 3. Horton laws in the Beaver creek network of Fig. 2. (a) Number NK of branches
(streams) of order K. (b) Average magnitude (number of leaves) MK in a subtree of order
K. Average number LK of edges in a branch (stream) of order K. Large circles and rect-
angles correspond to the Beaver creek data. Small dots and lines correspond to the critical
Tokunaga process STok(t; c, γ) of Sect. 7.5 with c = 2.275, R = 2c = 4.55 (γ is arbitrary, as
it corresponds to the edge lengths that are not used in this analysis).

Tokunaga model (Sects. 7.5, 7.6, 7.7). A notable observation inherited
from the study of river networks is the Tokunaga constraint [155]. It comple-
ments the Horton law by describing the mergers of branches of distinct orders.
Informally, the Tokunaga law suggests that the average number N̄i,j , i < j, of
branches of order i that merge with a branch of order j in a given basin is an
exponential function of the order difference, ln(N̄i,j) ∝ j − i. The Tokunaga
model is surprisingly powerful in approximating the observed river networks
[178] and predicting the values of multiple Horton exponents. Figure 3 shows
how a one-parametric critical Tokunaga model STok of Sect. 7.5 fits the average
values of three branching statistics in the Beaver creek network.

In this work, we show the fundamental importance of the Toeplitz constraint
N̄i,j = f(j−i). We also provide a theoretical justification for the classical version
of the Tokunaga law, which corresponds to a particular choice ln f(x) ∝ x.

1.2. Survey structure

Our primary goal is to survey the recent developments in the theory of random
self-similar trees; yet a number of results, models, and approaches presented
here are original. These novel results are motivated by the need to connect the
dots and bridge the gaps when presenting a unified theory from the perspective
of Horton pruning and its generalizations. We highlight some of these original
contributions below in a list of survey topics.

The survey begins with the main definitions and notations in Sect. 2. This
includes the definitions of finite rooted trees and tree spaces, and a brief overview
of real trees. Next, Horton pruning and Horton-Strahler orders are introduced.

Section 3 defines the main types of invariances for tree measures sought-after
in this survey. This includes a strong, distributional Horton prune-invariance
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and a weaker mean prune-invariance. Importantly, we justify the requirement
of coordination, which, together with mean prune-invariance, constitutes the
mean self-similarity studied in this work. Every mean self-similar measure is
associated with a sequence of nonnegative Tokunaga coefficients {Tk}k≥1, which
are theoretical analogs of the empirical averages N̄i,i+k = f(k) discussed in
Sect. 1.1. An important two-parameter family of the mean self-similar trees is
Tokunaga self-similar trees specified by Tk = ack−1.

The Horton law for tree measures is formally defined in Sect. 4 in terms of the
random counts Nk[T ] of branches of order k in a random tree T . We introduce
two versions of the strong Horton law ; one refers to convergence in probability
(Def. 16) and the other to convergence of expectation ratios (Def. 17). The main
result of the section (Thm. 1) establishes that the mean self-similarity implies
the strong Horton law in expectation ratios, and expresses the Horton exponent
R via the Tokunaga sequence {Tk}. Section 4.3 surveys computations of the
entropy rate for trees that satisfy the strong Horton law, as a function of the
Horton exponent R ≥ 2 (Thm. 2), and for the Tokunaga self-similar trees, as a
function of the Tokunaga parameters (a, c) (Thm. 3). These results emphasize
a special role of the Horton exponent R = 4, which corresponds to the maximal
possible entropy rate of unity (Fig. 21), and of the constraint a = c− 1, which
corresponds to R = 2c and achieves the maximal entropy rate among all trees
with this value of Horton exponent (Fig. 22). These constraints correspond to
the fundamental examples of self-similar trees; not surprisingly, they reappear
in multiple later instances of our survey. Namely, a = c − 1, R = 2c defines
critical Tokunaga trees (Sect. 7), and a particular case of a = 1, c = 2, and
R = 4 corresponds to the critical binary Galton-Watson tree (Sect. 5). The
section concludes with a brief discussion of the applications of Horton-Strahler
orders and Horton laws in natural and computer sciences.

Section 5 summarizes the results on the critical binary Galton-Watson tree.
We start with a characterization theorem (Thm. 4), observing that this is the
only mean self-similar tree among the combinatorial Galton-Watson trees with
finite “2− ε” moment of the branching distribution {qk}. Moreover, under con-
secutive application of Horton pruning, any such tree converges (conditioned on
non-extinction) to the critical binary Galton-Watson tree (Thm. 5). The proofs
of the strong Horton law for branch numbers (Cor. 2) and the Central Limit
Theorem for branch numbers (Cor. 3) are novel, and emphasize the power of
the pruning approach. We also find the length and height of the critical binary
Galton-Watson tree with i.i.d. exponential edge lengths (Sect. 5.2), called the
exponential critical binary Galton-Watson tree.

Section 6 includes new results. It extends the discussion of Sect. 5 by pro-
viding a complete description of invariants and attractors of the critical and
subcritical Galton-Watson tree measures under the operation of Horton prun-
ing. The prune-invariant measures, called invariant Galton-Watson measures,
are critical; they are parameterized by the probability q0 ∈ [1/2, 1) of having no
offspring. The case q0 = 1/2 corresponds to the critical binary Galton-Watson
tree of Sect. 5. Every other invariant measure has an unbounded branching, with
distribution qk ∼ k−(1+q0)/q0 . The invariant Galton-Watson measures are the
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only attractors of the critical Galton-Watson measures under consecutive Hor-
ton pruning; each of them has a non-empty domain of attraction (Thm. 10). The
invariant Galton-Watson measures satisfy the strong Horton law with Horton
exponent R = (1− q0)

−1/q0 (Lem. 10).
Section 7 introduces a multi-type branching process, the Hierarchical Branch-

ing Process (HBP), which is the main model of this work. The process trajecto-
ries are described by time oriented trees; this induces a probability measure on
the space of planar binary trees with edge lengths. The HBP can generate trees
with an arbitrary sequence of Tokunaga coefficients {Tk}. The combinatorial
part of these trees is always mean self-similar; the measures are also (distribu-
tionally) Horton self-similar under additional constraints on the process param-
eters (Thm. 11). Section 7.3 defines the criticality for hierarchical branching
processes as having a constant average progeny, in parallel with the definition
of criticality for Galton-Watson processes. A hydrodynamic limit is established
(Thm. 12) that describes the averaged branch dynamics as a deterministic sys-
tem of ordinary differential equations (ODEs). This system of ODEs is used to
detect a phase transition that separates fading and explosive behavior of the
average process progeny (Thm. 13). A fundamental class of critical Tokunaga
processes (Def. 25) is introduced that lies on the phase transition boundary and
corresponds to Tk = (c−1)ck−1 and R = 2c. The trees generated by the critical
Tokunaga processes enjoy many of the symmetries seen in the exponential crit-
ical binary Galton-Watson tree; this includes Horton self-similarity, criticality,
time-invariance, strong Horton law, Tokunaga self-similarity, and independence
of edge lengths. The exponential critical binary Galton-Watson tree is a special
case of the critical Tokunaga process with c = 1.

The results in Sect. 7.6 are original, applying martingale techniques in the
analysis of self-similar trees. We introduce a Markov tree-valued process that
generates the critical Tokunaga trees. We then construct a two-dimensional
martingale with respect to the filtration of this process that describes the tree
size and length. Doob’s Martingale Convergence Theorem is applied to establish
the strong Horton laws for the branch numbers (Thm. 16, Cor. 5) and the
tree lengths (Cor. 7). The established Horton laws hold with the same Horton
exponent R = 2c.

The Geometric Branching Process that describes the combinatorial part of a
Horton self-similar HBP is examined in Sect. 7.7. We show, in particular, that
invariance of this process with respect to the unit time shift is equivalent to
the constraint Tk = (c − 1)ck−1 (i.e., a = c − 1) on the Tokunaga coefficients
(Thm. 17). This provides further justification for studying the critical Toku-
naga processes. We show that the complete non-empty descendant subtrees in
a combinatorial critical Tokunaga tree have the same distribution, and the two
subtrees are independent if and only if the process is critical binary Galton-
Watson (Cor. 8). Moreover, the empirical frequencies of edge/vertex orders in a
large random critical Tokunaga tree approximate the order distribution in the
respective space of trees (Props. 12, 13). This property is convenient for applied
statistical analysis, where one might only be able to examine a handful of (large)
trees.
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Section 8 projects the Horton self-similarity results on time series via tree
representation of continuous functions, a construction that goes back to Menger
[117], Kronrod [92] and the celebrated Kolmogorov-Arnold representation the-
orem [9, 163]. The level set tree for a continuous function is defined following
the well known pseudo-metric approach (161); see [4, 5, 105, 124, 52, 135].
We emphasize the connection of this construction with the Rising Sun Lemma
(Lem. 19) of F. Riesz [138]. Proposition 15 reveals equivalence between Horton
pruning and transition to the local extrema of a function. This allows us to in-
terpret Horton self-similarity for the level set tree of a time series as invariance
of this time series under transition to local extrema; see (171). An example of
such an extreme-invariant process is given by the symmetric exponential random
walk of Sect. 8.6.

The results in Sect. 8.5 are novel; they refer to the level set tree T of a
positive excursion of a symmetric homogeneous random walk {Xk}k∈Z on R.
The main result of this section (Thm. 18) shows that the combinatorial shape
of T is distributed as the critical binary Galton-Watson tree, for any choice of
the transition kernel for {Xk}. We also show (Lem. 21) that T has identically
distributed edge lengths if and only if the transition kernel of {Xk} is the prob-
ability density function of the Laplace distribution. The results of this section
complement Thm. 20, a classical result on Galton-Watson representation of the
level set tree of an exponential excursion, that can be found in [135, Lemma 7.3]
and [105, 124].

Section 8.8 reveals a close connection between the level set tree of a sequence
of i.i.d. random variables (discrete white noise) and the tree of the Kingman’s
coalescent process. Theorem 23 shows that the two trees are separated by a
single Horton pruning.

Section 8.9 expands the level set tree construction to a Morse function defined
on a multidimensional compact differentiable manifold. The key results from the
Morse theory [121, 127, 36] are used to show (Cor. 19, Lem. 24) that the level
set tree of a generic Morse function is binary. This result is new.

Section 9 establishes a weak form of Horton law for a tree representation of
Kingman’s coalescent process (Thm. 25). The proof is based on a Smoluchowski-
type system of Smoluchowski-Horton ODEs (195) that describes evolution of the
number of branches of a given Horton-Strahler order in a tree that represents
Kingman’s N -coalescent, in a hydrodynamic limit. Section 9.2 uses T. Kurtz’s
weak convergence results for density dependent population processes (Appendix
A) to give a new, shorter than the original [97], derivation of the hydrodynamic
limit. We present two alternative, more concise, versions of the Smoluchowski-
Horton ODEs in (205) and (208), and use them to find a close numerical approxi-
mation to the Horton exponent in the Kingman’s coalescent: R = 3.0438279 . . . .
This exponent also applies to the level set tree of a discrete white noise, via the
equivalence of Thm. 23 in Sect. 8.8.

Section 10 introduces the generalized dynamical pruning (218). This opera-
tion erases consecutively larger parts of a tree T , starting from the leaves and go-
ing down towards the root, according to a monotone nondecreasing pruning func-
tion ϕ along the tree. The generalized dynamical pruning encompasses a number
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of discrete and continuous pruning operations, notably including the tree era-
sure of Jacques Neveu [123] (Sect. 10.1.1) and Horton pruning (Sect. 10.1.2).
Important for our discussion, it generically includes erasures that do not satisfy
the semigroup property (Sects. 10.1.3, 10.1.4). Theorem 26 establishes prune-
invariance (Def. 34) of the exponential critical binary Galton-Watson tree with
respect to a generalized dynamical pruning with an arbitrary admissible pruning
function ϕ. The scaling exponents (Def. 34(ii)) for the pruning function ϕ equal
to the tree length, tree height, and Horton-Starhler order are found in Thm. 27.

As an illuminating application of the generalized dynamical pruning, Sect. 11
examines the continuum 1-D ballistic annihilation model A + A → ∅ for a
constant initial particle density and initial velocity that alternates between the
values of ±1. The model dynamics creates coalescing shock waves, similar to
those that appear in Hamilton-Jacobi equations [19], that have tree structure.
We show (Cor. 21 of Thm. 28) that the shock tree is isometric to the level
set tree of the initial potential (integral of velocity), and the model evolution
is equivalent to a generalized dynamical pruning of the shock tree, with the
pruning function equal to the total tree length (Thm. 30). This equivalence
allows us to construct a complete probabilistic description of the annihilation
dynamics for the initial velocity that alternates between the values of ±1 at the
epochs of a constant rate Poisson point process (Thms. 31, 32, 33). A real tree
representation of the continuum ballistic annihilation is presented in Sect. 11.5.

Section 12 is novel. Here we construct an infinite level set tree, built from
leaves down, for a time series {Xk}k∈Z. This gives a fresh perspective on multiple
earlier results; e.g., those concerning the level set trees of random walks (Sect.
8.6), the generalized dynamical pruning (Sect. 10.5), or the evolution of an
infinite exponential potential in the continuum annihilation model (Sect. 11.4).
For instance, the infinite-tree version of prune-invariance for the exponential
Galton-Watson tree (Thm. 34) can be established in a much simpler way than
its finite counterpart (Thm. 26). Although this natural perspective has always
influenced our research, this is the first time it is presented in an explicit form.

The survey concludes with a short list of open problems (Sect. 13).
Many concepts used in this survey are overlapping with the recent exposi-

tions on random trees, branching and coalescent processes by Aldous [4, 5, 6],
Berestycki [25], Bertoin [29], Drmota [46], Duquesne and LeGall [52], Evans [63],
Le Gall [108], Lyons and Peres [111], and Pitman [135]. We expect that the per-
spectives displayed in the present survey will with time connect and intertwine
with better established topics in the theory of random trees.

2. Definitions and notations

2.1. Spaces of finite rooted trees

A connected acyclic graph is called a tree [32]. Consider the space T of finite
unlabeled rooted reduced trees with no planar embedding. The (combinatorial)
distance between a pair of tree vertices is the number of edges in the shortest



Random self-similar trees 13

Fig 4. Basic tree terminology: Illustration. Tree T consists of root ρ, one internal vertex a,
and three leaves: b, c, d. Vertex ρ is the parent to a. Vertex a is the parent to b, c, d. Vertex a
is the only offspring of ρ. Vertices b, c, d are offspring of a, and siblings to each other. Vertex
a has degree 4. All other vertices have degree 1. Tree T is planted – its stem connects the root
ρ and vertex a. The tree size is #T = 4.

path between them. A tree is called rooted if one of its vertices, denoted by ρ,
is selected as the tree root (Fig. 4). The existence of root imposes a parent-
offspring relation between each pair of adjacent vertices: the one closest to the
root is called the parent, and the other the offspring (Fig. 4). The space T
includes the empty tree φ comprised of a root vertex and no edges. The tree
root is the only vertex that does not have parent. A leaf is a vertex with no
offspring (Fig. 4). The absence of planar embedding in this context is the absence
of order among the offspring of the same parent. We write #T for the number of
non-root vertices, equal to the number of edges, in a tree T . Hence, a finite tree
T = ρ ∪ {vi, εi}1≤i≤#T is comprised of the root ρ and a collection of non-root
vertices vi, each of which is connected to its unique parent parent(vi) by the
parental edge εi, 1 ≤ i ≤ #T . The degree of a vertex in a tree is the number of
edges adjacent to the vertex (Fig. 4). Hence, the degree of a vertex in a rooted
tree is the number of its offspring plus one. A tree is called reduced if it has no
vertices of degree 2, with the root as the only possible exception.

The space of trees from T with positive edge lengths is denoted by L. The
trees in L, also known as weighted tree [135, 111], can be considered as metric
spaces with the metric denoted by d(·, ·). Specifically, the trees from L are iso-
metric to one-dimensional connected sets comprised of a finite number of line
segments that can share end points. The distance along tree paths is defined
according to the Lebesgue measure on the edges. Each such tree can be embed-
ded into R2 without creating additional edge intersections (see Fig. 5). Such a
two-dimensional pictorial representation serves as the best intuitive model for
the trees discussed in this work.

We write Tplane and Lplane for the spaces of trees from T and L with planar
embedding, respectively. Any tree from T or L can be embedded in a plane
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Fig 5. Examples of alternative planar embeddings T (i) ∈ Lplane, i = 1, . . . , 6 of the same tree

T ∈ L, so that shape(T (i)) = T . Different panels correspond to different (random) ordering
of offspring of the same parent, and to different drawing styles.

by selecting an order for the offsprings of the same parent. Unless indicated
otherwise, the vertices of an embedded tree are indexed in order of depth-first
search, starting from the root. Choosing different embeddings for the same tree
T ∈ T (or L) leads, in general, to different trees from Tplane (or Lplane). Figure 5
illustrates alternative planar embeddings of a tree T ∈ L. Planar embedding
(offspring order) should not be confused with drawing style, related to how
edges are represented in a plane. Each panel in Fig. 5 uses a separate drawing
style.

Sometimes we focus on the combinatorial tree shape(T ), which retains the
combinatorial structure of T ∈ L (or Lplane) while omitting its edge lengths
and embedding. All tree shown in Fig. 5 have the same combinatorial structure.
Similarly, the combinatorial tree p-shape(T ) retains the combinatorial structure
of T ∈ Lplane and planar embedding, and omits the edge length information.
Here shape is a projection from L or Lplane to T , and p-shape is a projection
from Lplane to Tplane.

A non-empty rooted tree is called planted if its root has degree 1 (as in Figs. 4,
5); in this case the only edge connected to the root is called the stem. Otherwise
the root has degree ≥ 2 and a tree is called stemless. We denote by L| and L∨

the subspaces of L consisting of planted and stemless trees, respectively. Hence
L = L| ∪ L∨. Also, we let the empty tree φ to be contained in each of the

spaces. Therefore, L| ∩ L∨ = {φ}. Similarly, we write L|
plane and L∨

plane for the



Random self-similar trees 15

Fig 6. Examples of planted (a) and stemless (b) trees. The combinatorial structure of both
trees is the same, except the existence or absence of a stem. Internal vertices are marked by
gray circles. Leaves are marked by small empty circles. Root is marked by large empty circle.

subspaces of Lplane consisting of planted and stemless trees, respectively. Clearly,

Lplane = L|
plane ∪ L∨

plane and L|
plane ∩ L∨

plane = {φ}. Fig. 6 shows examples of a
planted and a stemless tree.

For any space S from the list {T , Tplane,L,Lplane} we write BS for the respec-
tive subspace of binary trees, S | for the subspace of planted trees in S including
φ, and S∨ for the subspace of stemless trees in S including φ. We also consider
subspaces BS | = S | ∩ BS of planted binary trees and BS∨ = S∨ ∩ BS of stem-
less binary trees. Most of the discussion and results in this work refer to planted
trees.

Let lT = (l1, . . . , l#T ) with li > 0 be the vector of edge lengths of a tree
T ∈ L (or Lplane). The length of a tree T is the sum of the lengths of its edges:

length(T ) =

#T∑
i=1

li.

Recall that each weighted tree T ∈ L is itself a metric space with the metric
denoted by d(·, ·). The height of a tree T is the maximal distance between the
root and a vertex:

height(T ) = max
1≤i≤#T

d(vi, ρ).

2.2. Real trees

It is often natural to consider metric trees with structures more complicated than
that allowed by finite spaces L and Lplane. In such cases, we use the following
general definition.

Definition 1 (Metric tree [135, Sect. 7]). A metric space (M,d) is called
a tree if for each choice of u, v ∈ M there is a unique continuous path σu,v :



16 Y. Kovchegov and I. Zaliapin

Fig 7. Equivalent conditions for 0-hyperbolicity of a metric space (M,d). (a) Four point
condition: any quadruple w, x, y, z ∈ M is geodesically connected as shown in the figure.
This configuration is algebraically expressed in Eq. (2). (b) Three point condition: any triplet
x, y, z ∈ X is geodesically connected as shown in the figure. There is no algebraic equivalent
of the three point condition in terms of the lengths of the shown segments.

[0, d(u, v)] → M that travels from u to v at unit speed, and for any simple
continuous path F : [0, L] → M with F (0) = u and F (L) = v, the ranges of F
and σu,v coincide.

As an example of a metric tree that does not belong to Lplane, consider a
unit disk in the complex plane M = {z ∈ C : |z| ≤ 1} and connect each point
z ∈ M to the origin 0 by a linear segment [z,0]. Distances between points are
computed in a usual way, but only along such segments. This is a tree whose
(uncountable) set of leaves coincides with the unit circle {|z| = 1}. We refer to a
book of Steve Evans [63] for a comprehensive discussion and further examples.
Sects. 8, 11 of the present survey examine several natural constructions of a
metric d on an n-dimensional manifold M with n ≥ 1, such that (M,d) becomes
a (one-dimensional) tree according to Def. 1.

Consider a metric tree T = (M,d). As with the finite trees, we let ρ ∈ M
denote the root vertex of T . For any two points x, y ∈ M , we define a segment
[x, y] ⊂ M to be the image of the unique path σx,y of the above definition.
We call a point y ∈ M a descendant of x ∈ M if the path [ρ, y] includes x.
Equivalently, removing x from the tree separates its descendants from the root.
To lighten the notations, we conventionally say x ∈ T to indicate that point
x ∈M belongs to tree T .

Metric trees benefit from an alternative characterization. Recall that a metric
space (M,d) is called 0-hyperbolic, if any quadruple w, x, y, z ∈M satisfies the
following four point condition [63, Lemma 3.12]:

d(w, x) + d(y, z) ≤ max{d(w, y) + d(x, z), d(x, y) + d(w, z)}. (2)

The four point condition is an algebraic description of an intuitive geometric
constraint on geodesic connectivity of quadruples that is shown in Fig. 7(a). An
equivalent way to define 0-hyperbolicity is the three point condition illustrated in
Fig. 7(b). It is readily seen that the four point condition is satisfied by any finite
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Fig 8. Series reduction: Illustration.

tree with edge lengths (considered as a metric space). In general, a connected and
0-hyperbolic metric space is called a real tree, or R-tree [63, Theorem 3.40]. We
denote by Δp,T the descendant tree at point p, that is the set of all descendants
of point p ∈ T , including p as the tree root. The set of all descendant leaves
of point p is denoted by Δ◦

p,T . We use real trees in Sect. 11 to represent the
dynamics of a continuum ballistic annihilation model.

2.3. Horton pruning

Here we give definition of Horton pruning for rooted trees [34, 131, 173, 96]; the
related Horton-Strahler orders are defined in the next section. Horton pruning
for a binary tree is illustrated in Fig. 9.

Definition 2 (Series reduction). The operation of series reduction on a rooted
tree (with or without edge lengths, plane or not) removes each degree-two non-
root vertex by merging its adjacent edges into one (Fig. 8). For trees with edge
lengths it adds the lengths of the two merging edges. The series reduction does
not affect the left/right orientation in the planar trees.

Thus, the series reduction is a mapping from the space of rooted trees (with
or without edge lengths, plane or not) to the corresponding space of reduced
rooted trees, which can be either T , Tplane,L, or Lplane.

Definition 3 (Horton pruning). Horton pruning R on either of the spaces
T , Tplane,L, or Lplane is an onto function whose value R(T ) for a tree T �= φ
is obtained by removing the leaves and their parental edges from T , followed by
series reduction. We also set R(φ) = φ.

Horton pruning induces a map on the underlying space of trees (Fig. 9). The
trajectory of each tree T under R(·) is uniquely determined and finite:

T ≡ R0(T )→ R1(T )→ · · · → Rk(T ) = φ, (3)
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with the empty tree φ as the (only) fixed point. The preimage R−1(T ) of any
non-empty tree T consists of an infinite collection of trees.

We observe that the space T | of planted trees is invariant under the operation
of Horton pruning in Def. 3, while the space T∨ of stemless trees is not. The
Horton analysis of stemless trees is simplified if one considers a phantom edge
parental to the root. This phantom edge makes pruning in the space of stemless
trees similar to pruning in the space of planted trees. In particular, this explains
the difference in the treatment of planted and stemless trees in the definition of
Horton-Strahler orders (Def. 4) that will be given in Sect. 2.4.

2.4. Horton-Strahler orders

It is natural to think of the distance to φ under the Horton pruning map and
introduce the respective notion of tree order (see Fig. 9).

Definition 4 (Horton-Strahler order). The Horton-Strahler order ord(T ) ∈
Z+ of a planted tree T in T |, T |

plane, L|, or L|
plane is defined as the minimal

number of Horton prunings necessary to eliminate the tree:

ord(T ) = min
{
k ≥ 0 : Rk(T ) = φ

}
.

The Horton-Strahler order for a stemless tree T in T ∨\{φ}, T ∨
plane\{φ}, L∨\{φ}

or L∨
plane \ {φ} is defined similarly as follows:

ord(T ) = 1 + min
{
k ≥ 0 : Rk(T ) = φ

}
.

In particular, the order of the empty tree is ord(φ) = 0, because R0(φ) = φ.
The distinction between the planted and the stemless trees in this definition is
due to an extra Horton pruning needed for eliminating the stem of a planted
tree (Fig. 6). Most of our discussion will be focused on non-empty planted trees
with orders ord(T ) > 0. In addition, we will often consider measures on tree
spaces that assign probability zero to the empty tree φ. Figures 1, 2, 11, 12
show examples of Horton-Strahler ordering in binary trees.

Horton pruning partitions the underlying space of planted trees (e.g. T |,

T |
plane, L|, L|

plane, BT
|, or BT |

plane) into exhaustive and mutually exclusive col-
lection of subspaces HK of trees of Horton-Strahler order K ≥ 0 such that
R(HK+1) = HK . Here H0 = {φ}, H1 consists of a single tree comprised of a
singe edge that connects the tree root and the only leaf descendant to the root,
and all other subspaces HK , K ≥ 2, consist of an infinite number of trees. In
particular, the tree size in these subspaces is unbounded from above: for any
M > 0 and any K ≥ 2, there exists a tree T ∈ HK such that #T > M . At the
same time, the definition of Horton-Strahler orders implies that for any K ≥ 2
and T ∈ HK , the tree size #T ≥ 2K−1. Specifically, the minimal size of a
planted tree of order K ≥ 2 is 2K−1+1, and the minimal size of a stemless tree
of order K ≥ 2 is 2K−1. This minimum is achieved for a perfect binary tree (see
Ex. 1 in Sect. 3.4).
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Fig 9. Example of Horton pruning and Horton-Strahler ordering for a tree T ∈ BL|
plane. The

figure shows the two stages of Horton pruning operation – cutting the leaves (top row), and
consecutive series reduction (bottom row). The initial tree T is shown in the leftmost position
of the bottom row. The order of the tree is ord(T ) = 3, since it is eliminated in three Horton
prunings, R3(T ) = φ. Tree leaves are shown by small open circles, internal vertices – by filled
circles, the tree root – by large open circle.

Definition 5 (Horton-Strahler terminology). We introduce the following
definitions related to the Horton-Strahler order of a tree (see Fig. 10):

1. (Descendant subtree at a vertex) For any non-root vertex v in T �= φ,
a descendant subtree Tv ⊂ T is the only planted subtree in T rooted at the
parental vertex parent(v) of v, and comprised by v and all its descendant
vertices together with their parental edges.

2. (Vertex order) For any vertex v ∈ T \ {ρ} we set ord(v) = ord(Tv)
(Fig. 10a). We also set ord(ρ) = ord(T ).

3. (Edge order) The parental edge of a non-root vertex has the same order
as the vertex.

4. (Branch) A maximal connected component consisting of vertices and
edges of the same order is called a branch (Fig. 10a). Note that a tree
T always has a single branch of the maximal order ord(T ). In a stemless
tree, the maximal order branch may consist of a single root vertex.

5. (Initial and terminal vertex of a branch) The branch vertex closest
to the root is called the initial vertex of the branch. The branch vertex far-
thest from the root is called the terminal vertex of a branch. See Fig. 10a.
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Fig 10. Illustration of the Horton-Strahler terminology (Def. 5) in a tree T ∈ BL|
plane of

order ord(T ) = 3. (a) Tree root, branch, initial and terminal vertex of a branch. The numbers
indicate the Horton-Strahler orders of the vertices and their parental edges. The panel illus-
trates a branch of order 2, shown in bold. Here N1 = 10, N2 = 7, N3 = 3, N1,2 = 4, N1,3 = 0,
and N2,3 = 1 (see Sect. 3.3). (b), (c), (d) Complete subtrees of order 2. (e) Complete subtree
of order 3 (coincides with the tree T ).

6. (Complete subtree of a given order) Consider a connected component
of tree T that has been completely removed in K pruning operations (but
has not been completely removed in K−1 prunings). Each such component
is a “planted tree without the root”; in other words it always starts with an
open edge. This connected component together with the vertex that connects
it to the rest of the tree is a subtree of T that will be called a complete
subtree of order K.

We observe that each subtree Tv at the initial vertex v of a branch of order
K ≤ ord(T ) is a complete subtree of order K, and vice versa (Fig. 10b–d). A
complete subtree of order ord(T ) coincides with T (Fig. 10e). All subtrees of
order ord = 1 are complete (and consist of a single leaf, its parental edge, and
the leaf’s parent).

2.5. Alternative definitions of Horton-Strahler orders

Definition 4 connects the Horton-Strahler orders to the Horton pruning oper-
ation, which is the main theme of this survey. Here we give two alternative,
equivalent, definitions of the Horton-Strahler orders. The proof of equivalence
is straightforward and is left as an exercise.

Historically, the concept of tree order has been developed by Horton [85]
and Strahler [151] for analysis of river streams; it uses hierarchical counting
[43, 131, 126]. The first such definition for non-binary trees appeared in [34]. In
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Fig 11. Example of Horton-Strahler ordering of a binary tree T ∈ BL|. Different colors
correspond to different orders of vertices and their parental edges, as indicated in legend. (a)
#T = 121, ord(T ) = 5. (b) #T = 1233, ord(T ) = 10.

this approach, each leaf is assigned order 1. If an internal vertex p has m ≥ 1
offspring with orders i1, i2, . . . , im and r = max {i1, i2, . . . , im}, then

ord(p) =

{
r if # {s : is = r} = 1,

r + 1 otherwise.
(4)

The parental edge of a non-root vertex has the same order as the vertex. The
Horton-Strahler order of a tree T �= φ is ord(T ) = max

v∈T
ord(v), where the max-

imum is taken over all vertices in T . This definition is most convenient for
practical calculations, which explains its popularity in the literature.

In a special case of a reduced binary tree, an internal vertex p with two
offspring of orders i and j has order

ord(p) = max (i, j) + δij = �log2(2i + 2j)�, (5)

where δij is the Kronecker’s delta and �x� denotes the maximal integer less than
or equal to x. In words, the order increases by unity every time when two edges
of the same order meet at a vertex (Figs. 1, 2, 11, 12).

Finally, we observe that ord(T ) of a planted tree T equals the depth of the
maximal planted perfect binary subtree of T with the same root (see Sect. 3.4,
Ex. 1).

2.6. Tokunaga indices and side branching

The Tokunaga indices complement the Horton-Strahler orders (Sects. 2.4, 2.5)
by cataloging the mergers of branches according to their orders. In this work,
we define and use the Tokunaga indices in binary trees. It is straightforward to
adopt these definitions for trees with general branching (see [34, 101]).
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Fig 12. Horton-Strahler orders of vertices in a binary tree: example. The order is shown next
to every vertex. Edge orders are indicated by colors (see legend). Open circles mark terminal
vertices of tree branches; they correspond either to leaves or mergers of principal branches.
Shaded circles mark vertices that correspond to side branches. Here N1 = 56, N2 = 22,
N3 = 8, N4 = 3, and N5 = 1. Figure 13 shows the Tokunaga indexing for the same tree.

Recall that a branch (Def. 5) is an uninterrupted sequence of vertices and
edges of the same order (Fig. 10a). According to the Horton-Strahler ordering
rules, every time when two branches of the same order i meet at a vertex, this
vertex (and hence the branch for which this is the terminal vertex) is assigned
order i+1. We refer to this as principal branching . A merger of two branches
of distinct orders at a vertex, however, does not result in assigning this vertex
(and the corresponding branch) a higher order; in this case a higher-order branch
absorbs the lower-order branch. This phenomenon is known as side branching
[126]. A branch of order i that merges with (and is being absorbed by) a branch
of a higher order j > i is referred to as a side branch of Tokunaga index {i, j}.

Formally, for a non-root vertex v in a reduced binary tree, we let sibling(v) de-
note the unique vertex of the tree that has the same parent as v, i.e., parent(v) =
parent(sibling(v)).
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Definition 6 (Tokunaga indices). In a binary tree T ∈ BT , consider a branch
b of order i ∈ {1, . . . , ord(T ) − 1}, and let v denote the initial vertex of the
branch b, whence ord(v) = i. The branch b is assigned the Tokunaga index
{i, j}, where j = ord(sibling(v)). The Horton-Strahler ordering rules imply that
j ≥ i. A branch with Tokunaga index {i, i} is called principal branch. A branch
with Tokunaga index {i, j} such that i < j is called side branch.

The definition of Tokunaga indices is illustrated in Fig. 13.

Remark 1. We emphasize that the Tokunaga indices refer to the tree branches,
not to individual vertices and edges as is the case with the Horton-Strahler
orders.

2.7. Labeling edges

The edges of a planar tree can be labeled by numbers 1, . . . ,#T in order of
depth-first search. For a tree with no embedding, labeling is done by selecting
a suitable embedding and then using the depth-first search labeling as above.
Such embedding should be properly aligned with the Horton pruning R, as we
describe in the following definition.

Definition 7 (Proper embedding). An embedding function embed : T →
Tplane (respectively L → Lplane) is called proper if for any T ∈ T (resp. T ∈ L),

R (embed(T )) = embed (R(T )) ,

where the pruning on the left-hand side is in Tplane (resp. Lplane) and pruning
on the right-hand side is in T (resp. L).

An example of proper embedding is given in [99].

2.8. Galton-Watson trees

The Galton-Watson distributions (aka Bienaymé-Galton-Watson distributions)
over T | are pivotal in the theory of random trees. Recall that a random Galton-
Watson tree describes trajectory of a Galton-Watson branching process. This
population process (and the corresponding tree) is constructed recursively as
follows. The population starts with a single progenitor, represented by the tree
root. For a given probability mass function {qk} over Z+, the population devel-
ops in discrete steps. At step d = 0, the progenitor produces a single offspring.
It is represented in the tree by the vertex connected to the tree root by stem.
At every discrete step d > 0 each existing population member (represented by
a leaf of the currently constructed tree at the maximal depth d− 1) gives birth
to k ≥ 0 offsprings with probability qk, where k = 0 represents the case when
the population member leaves no offsprings, and terminates.

Assuming q1 < 1, the resulting tree is finite with probability one if and only
if
∑∞

k=0 kqk ≤ 1 [81, 12]. Assuming in addition that q1 = 0 in order to generate
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Fig 13. Tokunaga indices for tree branches in a binary tree: example. The Tokunaga indices
{i, j} catalog mergers of tree branches, according to their Horton-Strahler orders. Edge orders
are indicated by colors (see legend). Open circles mark terminal vertices of tree branches; they
correspond either to leaves or mergers of principal branches. Shaded circles mark vertices
that correspond to side branches. Here N1,2 = 5, N1,3 = 4, N1,4 = 2, N1,5 = 1, N2,3 = 4,
N2,4 = 1, N2,5 = 1, N3,4 = 2, N3,5 = 0, and N4,5 = 1. Figure 12 shows the Horton-Strahler
orders in the same tree.

reduced trees, the Galton-Watson process induces a tree distribution on T |,
denoted here by GW({qk}). Finally, it is well known that in the critical case
(i.e., for

∑∞
k=0 kqk = 1) the time to extinction (and hence the tree size) has

infinite first moment.

We write GW(q0, q2) for the probability distribution of (combinatorial) binary

Galton-Watson trees in BT |. The critical case (unit expected progeny) corre-
sponds to q0 = q2 = 1/2. Finally, we let GWplane(q0, q2) denote the probability

distribution of (combinatorial) plane binary Galton-Watson trees in BT |
plane. A

random tree sampled from BT |
plane with distribution GWplane(q0, q2) is obtained
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from a random tree sampled from BT | with distribution GW(q0, q2) by assigning
the left-right orientation to each pair of offspring uniformly and independently
for each parental vertex.

We conclude this section with a particular characterization of the critical bi-
nary Galton-Watson distribution GW

(
1
2 ,

1
2

)
; it follows directly from the process

definition and will be used later.

Remark 2. A distribution μ on BT | is GW
(
1
2 ,

1
2

)
if and only if it can be

constructed in the following way. Start with a stem (root edge). With proba-
bility 1/2 this completes the tree generation process. With the complementary
probability 1/2, draw two trees independently from the distribution μ, and at-
tach them (as descendant subtrees) to the non-root vertex of the stem. This
completes the construction.

3. Self-similarity with respect to Horton pruning

This section introduces self-similarity for finite combinatorial and metric trees.
We start in Sects. 3.1, 3.2 with a distributional self-similarity for measures on
the spaces T | and L|, respectively. A mean self-similarity that only considers
the average values of selected branch statistics it discussed in Sect. 3.3; this is
done for a narrower class of combinatorial binary trees from BT |. A general
treatment of mean self-similarity in T | is given in [101].

The term self-similarity is associated with invariance of a tree distribution
with respect to the Horton pruning R introduced in Sect. 2.3. The prune-
invariance alone, however, might not provide sufficient constraints for generating
interesting families of trees suitable for applied statistical analysis (see Ex. 9 in
Sect. 3.4). This calls for an additional property – coordination among trees of
different orders introduced in Sect. 3.3.

3.1. Self-similarity of a combinatorial tree

Let HK ⊂ T | be the subspace of planted trees of Horton-Strahler order K ≥ 0.
Naturally, HK

⋂
HK′ = ∅ if K �= K ′, and

⋃
K≥0

HK = T |. Consider a set of

conditional probability measures {μK}K≥0 each of which is defined on HK by

μK(T ) = μ(T |T ∈ HK) (6)

and let πK = μ(HK). Then μ can be represented as a mixture of the conditional
measures:

μ =

∞∑
K=0

πKμK . (7)

Definition 8 (Horton prune-invariance/Horton self-similarity). Con-
sider a probability measure μ on T | such that μ(φ) = 0. Let ν be the pushforward
measure, ν = R∗(μ), i.e.,

ν(T ) = μ ◦ R−1(T ) = μ
(
R−1(T )

)
.
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Measure μ is called invariant with respect to the Horton pruning (Horton prune-
invariant), or, equivalently, Horton self-similar, if for any tree T ∈ T | we have

ν (T |T �= φ) = μ(T ). (8)

Remark 3 (Prune-invariance vs. self-similarity). We follow Burd et al. [34]
and a solid body of applied literature (see Sect. 4.4) when using the terms prune-
invariance and self-similarity interchangeably. Section 3.3 below discusses a
mean form of self-similarity, which is not equivalent to mean prune-invariance
and requires additional property of coordination among trees of different or-
ders (Def. 10). A distributional version of coordination is introduced in [99].
Informally, the distributional coordination property ensures that all complete
subtrees of order K (see Def. 5) within a tree of a larger order H are identically
distributed regardless of the value H ≥ K. The coordination property holds
by construction in Galton-Watson trees (Sect. 2.8), and in trees generated by
our main model – the Hierarchical Branching Process of Sect. 7. Example 9
in Sect. 3.4 illustrates that coordination facilitates applied data-driven analysis
of self-similar trees. It hence may be justified to define distributional Horton
self-similarity as a combination of Horton prune-invariance and distributional
coordination; this is done in [99].

Remark 4 (Relation to invariant and quasi-stationary measures). Re-
call that the empty tree φ is the only fixed point for the map R from T | to itself.
Consequently, the above defined notion of Horton prune-invariant measure is a
crossbreed between the invariant measures [164] and the quasi-stationary dis-
tributions [41]. The pushforward measure ν is induced by the original measure

μ via the pruning operation: if T ′ d∼ μ then T = R(T ′)
d∼ ν. Therefore, the

probability ν(φ) = μ(H1) can be positive.

Proposition 1 (Geometric order distribution). Let μ be a Horton prune-
invariant measure on T |. Then the distribution of orders, πK = μ(HK), is
geometric:

πK = p (1− p)
K−1

, K ≥ 1, (9)

where p = π1 = μ(H1), and for any T ∈ HK

μK+1

(
R−1(T )

)
= μK(T ). (10)

Proof. Horton pruning R is a shift operator on the sequence of subspaces {Hk}:

R−1(HK−1) = HK , K ≥ 1. (11)

The only tree eliminated by pruning is the tree of order 1: {τ : R(τ) = φ} = H1.
This allows to rewrite (8) for any T �= φ as

μ
(
R−1(T )

)
= μ(T ) (1− μ(H1)) . (12)

Combining (11) and (12) we find for any K ≥ 1

μ (HK)
by (11)
= μ

(
R−1(HK−1)

) by (12)
= (1− μ(H1))μ(HK−1), (13)
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which establishes (9). Next, for any tree T ∈ HK we have

μ(T ) = μ(H1) (1− μ(H1))
K−1

μK(T ),

μ
(
R−1(T )

)
= μ(H1) (1− μ(H1))

K
μK+1

(
R−1(T )

)
.

Together with (12) this implies (10).

Proposition 1 shows that a Horton prune-invariant measure μ is completely
specified by its conditional measures μK and the mass p = μ(H1) of the tree
of order K = 1. The same result was obtained for Galton-Watson trees in [34,
Thm. 3.5].

3.2. Self-similarity of a tree with edge lengths

Consider a tree T ∈ L| with edge lengths given by a positive vector lT =
(l1, . . . , l#T ) and let length(T ) =

∑
i li. We assume that the edges are labeled

in a proper way as described in Sect. 2.7. A tree is completely specified by
its combinatorial shape shape(T ) and edge length vector lT . The edge length
vector lT can be specified by distribution χ(·) of a point xT = (x1, . . . , x#T ) on
the simplex

∑
i xi = 1, 0 < xi ≤ 1, and conditional distribution F (·|xT ) of the

tree length length(T ), where

lT = xT · length(T ).

A measure η on L is a joint distribution of tree’s combinatorial shape and its
edge lengths; it has the following component measures.

Combinatorial shape : μ(τ) = Law (shape(T ) = τ) ,

Relative edge lengths : χτ (x̄) = Law (xT = x̄ | shape(T ) = τ) ,

Total tree length : Fτ,x̄(�) = Law (length(T ) = � |xT = x̄, shape(T ) = τ) .

The definition of self-similarity for a tree with edge lengths builds on its analog
for combinatorial trees in Sect. 3.1. The combinatorial notion Horton prune-
invariance (Def. 8), which we refer to as prune-invariance in shapes, is comple-
mented with an analogous property in edge lengths. We consider the distribution
of edge lengths after pruning. It is specified by distribution of the relative edge
lengths after pruning

Ξτ (x̄) = Law
(
xR(T ) = x̄ | shape

(
R(T )

)
= τ

)
and distribution the total tree length after pruning

Φτ,x̄(�) = Law
(
length

(
R(T )

)
= � |xR(T ) = x̄, shape

(
R(T )

)
= τ

)
.

Definition 9 (Horton self-similarity of a tree with edge lengths). We
call a measure η on L| self-similar with respect to Horton pruning R if the
following conditions hold:
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(i) The measure is Horton prune-invariant in shapes. This means that for the
pushforward measure ν = R∗(μ) = μ ◦ R−1 we have

μ(τ) = ν(τ |τ �= φ).

(ii) The measure is Horton prune-invariant in lengths. This means that

Ξτ (x̄) = χτ (x̄)

and there exists a scaling exponent ζ > 0 such that for any combinatorial
tree τ ∈ T | we have

Φτ,x̄(�) = ζ−1Fτ,x̄

(
�

ζ

)
.

3.3. Mean self-similarity of a combinatorial tree

The distributional prune-invariance of previous sections (Defs. 8, 9) may be
too restrictive and/or hard to verify in observations. This section introduces
a weaker form of prune-invariance that only operates with the mean values of
branch and side-branch counts, which makes it better suited for applied analyses.

We consider here the space BT | of combinatorial planted binary trees; a
generalization to T | is given in [101]. Let Nk = Nk[T ] be the number of branches
of order k in a tree T , and Ni,j = Ni,j [T ] be the number of side branches with
Tokunaga index {i, j} with 1 ≤ i < j ≤ ord(T ) in a tree T , i.e., the number of
instances when an order-i branch merges with an order-j branch. Examples of
counts Ni[T ] and Ni,j [T ] are given in Figs. 10, 12, 13. We do not consider the
numbers Ni,i[T ] of principal branches in T – they are redundant with respect
to the branch counts because of the relation Ni,i[T ] = 2Ni+1[T ].

We write EK [·] for the mathematical expectation with respect to μK of
Eq. (6). As before, we adopt the notation HK for the subspace of trees of order

K in BT |.
We define the average Horton numbers as

Nk[K] = EK [Nk], 1 ≤ k ≤ K, K ≥ 1,

and the average side branch numbers of index {i, j} as

Ni,j [K] := EK [Ni,j ], 1 ≤ i < j ≤ K, K ≥ 2.

We assume below that the average branch and side branch numbers are finite
for any K ≥ 1:

Nj [K] <∞ and Ni,j [K] <∞ for all 1 ≤ i < j ≤ K.

The Tokunaga coefficient Ti,j [K] for subspace HK is defined as the ratio of
the average side branch number of index {i, j} to the average Horton number
of order j:

Ti,j [K] =
Ni,j [K]

Nj [K]
, 1 ≤ i < j ≤ K. (14)
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The Tokunaga coefficient Ti,j [K] is hence reflects the average number of side
branches of index {i, j} per branch of order j in a tree of order K.

Remark 5. Suppose that measure μ is such that all complete branches of order
j within a random tree T ∈ HK sampled with μK have the same distribution,
independent of Nj [T ]. (For instance, this is the case for a Galton-Watson tree.)
In particular, the numbers Ni[bk] of branches of order i that merge with a
particular branch bk, k = 1, . . . , Nj [T ] of order j in T has the same distribution

for all bk. Let ni,j be a random variable such that Ni[bk]
d
= ni,j . Then we have,

by Wald’s equation,

Ni,j [K] = EK [Ni,j [T ]] = EK

⎡⎣Nj [T ]∑
k=1

Ni[bk]

⎤⎦
= EK [Nj [T ]]EK [ni,j ] = Nj [K]EK [ni,j ],

and, accordingly,

Ti,j [K] =
Nj [K]EK [ni,j ]

Nj [K]
= EK [ni,j ].

In other words, the Tokunaga coefficient in this case is the expected number
of side branches of appropriate index in a randomly selected branch. This is
how the Tokunaga coefficient is often defined (e.g., [34]). The definition (14)
adopted here is more general, as it allows branches to depend on each other and
on structure (shape, size, etc.) of T .

In applied analysis of data, it is convenient to assume that the values of Toku-
naga coefficients Ti,j [K] are independent of the tree order K. This motivates
the following coordination property.

Definition 10 (Coordination). A set of probability measures {μK}K≥1 on
{HK}K≥1 is called coordinated if the respective Tokunaga coefficients are inde-
pendent of the tree order:

Ti,j [K] = Ti,j [K
′] =: Ti,j (15)

for all K,K ′ ≥ 2 and 1 ≤ i < j ≤ min{K,K ′}. A measure μ on BT | is
called coordinated if the respective conditional measures {μK}, as in Eq. (7),
are coordinated.

For a coordinated measure μ, the Tokunaga matrix TK is a K ×K matrix

TK =

⎡⎢⎢⎢⎢⎢⎢⎣

0 T1,2 T1,3 . . . T1,K

0 0 T2,3 . . . T2,K

0 0
. . .

. . .
...

...
...

. . . 0 TK−1,K

0 0 . . . 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,
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which coincides with the restriction of any larger-order Tokunaga matrix TM ,
M > K, to the first K ×K entries.

Definition 11 (Toeplitz property). A set of probability measures {μK}K≥1

on {HK}K≥1 is said to satisfy the Toeplitz property if for every K ≥ 2 there
exists a sequence Tk[K] ≥ 0, k = 1, 2, . . . such that

Ti,j [K] = Tj−i[K] for each K ≥ 2. (16)

The elements of the sequences Tk[K] are also referred to as Tokunaga coeffi-

cients, which does not create confusion with Ti,j [K]. A measure μ on BT | is
said to satisfy the Toeplitz property if the respective conditional measures {μK},
as in Eq. (7), satisfy the Toeplitz property.

Definition 12 (Mean self-similarity). A set of probability measures {μK}K≥1

on {HK}K≥1 is called mean self-similar if it is coordinated and satisfies the

Toeplitz property. A measure μ on BT | is called mean self-similar if the respec-
tive conditional measures {μK}, as in Eq. (7), are mean self-similar.

An alternative (yet equivalent) Def. 14 stated below will clarify the name
selected for this property.

Combining Eqs. (15) and (16) we find that for a mean self-similar measure
there exists a nonnegative Tokunaga sequence {Tk}k=1,2,... such that

Ti,j [K] = Tj−i for all 1 ≤ i < j ≤ K, (17)

and the corresponding Tokunaga matrices TK are Toeplitz:

TK =

⎡⎢⎢⎢⎢⎢⎢⎣

0 T1 T2 . . . TK−1

0 0 T1 . . . TK−2

0 0
. . .

. . .
...

...
...

. . . 0 T1

0 0 . . . 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

Remark 6 (Applied analysis of trees). The Tokunaga matrix TK is easily
calculated for an observed collection of trees; this is the common way of exam-
ining self-similairty in applications [131, 126, 34, 178]. The Toeplitz property
for a collection of branch and side-branch counts Ni[T ], Ni,j [T ] can be tested
within the ANOVA framework.

Recall that Horton pruning R decreases the Horton-Strahler order of each
vertex (and hence of each branch) by unity; in particular

Nk[T ] = Nk−1 [R(T )] , k ≥ 2, (18)

Ni,j [T ] = Ni−1,j−1 [R(T )] , 2 ≤ i < j. (19)

Consider the pushforward probability measure R∗(μ) induced on HK by the
pruning operator:

R∗(μ)(A) = μK+1

(
R−1(A)

)
∀A ⊂ HK .
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The Tokunaga coefficients computed on HK using the pushforward measure
R∗(μ) are denoted by TR

i,j [K]:

TR
i,j [K] = Ti+1,j+1[K + 1] =

Ni+1,j+1[K + 1]

Nj+1[K + 1]
. (20)

Definition 13 (Mean prune-invariance). A set of probability measures
{μK}K≥1 on {HK}K≥1 is called mean prune-invariant if

Ti,j [K] = TR
i,j [K] = Ti+1,j+1[K + 1] (21)

for any K ≥ 2 and all 1 ≤ i < j ≤ K. A measure μ on BT | is called mean
prune-invariant if the respective conditional measures {μK}, as in Eq. (7), are
mean prune-invariant.

Definition 14 (Mean self-similarity). A set of probability measures {μK}K≥1

on {HK}K≥1 is called mean self-similar with respect to Horton pruning, or mean

self-similar, if it is coordinated and mean prune-invariant. A measure μ on BT |

is called mean self-similar with respect to Horton pruning if the respective con-
ditional measures {μK}, as in Eq. (7), are mean self-similar with respect to
Horton pruning.

Proposition 2. Definitions 12 and 14 of mean self-similarity are equivalent.

This equivalence was proven in [96]. Its validity is readily seen from the
diagram of Fig. 14a, which shows relations among the quantities Ti,j [K], Ti,j [K+
1], and Ti+1,j+1[K + 1] involved in the definitions of coordination (Def. 10),
Toeplitz property (Def. 11), and mean prune-invariance (Def. 13). Moreover, we
observe that if any two of these properties hold, the third also holds. The Venn
diagram of Fig. 14b illustrates the relation among coordination, mean prune-
invariance, Toeplitz property and mean self-similarity in the binary tree space
BT |.

Consider a mean self-similar measure μ. Observe that since exactly two
branches of order k are required to form a branch of order (k + 1), the average
number of side branches of order 1 ≤ k < K within HK is Nk[K]− 2Nk+1[K].
This number can also be computed by counting the average number of side
branches of order k for all higher-order branches:

K∑
j=k+1

Tk,j Nj [K] =

K−k∑
m=1

TmNk+m[K].

Equalizing these two expressions we arrive at the main system of counting equa-
tions:

Nk[K] = 2Nk+1[K] +

K−k∑
j=1

Tj Nk+j [K], 1 ≤ k ≤ K − 1, K ≥ 2. (22)
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Fig 14. Relations among coordination, mean prune-invariance, and Toeplitz property. (a)
Pairwise equalities among the quantities Ti,j [K], Ti,j [K+1], and Ti+1,j+1[K+1] involved
in the definitions of coordination, mean prune-invariance, and Toeplitz property. (b) Venn
diagram of the space BT | illustrating the relation among coordination (left triangle), mean
prune-invariance (right triangle), and Toeplitz property (bottom triangle). The mean self-
similarity (the inner dark triangle) is formed by the intersection of the three properties (and,
hence, by intersection of any two).

Consider a K ×K linear operator

GK :=

⎡⎢⎢⎢⎢⎢⎢⎣

−1 T1 + 2 T2 . . . TK−1

0 −1 T1 + 2 . . . TK−2

0 0
. . .

. . .
...

...
...

. . . −1 T1 + 2
0 0 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎦ . (23)

The counting equations (22) rewrite as

GK

⎛⎜⎜⎜⎝
N1[K]
N2[K]

...
NK [K]

⎞⎟⎟⎟⎠ = −eK , K ≥ 1, (24)

where eK is the K-th coordinate basis vector. Using this equation for (K + 1)
and considering the last K components we obtain

GK

⎛⎜⎜⎜⎝
N2[K+1]
N3[K+1]

...
NK+1[K+1]

⎞⎟⎟⎟⎠ = −eK , K ≥ 1.

This proves the following statement.
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Proposition 3. Consider a mean Horton self-similar measure μ on BT |. Then
for any K ≥ 1 and 1 ≤ k ≤ K we have

Nk+1[K+1] = Nk[K]

and

Ni+1,j+1[K+1] = Ni,j [K], 1 ≤ i < j ≤ K, K ≥ 2.

Definition 15 (Tokunaga self-similarity). A mean self-similar measure μ

on BT | is called Tokunaga self-similar with parameters (a, c) if its Tokunaga
sequence {Tj}j=1,2,... is expressed as

Tj = a cj−1, k ≥ 1 (25)

for some constants a ≥ 0 and c > 0.

Tokunaga self-similarity (25) specifies a combinatorial tree shape (up to a per-
mutation of side branch attachment within a given branch) with only two param-
eters (a, c), hence suggesting a conventional modeling paradigm. The empirical
validity of the Tokunaga self-similarity constraints (25) has been confirmed for a
variety of river networks at different geographic locations [131, 153, 45, 112, 178],
as well as in other types of data represented by trees, including botanical trees
[126], the veins of botanical leaves [159, 133], clusters of dynamically limited ag-
gregation [129, 126], percolation and forest-fire model clusters [175, 168], earth-
quake aftershock sequences [157, 84, 172], tree representation of symmetric ran-
dom walks [173] (Sect. 8.6), and hierarchical clustering [69]. The conditions (25),
however, lacks a theoretical justification. We make a step towards justifying this
condition in Sect. 7.7.2.

Remark 7 (Mean self-similarity is a property of conditional measures).
The properties introduced in this section – coordination (Def. 10), Toeplitz
(Def. 11), mean prune-invariance (Def. 13), and mean self-similarity (Defs. 12,
14) – are completely specified by a set of conditional measures {μK}, and are
independent of the randomization probabilities πK = μ(HK), see Eq. (7).

Remark 8 (Terminology). The self-similarity concepts studied in this work
refer to a measure μ, or a collection of conditional measures {μK}, on a suitable
space of trees. For the sake of brevity, we sometimes use a common abuse of

notations and discuss self-similarity of a random tree T
d∼ μ (e.g., claiming

that a tree T is mean self-similar, etc.). Formally, such statements apply to the
respective tree distribution μ.

3.4. Examples of self-similar trees

This section collects some examples (and non-examples) of self-similar trees and
related properties.
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Fig 15. Self-similarity of perfect binary trees Bin(κ) ⊂ BL| (Ex. 1). The length of edges of
order i is κi−1 for some κ > 0. The space Bin(κ) is Horton self-similar with ζ = κ and
Tokunaga sequence Tj = 0, k ≥ 1. In this figure, κ = 1.5. We write BinK for the tree of
order K. Top row shows three consecutive Horton prunings of Bin4. Bottom row shows trees
Bin4,3,2,1. Here, for any K ≥ 1 and m ≥ 0, the tree BinK is obtained by scaling all edges of the
tree Rm(BinK+m) by a multiplicative factor κ−m. The four columns of the figure correspond
to m = 0, 1, 2, 3 and K +m = 4. The lengths of selected edges are indicated in the figure.

Example 1 (Perfect binary trees). Recall that a binary tree is called perfect
if it is reduced and all its leaves have the same depth (combinatorial distance

from the root). Consider space Bin ⊂ BT | of finite planted perfect binary trees;
see Fig. 15. We write D = D[T ] for the depth of a tree T and BinD ⊂ Bin for the
subspace of trees of depth D ≥ 1. The subspace BinD consists of a single tree
with 2D−1 leaves; it has Horton-Strahler order D. Every conditional measure
μK in this case is a point measure on BinK , K ≥ 1. Moreover, the order of a
vertex at depth 1 ≤ d ≤ D (and its parental edge) is D− d+1, and for the tree
BinK we have

Nk[BinK ] = 2K−k, K ≥ 1, k ≤ K.

We write Bin(κ) ⊂ BL| for the space of metric trees with combinatorial shapes
from Bin and length κi−1 assigned to edges of order i ≥ 1. The bottom row of
Fig. 15 shows the trees from space Bin(κ) ⊂ BL| with combinatorial shapes Bini,
i = 4, 3, 2, 1, and κ = 1.5.

Let μK , K ≥ 1, be a point-mass distribution on space BT | that assigns
probability one to the tree BinK . For a given p ∈ (0, 1) and κ > 0, consider
μ =

∑∞
k=1 πKμK with πK = p(1−p)K−1 for all ordersK ≥ 1. Similarly, consider

the probability measure η on BL| that assigns the geometric probability πK to
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the tree in Bin(κ) with combinatorial shape BinK . Then, the measures μ and η
satisfy the following properties:

(a) Coordination (Def. 10) and Toeplitz property (Def. 11). By construction,
the trees in the space Bin have no side branching (Ni,j [T ] = 0), and
therefore,

Ti,j [K] = Tj−i[K] = Tj−i = 0, i < j.

This implies coordination and Toeplitz property.
(b) Mean self-similarity (Defs. 12, 14) follow from (a).
(c) Combinatorial Horton self-similarity (Def. 8). Recall that subspace BinK

consists of a single tree for any K ≥ 1. Since

BinK = R(BinK+1), K ≥ 1,

the space is Horton prune-invariant in shapes (Def. 8 or 9(i)). This estab-
lishes combinatorial Horton self-similarity.

(d) Tokunaga self-similarity with a = 0 (Def. 15) follows from (c).
(e) Horton prune-invariance in lengths (Def. 9(ii)). By construction, the leaves

of a pruned tree have length κ; and the edge lengths change by a multi-
plicative factor κ with every combinatorial step toward the root. This
implies Horton prune-invariance in lengths with ζ = κ.

(f) Self-similarity (Def. 9) with ζ = κ follows from (c) and (e). It implies that
for any K ≥ 1 and m ≥ 0, the tree BinK is obtained by scaling all edges of
the tree Rm(BinK+m) by a multiplicative factor κ−m. The four columns
of Fig. 15 correspond to m = 0, 1, 2, 3 and K +m = 4.

Example 2 (Combinatorial critical binary Galton-Watson trees). The
Galton-Watson distribution μ = GW({qk}) on T | (

∑∞
k=0 kqk ≤ 1 and q1 = 0)

has the coordination property for any distribution {qk} with π1 = μ(H1) �= 1.
Indeed, the Markovian branching mechanism (see Sect. 2.8) creates subtrees of
the same structure, independently of the tree order. This implies coordination.
However, mean and distributional prune-invariance (and hence mean and com-
binatorial Horton self-similarity) only hold in the critical binary case GW(12 ,

1
2 )

[34]. The corresponding Tokunaga sequence is Tj = 2j−1, j ≥ 1, which im-
plies Tokunaga self-similarity with parameters (a, c) = (1, 2). These results are
summarized in Thm. 4, Sect. 5.1.

Example 3 (Critical binary Galton-Watson trees with i.i.d. exponen-
tial edge lengths). The space of critical binary Galton-Watson trees with
independent exponential edge lengths is Horton self-similar with ζ = 2; this is
shown in Prop. 7 of Sect. 5.2.

Example 4 (Hierarchical Branching Process). Section 7 introduces a rich

class of measures on BL| induced by the Hierarchical Branching Process (HBP).
Notably, one can select parameters so that the process is Horton self-similar
(Def. 9) with an arbitrary Tokunaga sequence {Tj} and arbitrary ζ > 0. This
class includes the critical binary Galton-Watson tree with independent expo-
nential lengths as a special case; see Thm. 15.
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Fig 16. Random Tokunaga trees: Examples. Each panel shows a random tree sampled with
a particular Tokunaga self-similar tree measure (Def. 15), with the corresponding Tokunaga
sequence Tj = acj−1. (a) (a, c) = (0, 0), Tj = 0, (b) (a, c) = (1, 0), Tj = δj,1, (c) (a, c) =
(1, 1), Tj = 1, (d) (a, c) = (1, 2), Tj = 2j−1. The lengths of edges of order i equal κi−1, with
κ = 1.5.

Example 5 (Combinatorial Tokunaga trees). Tokunaga self-similar trees
(Def. 15) are specified by a particular form of the Tokunaga sequence:

Tj = acj−1, j ≥ 1.

This is a very flexible model that can account for a variety of dendritic patterns.
Figure 16 shows four selected examples:

Fig. 16(a): (a, c) = (0, 0), Tj = 0,

Fig. 16(b): (a, c) = (1, 0), Tj = δj,1,

Fig. 16(c): (a, c) = (1, 1), Tj = 1,

Fig. 16(d): (a, c) = (1, 2), Tj = 2j−1.

The random trees in this example are generated using the Geometric Branching
Process (see Sect. 7.7.1, Def. 26). This means, in particular, that the number
of side branches with Tokunaga index {i, j} (Def. 6) is a geometric random
variable with mean Tj−i. The case Tj = 0 corresponds to perfect binary trees
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with no side branching (see also Ex. 1). In this case, all branch mergers lead
to increase of branch order by unity. This results in a most symmetric deter-
ministic tree structure. Some (random) side branching appears for Tj = δj,1
(hence T1 = 1, T2 = 0, T3 = 0, . . . ): every branch of order K has on average a
single side branch of order K−1, and no side branches of lower orders. This
destroys symmetry and introduce randomness in tree shape. The case Tj = 1
corresponds to an average of one side branch of any order 1 ≤ k ≤ K−1 within
a branch of order K, resulting in tentacle-shaped formations of varying length.
The most complicated case illustrated here corresponds to Tj = 2j−1, which is
the Tokunaga sequence for critical binary Galton-Watson trees (but not neces-
sarily vice versa); see Ex. 2. In this case the number of side branches increases
geometrically with the difference of branch orders, hence producing branches
with widely varying lengths and shapes.

Example 6 (Tokunaga trees with i.i.d. exponential edge lengths). Ran-
dom edge lengths often appear as an element of applied modeling. Figure 17
illustrates the same four Tokunaga models as in Ex. 5, with i.i.d. exponential
edge lengths. Clearly, this additional random element substantially affects the
tree outlook. The edge length variability becomes a dominant element of the
metric tree shape. We notice, in particular, that the four types of trees with
exponential edge lengths in Fig. 17 look much more similar that the same four
types with deterministic edge lengths related to branch order.

Example 7 (Critical Tokunaga processes). Section 7.5 introduces a sub-
class of HBP, called critical Tokunaga processes, with Tj = (c−1)cj−1, j ≥ 1 for
an arbitrary c ≥ 1. These processes generate tree distributions that are Horton
self-similar with ζ = c and have i.i.d. exponential edge lengths.

Example 8 (Independent random attachment). A variety of mean self-
similar measures on T | can be constructed for an arbitrary sequence of Tokunaga
coefficients {Tj}j=1,2,.... Here we give a natural example [96].

Fix a sequence {Tj}j=1,2,... of Tokunaga coefficients. By Remark 7, it is suffi-
cient to construct a set of Horton self-similar conditional measures μK , K ≥ 1.

The subspace H1, which consists of a single-leaf tree τ1, possesses a trivial
unity mass conditional measure μ1. To construct a random tree from H2, we
select a probability mass function {P1,2(n)}n=0,1,... with the mean value T1. A
random tree T ∈ H2 is obtained from the single-leaf tree τ1 via the following
two operations. First, we attach two offspring vertices to the leaf of τ1. This
creates a tree of order 2 with no side branches – one internal vertex of degree
3, two leaves, and the root (Y-shaped tree). Second, we draw a random number
�2 from the probability distribution P1,2, and attach �2 vertices to this tree so
that they form side branches of index {1, 2}.

In general, we use a recursive construction procedure. Assume that a measure
μK−1, K ≥ 2, is constructed. To construct a random tree T ∈ HK we select a
set of probability mass functions {Pk,K(n)}n=0,1,..., indexed by k = 1, ...,K−1,
with the respective mean values Tk. A random tree T ∈ HK is constructed by
adding branches of order 1 (leaves) to a random tree τ ∈ HK−1. First, we add
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Fig 17. Random Tokunaga trees with i.i.d. exponential edge lengths: Examples. Each panel
shows a random tree drawn from a particular self-similar tree measure (Def. 15) with different
Tokunaga sequences Tj = acj−1. (a) (a, c) = (0, 0), Tj = 0, (b) (a, c) = (1, 0), Tj = δk,1, (c)
(a, c) = (1, 1), Tj = 1, (d) (a, c) = (1, 2), Tj = 2j−1.

two new offspring vertices to every leaf of τ hence producing a tree T̃ of order
K with no side branches of order 1. Second, for each order 2 ≤ j ≤ K and
for all branches bk of order j in T̃ (k = 1, . . . , Nj [T̃ ]), we sample independent
random variables �j(bk) from the distribution Pj−1,K . Next, for each k, we
attach �j(bk) new leaves to the branch bk so that they form side branches of
index {1, j}. Each new leaf is attached in a random order with respect to the
existing side branches. Specifically, we notice that m ≥ 0 side branches attached
to a branch of order j are uniquely associated with m + 1 edges within this
branch. The attachment of the new �j(bk) vertices among the m + 1 edges is
given by the equiprobable multinomial distribution with m + 1 categories and
�j(bk) trials.

The procedure described above generates a set of coordinated measures {μK}
on {HK}, since the mean values Tk of the distributions Pk,K are unrelated to
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K. Furthermore, observe that

Ni,j =

Nj [T̃ ]∑
k=1

�j−i+1(bk),

where each �j−i+1(bk) was sampled independently from Pj−i,K−i+1, and there-
fore,

Ni,j [K] = EK [Ni,j ] = EK [EK [Ni,j |Nj ]] = EK [Nj Tj−i] (26)

= Tj−i EK [Nj ] = Tj−iNj [K].

Hence, Ti,j [K] = Ni,j [K]/Nj [K] = Tj−i, and the sequence of tree measures
{μK} is mean self-similar (Defs. 12, 14). Finally, in order to make this construc-
tion distributionally Horton self-similar (Def. 8), we select an arbitrary p ∈ (0, 1)
and define

μ =

∞∑
K=1

μKπK with πK = p(1− p)K−1.

Example 9 (Why coordination?). Relating mean self-similarity (Def. 14) to
mean prune-invariance (Def. 13) is quite intuitive (see also [34]). Much less so
is the requirement of coordination of conditional measures (Def. 10), included
in the definition of mean self-similarity. This requirement is motivated by our
goal to bridge the measure-theoretic definition of self-similarity via the pruning
operation (Def. 14) to a branch counting definition (Def. 12). In applications,
when a handful of trees of different orders is observed, the coordination assump-
tion allows one to estimate the Tokunaga coefficients Ti,j and make inference
regarding the Toeplitz property; see [131, 126, 45, 178]. The absence of coordi-
nation, at the same time, allows for a variety of prune-invariant measures with
no Toeplitz constraint, which are hardly treatable in applications. To give an
example of such a measure, let us select a tree τ2 from the preimage of the only
tree τ1 ∈ H1 of order K = 1 under the pruning operation: τ2 ∈ R−1(τ1) = H2.
In a similar fashion, select any tree τK+1 from the preimage of τK for K ≥ 2.
This gives us a collection of trees τK ∈ HK , K ≥ 1 such that R(τK+1) = τK .
Assign the full measure on HK to τK : μK(τK) = 1. By construction, the mea-
sures {μK} are mean prune-invariant. They, however, may satisfy neither the
coordination nor the Toeplitz property. This example illustrates how one can
produce rather obscure collections of mean prune-invariant measures, providing
a motivation for the coordination requirement.

4. Horton law in self-similar trees

In this section, we introduce the strong Horton law for the numbers of branches
of different orders in a combinatorial tree on T (Def. 16) and for the respective
averages (Def. 17). The main result of this section (Thm. 1) shows that the mean
self-similarity (Defs. 12, 14) implies the strong Horton law for mean branch
numbers (Def. 17).
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Consider a measure μ on T and its conditional measures μK , each defined on

subspace HK ⊂ T of trees of Horton-Strahler order K ≥ 1. We write T
d∼ μK

for a random tree T drawn from subspace HK according to measure μK .

Definition 16 (Strong Horton law for branch numbers). We say that a
probability measure μ on T satisfies a strong Horton law for branch numbers
if there exists such a positive (constant) Horton exponent R ≥ 2 that for any
k ≥ 1, (

Nk[T ]

N1[T ]
; T

d∼ μK

)
p−→ R1−k, as K →∞, (27)

that is, for any ε > 0

μK

(∣∣∣∣Nk[T ]

N1[T ]
−R1−k

∣∣∣∣ > ε

)
→ 0 as K →∞. (28)

Corollary 5 in Sect. 7.6.2 is an example of the strong Horton law for branch
numbers. In the context of Horton laws, the adjective strong refers to the type
of geometric decay, while the convergence of random variables is in probability.
Section 4.2 discusses weaker types of geometric convergence. An alternative,
weaker, definition of the Horton law is formulated in terms of expected branch
counts.

Definition 17 (Strong Horton law for mean branch numbers). We say
that a probability measure μ on T satisfies a strong Horton law for mean branch
numbers if there exists such a positive (constant) Horton exponent R ≥ 2 that
for any k ≥ 1,

lim
K→∞

EK [Nk[T ]]

EK [N1[T ]]
= lim

K→∞

Nk[K]

N1[K]
= R1−k. (29)

Lemma 1. The strong Horton law for branch numbers (Def. 16) implies the
strong Horton law for mean branch numbers (Def. 17).

Proof. By construction, if ord(T ) = K, then N1[T ] ≥ 2K−1. Accordingly, for

any k ≤ K we have Nk[T ]
N1[T ] ≤ 21−k. Assuming the strong Horton law (28) for

branch numbers, for any given ε > 0, we have

μK

(∣∣∣∣Nk[T ]

N1[T ]
−R1−k

∣∣∣∣ > ε

)
< ε

for all sufficiently large K. Thus, for a given k ∈ N and for all sufficiently large
K exceeding k, we have∣∣∣∣Nk[K]

N1[K]
−R1−k

∣∣∣∣ =
∣∣∣EK

[
N1[T ]

(
Nk[T ]
N1[T ] −R1−k

)]∣∣∣
EK

[
N1[T ]

] ≤
EK

[
N1[T ]

∣∣∣Nk[T ]
N1[T ] −R1−k

∣∣∣]
EK

[
N1[T ]

]
≤

εEK

[
N1[T ]

]
+ ε21−k

EK

[
N1[T ]

] ≤ ε+ ε22−k−K < 2ε,

as
∣∣∣Nk[T ]
N1[T ] −R1−k

∣∣∣ ≤ max
(
21−k, R1−k

)
≤ 21−k. This establishes (29).
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A similar calculation allows us to establish the following result.

Lemma 2. Consider a probability measure μ on T and suppose the following
properties hold:

(i) μ satisfies the strong Horton law for mean branch numbers (Def. 17), and

(ii) ∀k ≥ 1 ∃Lk ∈ [0,∞) such that
(

Nk[T ]
N1[T ] ;T

d∼ μK

)
p→ Lk as K →∞.

Then, the measure μ satisfies the strong Horton law for branch numbers (Def. 16),
i.e., Lk = R1−k.

Sufficient conditions for the strong Horton law for mean branch numbers in
binary trees were found in [96], hence providing rigorous foundations for the
celebrated regularity that has escaped a formal explanation for a long time.
These conditions are presented in Thm. 1 of this section. It has been shown in
[97] that the tree that describes a trajectory of Kingman’s coalescent process
with N particles obeys a weaker version of Horton law as N → ∞ (Sect. 9),
and that the first pruning of this tree for any finite N is equivalent to a level
set tree of a white noise (see Sect. 8 for definitions).

Consider a mean self-similar measure μ on BT | with a Tokunaga sequence
{Tj}j=1,2,.... Define a sequence t(j) as

t(0) = −1, t(1) = T1 + 2, and t(j) = Tj for j ≥ 2, (30)

and let t̂(z) denote the generating function of {t(j)}j=0,1,...:

t̂(z) =

∞∑
j=0

zjt(j) = −1 + 2z +

∞∑
j=1

zjTj . (31)

For a holomorphic function f(z) represented by a power series f(z) =
∞∑
j=0

ajz
j

in a nonempty disk |z| ≤ ρ we write

f̌(j) =
1

2πi

∮
|z|=ρ

f(z)

zj+1
dz = aj . (32)

Theorem 1 (Strong Horton law in a mean self-similar tree). Suppose μ

is a mean self-similar measure on BT | with a Tokunaga sequence {Tj}j=1,2,...

such that
lim sup
j→∞

T
1/j
j <∞. (33)

Then the strong Horton law for mean branch numbers (Def. 17) holds with the
Horton exponent R = 1/w0, where w0 is the only real zero of the generating
function t̂(z) in the interval

(
0, 1

2

]
. Moreover,

N1[K + 1] = −
~

(
1

t̂

)
(K) (34)
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and
lim

K→∞

(
N1[K]R−K

)
= const. > 0. (35)

Conversely, if lim sup
j→∞

T
1/j
j = ∞, then the limit lim

K→∞
Nk[K]
N1[K] does not exist at

least for some k.

Proof. The proof of Thm. 1 is given in Sect. 4.1.

That the Horton exponent R is reciprocal to the real root of t̂(z) was noticed
by Peckham [131], under the assumption lim

K→∞

(
NkR

k−K
)
= const. > 0. We

observe that formula (34) in Thm. 1 yields a closed form expression of Nk[K]
via Prop. 3, and, therefore, is instrumental in evaluating the rate of convergence
in (35). This is illustrated below in Ex. 10.

The following two examples illustrate application of Thm. 1.

Example 10 (Tokunaga self-similar trees). Consider a Tokunaga self-similar
tree (Def. 15) with Tj = a cj−1, where a, c > 0. (We exclude the case a = 0 ⇒
Tj = 0, which correspond to perfect binary trees with no side branching.) This
model received considerable attention in the literature [116, 126, 131, 155], in
part because of its ability to closely describe river networks [178]. Here we have

lim sup
j→∞

T
1/j
j = c <∞,

so the condition (33) of Thm. 1 is satisfied, and

t̂(z) = −1 + 2z + az

∞∑
j=1

(cz)j−1 = −1 + 2z +
az

1− cz

=
−1 + (a+ c+ 2)z − 2cz2

1− cz
for |z| < 1/c. (36)

The discriminant of the quadratic polynomial in the numerator is positive,

(a+ c+ 2)2 − 8c > (c+ 2)2 − 8c = (c− 2)2 ≥ 0.

Therefore, there exist two real roots, z1 < z2, of the numerator. It is easy to
check that

z1z2 = (2c)−1, 0 < z1 < min{2−1, c−1}, and z2 > max{2−1, c−1}.

Hence, there is a single root of t̂(z) = 0 for |z| < 1/c of algebraic multiplicity
one:

z1 ≡ w0 =
a+ c+ 2−

√
(a+ c+ 2)2 − 8c

4c
,

and the respective Horton exponent is

R = 1/w0 =
a+ c+ 2 +

√
(a+ c+ 2)2 − 8c

2
(37)
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Fig 18. Strong Horton law in a Tokunaga mean self-similar tree with Tj = acj−1, j ≥ 1.
(a) Horton exponent R as a function of the Tokunaga parameters (a, c). (b) The ratio 0 <
z1/z2 < 1 of the two roots of the equation 2cz2 − (a + c + 2)z + 1 = 0 as a function of the
Tokunaga parameters (a, c). This ratio controls the rate of convergence in the strong Horton
law – small values increase the rate.

as was observed in [155, 131, 116]. A map of the values of the Horton exponent
R(a, c) is shown in Fig. 18a. As suggested by (37), the level sets of R(a, c) are
fairly approximated by a+ c = const.

To examine the rate of convergence in the strong Horton law, we use Prop. 3
and formula (34). The reciprocal generating function for the examined Tokunaga
tree is given by

− 1

t̂(z)
=

1− cz

2c(z − z1)(z − z2)

=
1− cz

2c(z2 − z1)

(
1

z − z1
− 1

z − z2

)
. (38)

Thus, since 1
z−p = −

∞∑
k=0

1
pk+1 z

k for |z| < |p|, formula (34) implies

N1[K + 1] =
1

2c(z2 − z1)

(
1− cz1

zK+1
1

− 1− cz2

zK+1
2

)
=

1− cz1
2c(z2 − z1)

1

zK+1
1

(
1−

(
z1
z2

)K+1
1− cz2
1− cz1

)
. (39)

We use the equality R = z−1
1 of Thm. 1 and rewrite this as

N1[K]R−K =
1− cz1

2c(z2 − z1)

(
1−

(
z1
z2

)K
1− cz2
1− cz1

)
.

This gives us an explicit limit in (35)

lim
K→∞

(
N1[K]R−K

)
=

1− cz1
2c(z2 − z1)
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Fig 19. The strong Horton law in a mean self-similar tree: an illustration. The figure refers to
a Tokunaga mean self-similar measure μ with Tj = 2j−1, j ≥ 1. (a) Characteristic function
t̂(z) (solid blue). The zero level is marked by a green horizontal line. The real solution w0 =
1/4 is depicted by a vertical dashed line. (b) Ratio Nk[K]/Nk+1[K] for tree order K = 20
and branch orders k = 1, . . . , 19. The strong Horton law suggests Nk[K]/Nk+1[K] ≈ R = 4
for large K and k not too close to K.

and indicates that the respective rate of convergence is determined by the ratio
z1/z2 < 1. Specifically, smaller values lead to faster convergence. Recall (Prop. 3)
that

N1[m+ 1] = NK−m[K], 0 ≤ m ≤ K − 1, K ≥ 1.

Hence, the ratio z1/z2 also determines the rate of convergence in (29). Fig-
ure 18(b) shows the ratio z1/z2 as a function of (a, c). The only region when the
ratio is approaching 1, hence slowing down the convergence rate in the strong
Horton law, corresponds to {c ≈ 2, a < 1}.

Figure 19 illustrates the strong Horton law in a Tokunaga mean self-similar
tree with a = 1, c = 2, which corresponds to Tj = 2j−1, j ≥ 1. In this case
(Figs. 19(a), 20)

t̂(z) =
−1 + 5z − 4z2

1− 2z
=
−4(z − 1)(z − 1/4)

1− 2z
, |z| < 1/2. (40)

The ratios Nk[K]/Nk+1[K] for K = 20 are shown in Fig. 19(b). The ratios are
very close to the theoretical value R = 1/w0 = 4, except for the branch orders
k close to the tree order K, k > 15. As suggested by Fig. 18(b), for most of
the choices (a, c) the convergence rate is higher, so we expect to have a larger
number of ratios in a close vicinity of the limit value R. As we discussed above,
the convergence in (35) has the same rate, with first terms (small k) deviating
from the limit value rather then the last ones, as was the case in (29) and
Fig. 19(b).

We show below in Eq. 47 that, in general, the rate of convergence in the
strong Horton law (29), (35) is controlled by

min
|z|<γ

|t̂(z)|,
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Fig 20. Generating function t̂(z) for a mean self-similar tree with Tokunaga sequence Tj =
2j−1, j ≥ 1, see (40). The figure shows the value log10 |t̂(z)| for visual convenience. The
values of t̂(z) are well separated from its only zero at z = 1/4, ensuring a high convergence
rate in the strong Horton law.

where γ separates w0 from other possible zeros of t̂(z) – higher values lead to
faster convergence. Figure 20 shows the value log10 |t̂(z)| on its disk on con-
vergence for the Tokunaga tree of this example. Here, the only zero of t̂(z) at
z = 1/4 (downward peak) is well isolated so that the surrounding values are
separated from zero; this suggests a high rate of convergence that we already
illustrated more directly in (39) and Figs. 18(b), 19(b).

Example 11 (Shallow side branching). Suppose Tj = 0 for j ≥ 3, that is
we only have “shallow” side branches of orders {k − 2, k} and {k − 1, k}. Then

t̂(z) = −1 + (T1 + 2) z + T2 z
2.

The only root of this equation within [0, 1/2] is

w0 =

√
(T1 + 2)2 + 4T2 − (T1 + 2)

2T2
,

which leads to

R = 1/w0 =

√
(T1 + 2)2 + 4T2 + (T1 + 2)

2
.

In particular, if Tj = 0 for j ≥ 2, then R = T1+2; such trees are called “cyclic”
[131]. This shows that the entire range of Horton exponents 2 ≤ R <∞ can be
achieved by trees with only very shallow side branching.
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We conclude this section with a linear algebra construction that clarifies the
essence of Horton law in a mean self-similar tree. Define a vector ζK ∈ RK of
average Horton numbers and a respective normalized vector ξK ∈ R∞ as

ζK =

⎛⎜⎜⎜⎝
N1[K]
N2[K]

...
NK [K]

⎞⎟⎟⎟⎠ and ξK :=
1

N1[K]

⎛⎜⎜⎜⎝
ζK
0
0
...

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
N2[K]/N1[K]

...
NK [K]/N1[K]

0
0
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and consider an infinite dimensional extension to operator GK of (23):

G :=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1 T1 + 2 T2 T3 . . .
0 −1 T1 + 2 T2 . . .

0 0 −1 T1 + 2
. . .

0 0 0 −1 . . .
...

...
. . .

. . .
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (41)

Using these notations, the main counting equations (24) becomes GKζK = −eK ,
and therefore

GξK = − eK
N1[K]

.

Here N1[K] ≥ (T1 + 2)K−1 → ∞ as K → ∞, and hence the strong Horton
law for mean branch numbers (Def. 17) is equivalent to the existence of a limit
solution lim

K→∞
ξK = ξ to an infinite dimensional linear operator equation

Gξ = 0

with coordinates ξ(k) = R1−k.

4.1. Proof of Theorem 1

First, we establish (Prop. 4) necessary and sufficient conditions for the existence
of the strong Horton law. Then we show that these conditions are satisfied and
express the value of the Horton exponent R via the Tokunaga coefficients {Tj}.

Proposition 4. Let μ be a mean self-similar measure on BT |. Suppose that the
limit

R = lim
K→∞

N1[K + 1]

N1[K]
(42)

exists and is finite. Then, the strong Horton law for mean branch numbers holds;
that is, for each positive integer k,

lim
K→∞

Nk[K]

N1[K]
= R1−k. (43)
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Conversely, if the limit (42) does not exist, then the limit in the left hand side
of (43) also does not exist, at least for some k.

Proof. Suppose the limit (42) exists and is finite. Proposition 3 implies that for
any fixed integer m ≥ 1

Nm+1[K]

Nm[K]
=

N1[K −m]

N1[K −m+ 1]
→ R−1, as K →∞.

Thus, for any fixed integer k ≥ 2,

Nk[K]

N1[K]
=

k−1∏
m=1

Nm+1[K]

Nm[K]
→ R1−k, as K →∞.

Conversely, suppose the limit lim
K→∞

N1[K+1]
N1[K] does not exist. Taking k = 2, we

obtain by Prop. 3
N2[K]

N1[K]
=
N1[K−1]
N1[K]

.

Thus lim
K→∞

N2[K]
N1[K] diverges.

Next, we expressN1[K] via the elements of the Tokunaga sequence {Tj}j=1,2,...

that satisfy condition (33). The quantity N1[K +1] can be computed by count-
ing, and expressed via convolution products as follows:

N1[K + 1] =

K∑
r=1

∑
j1,j2,...,jr≥1

j1+j2+...+jr=K

t(j1)t(j2) . . . t(jr)

=

K∑
r=1

(t+ δ0) ∗ (t+ δ0) ∗ . . . ∗ (t+ δ0)︸ ︷︷ ︸
r times

(K)

=

∞∑
r=1

(t+ δ0) ∗ (t+ δ0) ∗ . . . ∗ (t+ δ0)︸ ︷︷ ︸
r times

(K),

where δ0(j) is the Kronecker delta, and therefore, (t+ δ0)(0) = 0. Hence, taking
the z-transform of N1[K], we obtain

∞∑
K=1

zK−1N1[K] = 1 +

∞∑
r=1

[
̂(t+ δ0)(z)

]r
= 1 +

∞∑
r=1

[
t̂(z) + 1

]r
= − 1

t̂(z)
(44)

for |z| small enough. Recalling the definition (32) establishes (34):

N1[K + 1] = −
~

(
1

t̂

)
(K).
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Since Tj ≥ 0 for any j ≥ 1, the function t̂(z) = −1 + 2z +
∞∑
j=1

zjTj has a

single real root w0 in the interval (0, 1/2]. Our goal is to show that the Horton
exponent R is reciprocal to w0. We begin by showing that w0 is the root of t̂(z)
closest to the origin.

Lemma 3. Let w0 be the only real root of t̂(z) = −1 + 2z +
∞∑
j=1

zjTj in the

interval (0, 1/2]. Then, for any other root w of t̂(z), we have |w| > w0.

Proof. Since {Tj} are all nonnegative reals, we have t̂(z̄) = t̂(z). The radius of

convergence of
∞∑
j=1

zjTj must be greater than w0. Suppose w = reiθ (0 ≤ θ < 2π)

is a root of magnitude at most w0. That is t̂(w) = 0 and r := |w| ≤ w0. Then
t̂(w̄) = 0 and

0 =
1

2

[
t̂(w) + t̂(w̄)

]
= −1 + 2r cos(θ) +

∞∑
j=1

rjTj cos(jθ).

If r < w0, then

0 = −1 + 2r cos(θ) +

∞∑
j=1

rjTj cos(jθ) ≤ −1 + 2r +

∞∑
j=1

rjTj

< −1 + 2w0 +

∞∑
j=1

wj
0Tj = 0

arriving to a contradiction. Thus r = w0.
Next we show that θ = 0. Suppose not. Then

0 = −1 + 2r cos(θ) +
∞∑
j=1

rjTj cos(jθ) < −1 + 2r +
∞∑
j=1

rjTj

= −1 + 2w0 +

∞∑
j=1

wj
0Tj = 0

arriving to another contradiction. Hence r = w0, θ = 0, and w = w0.

Let L = lim sup
j→∞

T
1/j
j . Then L−1 is the radius of convergence of t̂(z) (we set

L−1 =∞ if L = 0), and L−1 > w0. Lemma 3 asserts that there exists a positive
real γ ∈ (w0, L

−1) such that

γ < w for all w �= w0 such that t̂(w) = 0. (45)

Accordingly, for 0 < ρ < w0

N1[K] =
−1
2πi

∮
|z|=ρ

dz

t̂(z)zK
= −Res

(
1

t̂(z)zK
;w0

)
− 1

2πi

∮
|z|=γ

dz

t̂(z)zK
. (46)
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Observe that Res
(

1
t̂(z)zK ;w0

)
is a constant multiple of w−K

0 since w0 is a root

of t̂(z) of algebraic multiplicity one. Thus, since w0 < γ and∣∣∣∣∣∣∣
1

2πi

∮
|z|=γ

dz

t̂(z)zK

∣∣∣∣∣∣∣ ≤
1

γK min
|z|=γ

|t̂(z)|
= o

(
w−K

0

)
, K →∞, (47)

we have
N1[K + 1]

N1[K]
=

∣∣∣∣N1[K + 1]

N1[K]

∣∣∣∣→ 1

w0
as K →∞.

Proposition 4 now implies the following lemma.

Lemma 4. Suppose lim sup
j→∞

T
1/j
j <∞. Then, for each positive integer k

lim
K→∞

Nk[K]

N1[K]
= wk−1

0 .

Moreover,
lim

K→∞

(
N1[K]wK

0

)
= const. > 0.

To establish the converse we need the following statement.

Proposition 5. Suppose μ is a mean self-similar measure on BT | with Toku-
naga sequence {Tj}j≥1. Then

N1[K] ≥ T
(K−1)/j
j

for all j ∈ N and (K − 1) ∈ jN.

Proof. Fix any j ≥ 1. The main counting equations (22) show that for any
integer m ≥ 0

Nmj+1[K] ≥ TjN(m+1)j+1[K].

Accordingly,
N1[K] ≥ Tm

j Nmj+1[K],

given mj + 1 ≤ K. Choosing m = (K − 1)/j we obtain

N1[K] ≥ T
(K−1)/j
j NK [K] = T

(K−1)/j
j .

Suppose the limit

R = lim
K→∞

N1[K + 1]

N1[K]

exists and is finite. Proposition 5 asserts that N1[K]1/(K−1) ≥ T
1/j
j for all j ∈ N

and (K − 1) ∈ jN. Hence,

lim sup
j→∞

T
1/j
j ≤ lim

K→∞
N1[K]1/(K−1) = R <∞.

We summarize this in a lemma.
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Lemma 5. Suppose lim sup
j→∞

T
1/j
j = ∞. Then, the limit lim

K→∞
Nk[K]
N1[K] does not

exist at least for some k.

Finally, Thm. 1 follows from Lem. 4 and Lem. 5.

4.2. Well-defined asymptotic Horton ratios

The setting for Horton law in (27) and (29) can be generalized beyond ran-
domizing the tree measure with respect to Horton-Strahler orders as in (7). For
instance, as it will be the case with the combinatorial critical binary Galton-
Watson trees GW

(
1
2 ,

1
2

)
in (66), the tree measure may be randomized with

respect to the number of leaves in a tree. A general set up for the Horton laws
is described below.

Let Qn, n ∈ N, be a sequence of probability measures on T . We write N
(Qn)
j

for the number of branches of Horton-Strahler order j ≥ 1 in a tree generated
according to Qn.

Definition 18 (Well-defined asymptotic Horton ratios). We say that a
sequence of probability measures {Qn}n∈N has well-defined asymptotic Horton
ratios if for each j ≥ 1

N
(Qn)
j

N
(Qn)
1

p→ Nj as n→∞, (48)

where Nj is a constant, called the asymptotic Horton ratio of the branches of
order j.

Sometimes it is possible to establish a stronger limit than in (48). One such
example is the almost sure convergence in equation (135) of Sect. 7.6.2.

For a sequence of well-defined asymptotic Horton ratios Nj , the Horton law
states that Nj decreases in a geometric fashion as j goes to infinity. We consider
three particular forms of geometric decay.

Definition 19 (Root, ratio, and strong Horton laws). Consider a sequence
{Qn}n∈N of probability measures on T with well-defined asymptotic Horton ra-
tios (Def. 18). Then, the sequence {Qn} is said to obey

• a root-Horton law if the following limit exists: lim
j→∞

(
Nj

)− 1
j

= R;

• a ratio-Horton law if the following limit exists: lim
j→∞

Nj

Nj+1
= R;

• a strong Horton law if the following limit exists: lim
j→∞

(
NjR

j
)
= const.

The constant R is called the Horton exponent. In each case, we require the
Horton exponent R to be finite and positive.

Observe that the Horton laws in Def. 19 above are listed in the order from
weaker to stronger.
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4.3. Entropy and information theory

The (information) entropy introduced by Claude Shannon in 1948 [144] is the
main concept in information theory. Informally, entropy is a measure of noise,
uncertainty, or surprise. It can be also interpreted as the average amount of
information in a stochastic model. It has a broad range of applications, including
data communication, cryptography, and combinatorics. The entropy rate can be
thought as the asymptotic average information in a stochastic model.

The information theoretical aspects of self-similar trees were not addressed
until very recently. This section reviews recent results by Chunikhina [38, 39],
where the entropy rate is computed for trees that satisfy the strong Horton law
for branch numbers (Def. 16) and for Tokunaga self-similar trees (Def. 15) as a
function of the respective parameters, R and (a, c).

Consider a subspace TN1,...,NK
of BT |

plane of trees of a given order ord(T ) = K
and given admissible (NK = 1, Nj ≥ 2Nj+1) branch counts N1, N2, . . . , NK :

TN1,...,NK
=
{
T ∈ BT |

plane : ord(T ) = K, N1[T ] = N1, . . . , NK [T ] = NK = 1
}
.

In [38], Chunikhina finds the size of TN1,...,NK
, providing an alternative form of

expression that was first derived by Shreve [146].

Lemma 6 (Branch counting lemma, [38]).

∣∣TN1,...,NK

∣∣ = 2N1−1−
∑K

j=2 Nj

K−1∏
j=1

(
Nj − 2

2Nj+1 − 2

)
.

Subsequently, Lem. 6 is used to find the entropy rate for trees that satisfy
the strong Horton law (Def. 16) with exponent R > 2.

Theorem 2 (Entropy rate for Horton self-similar trees, [38]). For a given
R > 2 and a given ε ∈ (0, R), consider a random tree T uniformly sampled from
the space

TR,K=
{
T ∈ BT |

plane : ord(T )=K,
∣∣Nj [T ]−RK−j

∣∣ < (R− ε)K−j ∀j ≤ K
}
.

Let P and E denote the probability mass function and the expectation, respec-
tively. Then, the entropy rate

H∞(R) := lim
K→∞

−E[log2 P(T )]
2RK−1

= 1− 1−H(2/R)

2− 2/R
, (49)

where
H(z) = −z log2 z − (1− z) log2(1− z), 0 < z < 1 (50)

is the binary entropy function illustrated in Fig. 21(a). The entropy rate H∞(R)
is illustrated in Fig. 21(b).

Notice that the trees in TR,K satisfy the strong Horton law (Def. 16) with the
Horton exponent R, and 2RK−1 is the asymptotic number of nodes in a tree T
from TR,K .



52 Y. Kovchegov and I. Zaliapin

Fig 21. Entropy rate in trees that satisfy the strong Horton law with exponent R. (a) Binary
entropy function H(z). (b) Entropy rate H∞(R).

Remark 9. It is an easily verified fact that a random tree T selected uniformly
from the subspace

BT |
plane(N) := {T ∈ BT |

plane : #T = 2N − 1} (51)

of BT |
plane containing only the trees with N leaves (2N nodes and 2N−1 edges)

is distributed as a random tree sampled from the critical plane Galton-Watson
distribution GWplane

(
1
2 ,

1
2

)
, conditioned on #T = 2N − 1, i.e.,

Unif
(
BT |

plane(N)
) d

=

(
GWplane

(
1

2
,
1

2

) ∣∣∣#T = 2N − 1

)
. (52)

Consequently, we have that

T
d∼ Unif

(
BT |

plane(N)
)
⇒ shape(T )

d∼
(
GW

(
1

2
,
1

2

) ∣∣∣#T = 2N − 1

)
. (53)

The number
∣∣BT |

plane(N)
∣∣ of different combinatorial shapes of rooted planted

plane binary trees with N leaves and 2N −1 edges, is given by CN−1, where Cn

denotes the Catalan number defined as

Cn =
1

n+ 1

(
2n

n

)
. (54)

Using
∣∣BT |

plane(N)
∣∣ = CN−1 and Stirling’s formula, it is observed in [38] that

the entropy rate for a tree T ′, selected uniformly from BT |
plane(N) is

HGW
∞ := lim

N→∞

−E[log2 P(T ′)]

2N
= 1. (55)

Thus, scaling by the asymptotic number of nodes 2RK−1 in Thm. 2 implies

H∞(R) ≤ HGW
∞ = 1.
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Indeed, by definition of the corresponding spaces,

TR,K ⊆
⋃
N

BT |
plane(N),

where the union is taken over N ranging from

�RK−1 − (R− ε)K−1� to �RK−1 + (R− ε)K−1�,

and therefore∣∣∣TR,K

∣∣∣ ≤ 2(R− ε)K−1
∣∣∣BT |

plane

(
2RK−1 + 2(R− ε)K−1

)∣∣∣.
Hence, for the following limits known to converge, we have

H∞(R) = lim
K→∞

log2

∣∣∣TR,K

∣∣∣
2RK−1

≤ HGW
∞ = lim

K→∞

log2

(
2(R− ε)K−1

∣∣∣BT |
plane

(
2RK−1 + 2(R− ε)K−1

)∣∣∣)
2RK−1

.

Moreover, scaling by the asymptotic number of nodes 2RK−1 in Thm. 2 enables
representingH∞(R) as the limit ratio of the entropy for Horton self-similar trees
with parameter R to the entropy for uniformly selected binary trees. Specifically,
let T be a random tree sampled uniformly from the space TR,K and let T ′ be

a random tree sampled uniformly from the space BT |
plane(N) with N = RK−1.

Then, equations (49) and (55) imply that H∞(R) is the the limit ratio of en-
tropies as the space sizes grow with K →∞:

H∞(R) = lim
K→∞

−E[log2 P(T )]
−E[log2 P(T ′)]

= 1− 1−H(2/R)

2− 2/R
. (56)

As an important consequence of Thm. 2, a special place of the parameter
R = 4 is established amongst all Horton exponents R ∈ [2,∞) as

argmaxRH∞(R) = 4 and max
R
H∞(R) = H∞(4) = 1.

Not surprisingly, R = 4 is the parameter value for the strong Horton law results
we will encounter in Sect. 5, primarily in the context of the critical binary
Galton-Watson tree GW

(
1
2 ,

1
2

)
. Indeed, as stated in Rem. 9, the tree T ′′ =

shape(T ′) ∈ BT | in (56) is a random tree sampled from the Galton-Watson
distribution GW

(
1
2 ,

1
2

)
conditioned on #T ′′ = 2N − 1.

In [39], Chunikhina extended the results in [38] by counting the number of
trees with the given merger numbers Ni,j (see Sect. 3.3), and finding the entropy
rates for the Tokunaga self-similar trees (Def. 15) represented as a function of
the parameters (a, c). For a given integer K > 1, consider a finite sequence
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of admissible branch counts {Ni}i=1,...,K , and a finite sequence of admissible
branch numbers {Ni,j}1≤i<j≤K . Admissibility means that for all i ≤ K − 1,

Ni = 2Ni+1 +
K∑

j=i+1

Ni,j

as all Ni branches of Horton-Strahler order i have to merge into a higher order
branch (either two branches of order i merge and originate a branch of order
i+ 1, or a branch of order i merges into a branch of order j > i). Consider the
subspace

TK,{Ni},{Ni,j} =
{
T ∈ TN1,...,NK

: N1,2[T ] = N1,2, . . . , NK−1,K [T ] = NK−1,K

}
.

Lemma 7 (Side branch counting lemma, [39]).

∣∣∣TK,{Ni},{Ni,j}

∣∣∣ = K∏
j=2

j−1∏
i=1

2Ni,j

(
Aj

Ni,j

)
, Aj = Nj − 1 +

j−1∑
k=i

Nk,j .

Lemma 7 is used to obtain the following asymptotic results. Consider Toku-
naga self-similar tree with parameters (a, c). Such a tree satisfies the strong
Horton law for mean branch numbers (Def. 17) with the Horton exponent (37)

R = R(a, c) =
a+ c+ 2 +

√
(a+ c+ 2)2 − 8c

2
.

Next, similarly to TR,K , one can define the space Ta,c,K of asymptotically Toku-
naga self-similar trees of order K. Informally, this space includes the trees in

BT |
plane such that

ord(T ) = K, Nj [T ] ∼ RK−j , and
Ni,j(T )

Nj(T )
∼ acj−i−1,

where R = R(a, c), and the asymptotic equality ∼ is taken as K →∞.

Theorem 3 (Entropy rate for Tokunaga self-similar trees, [39]). For
given a, c > 0, let T be a random tree, uniformly sampled from the space Ta,c,K .
Let P and E denote the probability mass function and the expectation, respec-
tively. Then, the entropy rate

H∞(a, c) := lim
K→∞

−E[log2 P(T )]
2RK−1

=
a

2

∞∑
j=1

R−j

(
1− cj

1− c
+

1

a

)
log2

(
1− cj

1− c
+

1

a

)
+

aR

2(R− c)(R− 1)
+

log2 a

2(R− 1)
− aRc log2 c

2(R− c)2(R− 1)
. (57)
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Fig 22. Entropy rate in Tokunaga trees. (a) Entropy rate H∞(a, c) in a Tokunaga self-
similar tree with parameters (a, c). (b) The difference H∞(a, c) − H∞(R) of entropy rates
in a Tokunaga tree with parameters (a, c) and in a tree satisfying Horton law with Horton
exponent R(a, c). A double-logarithmic scale is used to emphasize behavior of the plots at the
boundary values. White line corresponds to a = c− 1.

Figure 22(a) illustrates the entropy rate H∞(a, c).
If a = c − 1, then R = 2c by (37), and the equation (57) simplifies, leading

to the following corollary.

Corollary 1 ([39]). Let T be a random tree, uniformly sampled from the space
Ta,c,K with c > 1 and a = c − 1. Then T satisfies the strong Horton law (29)
with R = 2c, and the entropy rate is given by

H∞(c− 1, c) = 1− 1−H(1/c)

2− 1/c
= H∞(R), (58)

where H(z) is the binary entropy function (50) and H∞(R) is defined by (49).

Figure 22(b) illustrates this result, by showing how the difference of entropy
ratesH∞(a, c)−H∞(R) decreases away from the line a = c−1. The special place
for the line a = c − 1 within the parameter space of the Tokunaga self-similar
random trees was observed earlier in [161, 98, 99]; see Rem. 14. The constraint
a = c− 1 will reappear in many instances in Sect. 7 of the present work.

Finally, the maximum value maxH∞(a, c) = 1 is achieved at the special point
(a, c) = (1, 2) of the special line a = c − 1. Once again, this is not surprising
as (a, c) = (1, 2) is the parameter value for the Tokunaga self-similarity results
of Sect. 5, presented in the context of the critical binary Galton-Watson trees
GW

(
1
2 ,

1
2

)
and related processes. We recall that the combinatorial shape T ′′ =

shape(T ′) ∈ BT | of the random binary tree T ′ in (55) is distributed according
to GW

(
1
2 ,

1
2

)
conditioned on #T ′′ = 2N − 1.

4.4. Applications

A quantitative understanding of the branching patterns is instrumental in hy-
drology [141, 154, 114, 16, 74, 31, 91], geomorphology [45, 82], statistical seis-
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mology [14, 157, 84, 177, 71, 174, 172], statistical physics of fracture [142], vas-
cular analysis [87], brain studies [37], ecology [35], biology [159], and beyond,
encouraging a rigorous treatment. Introduced in hydrology to describe the den-
dritic structure of river networks, which is among the most evident examples
of natural branching, Horton-Strahler [85, 151] and Tokunaga [155] indexing
schemes have been rediscovered and used in other fields. Subsequently, the Hor-
ton law (Def. 16) and Tokunaga self-similarities (Def. 15) have been empirically
or rigorously established in numerous observed and modeled systems [126]. This
includes hydrology (see Sect. 4.4.1), vein structure of botanical leaves [126, 159],
diffusion limited aggregation [129, 115, 170], two dimensional site percolation
[158, 168, 175, 176], a hierarchical coagulation model of Gabrielov et al. [69] in-
troduced in the framework of self-organized criticality, and a random self-similar
network model of Veitzer and Gupta [161] developed as an alternative to the
Shreve’s random topology model for river networks. The Horton exponent com-
monly reported in empirical studies is within the range 3 < R < 6. Curiously, it
has been observed in [98] that the critical Tokunaga model (Sect. 7.5) with this
range of Horton exponents generates trees with fractal dimension in the range
≈ (1.6, 3), which includes all the trees that may exist in a three-dimensional
world, excluding the range < 1.6 that corresponds to almost “linear”, and prob-
ably less studied, structures.

4.4.1. Hydrology

An illuminating natural example of Horton laws and Tokunaga self-similarity
is given by the combinatorial structure of river networks (Figs. 2, 3). The hy-
drological Horton law was first described by Robert E. Horton [85] who noticed
that the empirical ratio NK/NK+1 in river streams is close to RB = 4; see
(1). This observation has been strongly corroborated in numerous observational
studies [90, 146, 109, 131, 153, 76, 141, 119, 156]. See Barndorff-Nielsen [18] for
a 1993 survey for probabilists.

Geometric scaling is found for many other physical and combinatorial char-
acteristics of river networks. This can be upstream area, magnitude (number of
upstream sources), the lengths of the longest channel, the total channel lengths,
etc. These quantities often increase with order (unlike branch counts NK that
decrease with order), which justifies a slightly different way the Horton law is
commonly formulated. Specifically, consider the values ZK of a selected statistic
Z calculated using streams of order K. Horton law with exponent RZ ≥ 1 states
that ZK scale as

ZK+1

ZK
= RZ ⇔ ZK ∝ RK

Z . (59)

In both cases (1) and (59) the law is formulated in such a way that the Horton
exponent is greater than unity. Informally, (59) suggests that the order K of a
branch (stream) is proportional to ln(ZK), where ZK can be interpreted as the
stream “size”.
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Section 1.1 mentioned three key regularities that are commonly observed in
river stream networks and can be explained and parameterized via Horton laws.
Below we discuss each of them in more detail.

Power-law empirical frequencies of river statistics. Consider empirical fre-
quencies of a statistic Z calculated at every edge (link) in a large tree (basin).
We write Z(i) for the value of Z calculated at i-th link. Assume that Horton
law holds (i) for the examined statistic Z, with exponent RZ and (for simplic-
ity) proportionality constant 1; (ii) for the average number LK of edges within
a branch of order K, with exponent RL; and (iii) for branch counts NK with
exponent RB as in (1). The average number of edges of order K in such a tree is
given by NKLK . One can now heuristically approximate the expected frequen-
cies of Z(i) by using the same value ZK for any edge of order K and considering
a limit of an infinitely large tree:

#{i : Z(i) ≥ RK
Z } ∝

∞∑
j=K

NKLK =

∞∑
j=K

(
RL

RB

)j

∝
(
RL

RB

)K

.

This is a punctured (by discrete order) version of a general power law relation

#{i : Z(i) ≥ z} ∝ z−β , β =
logRB − logRL

logRZ
. (60)

Power-law relations among river statistics. If stream statistic Z satisfies the
Horton law (59) with exponent RZ , and the branch countsNK satisfy the Horton
law (1) with Horton exponent RB , then

ZK ∝ N−α
K , with α =

lnRZ

lnRB
. (61)

Similarly, suppose that Horton law (59) holds for selected river statistics Z and
Y , with Horton exponents RZ and RY , respectively. Then, ZK and YK are
connected via a power-law relation

ZK ∝ Y α
K , α =

logRZ

logRY
. (62)

As above, Eqs. (61), (62) are a punctured (by discrete orders) version of a general
power-law relation Z ∝ Y α that is abound among hydrologic quantities. It is
common to relate a statistic of interest to the basin area A. Section 1.1 mentions
Hack’s law that scales the length L of the longest stream as L ∝ Ah with h ≈ 0.6
[139].

Modeling physical characteristics of streams. Data analysis suggests that
many physical characteristics of streams, including stream width, depth, slope,
and flow velocity, scale with the stream discharge (volume of water flowing
through a river stream) Q [141, Chapter 1]. For example, the velocity v can be
approximated by v ∝ Qa, etc. The discharge Q, in turn, is a power-law func-
tion of the basin area: Q ∝ Aβ . The value of exponent β depends on a precise
definition of discharge (bankfull, mean annual, etc.) Finally, the basin area A is
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closely approximated by the basin magnitude (number of outlets) M , since it
is natural to think of a stream network as a space-filling tree. Combining these
observations, we find that the stream velocity can be modeled as a power-law
function of the stream magnitude:

v ∝ Maβ .

Similar relations exist for other physical characteristics of a stream. A funda-
mental scaling is for the average link slope S [75]:

S ∝ A−θ ∝ M−θ, θ ≈ 0.5.

A solid body of observational and modeling studies attributes the Horton laws
and power-law relations among essential river statistics to self-similar structure
of river stream networks [75, 131, 72, 153, 76, 40, 132, 133, 161, 141, 74, 119, 156].
It has been shown, in particular, that river networks are closely approximated
by a two-parametric Tokunaga self-similar model (Def. 15) with parameters
that are independent of river’s geographic location [155, 131, 45, 178]. The
Tokunaga model closely predicts values of the Horton exponents for multiple
basin statistics with only two parameters (see Fig. 3).

One of the best explored models of a river network is the critical binary
Galton-Watson tree (Sect. 5), also known in hydrology as Shreve’s random topol-
ogy model [146, 147]; it is equivalent to the uniform distribution on the space of
planar binary trees with a fixed number of leaves [135]. This model has the Hor-
ton exponent R = 4 and Tokunaga parameters (a, c) = (1, 2); see Thm. 4. For
long time, the critical binary Galton-Watson tree has remained the only well-
known probability model for which the Horton and Tokunaga self-similarity was
rigorously established, and whose Horton-Strahler ordering has received atten-
tion in the literature [146, 147, 88, 18, 43, 131, 130, 165, 171, 34]. The model has
been particularly popular in hydrology as an approximation to the combinato-
rial structure of the observed river networks [154]. Scott Peckham [131] has first
explicitly noticed, by performing a high-precision extraction of river channels
for Kentucky River, Kentucky and Powder River, Wyoming, that the Horton
exponents and Tokunaga parameters for the observed rivers significantly devi-
ate from that for the Galton-Watson model. He reported values R ≈ 4.6 and
(a, c) ≈ (1.2, 2.5) and emphasized the importance of studying a broad range of
Horton exponents and Tokunaga parameters. The general interest to fractals
and self-similar structures in natural sciences during the 1990s resulted in a
quest, mainly inspired and led by Donald Turcotte, for Tokunaga self-similar
trees of diverse origin [69, 126, 129, 133, 156, 158, 159, 168, 178]. As a result,
the Horton and Tokunaga self-similarity, with a broad range of respective pa-
rameters, have been empirically or rigorously established in numerous observed
and modeled systems, well beyond river networks.

4.4.2. Computer science

The Horton-Strahler orders are known in computer science as the register func-
tion or register number. They first appeared in the 1958 paper by Ershov [59]
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as the minimal number of memory registers required for evaluating a binary
arithmetic expression.

A study of Flajolet et al. [66] concerns calculating the average register func-
tion in a random plane planted binary tree with n leaves. That is, let the random

tree T be uniformly sampled from all Cn−1 trees in the subspace BT |
plane(n) of

BT |
plane defined in (51), where Cn is the Catalan number (54). Following Rem. 9,

we know that the combinatorial shape shape(T ) ∈ BT | of such binary tree T can
also be obtained by sampling from the Galton-Watson distribution GW

(
1
2 ,

1
2

)
conditioned on #T = 2n− 1. The work [66] finds the average register function

(Horton-Strahler order) in a random binary tree T
d∼ Unif

(
BT |

plane(n)
)
,

E
[
ord(T )

]
= 1 +

1

Cn

n−1∑
j=1

v2(j)

[(
2n

n+ j + 1

)
− 2

(
2n

n+ j

)
+

(
2n

n+ j − 1

)]
,

where v2(n) is known as the dyadic valuation of n. Specifically, the dyadic
valuation of n is the cardinality of the inverse image of

f(p, k) = k2p : Z+ × N→ N,

i.e., v2(n) =
∣∣{(p, k) ∈ Z+ × N : k2p = n}

∣∣.
In addition, Flajolet et al. [66] proved that for T

d∼ Unif
(
BT |

plane(n)
)
,

E
[
ord(T )

]
= log4 n+D

(
log4 n

)
+ o(1), as n→∞, (63)

where D(·) is a particular continuous periodic function of period one, explicitly
derived in [66]. We illustrate Eq. (63) below in Fig. 52(a), which closely repro-
duces Fig. 6 from the original paper by Flajolet et al. [66]. Equation (63) is
related to the tree size asymptotic (35) of Thm. 1, with the Horton exponent
R = 4.

For more on register functions see [67, 136, 122, 48, 79] and references therein.

5. Critical binary Galton-Watson tree

The critical binary Galton-Watson tree is pivotal for the theory of random trees
and for diverse applications because of its transparent generation process and
multiple symmetries. This section summarizes some properties of this tree used
in our further discussion.

5.1. Combinatorial case

Here we discuss combinatorial binary Galton-Watson trees. Observe that the
Galton-Watson tree measures satisfy the coordination property (Def. 10) by
construction, and hence the mean Horton self-similarity (Defs. 12, 14) for these
measures is equivalent to mean prune-invariance (Def. 13).
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5.1.1. Self-similarity and attraction properties

Burd, Waymire, and Winn [34] have first recognized a special position held
by the critical binary tree with respect to the Horton pruning in the space of
Galton-Watson distributions GW({qk}) on T |. The following theorem provides
a synopsis of the results in [34], revised and extended in [101].

Theorem 4 (Self-similarity of critical binary Galton-Watson tree, [34,
101]). Consider a Galton-Watson measure GW({qk}) with q1 = 0. Assume

criticality or subcriticality, i.e.,
∞∑
k=0

kqk ≤ 1, and suppose

∞∑
k=2

k2−εqk <∞ ∀ ε > 0.

Then, the following statements are equivalent:

(a) A distribution is Horton self-similar (Def. 8);
(b) A distribution is mean self-similar (Defs. 12, 14);
(c) A distribution is critical binary: q0 = q2 = 1/2.

Furthermore, the critical binary distribution has Tokunaga sequence Tj = 2j−1,
j ≥ 1, which corresponds to Tokunaga self-similarity with (a, c) = (1, 2) and
strong Horton law (Def. 16) with exponent R = 4.

Burd et al. [34, Theorem 3.11] have shown, furthermore, that any critical
Galton-Watson tree with bounded offspring number (i.e., ∃b such that qk = 0
for all k ≥ b) converges to the critical binary Galton-Watson tree under iterative
Horton pruning, conditioned on surviving the pruning. In [101], the bounded
offspring condition was replaced with finite “2−” moment assumption.

Theorem 5 (Attraction property of critical binary Galton-Watson
tree, [34, 101]). Consider a critical Galton-Watson process ρ0 ≡ GW({qk})
with q1 = 0, such that the “2−” moment assumption is satisfied, i.e.,

∞∑
k=2

k2−εqk <∞ ∀ε > 0.

Starting with k = 0, and for each consecutive integer, let νk = R∗(ρk) denote
the pushforward probability measure induced by the pruning operator, i.e.,

νk(T ) = ρk ◦ R−1(T ) = ρk
(
R−1(T )

)
,

and set ρk+1(T ) = νk (T |T �= φ). Then, for any T ∈ T |,

lim
k→∞

ρk(T ) = ρ∗(T ),

where ρ∗ is the critical binary Galton-Watson measure GW
(
1
2 ,

1
2

)
on T | with

the support on BT |.
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The following result of Burd et al. [34] describes the evolution of a binary
Galton-Watson tree under iterative Horton pruning.

Theorem 6 (Dynamics of branching [34, Proposition 2.1]). Consider a
critical or subcritical combinatorial binary Galton-Watson probability measure
ρ0 = GW(q0, q2) on BT |, i.e., require q0 + q2 = 1 and q2 ≤ 1/2. Construct a
recursion by repeatedly applying Horton pruning operation R as follows. Starting
with k = 0, and for each consecutive integer, let νk = R∗(ρk) be the pushforward
probability measure induced by the pruning operator, i.e.,

νk(T ) = ρk ◦ R−1(T ) = ρk
(
R−1(T )

)
,

and set

ρk+1(T ) = νk (T |T �= φ) .

Then for each k ≥ 0, distribution ρk(T ) is a binary Galton-Watson distribution

GW(q
(k)
0 , q

(k)
2 ) with q

(k)
0 and q

(k)
2 constructed recursively as follows: start with

q
(0)
0 = q0 and q

(0)
2 = q2, and let

q
(k+1)
2 =

[
q
(k)
2

]2
[
q
(k)
0

]2
+
[
q
(k)
2

]2 , q
(k+1)
0 = 1− q

(k+1)
2 . (64)

Theorem 6 provides an alternative proof (besides Thm. 4) of why a com-
binatorial binary Galton-Watson probability distribution GW(q0, q2) is Horton
prune-invariant (Def. 8) if and only if q0 = q2 = 1

2 . Remark 18 in Sec. 8.6 ties
Thm. 6 to the analysis of an excursion of an exponential random walk.

The following statement (Prop. 6) that arises from the results in [34] is useful
for applications as it provides a simple way for a computer simulation of a critical
binary Galton-Watson tree GW

(
1
2 ,

1
2

)
of an arbitrary Horton-Strahler order –

see related Prop. 8 and Thm. 15 in Sect. 7 for further details.

In Prop. 6 below and throughout the manuscript, we let Geom0(p) denote the
geometric distribution with p.m.f. p(m) = p (1−p)m for m ∈ Z+, and Geom1(p)
denote the geometric distribution with p.m.f. p(m) = p (1 − p)m−1 for m ∈ N;
see Appendix D.

Proposition 6. Suppose T
d∼ GW

(
1
2 ,

1
2

)
. Then, the tree order ord(T ) has geo-

metric distribution:

ord(T )
d∼ Geom1(1/2).

Fix j ≥ 2 and K ≥ j, and condition on the event ord(T ) = K. Let b be a branch
of order j in T selected uniformly and randomly among all branches of order
j in T , and let N [b] ≥ 0 be the total number of side branches that merge with
branch b. Then, N [b] is geometrically distributed:

N [b]
d∼ Geom0(S

−1
j−1) = Geom0(2

1−j),
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where Sk = 1 + T1 + · · · + Tk = 2k−1, k ≥ 1. Furthermore, conditioned on the
value of N [b], each side branch that merges with branch b is assigned an order
with probabilities

P(side branch has order i) =
Tj−i

Sj−1 − 1
=

2j−i−1

2j−1 − 1
, for i = 1, . . . , j−1,

independently of other side branches.

5.1.2. The Central Limit Theorem and strong Horton law

This section reviews limit results for the branch counts in a critical binary
Galton-Watson tree.

For a given N ∈ N, consider T
d∼ Unif

(
BT |

plane(N)
)
. Following Remark 9, we

know that shape(T )
d∼
(
GW

(
1
2 ,

1
2

) ∣∣∣#T = 2N − 1
)
. The branch counts

N
(N)
j [T ] :=

(
Nj [T ]; T

d∼ Unif
(
BT |

plane(N)
))

are integer valued random variables induced by T . They are the same for T

and shape(T ), i.e., N
(N)
j [shape(T )] = N

(N)
j [T ]. The following Law of Large

Numbers was proved in Wang and Waymire [165, Thm. 2.1].

Theorem 7 (LLN for order two branches, [165]). For a random tree T
d∼

Unif
(
BT |

plane(N)
)
,

N
(N)
2 [T ]

N

p→ 4−1 as N →∞. (65)

Recall that we know from Thm. 9 that the critical binary Galton-Watson tree
is invariant under the Horton pruning operation R. Thus, the strong Horton law
for branch numbers is deduced from Thm. 7 as follows.

Corollary 2 (The strong Horton law for branch counts). For a random

tree T
d∼ Unif

(
BT |

plane(N)
)
and for all j ∈ N,

N
(N)
j [T ]

N

p→ 4−(j−1) as N →∞. (66)

Proof. For a fixed integer k > 1 and a tree TGW d∼ GW
(
1
2 ,

1
2

)
, we have for any

positive integers N and M ≤ 2−(k−1)N ,(
Rk−1

(
TGW

) ∣∣∣N (N)
1 [TGW] = N, N

(N)
k [TGW] = M

)
(67)

d
=
(
Rk−1

(
TGW

) ∣∣∣N (N)
k [TGW] = M

)
d
=
(
TGW

∣∣∣N (N)
1 [TGW] = M

)
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as Rk−1(TGW)
d
= TGW by the Horton prune-invariance Thm. 9 (and a more

general statement in Thm. 26 of Sect. 10.4). The first equality in (67) can be eas-
ily verified from permutability of attachments of smaller order branches to the

larger order branches. Specifically, the event N
(N)
k [TGW] = M is equivalent to

the event that the pruned tree Rk−1
(
TGW

)
will have #Rk−1

(
TGW

)
= 2M − 1

edges. Thus, conditioned of the combinatorial shape Rk−1
(
TGW

)
, all com-

plete subtrees Tv (see Def. 5(6)) of T such that ord(Tv) = ord(v) < k and
ord(parent(v)) ≥ k will be attached to the edges and leaves ofRk−1

(
TGW

)
in the

same number of ways, for each Rk−1
(
TGW

)
satisfying #Rk−1

(
TGW

)
= 2M −1

edges.
Thus, for a fixed k ∈ N and a random tree

T
d∼ Unif

(
BT |

plane(N)
)
,

we have by (67),(
Rk−1(T )

∣∣∣N (N)
k [T ] = M

)
d∼ Unif

(
BT |

plane(M)
)

for all M ≤ 2−(k−1)N . Hence, Thm. 7 implies(
N

(N)
k [T ]

N
(N)
k−1[T ]

∣∣∣ ord(T ) ≥ k

)
=

(
N

(N)
2

[
Rk−1(T )

]
N

(N)
1

[
Rk−1(T )

] ∣∣∣ ord(T ) ≥ k

)
p→ 4−1 as N →∞.

Next, we let 0
0 = 0 as here N

(N)
k [T ] ≤ N

(N)
k−1[T ], and

N
(N)
k−1[T ] = 0 implies N

(N)
k [T ] = 0.

Then, as lim
N→∞,

P
(
ord(T ) < k

)
= 0 we have

N
(N)
k [T ]

N
(N)
k−1[T ]

p→ 4−1 as N →∞. (68)

Finally, iterating (68), we obtain

N
(N)
j [T ]

N
=

N
(N)
j [T ]

N
(N)
j−1 [T ]

N
(N)
j−1 [T ]

N
(N)
j−2 [T ]

. . .
N

(N)
2 [T ]

N

p→ 4−(j−1) as N →∞.

Following Thm. 7, the corresponding Central Limit Theorem was proved in
Wang and Waymire [165, Thm. 2.4].

Theorem 8 (CLT for order two branches, [165]). For a random tree T
d∼

Unif
(
BT |

plane(N)
)
,

√
N

(
N

(N)
2 [T ]

N
− 1

4

)
d→ N(0, 4−2) as N →∞. (69)
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Next, using the pruning framework, the following Central Limit Theorem for

N
(N)
j [T ] is readily obtained as a direct consequence of the original Thm. 8 of

Wang and Waymire [165] and the Horton prune-invariance (Def. 8) of GW
(
1
2 ,

1
2

)
as stated in Thm. 9 (and, alternatively, in Thm. 6), and a more general statement
that will appear in Thm. 26 of Sect. 10.4.

Corollary 3 (CLT for branch numbers, [169]). For a random tree T
d∼

Unif
(
BT |

plane(N)
)
,

√
N

(
N

(N)
j+1 [T ]

N
(N)
j [T ]

− 1

4

)
d→ N(0, 4r−3) as N →∞, (70)

where we set 0
0 = 0.

Proof. Pruning T
d∼ Unif

(
BT |

plane(N)
)
iteratively j − 1 times, we obtain T

d∼
Unif

(
BT |

plane

(
N

(N)
j [T ]

))
, where for the case when j > ord(T ) and N

(N)
j [T ] = 0,

we set BT |
plane(0) := {φ}. Hence, Theorem 8 immediately implies

√
N

(N)
j [T ]

(
N

(N)
j+1 [T ]

N
(N)
j [T ]

− 1

4

)
d→ N(0, 4−2) as N →∞. (71)

Thus, substituting (66) into (71), we obtain (70).

The limit (70) was derived by Yamamoto [169] directly, after a series of
technically involved calculations.

5.2. Metric case: exponential edge lengths

In this section we turn to the trees in BL|
plane. Specifically, we assign i.i.d. ex-

ponential lengths to the edges of a critical plane binary Galton-Watson tree
GWplane(

1
2 ,

1
2 ) in T | and introduce random ordering between the sibling off-

spring, thus obtaining the exponential critical binary Galton-Watson tree.

Definition 20 (Exponential critical binary Galton-Watson tree). We

say that a random tree T ∈ BL|
plane is an exponential critical binary Galton-

Watson tree with (edge length) parameter λ > 0, and write T
d∼ GW(λ), if the

following conditions are satisfied:

(i) p-shape(T ) is a critical plane binary Galton-Watson tree GWplane(
1
2 ,

1
2 );

(ii) conditioned on a given p-shape(T ), the edges of T are sampled as inde-
pendent Exp(λ) random variables, i.e., random variables with probability
density function (p.d.f.)

φλ(x) = λe−λx1{x≥0}. (72)
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The branching process that generates an exponential critical binary Galton-
Watson tree is known as the continuous time Galton-Watson process, and is
sometimes simply called Markov branching process [81].

Remark 10. The distribution GW(λ) is defined here on the space of planar trees

BL|
plane. The planar embedding (ordering of sibling offspring) is needed when

working with tree representation of time series in Sect. 8. In other analyses of
this work, one can drop the embedding and work with trees from BL|. All results
presented below are valid for both versions of the definition (with and without
embedding). We observe though that embedding is useful for counting distinct
trees (e.g. Lem. 8).

5.2.1. Self-similarity

The self-similar properties of the exponential critical binary Galton-Watson tree

T
d∼ GW(λ) are summarized in the following statement.

Proposition 7 (Self-similarity of exponential critical binary Galton-

Watson tree). Suppose T
d∼ GW(λ). Then T is distributionally Horton self-

similar (Def. 9) with scaling exponent ζ = 2. Furthermore, it has Tokunaga
sequence Tj = 2j−1, j ≥ 1, which corresponds to Tokunaga self-similarity with
(a, c) = (1, 2) and strong Horton law (Def. 16) with exponent R = 4.

Proof. We show here three alternative proofs to emphasize the pivotal role of
the distribution GW(λ) in the developed theory.

Observe that the combinatorial Horton self-similarity and the values of a, c
and R are found in Thm. 4. Hence, we only need to establish prune-invarience
in lengths (Def. 9, part ii) and find the scaling exponent ζ.

First, one can use results on the hierarchical branching process in Sect. 7. The-
orem 15 in Sect. 7.5 shows that the exponential critical binary Galton-Watson
tree is a particular case of the critical Tokunaga process (Def. 25). Proposi-
tion 11 establishes distributional Horton self-similarity for the critical Tokunaga
processes (and hence for the exponential critical binary Galton-Watson tree),
and finds the respective parameters ζ, a, c, and R.

Second, one can use the results of Sect. 8 on tree representation of time series.
The Horton prune-invariance of the exponential critical binary Galton-Watson
tree with ζ = 2 is established in Cor. 12 of Sect. 8.6 via tree representation of
exponential random walks.

Third, one can use the framework of generalized dynamical pruning of Sect. 10.
Theorem 26 establishes invariance of the exponential critical binary Galton-
Watson tree with respect to any admissible generalized pruning. Horton prun-
ing is a special case of the generalized dynamical pruning (Ex. 10.1.2), which
ensures the invariance of the present theorem. Next, Thm. 27, part c, states the
scaling exponent ζ = 2 (which is found, as above, via Cor. 12).
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5.2.2. Tree length

Recall the modified Bessel functions of the first kind

Iν(z) =

∞∑
n=0

(
z
2

)2n+ν

Γ(n+ 1 + ν)n!
.

Lemma 8. Suppose T
d∼ GW(λ) is an exponential critical binary Galton-

Watson tree with parameter λ. The total length length(T ) of the tree T has
the p.d.f.

�(x) =
1

x
e−λxI1

(
λx

)
, x > 0. (73)

Proof. Recall that the number of different combinatorial shapes of a planted
plane binary tree with n+ 1 leaves, and therefore 2n+ 1 edges, is given by the
Catalan number (54), i.e.,

∣∣BT |
plane(n+ 1)

∣∣ = Cn =
1

n+ 1

(
2n

n

)
=

(2n)!

(n+ 1)!n!
.

The total length of 2n+ 1 edges is a gamma random variable with parameters
λ and 2n+ 1 and density function

γλ,2n+1(x) =
λ2n+1x2ne−λx

Γ(2n+ 1)
, x > 0.

Hence, the total length of the tree T has the p.d.f.

�(x) =

∞∑
n=0

Cn

22n+1
· λ

2n+1x2ne−λx

(2n)!
=

∞∑
n=0

λ2n+1x2ne−λx

22n+1(n+ 1)!n!

=
1

x
e−λx

∞∑
n=0

(
λx
2

)2n+1

Γ(n+ 2)n!
=

1

x
e−λxI1

(
λx

)
. (74)

Next, we compute the Laplace transform of �(x). By the summation formula
in (74),

L�(s) =
∞∫
0

∞∑
n=0

Cn

22n+1
· λ

2n+1x2ne−(λ+s)x

(2n)!
dx

=

∞∑
n=0

Cn

22n+1
·
(

λ

λ+ s

)2n+1
∞∫
0

(λ+ s)2n+1x2ne−(λ+s)x

(2n)!
dx

=

∞∑
n=0

Cn

22n+1
·
(

λ

λ+ s

)2n+1

= Z · c(Z2),
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where we let Z = λ
2(λ+s) , and the characteristic function of Catalan numbers

c(z) =

∞∑
n=0

Cnz
n =

2

1 +
√
1− 4z

(75)

is well known. Therefore

L�(s) = Z · c(Z2) =
λ

λ+ s+
√
(λ+ s)2 − λ2

. (76)

Note that the Laplace transform L�(s) could be derived from the total prob-
ability formula

�(x) =
1

2
φλ(x) +

1

2
φλ ∗ � ∗ �(x), (77)

where φλ(x) is the exponential p.d.f. (72). Thus, L�(s) solves

L�(s) = 1

2

λ

λ+ s

(
1 +

(
L�(s)

)2)
. (78)

5.2.3. Tree height

Lemma 9 ([100]). Suppose T
d∼ GW(λ) is an exponential critical binary

Galton-Watson tree with parameter λ. Then, the height height(T ) of the tree
T has the cumulative distribution function

H(x) =
λx

λx+ 2
, x > 0. (79)

Proof. The proof is based on duality between trees and positive real excursions
that we introduce in Sect. 8. In particular, Thm. 20 establishes equivalence
between the level set tree (Sect. 8.2) of a positive excursion of an exponential
random walk (Sect. 8.6) and an exponential critical binary Galton-Watson tree

GW(λ). This implies, in particular, that for a tree T
d∼ GW(λ) the height(T )

has the same distribution as the height of a positive excursion of an exponential
random walk Yk with Y0 = 0 and independent increments Yk+1−Yk distributed

according to the Laplace density function φλ(x)+φλ(−x)
2 = λ

2 e
−λ|x|, with φλ(x)

defined in (72).
Notice that Yk is a martingale. We condition on Y1 > 0, and consider an

excursion Y0, Y1, . . . , Yτ− with τ− = min{k > 1 : Yk ≤ 0} denoting the termi-
nation step of the excursion. For x > 0, we write

px = 1− H(x) = P

(
max

j: 0<j<τ−
Yj > x

∣∣∣ Y1 > 0

)
for the probability that the height of the excursion exceeds x. The problem of
finding px is solved using the Optional Stopping Theorem. Let

τx = min{k > 0 : Yk ≥ x} and τ := τx ∧ τ−.
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Observe that
px = P(τ = τx | Y1 > 0).

For a fixed y ∈ (0, x), by the Optional Stopping Theorem, we have

y = E[Yτ | Y1 = y]

= E[Yτ | τ = τ−, Y1 = y]P(τ = τ− | Y1 = y)

+E[Yτ | τ = τx, Y1 = y]P(τ = τx | Y1 = y)

= E[Yτ | Yτ ≤ 0, Y1 = y]P (τ = τ− | Y1 = y)

+E[Yτ | Yτ ≥ x, Y1 = y]P(τ = τx | Y1 = y)

= − 1

λ
P(τ = τ− | Y1 = y) +

(
x+

1

λ

)
P(τ = τx | Y1 = y)

=

(
x+

2

λ

)
P(τ = τx | Y1 = y)− 1

λ
.

Hence,

P(τ = τx | Y1 = y) =
y + 1

λ

x+ 2
λ

.

Thus,

P
(
τ = τx, 0 < Y1 < x | Y1 > 0

)
=

x∫
0

P(τ = τx | Y1 = y) λe−λydy

=

x∫
0

y + 1
λ

x+ 2
λ

λe−λydy

=
2

λx+ 2
− e−λx,

and therefore,

px = P

(
max

j: 0<j<K
Yj > x | Y1 > 0

)
= P

(
τ = τx, 0 < Y1 < x | Y1 > 0

)
+ P

(
τ = τx, Y1 ≥ x | Y1 > 0

)
=

2

λx+ 2
− e−λx + P

(
Y1 ≥ x | Y1 > 0

)
=

2

λx+ 2
.

Hence,

H(x) = 1− px =
λx

λx+ 2
.
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We continue examining the height function height(T ) for T
d∼ GW(λ). This

time, we condition on #T = 2n − 1, i.e., the tree T has n leaves and n − 1
internal non-root vertices. We let Hn(x) denote the corresponding conditional
cumulative distribution function,

Hn(x) = P
(
height(T ) ≤ x

∣∣ #T = 2n− 1
)
. (80)

There, for a one-leaf tree,
H1(x) = 1− e−λx, (81)

and for n ≥ 2, the following recursion follows from conditioning on the length
of the stem (root edge),

Hn(a) =

n−1∑
k=1

Ck−1Cn−k−1

Cn−1

a∫
0

Hk(a− x)Hn−k(a− x)λe−λx dx, (82)

where Cn is the Catalan number as defined in (54).
Next, we consider the following z-transform:

h(a; z) =
∞∑

n=1

Hn(a)Cn−1 z
n for |z| < 1/4. (83)

Then, (81) and (82) imply

h(a; z) = (1− e−λa)z +

a∫
0

h2(a− x; z)λe−λx dx

which, if we let y = a− x, simplifies to

eλah(a; z)− eλaz =

a∫
0

h2(y; z)λeλy dy − z.

We differentiate the above equation, obtaining

∂

∂a
h(a; z) = λ

(
h2(a; z)− h(a; z) + z

)
. (84)

Let

x1(z) =
1 +
√
1− 4z

2
and x2(z) =

1−
√
1− 4z

2

be the two roots of x2 − x + z = 0. Here, x2(z)/z = 1/x1(z) = c(z) is the
z-transform of the Catalan sequence Cn, introduced in (75). Then, (84) solves
as

h(a; z)− x1(z) = Φ(z)eλa
√
1−4z

(
h(a; z)− x2(z)

)
,

where due to the initial conditions h(0; z) = 0, we have Φ(z) = x1(z)/x2(z), and

h(a; z)− x1(z) =
x1(z)

x2(z)
eλa

√
1−4z

(
h(a; z)− x2(z)

)
. (85)
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Solution (85) implies

h(a; z) =
2
(
eλa

√
1−4z − 1

)
z

eλa
√
1−4z − 1 +

(
eλa

√
1−4z + 1

)√
1− 4z

. (86)

Here and throughout we use −π < arg(z) ≤ π branch of the logarithm when
defining

√
1− 4z for |z| < 1/4.

Now, since P
(
#T = 2n− 1

)
= 2Cn−14

−n, the series expansion (83) implies

H(a) = lim
z↑ 1

4

2 h(a; z), (87)

where z ∈ (−1/4, 1/4) is real. We substitute (86) into the limit (87),

lim
z↑ 1

4

2 h(a; z) = lim
z↑ 1

4

4
(
eλa

√
1−4z − 1

)
z

eλa
√
1−4z − 1 +

(
eλa

√
1−4z + 1

)√
1− 4z

= lim
z↑ 1

4

4z

1 +
√
1− 4z + 2

√
1−4z

eλa
√

1−4z−1

=
1

1 + 2
λa

=
λa

λa+ 2
, (88)

thus obtaining an alternative proof of formula (79) in Lemma 9.

The asymptotic of the height distribution Hn(a) for a given number of leaves
n was the object of analysis in [94, 166, 73, 51]. In particular, Gupta et al. [73]
extended the results of Kolchin [94], by showing that

lim
n→∞

Hn

(
a
√
n

λ

)
= H∞(a) := 1 + 2

∞∑
k=1

(1− 4k2a2) exp
{
− 2k2a2

}
. (89)

It was also observed in [73] that H∞
(

a
2
√
2

)
is the distribution function for

the maximum of the Brownian excursion as shown in the work of Durrett and
Iglehart [50]. The results of [73] were further developed in [51] for more general
trees with edge lengths.

6. Invariant Galton-Watson trees

This section summarizes the results of [101]. It extends the invariance study
of Burd et al. [34] reviewed in Sect. 5.1.1 and gives a complete description
of invariants and attractors of the critical and subcritical Galton-Watson tree
measures under the operation of Horton pruning (Def. 3).

Definition 21 (Invariant Galton-Watson measures). For a given q ∈
[1/2, 1), a critical Galton-Watson measure GW({qk}) is said to be the invariant
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Galton-Watson (IGW) measure with parameter q and denoted by IGW(q) if its
generating function has the following expression:

∞∑
k=0

zkqk = z + q(1− z)1/q. (90)

The respective branching probabilities are q0 = q, q1 = 0, q2 = 1−q
2q , and

qk =
1− q

k! q

k−1∏
i=2

(i− 1/q) (k ≥ 3). (91)

Here, if q = 1
2 , then the distribution is critical binary, i.e., GW

(
1
2 ,

1
2

)
. If

q ∈ (1/2, 1), the distribution is of Zipf type with

qk =
(1− q)Γ(k − 1/q)

qΓ(2− 1/q) k!
∼ k−(1+q)/q. (92)

The next theorem shows that the IGW measures are the only Galton-Watson
measures invariant with respect to Horton pruning, hence justifying their name.

Theorem 9 (Self-similar Galton-Watson measures, [101]). Consider a
critical or subcritical Galton-Watson measure GW({qk}) with q1 = 0. It is Hor-
ton self-similar (Def. 8) if and only if it is the invariant Galton-Watson (IGW)
measure IGW(q0) with q0 ∈ [1/2, 1).

Remark 11. The Horton prune-invariance is not the only invariance satisfied
by the family of measures IGW(q). For example, Duquesne and Winkel [53]
considered a random tree T ′ obtained by applying a Bernoulli leaf coloring
scheme to a Galton-Watson tree T . Specifically, a subset of leaves of T is selected
with independent Bernoulli trials and a subtree of T consisting of the union of all
lineages of these selected leaves is considered. Next, a new tree T ′ is constructed
by taking a series reduction of this subtree. Then, conditioned on T ′ �= φ, the
tree T ′ is distributed as a Galton-Watson tree with the generating function
given in [53, Sect. 2.2, Eq. (10)]. Substituting (90) into that equation implies
the invariance of IGW(q) measures under the Bernoulli leaf coloring scheme.

The work [101] shows that the collection of IGW(q0) measures for q0 ∈
[1/2, 1) and a point measure GW(q0 = 1) are the only possible attractors of
critical and subcritical Galton-Watson measures under iterative Horton prun-
ing. Specifically, all subcritical measures converge to GW(q0 = 1), and critical
measures converge to IGW(q0). The domain of attraction of IGW(q0) for any
q0 ∈ [1/2, 1) is non empty and is characterized by the tail behavior of the off-
spring distribution {qk} of the initial Galton-Watson measure. The next result
illustrates the attraction property of the IGW measures for a particular class
of initial Galton-Watson measures with power law (Zipf type) decay of the off-
spring distribution {qk}.
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Theorem 10 (Attraction property of critical Galton-Watson trees,
[101]). Consider a critical Galton-Watson process ρ0 ≡ GW({qk}) with q1 = 0
and probability mass function qk of Zipf type, i.e., qk ∼ k−(α+1), with α ∈ (1, 2].
Starting with k = 0, and for each consecutive integer, let νk = R∗(ρk) denote
the pushforward probability measure induced by the pruning operator, i.e.,

νk(T ) = ρk ◦ R−1(T ) = ρk
(
R−1(T )

)
,

and set ρk+1(T ) = νk (T |T �= φ). Then, for any T ∈ T |,

lim
k→∞

ρk(T ) = ρ∗(T ),

where ρ∗ is the invariant Galton-Watson measure IGW
(
1
α

)
.

Finally, if the Galton-Watson measure is subcritical, then ρk(T ) converges to
a point mass measure, GW(q0=1).

Finally we show that the IGW measures satisfy the strong Horton law.

Lemma 10 (Strong Horton law for IGW, [101]). Consider an invariant
Galton-Watson measure IGW(q0) for q0 ∈ [1/2, 1). Then, the strong Horton
law (29) holds with Horton exponent R = (1− q0)

−1/q0 .

7. Hierarchical branching process

The critical binary Galton-Watson tree discussed in Sect. 5 is an important
although a very particular example of self-similarity. It corresponds to a specific
Tokunaga sequence Tj = 2j−1, Horton exponent R = 4, and self-similarity
constant ζ = 2 (Prop. 7).

In this section we construct a multi-type branching process [81, 12] that gen-
erates a self-similar tree for an arbitrary Tokunaga sequence Tj ≥ 0 and any
scaling constant ζ > 0 (Thm. 11). This model, called hierarchical branching
process, includes the exponential critical binary Galton-Watson tree as a spe-
cial case (Thm. 15). We also introduce a class of critical self-similar Tokunaga
processes (Sect. 7.5) that enjoy additional symmetries – their edge lengths are
i.i.d. random variables (Prop. 11), and subtrees of large Tokunaga trees repro-
duce the probabilistic structure of the entire random tree space (Prop. 12). The
results of this section are derived in [99].

7.1. Definition and main properties

Consider a probability mass function {πK}K≥1, a sequence {Tk}k≥1 of non-
negative Tokunaga coefficients, and a sequence {λj}j≥1 of positive termination
rates. We now define a hierarchical branching process S(t).

Definition 22 (Hierarchical Branching Process (HBP)). We say that
S(t) is a hierarchical branching process with a triplet of parameter sequences
{Tk}, {λj}, and {πK}, and write

S(t)
d∼ HBP

(
{Tk}, {λj}, {πK}

)
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if S(t) is a multi-type branching process that develops in continuous time t > 0
according to the following rules:

(i) The process S(t) starts at t = 0 with a single progenitor (root branch)
whose Horton-Strahler order (type) is K ≥ 1 with probability πK .

(ii) Every branch of order j ≤ K produces offspring (side branches) of every
order i < j with rate λjTj−i. Each offspring (side branch) is assigned a
uniform random orientation (right or left).

(iii) A branch of order j terminates with rate λj.
(iv) At its termination time, a branch of order j ≥ 2 splits into two independent

branches of order j − 1. The two branches are assigned uniform random
orientations, i.e., a uniformly randomly selected branch becomes right and
the other becomes left.

(v) A branch of order j = 1 terminates without leaving offspring.
(vi) Generation of side branches and termination of distinct branches are in-

dependent.

The definition implies that the process S(t) terminates a.s. in finite time.
Accordingly, the branching history of S(t) creates a random binary tree T [S]

in the space BL|
plane of planted binary trees with edge lengths and planar em-

bedding. To avoid heavy notations, we sometimes use the process distribution
name HBP(·, ·, ·), as well as its various special cases introduced below, to also de-

note the measures induced by the process on suitable tree spaces (T |
plane, L

|
plane

BL|
plane, etc.)
The next statement describes the branching structure of T [S].

Proposition 8 (Side branching in hierarchical branching process, [99]).

Consider a hierarchical branching process S(t)
d∼ HBP

(
{Tk}, {λj}, {πK}

)
and let

T [S] be the tree generated by S(t) in BL|
plane. For a branch b ⊂ T [S] of order

K ≥ 1, let Ni[b] ≥ 0 be the number of its side branches of order i = 1, . . . ,K−1,
and N [b] = N1[b] + · · · + NK−1[b] be the total number of the side branches.
Conditioned on N [b], let li := li(b) be the lengths of N [b] + 1 edges within b,
counted sequentially from the initial vertex, and l := l(b) = l1 + · · ·+ lN [b]+1 be
the total branch length. Define

SK := 1 + T1 + · · ·+ TK

for K ≥ 0 by assuming T0 = 0. Then the following statements hold:

1. The tree order satisfies

P (ord(T [S]) = K) = πK , K ≥ 1. (93)

2. The total number N [b] of side branches within a branch b of order K has
geometric distribution:

N [b]
d∼ Geom0

(
S−1
K−1

)
, K ≥ 1, (94)

with E[N [b]] = SK−1 − 1 = T1 + · · ·+ TK−1.
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3. Conditioned on the total number m of side branches, the distribution of
vector (N1[b], . . . , NK−1[b]) is multinomial with N [b] trials and success
probabilities

P(side branch has order i) =
TK−i

SK−1 − 1
. (95)

The vector (ord1, . . . , ordN [b]) of side branch orders, where the side branches
are labeled sequentially starting from the initial vertex of b, is obtained from
the sequence

orders = (1, . . . , 1︸ ︷︷ ︸
N1[b] times

, 2, . . . , 2︸ ︷︷ ︸
N2[b] times

, . . .K − 1, . . . ,K − 1)︸ ︷︷ ︸
NK−1[b] times

by a uniform random permutation σN [b] of indices {1, . . . , N [b]}:

(ord1, . . . , ordN [b]) = orders ◦ σN [b].

4. The total numbers of side branches and orders of side branches are inde-
pendent in distinct branches.

5. The branch length l has exponential distribution with rate λK , independent
of the lengths of any other branch (of any order). The corresponding edge
lengths li are i.i.d. random variables; they have a common exponential
distribution with rate

λKSK−1. (96)

Proof. All the properties readily follow from Def. 22.

Combining properties 2 and 3 of Prop. 8 we find that the number Ni[b] of
side branches of order i within a branch b of order K has geometric distribution:

Ni[b]
d∼ Geom0

(
[1 + TK−i]

−1
)
, 1 ≤ i ≤ K − 1, (97)

with E [Ni[b]] = TK−i. We also notice that, because of property 3, the numbers
Ni[b] for i = 1, . . . ,K − 1 within the same branch b are dependent.

Proposition 8 provides an alternative definition of the hierarchical branching
process and suggests a recursive construction of T [S] that does not require
time-dependent simulations. This construction is useful for applied computer
simulations. Specifically, a tree of order K = 1 consists of two vertices (root and
leaf) connected by an edge of exponential length with rate λ1. Assume now that
we know how to construct a random tree of any order below K ≥ 2. To construct
a tree of order K, we start with a perfect (combinatorial) planted binary tree
of depth K, which we call skeleton. The combinatorial shapes of such trees is
illustrated in Fig. 15. All leaves in the skeleton have the same depth K, and all
vertices at depth 1 ≤ κ ≤ K have the same Horton-Strahler order K − κ + 1.
The root (at depth 0) has order K. Next, we assign lengths to the branches of
the skeleton. Recall (Ex. 1) that each branch in a perfect tree consists of a single
edge. To assign length to a branch b of order κ, with 1 ≤ κ ≤ K, we generate

a geometric number N [b]
d∼ Geom0(S

−1
κ−1) according to (94) and then N [b] + 1
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i.i.d. exponential lengths li, i = 1, . . . , N [b] + 1, with the common rate λκSκ−1

according to (96). The total length of the branch b is l1+ · · ·+ lN [b]+1. Moreover,
branch b has N [b] side branches that are attached along b with spacings li,
starting from the branch point closest to the root. The order assignment for the
side branches is done according to (95). We generate side branches (each has
order below K) independently and attach them to the branch b. This completes
the construction of a random tree of order K. To construct a random HBP tree,
one first generates a random order K ≥ 1 according to (93) and then constructs
a tree of order K using the above recursive process.

Now we establish various forms of self-similarity for the hierarchical branching
process.

Theorem 11 (Self-similarity of hierarchical branching process, [99]).

Consider a hierarchical branching process S(t)
d∼ HBP

(
{Tk}, {λj}, {πK}

)
and

let T := T [S] be the tree generated by S(t) on BL|
plane. The following statements

hold.

1. The combinatorial tree shape(T ) is mean self-similar (according to
Defs. 12, 14) with Tokunaga coefficients {Tk}.

2. The combinatorial tree shape(T ) is Horton self-similar (according to
Def. 8) with Tokunaga coefficients {Tk} if and only if

πK = p(1− p)K−1 for all K ≥ 1 and some 0 < p < 1.

3. The tree T is Horton self-similar (according to Def. 9) with scaling expo-
nent ζ > 0 if and only if

πK = p(1− p)K−1, K ≥ 1, and λj = γ ζ−j , j ≥ 1,

for some positive γ and 0 < p < 1.

Proof. By process construction, the tree T is coordinated (Def. 10), with inde-
pendent complete subtrees.

(1) According to (97), the expected value of the number Ni[b] of side branches
of order i ≥ 1 within a branch b of order j > i is given by E [Ni[b]] = Tj−i. The
mean self-similarity of Def. 12 with Tokunaga coefficients Tk immediately follows
via conditioning argument as in (26).

(2) Assume that shape (T ) is self-similar. A geometric distribution of orders
is then established in Prop. 1. Inversely, a geometric distribution of orders en-
sures that the total mass μ (HK), K ≥ 1, is invariant with respect to pruning.
The conditional distribution of trees of a given order is completely specified by
the side branch distribution, described in Proposition 8, parts (1)–(3). Consider
a branch of order K+1, K ≥ 1. Pruning decreases the orders of this branch, and
all its side branches, by unity. Pruning eliminates a random geometric number
m1 of side branches of order 1 from the branch. It acts as a thinning with re-
moval probability TK/(SK − 1) on the total side branch count m. Accordingly,
the total side branch count after pruning has geometric distribution with success
probability

qR = S−1
K−1.
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The order assignment among the remaining side branches (with possible orders
i = 1, . . . ,K − 1) is done according to multinomial distribution with probabili-
ties proportional to TK−i. This coincides with the side branch structure in the
original tree, hence completing the proof of (2).

(3) Having proven (2), it remains to prove the statement for the length struc-
ture of the tree. Assume that T is self-similar with scaling exponent ζ. The
branches of order j ≥ 2 become branches of order j−1 after pruning, which ne-
cessitates λj = ζ λj−1. Inversely, pruning acts as a thinning on the side branches
within a branch of order K + 1, eliminating the side branches of order ord = 1.
Accordingly, the spacings between the remaining side branches are exponentially
distributed with a decreased rate

λK+1SK−1 = ζ λKSK−1.

Comparing this with (96), and recalling the self-similarity of shape (T ), we
conclude that Def. 9 is satisfied with scaling exponent ζ.

7.2. Hydrodynamic limit

Here we analyze the average numbers of branches of different orders in a hierar-

chical branching process, using a hydrodynamic limit. Specifically, let nx
(n)
j (s)

be the number of branches of order j at time s observed in n independent

copies of the hierarchical branching process S. The values of x
(n)
j (s) at branch-

ing and termination times are set equal to the right limit values. Thus, x
(n)
j (s)

are càdlàg2 functions, and x
(n)
0 (s) ≡ 0. Let Nj(s) be the number of branches of

order j ≥ 1 in the process S at instant s ≥ 0. We observe that, by the law of
large numbers,

x
(n)
j (s)

a.s.−→ E [Nj(s)] =: xj(s).

Theorem 12 (Hydrodynamic limit for branch dynamics, [99]). Suppose
that the following conditions are satisfied:

L := lim sup
k→∞

T
1/k
k <∞, (98)

and

sup
j≥1

λj <∞, lim sup
j→∞

λ
1/j
j ≤ 1/L. (99)

Then, for any given T > 0, the empirical process

x(n)(s) =
(
x
(n)
1 (s), x

(n)
2 (s), . . .

)T

, s ∈ [0, T ],

2The word “càdlàg” is an abbreviation for “continue à droite, limite à gauche” in French,
which means “continuous on the right, limit on the left” in English. The space of càdlàg
functions is called Skorokhod space.
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converges almost surely, as n→∞, to the dynamical system

x(s) =
(
x1(s), x2(s), . . .

)T

, s ∈ [0, T ],

that satisfies

ẋ = GΛx with the initial conditions x(0) = π :=

∞∑
K=1

πKeK , (100)

where Λ = diag{λ1, λ2, . . .} is a diagonal operator with the entries λ1, λ2, . . ., ei
are the standard basis vectors, and operator G defined in Eq. (41).

Proof. The process x(n)(s) evolves according to the transition rates

q(n)(x,x+ �) = nβ


(
1

n
x

)
with

β
(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λ1x1 if � = −e1,
λi+1xi+1 if � = 2ei − ei+1, i ≥ 1,

∞∑
j=i+1

λjTj−ixj if � = ei, i ≥ 1.

Here the first term reflects termination of branches of order 1; the second term
reflects termination of branches of orders i + 1 > 1, each of which results in
creation of two branches of order i; and the last term reflects side branching.
Thus, the infinitesimal generator of the stochastic process x(n)(s) is

Lnf(x) = nλ1x1

[
f

(
x− 1

n
e1

)
− f(x)

]
+

∞∑
i=1

nλi+1xi+1

[
f

(
x− 1

n
ei+1 +

2

n
ei

)
− f(x)

]

+

∞∑
i=1

⎛⎝ ∞∑
j=i+1

nλjTj−ixj

⎞⎠[
f

(
x+

1

n
ei

)
− f(x)

]
. (101)

Let

F (x) :=
∑



β
(x) = −λ1x1e1 +

∞∑
i=1

λi+1xi+1(2ei − ei+1)

+

∞∑
i=1

⎛⎝ ∞∑
j=i+1

λjTj−ixj

⎞⎠ ei.

The convergence result of Kurtz ([60, Theorem 2.1, Chapter 11], [103, Theorem
8.1]) given here in Appendix A extends (without changing the proof) to the
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Banach space �1(R) provided the same conditions are satisfied for �1(R) as for
Rd in Thm. 35. Specifically, we require that for a compact set C in �1(R),∑




‖�‖1 sup
x∈C

β
(x) <∞, (102)

and there exists MC > 0 such that

‖F (x)− F (y)‖1 ≤MC‖x− y‖1, x,y ∈ C. (103)

Here the condition (102) follows from

∑
i

sup
x∈C
|λixi| <∞ and

∑
i

sup
x∈C

∞∑
j=i+1

λjTj−i|xj | <∞,

which in turn follow from conditions (99). Similarly, Lipschitz conditions (103)
are satisfied in C due to conditions (99). Thus, by Thm. 35 extended for �1(R),
the process x(n)(s) converges almost surely to x(s) that satisfies ẋ = F (x),
which expands as the following system of ordinary differential equations:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x′
1(s) = −λ1x1 + λ2(T1 + 2)x2 + λ3T2x3 + . . .

x′
2(s) = −λ2x2 + λ3(T1 + 2)x3 + λ4T2x4 + . . .

...

x′
k(s) = −λkxk + λk+1(T1 + 2)xk+1 + λk+2T2xk+2 + . . .

...

(104)

with the initial conditions x(0) = lim
n→∞

x(n)(0) = π :=
∞∑

K=1

πKeK by the law

of large numbers. Finally, we observe that ‖π‖1 = 1, and conditions (99) imply
that GΛ is a bounded operator in �1(R).

7.3. Criticality and time invariance

7.3.1. Definitions

Assume that the hydrodynamic limit x(s), and hence the averages xj(s), exist.

Write π =
∞∑

K=1

πKeK for the initial distribution of the process. Consider the

average progeny of the process, that is the average number of branches of any
order alive at instant s ≥ 0:

C(s) =

∞∑
j=1

xj(s) =
∥∥∥eGΛsπ

∥∥∥
1
.

Definition 23 (Criticality). A hierarchical branching process S(s) is said to
be critical if its average progeny is constant: C(s) = 1 for all s ≥ 0.
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Recall that a Galton-Watson process that begins with a single progenitor
is critical if and only if its average progeny (the average number of branches)
equals to unity at all times [12]. This provides an analogy with the above defined
critical hierarchical branching process.

Definition 24 (Time invariance). A hierarchical branching process S(s) with

the initial distribution π =
∞∑

K=1

πKeK is said to be time-invariant if

eGΛsπ = π for all s ≥ 0. (105)

Proposition 9 (Time invariance→ Criticality). Suppose the hydrodynamic
limit x(s) exists, and the hierarchical branching process S(s) is time-invariant.
Then the process S(s) is critical.

Proof. C(s) = ‖x(s)‖1 = ‖eGΛsπ‖1 = ‖π‖1 = 1.

Recall the function t̂(z) = −1 + 2z +
∑

j z
j Tj defined in Eq. (31) for all

complex |z| < 1/L, where the inverse radius of convergence L is defined in Eq.
(98). We also recall that there is a unique real root w0 of t̂(z) within (0, 1

2 ]. We

formulate some of the results below in terms of t̂(z) and the Horton exponent
R := w−1

0 ; see Thm. 1.

Proposition 10. Suppose Λπ is a constant multiple of the geometric vector

v0 =
∞∑

K=1

R−KeK , i.e., there exists a coefficient of proportionality β > 0 such

that
λK πK = β R−K ∀K ≥ 1. (106)

Then the process S(s) is time-invariant.

Proof. Observe that since t̂
(
R−1

)
= 0 and G is a Toeplitz operator,

Gv = t̂(w)v for v =

∞∑
K=1

wKeK , |w| < L

and

Gv0 = t̂
(
R−1

)
v0 = 0 for v0 :=

∞∑
K=1

R−KeK .

Hence GΛπ = t̂
(
R−1

)
Λπ = 0 and

eGΛsπ = π +

∞∑
m=1

sm

m!
(GΛ)mπ = π.

7.3.2. Criticality and time invariance in a self-similar process

A convenient characterization of criticality can be established for self-similar
hierarchical branching processes. Recall that by Theorem 11, part (3), a self-
similar process S(s) is specified by parameters γ > 0, 0 < p < 1 and length
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self-similarity constant ζ > 0 such that πK = p(1− p)K−1 and λj = γ ζ−j . We

refer to a self-similar process by its parameter triplet, and write S(s)
d∼ Sp,γ,ζ(s).

We denote the respective average progeny by Cp,γ,ζ(s). Observe that in the self-
similar case the first of the conditions (99) is equivalent to ζ ≥ 1, and the second
is equivalent to ζ ≥ L. Hence, the conditions (99) are equivalent to ζ ≥ 1 ∨ L.

Theorem 13 (Average progeny of a self-similar process, [99]). Consider
a self-similar process Sp,γ,ζ(s) with 0 < p < 1 and γ > 0. Suppose that (98) is
satisfied and ζ ≥ 1 ∨ L. Then

Cp,γ,ζ(s)

⎧⎪⎨⎪⎩
decreases if p > 1− ζ

R ,

= 1 if p = 1− ζ
R ,

increases if p < 1− ζ
R .

Proof. The choice of the limits for ζ ensures that the conditions (99) are satisfied
and hence, by Thm. 12, the hydrodynamic limit x(s) exists and the function
Cp,γ,ζ(s) is well defined. Now we have

Λπ =
γp

1− p

∞∑
K=1

(
ζ−1(1− p)

)K
eK ,

and therefore
GΛπ = t̂

(
ζ−1(1− p)

)
Λπ. (107)

Iterating recursively, we obtain

(GΛ)2π = t̂
(
ζ−1(1− p)

)
GΛ2π = t̂

(
ζ−1(1− p)

)
t̂
(
ζ−2(1− p)

)
Λ2π,

and in general,

(GΛ)mπ = t̂
(
ζ−1(1− p)

)
GΛmπ =

[
m∏
i=1

t̂
(
ζ−i(1− p)

)]
Λmπ.

Thus, taking x(0) = π,

x(s) = eGΛsπ = π +
∞∑

m=1

sm

m!

[
m∏
i=1

t̂
(
ζ−i(1− p)

)]
Λmπ. (108)

The average progeny function for fixed values of p ∈ (0, 1), γ > 0 and ζ ≥ 1 can
therefore be expressed as

Cp,γ,ζ(s) =

∞∑
j=1

xj(s)

= 1 +

∞∑
m=1

sm

m!

[
m∏
i=1

t̂
(
ζ−i(1− p)

)] ∞∑
j=1

(
Λmπ

)
j
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= 1 +

∞∑
m=1

(
sγ/ζ

)m
m!

[
m∏
i=1

t̂
(
ζ−i(1− p)

)] p

1− ζ−m(1− p)
, (109)

since

∞∑
j=1

(
Λmπ

)
j
=

∞∑
j=1

λm
j πj =

∞∑
j=1

γmζ−jmp(1− p)j−1

= γmζ−m p

1− ζ−m(1− p)
.

Next, notice that by letting p′ = 1 − ζ−1(1 − p), we have from (109) and
the uniform convergence of the corresponding series for any fixed M > 0 and
s ∈ [0,M ], that

d

ds
Cp,γ,ζ(s) =

γ

ζ
t̂(1− p′)Cp′,γ,ζ(s) with Cp,γ,ζ(0) = Cp′,γ,ζ(0) = 1. (110)

Observe that ζ ≥ 1 implies p′ ≥ p and Cp′,γ,ζ(s) ≤ Cp,γ,ζ(s). Also, observe that

t̂(1− p′)

⎧⎪⎨⎪⎩
< 0 if p > 1− ζ

R ,

= 0 if p = 1− ζ
R ,

> 0 if p < 1− ζ
R ,

as t̂ is an increasing function on [0,∞) and t̂
(
1/R

)
= 0. This leads to the

statement of the theorem.

Remark 12. If ζ = 1, then p′ = p and equation (110) has an explicit solution

Cp,γ,1(s) = exp
{
sγt̂(1− p)

}
.

Accordingly,

Cp,γ,1(s)

⎧⎪⎨⎪⎩
exponentially decreases if p > 1−R−1,

= 1 for all s ≥ 0 if p = 1−R−1,

exponentially increases if p < 1−R−1.

This case is further examined in Sect. 7.4. In general, the average progeny
Cp,γ,ζ(s) may increase sub-exponentially for p < 1 − ζ

R . For example, if there

is a nonnegative integer d such that ζd+1 < R, then for p = 1 − ζd+1

R we have

t̂
(
ζ−d−1(1 − p)

)
= 0. Accordingly, (108) implies that Cp,γ,ζ(s) is a polynomial

of degree d.

Theorem 14 (Criticality of a self-similar process, [99]). Consider a self-
similar process Sp,γ,ζ(s) with 0 < p < 1, γ > 0. Suppose that (98) is satisfied
and ζ ≥ 1 ∨ L. Then the following conditions are equivalent:

(i) The process is critical.
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(ii) The process is time-invariant.
(iii) The following relations hold: ζ < R and p = pc := 1− ζ

R .

Proof. (i)↔(iii) is established in Thm. 13. (ii)→(i) is established in Prop 9.
(iii)→(ii): Observe that t̂

(
ζ−1(1− p)

)
= t̂

(
R−1

)
= 0. Time invariance now

follows from (108).

Remark 13. By Thm. 11, the product λK πK in a self-similar process is given
by

λK πK =
γ p

1− p

(
1− p

ζ

)K

for some 0 < p < 1, γ > 0, and ζ ≥ 1 ∨ L. Hence, a time-invariant process can
be constructed, according to Prop. 10 and (106), by selecting any sequence {Tk}
such that the unique real zero w0 on [0, 1/2) of the respective function t̂(z) is
given by

w0 = R−1 = ζ−1 (1− p).

Theorem 14 states that this is the only possible way to construct a time-invariant
process, given that the process is self-similar.

7.4. Closed form solution for equally distributed branch lengths

Consider a self-similar hierarchical branching process with Λ = I and πK =
p(1 − p)K−1 for all K ≥ 1. Here we have λj = 1 for all j ≥ 1, which implies
γ = ζ = 1.

For a given integer K ≥ 1, condition on the event ord(T [S]) = K. In this
case, the system of equation (104) is finite dimensional,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x′
1(s) = −x1 + (T1 + 2)x2 + T2x3 + . . .+ TK−1xK

x′
2(s) = −x2 + (T1 + 2)x3 + T2x4 + . . .+ TK−2xK

...

x′
K−1(s) = −xK−1 + (T1 + 2)xK

x′
K(s) = −xK

(111)

with the initial conditions x(0) = eK .
Recall the sequence t(j) defined in Eq. (30), and let y(s) = esx(s). Then

(111) rewrites in terms of the coordinates of y(s) as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y′1(s) = t(1)y2 + t(2)y3 + . . .+ t(K − 1)yK

y′2(s) = t(1)y3 + t(2)y4 + . . .+ t(K − 2)yK
...

y′K−2(s) = t(1)yK−1 + t(2)yK

y′K−1(s) = t(1)yK

y′K(s) = 0

(112)
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with the initial conditions y(0) = eK . The ODEs (112) can be solved recursively
in a reversed order of equations in the system obtaining for m = 1, . . . ,K − 1,

yK−m(s) =

m∑
n=1

⎛⎜⎜⎝ ∑
i1,...,in≥1

i1+...+in=m

t(i1) · . . . · t(in)

⎞⎟⎟⎠ sn

n!
.

Let δ0(j) = 1{j=0} be the Kronecker delta function. Then we arrive with the
closed form solution

xK−m(s) = e−syK−m(s)

= e−s
∞∑

n=1

(t+ δ0) ∗ (t+ δ0) ∗ . . . ∗ (t+ δ0)︸ ︷︷ ︸
n times

(m)
sn

n!
. (113)

Next, removing condition ord(T [S]) = K, the tree orders are randomized by
assigning geometric probability πK = p(1−p)K−1 to each order K ≥ 1, and the
above closed form expression (113) yields the expression for the average progeny
observed earlier in Rem. 12 of this section:

Cp,1,1(s) = e−s + e−s
∞∑

n=1

∞∑
m=1

(1− p)m (t+ δ0) ∗ (t+ δ0) ∗ . . . ∗ (t+ δ0)︸ ︷︷ ︸
n times

(m)
sn

n!

= e−s + e−s
∞∑

n=1

(
t̂(1− p) + 1

)n sn

n!
= exp

{
st̂(1− p)

}
.

7.5. Critical Tokunaga process

We introduce here a class of hierarchical branching processes that enjoy all of
the symmetries discussed in this work – Horton self-similarity, criticality, time-
invariance, strong Horton law, Tokunaga self-similarity, and also have indepen-
dently distributed edge lengths. Despite these multiple constraints, the class is
sufficiently broad, allowing the self-similarity constant ζ (Def. 9, part (ii)) to
take any value ζ ≥ 1, and the Horton exponent to take any value R ≥ 2. The
critical binary Galton-Watson process is a special case of this class.

Definition 25 (Critical Tokunaga process). We say that S(t) is a critical

Tokunaga process with parameters (γ, c), and write S(t)
d∼ STok(t; c, γ), if it is

a hierarchical branching process with the following parameter triplet:

λj = γ c1−j , πK = 2−K , and Tk = (c− 1) ck−1 (114)

for some γ > 0, c ≥ 1.

Proposition 11 (Critical Tokunaga process). Suppose S(t)
d∼ STok(t; c, γ)

and let T [S] be the tree of S(t). Then,
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1. S(t) is a Horton self-similar, critical, and time invariant process

S(t)
d∼ S 1

2 ,γ,c
(t).

2. Independently of the combinatorial shape of T [S], its edge lengths are i.i.d.
exponential random variables with rate γ.

3. We have

t̂(z) =
(1− 2 c z)(z − 1)

1− c z
, R = w−1

0 = 2 c, ζ = L = c, and p = 2−1.

Proof. 1. Self-similarity follows from Thm. 11, part (3). Specification of param-
eters (114) implies p = 2−1 and ζ = c. The Horton exponent R = 2c is found
from (37). Criticality and time-invariance now follow from Thm. 14, since here

2−1 = p = 1− ζ

R
= 1− c

2c
= 2−1.

2. To establish the edge lengths property, observe that

{T0 = 1, Tk = (c− 1)ck−1, k ≥ 1} ⇒ SK = 1 + T1 + · · ·+ TK = cK ,K ≥ 0.

Recall from Prop. 8, part(4) that the edge lengths within a branch of order
K ≥ 1 are i.i.d. exponential r.v.s. with rate

λKSK−1 = γ c1−KcK−1 = γ.

3. The values of R, p, and ζ are found in 1. The expression for t̂(z) and
equality L = c are readily obtained from the geometric form of the Tokunaga
coefficients Tk.

Criticality and i.i.d. edge length distribution property characterize the critical
Tokunaga process, as we explain in the following statement.

Lemma 11. Consider a self-similar hierarchical branching process S(t)
d∼Sp,γ,ζ(t)

with p ∈ (0, 1) and γ > 0. Suppose that (98) holds and ζ ≥ 1 ∨ L. Let T [S] be
the tree of S(t). Then, the following conditions are equivalent:

1. S(t) is critical and the edges in T have i.i.d. exponential lengths with rate
γ > 0.

2. S(t) is a critical Tokunaga process: S(t)
d∼ S 1

2 ,γ,c
(t).

Proof. The implication (2 ⇒ 1) was established in Prop. 11. To show (1 ⇒ 2),
recall from Prop. 8, Eq. (96), that the edge lengths within a branch of order K
are i.i.d. with rate λKSK−1. If the rate is independent of K, we have for any
K ≥ 1:

λKSK−1 = λK+1SK

or

ζ =
λK

λK+1
=

SK

SK−1
.
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Given S0 = 1, we find SK = ζK , and hence TK = (ζ − 1)ζK−1. By (37), the
Horton exponent is R = 2ζ. Criticality implies (Prop. 14, part (iii)):

pc = 1− ζ

R
= 2−1,

which completes the proof.

It follows from the proof of Lemma 11 that the i.i.d. edge length property
alone (and no criticality) is equivalent to the following constraints on the process
parameters:

λj = γ ζ1−j , and Tk = (ζ − 1)ζk−1,

while allowing an arbitrary choice of p ∈ (0, 1). The tree of such process is
Tokunaga self-similar, although not critical unless p = 2−1.

The next results shows that the critical binary Galton-Watson tree GW(λ)
with i.i.d. exponential edge lengths is a special case of the critical Tokunaga
process.

Theorem 15 (Critical binary Galton-Watson tree, [99]). Suppose S(t) is
a critical Tokunaga process with parameters

λj = γ21−j , πK = 2−K , and Tk = 2k−1 for some γ > 0, (115)

which means S(t)
d∼ STok(t; 2, γ). Let T [S] be the tree of S(t). Then T [S] has

the same distribution on BL|
plane as the critical binary Galton-Watson tree with

i.i.d. edge lengths: T [S]
d∼ GW(γ).

Proof. Consider a tree T
d∼ GW(γ) in BL|

plane. We show below that this tree
can be dynamically generated according to Def. 22 of the hierarchical branching
process with parameters (115).

First, notice that by Prop. 6

P(ord(T ) = K) = 2−K .

We will establish later in Corollary 12 that the length of every branch of order j
in T is exponentially distributed with parameter λj = γ21−j , which matches the
branch length distribution in the hierarchical branching process (115). Further-
more, by Corollary 12, conditioned onRi(T ) �= φ (which happens with a positive

probability), we have Ri(T )
d∼ GW(2−iγ). This means that the distribution of

Galton-Watson trees pruned i times is a linearly scaled version of the original
distribution (the same combinatorial structure, linearly scaled edge lengths).
Recall (Prop. 6) the total number mj of side branches within a branch of order
j ≥ 2 in T is geometrically distributed with mean T1 + · · · + Tj−1 = 2j−1 − 1,
where Ti = 2i−1, i ≥ 1. Conditioned on mj , the assignment of orders among the
mj side branches is done according to the multinomial distribution withmj trials
and success probability for order i = 1, . . . , j−1 given by Tj−i/(T1+ · · ·+Tj−1).
This implies that the leaves of the original tree merge into every branch of the
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pruned tree as a Poisson point process with intensity γ = λjTj−1. Iterating this
pruning argument, the branches of order i merge into any branch of order j in
the pruned tree Ri(T ) as a Poisson point process with intensity γ 2−i = λjTj−i

for every j > i.
Finally, the orientation of the two offspring of the same parent in GW(γ)

is uniform random, by Def. 20. We conclude that tree GW(γ) has the same

distribution on BL|
plane as the critical Tokunaga process with parameters (115).

Remark 14. The condition Ti,i+k = Tk = a ck−1 was first introduced in hydrol-
ogy by Eiji Tokunaga [155] in a study of river networks, hence the process name.
The additional constraint a = c− 1 is necessitated here by the self-similarity of
tree lengths, which requires the sequence λj to be geometric. The sequence of
the Tokunaga coefficients then also has to be geometric, and satisfy a = c − 1,
to ensure identical distribution of the edge lengths, see Prop. 8(4). Recall the
special place case a = c − 1 plays for the entropy rate of Tokunaga self-similar
trees as elaborated in Sect. 4.3. See Cor. 1. Interestingly, the constraint a = c−1
appears in the random self-similar network (RSN) model introduced by Veitzer
and Gupta [161], which uses a purely topological algorithm of recursive local
replacement of the network generators to construct random self-similar trees.
The importance of the constraint a = c − 1 in purely combinatorial context is
revealed in Sect. 7.7.

7.6. Martingale approach

In this section, we propose a martingale representation for the size and length
of a critical Tokunaga tree of a given order. This leads, via the martingale
techniques, to the strong Horton laws for both these quantities, and allows us
to find the asymptotic order of a tree of a given size. The proposed martingale
representation is related to an alternative construction of a critical Tokunaga

tree, via a Markov tree process on BL|
plane.

7.6.1. Markov tree process

Consider a critical Tokunaga process STok(t; c, γ) (Def. 25, Prop. 11) with c > 1
(hence excluding a trivial case c = 1 of perfect binary trees), and let μ be the

measure induced by this process on BL|
plane. Following the notations introduced

in Sect. 3.1, Eq. (6), we consider conditional measures

μK(T ) = μ(T |ord(T ) = K).

Next, we construct a discrete time Markov tree process
{
ΥK

}
K∈N

on BL|
plane

such that for each K ∈ N,

ord(ΥK) = K, ΥK
d∼ μK , and R(ΥK+1) = ΥK . (116)
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Let

XK = N1[ΥK ] =
1 + #ΥK

2
∈ N

be the number of leaves in ΥK and YK = length(ΥK) ∈ R+ be the tree
length. Consequently, XK−k+1 = N1[ΥK−k+1] = N1

[
Rk−1(ΥK)

]
= Nk[ΥK ] for

all 1 ≤ k ≤ K.
We let Υ1 be an I-shaped tree of Horton-Strahler order one, with the edge

length Y1
d∼ Exp(γ). This tree has one leaf, X1 = 1.

Conditioned on ΥK , the tree ΥK+1 is constructed according to the following
transition rules. Denote by Υ′

K the tree ΥK with edge length scaled by c. That
is, the tree Υ′

K is obtained by multiplying the edge lengths in ΥK by c, while
preserving the combinatorial shape and planar embedding:

p-shape(Υ′
K) = p-shape(ΥK).

Next, recall that Υ′
K ∈ BL

|
plane is itself a metric space (Sec 2.1). We attach new

leaf edges to Υ′
K at the points sampled by a homogeneous Poisson point process

with intensity γ(c−1)c−1 along the carrier space Υ′
K . The left-right orientation

of the newly added edges is determined independently and uniformly. We also
attach a pair of new leaf edges to each of the leaves in Υ′

K ; there is exactly 2XK

such attachments (XK pairs). The lengths of all the newly attached leaf edges
are i.i.d. exponential random variables with parameter γ that are independent
of the combinatorial shape and the edge lengths in ΥK . Finally, we let the tree
ΥK+1 consist of Υ′

K and all the attached leaves and leaf edges.

Lemma 12. The process
{
ΥK

}
K∈N

is a Markov process that satisfies (116).

Proof. The process construction readily implies the Markov property, and en-
sures that ord(ΥK) = K and R(ΥK+1) = ΥK . Next, we show that a random
tree ΥK satisfies Def. 22, conditioned on the tree order K ≥ 1, with the critical
Tokunaga parameters

λj = γc1−j and Tk = (c− 1)ck−1.

The tree Υ1 has exponential edge length with parameter λ1 = γ and no side

branching, hence Υ1
d∼ μ1. Assume now that ΥK

d∼ μK for some K ≥ 1.
Then, for ΥK+1, we establish each of the rules in Def. 22 characterizing the tree
measure μ induced by STok(t; c, γ), except the tree order rule (i).

Fix any j such that 1 < j ≤ K. Every branch of order j in ΥK+1 is formed
by a branch of order j − 1 in ΥK . In particular, the length of the branch is
multiplied by c. Accordingly, every branch of order j within ΥK+1 produces
offspring of every order i such that 1 < i < j with rate

c−1
(
λj−1T(j−1)−(i−1)

)
= c−1γc1−(j−1)Tj−i = γc1−jTj−i = λjTj−i.

By construction, the side branches of order i = 1 are generated with rate

γ(c− 1)c−1 = λjTj−1.
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This establishes rule (ii) in Def. 22.

Using the same argument as above, each branch of order j > 1 in ΥK+1

terminates with rate c−1λj−1 = λj . By construction, each branch of order i = 1
terminates with rate γ = λ1. This establishes rule (iii) in Def. 22.

Rules (iv), (v), and (vi) in Def. 22 follow trivially from the process construc-
tion. This completes the proof.

Notice that sampling a random variable κ
d∼ Geom1

(
1
2

)
independently of the

process ΥK , we have the stopped process Υκ
d∼ μ.

7.6.2. Martingale representation of tree size and length

By construction, the pairs (XK , YK) and (XK+1, YK+1) are related in an itera-
tive way as follows. Conditioned on the values of (XK , YK), we have

XK+1 = 2XK + VK , (117)

where VK
d∼ Poi

(
γ(c−1)YK

)
is the number of side branches of order one attached

to Υ′
K . Next, conditioning on XK+1, we have

YK+1 = UK + cYK , (118)

where UK
d∼ Gamma

(
XK+1, γ

)
is the sum of XK+1 i.i.d. edge lengths, each

exponentially distributed with parameter γ.

Lemma 13 (Martingale representation). The sequence

MK = R1−K
(
XK + γ(c− 1)YK

)
with K ∈ N (119)

is a martingale with respect to the Markov tree process
{
ΥK

}
K∈N

.

Proof. Taking conditional expectations in (117) and (118) gives

E[XK+1 |ΥK ] = 2XK + γ(c− 1)YK , (120)

E[YK+1 |ΥK ] = γ−1E[XK+1 |ΥK ] + cYK

= 2γ−1XK + (2c− 1)YK . (121)

This can be summarized as

E

[(
XK+1

YK+1

) ∣∣∣ΥK

]
= M

(
XK

YK

)
, (122)

where

M =

[
2 γ(c− 1)

2γ−1 2c− 1

]
.
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The eigenvalues of the matrix M are R = 2c and 1. The largest eigenvalue equals
the Horton exponent R; the respective eigenspace is y = 2γ−1x. Equation (122)
implies that

M1−K

(
XK

YK

)
=

1

2c− 1

⎛⎝ [R1−K + 2(c− 1)]XK + γ(c− 1)[R1−K − 1]YK

2γ−1[R1−K − 1]XK + [2(c− 1)R1−K + 1]YK

⎞⎠
is a vector valued martingale with respect to the Markov tree process

{
ΥK

}
K∈N

.

Multiplying this martingale by the left eigenvector
(
1, γ(c − 1)

)
of M that

corresponds to the largest eigenvalue R, we obtain a scalar martingale with
respect to

{
ΥK

}
K∈N

:

(
1, γ(c− 1)

)
M1−K

(
XK

YK

)
= R1−K (XK + γ(c− 1)YK) .

This completes the proof.

The next lemma establishes the limit of YK/XK .

Lemma 14. Suppose STok(t; c, γ) is the distribution of a critical Tokunaga
process and

{
ΥK

}
K∈N

is the corresponding Markov tree process. Then,

YK/XK → 2γ−1 a.s. as K →∞. (123)

Proof. Recall that YK is a sum of 2XK−1 independent edge lengths, each being
exponentially distributed with parameter γ. Thus, since XK = N1[ΥK ] ≥ 2K−1,
the Chebyshev inequality implies for any ε > 0,

∞∑
k=1

P

(∣∣∣∣ YK

XK
− 2γ−1

∣∣∣∣ ≥ ε

)
≤ ε−2

∞∑
k=1

Var

(
YK

XK
− 2γ−1

)

≤ ε−2
∞∑
k=1

E

[
E

[(
YK

XK
− 2γ−1

)2 ∣∣∣XK

]]

= ε−2γ−2
∞∑
k=1

E
[
X−1

K +X−2
K

]
≤ ε−2γ−2

∞∑
k=1

(
21−K + 22(1−K)

)
<∞

as E[YK |XK ] = 2γ−1XK − γ−1 and E[Y 2
K |XK ] = 4γ−2X2

K − 3γ−2XK + γ−1.

Hence, by the Borel-Cantelli lemma, we arrive with the almost sure conver-
gence in (123).

The following lemma is needed for the proof of Thm. 16.
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Lemma 15. Suppose STok(t; c, γ) is the distribution of a critical Tokunaga
process and

{
ΥK

}
K∈N

is the corresponding Markov tree process. Then,

P
(

lim
K→∞

R1−KXK = 0
)
= 0.

Proof. For a given integer x ≥ 2K−1, we condition on the event XK = x.
Then, YK is a sum of 2XK − 1 = 2x − 1 i.i.d. exponential edge lengths.

Hence, YK
d∼ Gamma

(
2x − 1, γ

)
. Finally, recall that in the setup of (117),

VK
d∼ Poi

(
γ(c − 1)YK

)
. Therefore, we can compute the moment generating

function of VK conditioned on the event XK = x as follows

Mv(s;x) := E
[
esVK

∣∣XK = x
]

=

∞∫
0

∞∑
k=0

eske−γ(c−1)y

(
γ(c− 1)y

)k
k!

γ2x−1y2x−2e−γy

Γ(2x− 1)
dy

=

∞∫
0

e−γ
(
c−(c−1)es

)
γ2x−1y2x−2

Γ(2x− 1)
dy

=
1(

c− (c− 1)es
)2x−1 , (124)

with the domain s ∈
(
−∞, log c

c−1

)
.

Next, we use (124) in the exponential Markov inequality (a.k.a. Chernoff

bound). For a given ε ∈
(
0, (c− 1)c−1

)
and x ≥ 2K−1, by (117) we have, for all

s ≥ 0,

P

(
XK+1

RXK
≤ 1− ε

∣∣XK = x

)
= P

(
VK ≤ 2

(
(1− ε)c− 1

)
x
∣∣XK = x

)
= P

(
−sVK ≥ −2s

(
(1− ε)c− 1

)
x
∣∣XK = x

)
≤ e2s

(
(1−ε)c−1

)
xMv(−s;x)

=
e2s

(
(1−ε)c−1

)
x(

c− (c− 1)e−s
)2x−1

=
(
c− (c− 1)e−s

)( e(1−ε)cs

ces − (c− 1)

)2x

, (125)

where we used (117) and R = 2c to rewrite the event
{

XK+1

RXK
≤ 1− ε

}
as{

VK ≤ 2
(
(1− ε)c− 1

)
XK

}
.

We find the extreme value of e(1−ε)cs

ces−(c−1) in (125), and substitute

es =
(1− ε)(c− 1)

(1− ε)c− 1
=

1− ε

1− c
c−1ε
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into the right hand side of (125), obtaining

P

(
XK+1

RXK
≤ 1− ε

∣∣XK = x

)
≤

(
c− (c− 1)e−s

)( e(1−ε)cs

ces − (c− 1)

)2x

= (1− ε)−1

⎛⎝(
1− c

c− 1
ε

)(
1− ε

1− c
c−1ε

)(1−ε)c
⎞⎠2x

= (1− ε)−1 exp

{
−x

(
c

c− 1
ε2 +O(ε3)

)}
. (126)

Now, since XK ≥ 2K−1, (126) implies

P

(
XK+1

RXK
≤ 1− ε

)
=

∞∑
x=2K−1

P

(
XK+1

RXK
≤ 1− ε

∣∣XK = x

)
P(XK = x)

≤ exp

{
−2K−1

(
c

c− 1
ε2 +O(ε3)

)}
. (127)

Next, plugging ε = 1− e−1/K2

into (127), we find that

∞∑
K=1

P

(
XK+1

RXK
≤ e−1/K2

)
<∞, (128)

and equivalently,

∞∑
K=1

P

(
log

(
R1−KXK

R−KXK+1

)
≥ 1

K2

)
<∞. (129)

Therefore, by the Borel-Cantelli lemma,

P

(∣∣∣∣{K ∈ N : log

(
R1−KXK

R−KXK+1

)
≥ 1

K2

}∣∣∣∣ <∞)
= 1, (130)

where | · | denotes the magnitude of sets. Hence, as
∞∑

K=1

1
K2 <∞,

P
(

lim
K→∞

R1−KXK = 0
)
= P

(
lim

S→∞

S∏
K=1

R1−KXK

R−KXK+1
=∞

)

= P

( ∞∏
K=1

R1−KXK

R−KXK+1
=∞

)
= P

( ∞∑
K=1

log

(
R1−KXK

R−KXK+1

)
=∞

)
= 0. (131)

This completes the proof.
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7.6.3. Strong Horton laws in a critical Tokunaga tree

The martingale representation of Lem. 13 has an immediate implication for the
asymptotic behavior of the average size of a critical Tokunaga tree, stated below.

Corollary 4. Suppose STok(t; c, γ) is the distribution of a critical Tokunaga

process and μ is a tree measure on BL|
plane induced by STok(t; c, γ). Then, the

following closed form expression holds for all 1 ≤ k ≤ K:

(2c− 1)Nk[K]− (c− 1)

(2c− 1)N1[K]− (c− 1)
= R1−k, with R = 2c. (132)

The equation (132) implies, in particular,

N1[K] =
RK−1c+ c− 1

2c− 1
=

RK +R− 2

2(R− 1)
. (133)

Notice that (132) yields yet another proof (besides Thms. 1 and 11) of the
strong Horton law for mean branch numbers (Def. 17) in the random trees
induced by the critical Tokunaga processes.

Proof. Since YK is a sum of 2XK − 1 independent edge lengths, each expo-
nentially distributed with parameter γ, we have E[YK ] = γ−1(2E[XK ] − 1).
Therefore,

E[MK ] = R1−KE[XK ] + γ(c− 1)R1−KE[YK ]

= (2c− 1)R1−KE[XK ]− (c− 1)R1−K .

Furthermore, for all 1 ≤ k ≤ K, substituting K − k + 1 instead of K in the
above equation, we obtain

E[MK−k+1] = (2c− 1)Rk−KE[XK−k+1]− (c− 1)Rk−K .

SinceMK is a martingale (see Lemma 13), we have E[MK−k+1] = E[MK ]. Hence,

1 =
E[MK−k+1]

E[MK ]
= Rk−1 (2c− 1)E[XK−k+1]− (c− 1)

(2c− 1)E[XK ]− (c− 1)

= Rk−1 (2c− 1)E
[
Nk[ΥK ]

]
− (c− 1)

(2c− 1)E
[
N1[ΥK ]

]
− (c− 1)

as E[XK−k+1] = E
[
Nk[ΥK ]

]
and E[XK ] = E

[
N1[ΥK ]

]
. This establishes (132).

The strong Horton law (29) for mean branch numbers follows from (132). The
expression (133) is obtained by using k = K in (132). This completes the proof.

We also suggest an alternative proof that emphasizes the spectral property
of the transition matrix M of (122).
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Alternative proof of Corollary 4. Taking expectation in (122) we obtain, for any
K > 1, (

E[XK ]
E[YK ]

)
= M

(
E[XK−1]
E[YK−1]

)
= MK−1

(
E[X1]
E[Y1]

)
. (134)

Since YK is a sum of 2XK − 1 independent edge lengths, each exponentially
distributed with parameter γ, we have E[YK ] = γ−1(2E[XK ] − 1). Recall also

that
(
1, γ(c−1)

)
is the left eigenvector of M that corresponds to the eigenvalue

R. Accordingly, (
1, γ(c− 1)

)
MK−1 = RK−1

(
1, γ(c− 1)

)
.

Premultiplying (134) by the eigenvector
(
1, γ(c− 1)

)
we hence obtain

(2c− 1)E[XK ]− (c− 1) = RK−1
(
(2c− 1)E[X1]− (c− 1)

)
,

which establishes (132), since E[X1] = E
[
NK [ΥK ]

]
and E[XK ] = E

[
N1[ΥK ]

]
.

The strong Horton law (29) for mean branch numbers follows from (132). The
expression (133) is obtained by using k = K in (132). This completes the proof.

The sizes of trees of distinct orders have fixed asymptotic ratios in a much
stronger (almost sure) sense, as we show below.

Theorem 16. Suppose STok(t; c, γ) is the distribution of a critical Tokunaga

process, μ is a tree measure on BL|
plane induced by STok(t; c, γ), and

{
ΥK

}
K∈N

is the corresponding Markov tree process. Then,

Nk[ΥK ]

N1[ΥK ]

a.s.→ R1−k as K →∞. (135)

Proof. Recall that by Lem. 13, MK defined in (119) is a martingale. Also,
MK > 0 and is in L1 for all K ∈ N. Thus, by the Doob’s Martingale Con-
vergence Theorem, MK converges almost surely. Hence, by (123), R1−KXK

also converges almost surely, and

lim
K→∞

R1−KXK = lim
K→∞

MK

2c− 1
. (136)

In other words, for almost every trajectory of the process
{
ΥK

}
K∈N

, we have

R1−KXK = R1−KN1[ΥK ] converging to a finite limit V∞, where V∞ is a random
variable. Hence, for any k ∈ N, the random sequences

R1−KXK = R1−KN1[ΥK ] and Rk−KXK−k+1 = Rk−KNk[ΥK ]

converge almost surely to the same finite V∞, where V∞ > 0 a.s. by Lem. 15.
The almost sure convergence (135) follows.
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The almost sure convergence (135) in Thm. 16 implies the corresponding
week convergence

P

(∣∣∣∣Nk[ΥK ]

N1[ΥK ]
−R1−k

∣∣∣∣ > ε

)
→ 0 as K →∞,

via the Bounded Convergence Theorem. We restate it as the following corollary.

Corollary 5 (Strong Horton law for branch numbers). The tree measure

μ on BL|
plane induced by a critical Tokunaga process STok(t; c, γ) satisfies the

strong Horton law for branch numbers (Def. 16). That is, for any ε > 0,

μK

(∣∣∣∣Nk[T ]

N1[T ]
−R1−k

∣∣∣∣ > ε

)
→ 0 as K →∞.

Corollary 6 (Asymptotic tree order). Suppose STok(t; c, γ) is the distribu-
tion of a critical Tokunaga process and

{
ΥK

}
K∈N

is the corresponding Markov
tree process. Then,

logR #ΥK

K

a.s.→ 1, as K →∞.

Proof. Recall from (136) that

R1−KXK
a.s.→ V∞,

where V∞ is finite (by Doob’s Martingale Convergence Theorem) and V∞ > 0
a.s. by Lemma 15. Accordingly,

logR XK −K
a.s.→ logR V∞ − 1, (137)

with −∞ < logR V∞ < ∞ a.s. Recalling that #ΥK = 2XK − 1 completes the
proof.

The almost sure convergence (123) allows to restate the limit results of this
section in terms of the tree length YK .

Corollary 7 (Strong Horton laws for tree lengths). Suppose STok(t; c, γ)

is the distribution of a critical Tokunaga process, μ is a tree measure on BL|
plane

induced by STok(t; c, γ), and
{
ΥK

}
K∈N

is the corresponding Markov tree process.

Then, for a tree T
d∼ μ,

E
[
length(T ) |ord(T ) = K

]
= E[YK ] =

RK − 1

γ(R− 1)
, K ≥ 1. (138)

Furthermore, we have, for any k ≥ 1,

YK−k

YK

a.s.→ R−k, as K →∞, (139)

which implies the strong Horton law for tree lengths: for any ε > 0,

μK

(∣∣∣∣∣length
(
Rk(T )

)
length(T )

−R−k

∣∣∣∣∣ > ε

)
→0 as K →∞. (140)
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Table 1

Mean size, E[XK ] = N1[K], and length, E[YK ] = E[length(T )], of an exponential critical

binary Galton-Watson tree T
d∼ GW(1); here c = 2, R = 4.

K = ord(T ) N1[K] E[length(T )] 2− E[YK ]
E[XK ]

4− E[XK ]
E[XK−1]

1 1 1 1 –
2 3 5 1/3 1
3 11 21 9× 10−2 1/3
4 43 85 2× 10−2 9× 10−2

5 171 341 6× 10−3 2× 10−2

6 683 1365 1× 10−3 6× 10−3

7 2731 5461 4× 10−4 1× 10−3

8 10923 21845 9× 10−5 4× 10−4

9 43691 87381 2× 10−5 9× 10−5

10 174763 349525 6× 10−6 2× 10−5

11 699051 1398101 1× 10−6 6× 10−6

12 2796203 5592405 4× 10−7 1× 10−6

13 11184811 22369621 9× 10−8 4× 10−7

14 44739243 89478485 2× 10−8 9× 10−8

15 178956971 357913941 6× 10−9 2× 10−8

16 715827883 1431655765 1× 10−9 6× 10−9

17 2863311531 5726623061 3× 10−10 1× 10−9

18 11453246123 22906492245 9× 10−11 3× 10−10

19 45812984491 91625968981 2× 10−11 9× 10−11

20 183251937963 366503875925 5× 10−12 2× 10−11

Example 12 (Critical binary Galton Watson tree). Theorem 15 asserts

that the exponential critical binary Galton-Watson tree, T
d∼ GW(λ), has the

same distribution as a critical Tokunaga branching process with c = 2 and
γ = λ. In this case R = 2c = 4 and the expressions (132), (133) give, for any
K ≥ 1,

N1[K] =
4K + 2

6
.

Fixing λ = 1, by the expression(138) we have, for any K ≥ 1,

E
[
length(T ) |ord(T ) = K

]
=

4K − 1

3
.

Table 1 shows the values of the mean size and mean length of a critical binary

Galton-Watson tree T
d∼ GW(1), conditioned on selected values of tree order.

7.7. Combinatorial HBP: geometric branching process

This section focuses on combinatorial structure of a Horton self-similar hierar-
chical branching process [99]

S(t)
d∼ HBP

(
{Tk}, {λj}, {p(1− p)K−1}

)
.

Let T [S] be the tree generated by S(t) in BL|
plane. Section 7.7.1 introduces a

discrete time multi-type geometric branching process G(s) = G(s; {Tk}, p) whose
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trajectories induce a random tree G({Tk}, p) on BT | such that

G({Tk}, p) d
= shape

(
T [S]

)
∈ BT |. (141)

We then show in Sect. 7.7.2 that geometric branching process is time invariant
(in discrete time) if and only if it is Tokunaga self-similar with Tk = (c−1)ck−1

and p = 1/2.

7.7.1. Definition and main properties

Our goal is to consider the combinatorial shape of a self-similar hierarchical
branching process. The following definition suggests an explicit time dependent
construction of such a process, which we denote G(s; {Tk}, p).
Definition 26 (Geometric Branching Process). Consider a sequence of
Tokunaga coefficients {Tk ≥ 0}k≥1 and 0 < p < 1. Define

SK := 1 + T1 + · · ·+ TK

for K ≥ 0 by assuming T0 = 0. The Geometric Branching Process (GBP)
G(s) = G(s; {Tk}, p) describes a discrete time multi-type population growth:

(i) The process starts at s = 0 with a progenitor of order ord(G) such that

ord(G) d∼ Geom1(p).
(ii) At every integer time instant s > 0, each population member of order

K ∈ {1, . . . , ord(G)} terminates with probability qK = S−1
K−1, independently

of other members. At termination, a member of order K > 1 produces two
offspring of order (K − 1); and a member of order K = 1 terminates with
leaving no offspring.

(iii) At every integer time instant s > 0, each population member of order
K ∈ {1, . . . , ord(G)} survives (does not terminate) with probability

1− qK = 1− S−1
K−1,

independently of other members. In this case, it produces a single offspring
(side branch). The offspring order i ∈ {1, . . . ,K − 1}, is drawn from the
distribution

pK,i =
TK−i

T1 + · · ·+ TK−1
. (142)

The geometric tree G({Tk}, p) is a combinatorial tree generated by the trajecto-

ries of G(s; {Tk}, p) in BT |.

By construction, the distribution of a geometric tree G({Tk}, p) coincides
with the combinatorial shape of the tree of a combinatorially Horton self-similar
hierarchical branching process S(t) with Tokunaga coefficients {Tk}, initial order
distribution πK = p(1−p)K−1 and an arbitrary positive sequence of termination
rates {λi}. Accordingly, the branching structure of a geometric tree is described
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Fig 23. Time shift S: an illustration. The figure shows forests obtained by consecutive appli-
cation of the time shift operator S to a tree T shown on the left. At every step, we remove
the stem from each existing tree. This terminates the trees of order ord = 1, and splits any
other tree in two new trees. The operation Sd(T ) removes all vertices at depth ≤ d, together
with their parental edges.

by Prop. 8, items (1)–(4). The essential elements of the geometric trees (tree
order, total number of side branches within a branch, numbers of side branches
of a given order within a branch) are described by geometric laws, hence the
model’s name.

Similarly to the tree of an HBP, a geometric tree can be constructed without
time-dependent simulations, following a suitable modification of the algorithm
given after Prop. 8. Specifically, the step that involves generation and assignment
of the edge lengths li should be skipped.

Consider a geometric tree G = G({Tk}, p) and its two subtrees, T a and T b,
rooted at the internal vertex closest to the root, randomly and uniformly per-
muted. We call T a and T b the principal subtrees of G. Let K be the order of G,
and, conditioned on K > 1, let Ka,Kb be the orders of the principal subtrees
T a and T b, respectively. Observe that the pair Ka,Kb uniquely defines the tree
order K:

K =

{
Ka ∨Kb if Ka �= Kb,

Ka + 1 if Ka = Kb.

We write K1 ≤ K2 for the order statistics of Ka, Kb.

Lemma 16 (Order of principal subtrees). Conditioned on the tree order
K, the joint distribution of the order statistics (K1,K2) is given by

P (K1 = j,K2 = m|K = k) =

{
S−1
k−1 if j = m = k − 1,

Tk−jS
−1
k−1 if j < m = k,

(143)

where
P(K = k|K > 1) = (1− p)pk−2, k ≥ 2.

Proof. Definition 26, part (ii) states that a branch of order K splits into two
branches of orderK−1 with probability S−1

K−1, which establishes the first case of
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(143). Definition 26, part (iii) states that, otherwise, with probability 1−S−1
K−1, a

side branch is created whose order equals j with probability TK−j(SK−1−1)−1.
This gives

P (K1 = j,K2 = k|K = k)

= P (K1 = j|K = k,K2 = k)P (K2 = k|K = k)

=
Tk−j

Sk−1 − 1

(
1− 1

Sk−1

)
= Tk−jS

−1
k−1,

which establishes the second case.

7.7.2. Tokunaga self-similarity of time invariant process

Let xi(s), i ≥ 1, denote the average number of vertices of order i at time s in the
process G(s), and x(s) = (x1(s), x2(s), . . . )

T be the state vector. By definition
we have

x(0) = π :=

∞∑
K=1

p(1− p)K−1eK ,

where eK are standard basis vectors. Furthermore, if qa,b, a ≥ b, denotes the
probability that a vertex of order ord = a + 1{a=b} that exists at time s splits
into a pair of vertices of orders (a, b) at time s+1, then

xK(s+1) = 2 xK+1(s)qK,K + xK(s)(1− qK−1,K−1) +

∞∑
i=K+1

xi(s) qi,K . (144)

The first term in the right-hand side of (144) corresponds to a split of an order-
(K+1) vertex into two vertices of order K, the second – to a split of an order-K
vertex into a vertex of order K and a vertex of a smaller order, and the third –
to a split of a vertex of order i > K into a vertex of order K and a vertex of
order i. The geometric branching implies (see Lemma 16, Eq. (143))

qa,b =

{
S−1
a if a = b,

Ta−bS
−1
a−1 if b < a.

(145)

Accordingly, the system (144) rewrites as

x(s+ 1)− x(s) = GS−1x(s), (146)

where G is defined in Eq. (41), and

S = diag{S0, S1, . . . }.

In this setup, the unit time shift operator S, which advances the process time
by unity, can be applied to individual trees and forests (collection of trees). For
each tree T ∈ T |, the operator removes the root and stem, resulting in two
principal subtrees T a and T b. A consecutive applications of d time shifts to a
tree T is equivalent to removing the vertices at depth ≤ d from the root together
with their parental edges (Fig. 23). Next we define time invariance with respect
to the shift S.
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Definition 27 (Combinatorial time invariance). Geometric branching pro-
cess G(s), s ∈ Z+, is called time invariant if the state vector x(s) is invariant
with respect to a unit time shift S:

x(s) = x(0) ≡ π ∀s ⇐⇒ GS−1π = 0. (147)

Now we formulate the main result of this section.

Theorem 17 (Combinatorial time invariance, [98]). A geometric branch-
ing process G(s;Tk, p) is time-invariant if and only if

p = 1/2 and Tk = (c− 1)ck−1 for any c ≥ 1. (148)

We call this family a (combinatorial) critical Tokunaga process, and the respec-
tive trees – (combinatorial) critical Tokunaga trees.

Theorem 17 is proven in Sect. 7.7.4 via solving a nonlinear system of equations
that writes (147) in terms of ratios Sk/Sk+1.

Remark 15 (Time invariance in combinatorial vs. metric trees). The-
orems 14 and 17 establish parameterization that is necessary and sufficient for
time invariance of the hierarchical branching process in metric and combinato-
rial case, respectively. The combinatorial time invariance (Thm. 17) appears to
be a much more restrictive property, as it only holds for p = 1/2 and a specific
one-parametric class of Tokunaga coefficients (148). The metric time invariance
(Thm. 14), at the same time, merely connects p to the Horton exponent R (via
p = 1 − ζ/R), hence allowing one to construct time invariant processes with
a range of distinct Tokunaga sequences and values of p. The flexibility of the
metric time invariance is explained by the possibility of the average edge lengths
to scale with edge order (via parameter ζ), while each edge in the combinatorial
case corresponds to a fixed time step of unit length. However, if one removes this
additional degree of freedom in the metric case by requiring the edge lengths
to be i.i.d. exponential random variables independently of the edge orders, then
a mere criticality (which is weaker than time invariance, see Prop. 9) becomes
equivalent to the parameterization of (148); this has been shown in Lem. 11.

Corollary 8. Let G be a combinatorial critical Tokunaga tree. Then the dis-
tribution of the principal subtree T a (and hence T b) matches that of the initial
tree G. The distributions of T a and T b are independent if and only if c = 2.

Proof. Let ord(G) denote the (random) order of a random geometric tree G.
Conditioned on ord(G) > 1, at instant s = 1 (equivalently, after a unit time shift
S) there exist exactly two vertices that are the roots of the principal subtrees
T a and T b. Since the trees T a and T b have the same distribution, their roots
have the same order distribution. Denote by yk the probability that the tree T a

has order k ≥ 1 and let y = (y1, y2, . . . )
T . By Thm. 17, the process G(s) is time

invariant. We have p = π1 = 1/2, which, together with time invariance, implies

x(0) = x(1) = 2y(1− π1) + 0π1 = y.
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This establishes the first statement.
The second statement follows from examining the joint distribution qa,b of

(145). Recall that we write K for the order of tree T , Ka, Kb for the orders of
the principal subtrees T a, T b, and K1 < K2 for the order statistics of Ka, Kb.
Observe that for k > 1,

P(Ka = m | K = k)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
2

∑
j:j<k

P(K1 = j,K2 = k|K = k) if m = k,

P(K1 = K2 = k − 1|K = k)

+1
2P(K1 = k − 1,K2 = k|K = k) if m = k − 1,

1
2P(K1 = m,K2 = k|K = k) if m < k − 1,

=

⎧⎪⎪⎨⎪⎪⎩
1
2 (Sk−1 − 1)S−1

k−1 = 1
2 (1− c1−k) if m = k,(

1 + 1
2T1

)
S−1
k−1 = 1

2 (c+ 1)c1−k if m = k − 1,
1
2Tk−mS−1

k−1 = 1
2 (c− 1)c−m if m < k − 1.

Furthermore,

P(Ka = m, Kb = j | K > 1)

=

∞∑
k=m

P(Ka = m, Kb = j | K = k)P(K = k|K > 1)

=

{
(c− 1)c−j 2−m if j < m,

c−m 2−m if j = m.

Accordingly, the joint distribution ofKa,Kb equals the product of their marginals
if and only if c = 2. This establishes the second statement.

We also notice that

P(Ka = m | K > 1) =
∞∑

k=m

P(Ka = m | K = k)P(K = k|K > 1)

= (1− c1−m)2−m + c−m2−m +
(c− 1)c−m

2

∞∑
k=m+1

21−k = 2−m, (149)

which provides an alternative, direct proof of the first statement of the corollary
that does not use the time invariance.

Remark 16. Corollary 8 asserts that the principal subtrees in a random critical
Tokunaga tree are dependent, except the critical binary Galton-Watson case
c = 2. This implies that, in general, non-overlapping subtrees within a critical
Tokunaga tree are dependent. Accordingly, the increments of the Harris path H
of a critical Tokunaga process have (long-range) dependence. The only exception
is the case c = 2 that will be discussed in Sect. 8.6. The structure of H is
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hence reminiscent of a self-similar random process with long-range dependence
[118, 143]. Establishing the correlation structure of the Harris paths of critical
Tokunaga processes is an interesting open problem (see Sect. 13).

7.7.3. Frequency of orders in a large critical Tokunaga tree

Combinatorial trees of the critical Tokunaga processes (Def. 25, Prop. 11), and
hence the combinatorial critical Tokunaga trees of Thm. 17, have an additional
important property: the frequencies of vertex orders in a large-order tree ap-
proximate the tree order distribution πK = 2−K in the space BT |. To formalize
this observation, let μ be a measure on BT | induced by a combinatorial criti-

cal Tokunaga process (148), and let T
d∼ μ be the corresponding combinatorial

critical Tokunaga tree. For a fixed K ≥ 1, let μK(T ) = μ(T |ord(T ) =K). We
write Vk[T ] for the number of non-root vertices of order k in a tree T , and
let Vk[K] = EK

[
Vk[T ]

]
. Finally, the total number of non-root vertices in T is

#T =
ord(T )∑
k=1

Vk[T ] = 2V1[T ] − 1, where V1[T ] = N1[T ]. Thus, V [K] := EK

[
#T

]
= 2V1[K]− 1 = 2N1[K]− 1.

Proposition 12. Let T be a combinatorial critical Tokunaga tree induced by a
critical Tokunaga process (148). Then

lim
K→∞

Vk[K]

V1[K]
= 21−k. (150)

Let v ∈ T be a vertex selected by uniform random drawing from the non-root
vertices of T . Then, for any k ≥ 1,

lim
K→∞

P
(
ord(v) = k

∣∣ ord(T ) = K
)
= 2−k. (151)

Proof. Theorem 1 asserts that a critical Tokunaga tree T satisfies the strong
Horton law (29) with Horton exponent R = 2c:

lim
K→∞

Nk[K]

N1[K]
= (2c)1−k, for any k ≥ 1.

Conditioned on ord(T ) = K we have, for any k ∈ {1, . . . ,K},

Vk[K] =

Nk(T )∑
i=1

(1 +mi(T )),

where mi(T ) is the number of side branches that merge the i-th branch of order
k in T , according to the proper branch labeling of Sect. 2.7. Proposition 8 gives

Vk[K] = Nk[K]Sk−1.
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For a critical Tokunaga tree with Tk = (1− c)ck−1 this implies

lim
K→∞

Vk[K]

V1[K]
= lim

K→∞

Nk[K]Sk−1

N1[K]
= (2c)1−kck−1 = 21−k.

To show (151), we write

Vk[T ] = Nk[T ] +

Nk[T ]∑
i=1

m(i), E[m(i)] = Sk−1 − 1,

wherem(i) is a random variable that represents the total number of side branches

within i-th branch of order k within T . Since Nk[T ]
p→ ∞ for any k ≥ 1 as

ord(T )→∞, the Weak Law of Large Numbers gives

Vk[T ]

Nk[T ]

p→ Sk−1 = ck−1 as ord(T )→∞.

Finally, the strong Horton law of Cor. 5 gives

Vk[T ]

#T
=

Vk[T ]

Nk[T ]

Nk[T ]

2N1[T ]− 1

p−→ ck−1 1

2
(2c)1−k = 2−k.

This implies (151) and completes the proof.

Proposition 12 has an immediate extension to trees with edge lengths, which
we include here for completeness. Recall (Def. 1) that a tree T ∈ BL| can be
considered a metric space with distance d(a, b) between two points a, b ∈ T
defined as the length of the shortest path within T connecting them.

Proposition 13. Let T be a tree generated by critical Tokunaga process
(Def. 25). Let point u ∈ T be sampled from a uniform density function on
the metric space T , and let ord(u) denote the order of the edge to which the
point u belongs. Then

lim
K→∞

P
(
ord(u) = k

∣∣∣ ord(T ) = K
)
= 2−k. (152)

Proof. Proposition 11 establishes that the edge lengths in T are i.i.d. exponen-
tial random variables. Thus we can generate T by first sampling a combinato-
rial critical Tokunaga tree shape(T ), and then assigning i.i.d. exponential edge
lengths. Provided that we already sampled shape(T ), selecting the i.i.d. edge
lengths and then selecting the point u ∈ T uniformly at random, and marking
the edge that u belongs to, is equivalent to selecting a random edge uniformly
from the edges of shape(T ), in order of proper labeling of Sect. 2.7. The order
ord(u) is uniquely determined by the edge to which u belongs. The statement
now follows from Prop. 12.
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7.7.4. Proof of Theorem 17

Lemma 17 ([98]). A geometric branching process G(s) is time invariant if and
only if p = 1/2 and the sequence {Tk} solves the following (nonlinear) system
of equations:

S0

Sk
=

∞∑
i=1

2−i Si

Sk+i
for all k ≥ 1. (153)

Proof. Assume that the process is time invariant. Then the process progeny is
constant in time and equals unity:

‖π‖1 =

∞∑
k=1

p(1− p)k−1 = 1.

Observe that in one time step, every vertex of order ord = 1 terminates, and
any vertex of order ord > 1 splits in two. Hence, the process progeny at s = 1 is

2

∞∑
k=2

p(1− p)k−1 = 2(1− p) = 1,

which implies p = 1/2. Accordingly, p(1− p)k−1 = 2−k and the time invariance
(147) takes the following coordinate form

− 2−k

Sk−1
+ 2−(k+1)T1 + 2

Sk
+

∞∑
i=k+2

2−iTi−k

Si−1
= 0, for all k ≥ 1. (154)

Multiplying (154) by 2k and observing that Tk = Sk − Sk−1, we obtain

− 1

Sk−1
+

1

2

T1 + 2

Sk
+

∞∑
i=2

2−i Ti

Sk+i−1
= 0,

1

Sk−1
−

∞∑
i=1

2−i Si

Sk+i−1
=

1

Sk
− 1

2Sk
−

∞∑
i=2

2−i Si−1

Sk+i−1
,

and
1

Sk−1
−

∞∑
i=1

2−i Si

Sk+i−1
=

1

2

(
1

Sk
−

∞∑
i=1

2−i Si

Sk+i

)
. (155)

We prove (153) by induction. For k = 1 we have

1

2
=

1

2S1
+

∞∑
i=1

2−(i+1)Si − Si−1

Si
,

1 =
1

S1
+

∞∑
i=1

2−i −
∞∑
i=1

2−iSi−1

Si
,
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which establishes the base case

1

S1
=

∞∑
i=1

2−i Si

Si+1
.

Next, assuming that the statement is proven for (k − 1), the left-hand side
of (155) vanishes, and the right-hand part rewrites as (153). This establishes
necessity.

Conversely, we showed that the system (153) is equivalent to (147) in case
p = 1/2. This establishes sufficiency.

Let ak = Sk/Sk+1 ≤ 1 for all k ≥ 0. Then, for any i ≥ 0 and any k > 0 we
have Si/Sk+i = ai ai+1 . . . ai+k−1. The system (153) rewrites in terms of ai as

1

2
a1 +

1

4
a2 +

1

8
a3 + . . . = a0,

1

2
a1a2 +

1

4
a2a3 +

1

8
a3a4 + . . . = a0a1,

1

2
a1a2a3 +

1

4
a2a3a4 +

1

8
a3a4a5 + . . . = a0a1a2,

and so on, which can be summarized as

∞∑
j=1

1

2j

n+j−1∏
k=j

ak =

n−1∏
k=0

ak, for all n ∈ N. (156)

Lemma 18 ([98]). The system (156) with the initial value a0 = 1/c > 0 has a
unique solution

a0 = a1 = a2 = . . . = 1/c.

Proof of Lemma 18. Suppose {a0, a1, a2, . . . } is a solution to system (156). Then
{1, a1/a0, a2/a0, . . . } is also a solution, since each equation only includes multi-
nomial terms of the same degree. Thus, without loss of generality we assume
a0 = 1, and we need to prove that

a1 = a2 = . . . = 1.

We consider two cases.
Case I. Suppose the sequence {aj} has a maximum: there exists an index

i ∈ N such that ai = max
j∈N

aj . Define

wj,
 :=
1

2j


+j−1∏
k=j

ak

[

−1∏
k=0

ak

]−1

.

Using n = � in (156) we obtain that for any � ∈ N,

∞∑
j=1

wj,
 = 1, (157)
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and using n = � + 1 we find that an arbitrary a
 is the weighted average of
{a
+j}j=1,2,...:

∞∑
j=1

wj,
 a
+j = a
. (158)

Hence, since ai = max
j∈N

aj ,

ai = ai+1 = ai+2 = ai+3 = . . . = a.

Similarly, letting � = i− 1 in (157) and (158), we obtain ai−1 = a. Recursively,
by plugging in � = i− 2, i− 3, . . ., we show that

a1 = a2 = . . . = ai−1 = ai = ai+1 = . . . = a.

Finally, 1
2a1 +

1
4a2 +

1
8a3 + . . . = 1 implies a = 1.

Case II. Suppose there is no max
j∈N

aj . Let U := lim sup
j→∞

aj . From (156) we

know via cancelation that

1

2
an +

1

4

anan+1

a1
+

1

8

anan+1an+2

a1a2
+ . . .

+
1

2n−1

2n−2∏
k=n

ak

n−2∏
k=0

ak

+

∞∑
j=n

1

2j

n+j−1∏
k=j

ak

n−1∏
k=0

ak

= 1. (159)

Thus, 2−1 an < 1 and U ≤ 2. The absence of maximum implies aj < U ≤ 2 for
all j ∈ N.

Plugging n+ 1 in (156), we obtain(
1

2
an

)
an+1 +

(
1

4

anan+1

a1

)
an+2 + . . .

+
1

2n−1

2n−2∏
k=n

ak

n−2∏
k=0

ak

an+j−1 +

∞∑
j=n

1

2j

n+j−1∏
k=j

ak

n−1∏
k=0

ak

an+j = an.

Thus, since aj < U for all j ∈ N,(
1

2
an

)
an+1 +

(
1

4

anan+1

a1

)
U + . . .

+
1

2n−1

2n−2∏
k=n

ak

n−2∏
k=0

ak

U +

∞∑
j=n

1

2j

n+j−1∏
k=j

ak

n−1∏
k=0

ak

U > an
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which simplifies via (159) to(an
2

)
an+1 +

(
1− an

2

)
U > an. (160)

For all ε ∈ (0, 1), there are infinitely many n ∈ N such that an > (1 − ε)U .
Then, for any such n, the above inequality (160) implies

an+1 > 2− 2

an
U + U > 2− 2ε

1− ε
+ U =

(
1− ϕ(ε)

)
U,

where

ϕ(x) :=
2x

(1− x)U
.

Let ϕ(k) = ϕ◦. . .◦ϕ. Repeating the argument for any given number of iterations
K ∈ N, we obtain

an+2 >
(
1− ϕ(2)(ε)

)
U, an+3 >

(
1− ϕ(3)(ε)

)
U, . . . , an+K >

(
1− ϕ(K)(ε)

)
U.

Thus, given any K ∈ N, fix ε ∈ (0, 1) small enough so that such that ϕ(k)(ε) ∈
(0, 1) for all k = 1, 2, . . . ,K. Then, taking n > K such that an > (1 − ε)U , we
obtain from (159) that

1 >
1

2
an +

1

4

anan+1

a1
+

1

8

anan+1an+2

a1a2
+ . . .+

1

2K+1

n+K∏
k=n

ak

K∏
k=0

ak

>
1

2
(1− ε)U +

1

4

(1− ε)
(
1− ϕ(ε)

)
U2

U
+ . . .+

1

2K+1

UK+1
K∏

k=0

(
1− ϕ(k)(ε)

)
UK

.

Now, since ε can be chosen arbitrarily small,

1 ≥
(
1− 1

2K+1

)
U.

Finally, since K can be selected arbitrarily large, we have proven that 1 ≥ U .
However, this will contradict the assumption of Case II. Indeed, if aj < U ≤ 1
for all j ∈ N, then

1

2
a1 +

1

4
a2 +

1

8
a3 + . . . < 1,

contradicting the first equation in the statement of the theorem. Thus, the
assumptions of Case II cannot be satisfied. We conclude that there exists a
maximal element in the sequence {aj}j=1,2,... as assumed in Case I, implying
the statement of the theorem.

Proof of Theorem 17. Lemma 18 implies ak = Sk/Sk+1 = 1/c for some c ≥ 1.
Hence S1 = 1 + T1 = c and T1 = c− 1. Furthermore,

Sk+1 = c Sk = ck



Random self-similar trees 107

Fig 24. (a) Tree T and its depth-first search illustrated by dashed arrows. (b) Harris path
HT (t) for the tree T of panel (a). In this figure, the distances on a tree (edge lengths) are
measured along the y-axis. Dashed horizontal lines illustrate correspondence between vertices
of T and local extrema of HT (t).

and, accordingly,
Tk+1 = Sk+1 − Sk = (c− 1)ck−1,

which completes the proof.

8. Tree representation of continuous functions

We review here the results of [105, 124, 135, 173] on tree representation of
continuous functions. This representation allows us to apply the self-similarity
concepts to time series.

8.1. Harris path

For any embedded tree T ∈ Lplane with edge lengths, the Harris path (also
known as the contour function, or Dyck path) is defined as a piece-wise linear
function [80, 135]

HT (t) : [0, 2 · length(T )]→ R

that equals the distance from the root traveled along the tree T in the depth-
first search, as illustrated in Fig. 24. For a tree T with n leaves, the Harris path
HT (t) is a piece-wise linear positive excursion that consists of 2n linear segments
with alternating slopes ±1.

8.2. Level set tree

This section introduces a tree representation of continuous functions, which
we call a level set tree. The following “great flood” analogy provides intuition
behind our construction. One can think of a continuous function f(x) as a
landscape elevation profile. Imagine a flood that covers the entire region with
water. When the water starts to recess, some isolated islands appear. With
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Fig 25. Function f(x) (panel a) with a finite number of local extrema and its level set tree
level(f) (panel b). In this figure, the distances on a tree (edge lengths) are measured along
the y-axis. Indices 1, . . . , 7 illustrate correspondence between the local extrema of f(x) and
vertices of level(f). Dashed horizontal lines show the thresholds α where the number of
distinct intervals that comprise Lα changes. Each such threshold corresponds to either a local
maximum of f(x) and leaf of level(f) (indices 1, 3, 5, 7) or to a local minimum of f(x) and
an internal vertex of level(f) (indices 2, 4, 6). All other threshold values affect the lengths
of the intervals that comprise Lα without affecting the number of distinct intervals.

time, small islands merge to form bigger islands. Eventually, the water level
goes low enough to result in a single connected dry continent. The level set tree
describes the process of continent formation via island merging. It represents the
appearance of an island as a leaf, growth of an island as an edge, and merging
of two islands as an internal vertex.

Below we suggest a formal construction. We begin in Sect. 8.2.1 by assuming
a finite number of local extrema; this case is more intuitive and is sufficient for
analysis of finite trees from Lplane. A general definition for continuous functions
follows in Sect. 8.2.2.

8.2.1. Tamed functions: finite number of local extrema

Consider a closed interval I ⊂ R and function f(x) ∈ C(I), where C(I) is the
space of continuous functions from I to R. Suppose that f(x) has a finite number
of distinct local minima. The level set Lα (f) is defined as the preimage of the
function values equal to or above α:

Lα = Lα(f) = {x ∈ I : f(x) ≥ α}.

The level set Lα for each α is a union of non-overlapping intervals; we write |Lα|
for their number. Notice that |Lα| = |Lβ | as soon as the interval [α, β] does not
contain a value of local extrema of f(x) and 0 ≤ |Lα| ≤ n, where n is the total
number of the local maxima of f(x) over I.

The level set tree level(f) ∈ Lplane is a tree that describes the structure of
the level sets Lα as a function of threshold α, as illustrated in Fig. 25. Specifi-
cally, there are bijections between
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Fig 26. Tree metric df on a real interval I defined by a function f(x). (Left panel): The
graph of a function f(x), x ∈ I is shown by solid gray line. The distance df (a, b) between
points a, b ∈ I is given by (161); it equals the vertical distance along the path between f(a)
and f(b) shown by black dashed line. This path coincides with graph of the function f(x) of

(162). The panel also illustrates equivalence in metric df : here a ∼f a′ and b ∼f b′, since
df (a, a

′) = df (b, b
′) = 0. (Right panel): The level set tree level(f) of function f(x) is shown

by solid gray line. The distance df (a, b) equals the length of the minimal tree path between
points a and b, shown by dashed black line. Here, the tree distance is measured along the
vertical axis.

(i) the leaves of level(f) and the local maxima of f(x);
(ii) the internal (parental) vertices of level(f) and the local minima of f(x),

excluding possible local minima achieved on the boundary ∂I;
(iii) a pair of subtrees of level(f) rooted in the parental vertex that corre-

sponds to a local minima f(x∗) and the adjacent positive excursions (or
meanders bounded by ∂I) of f(x)− f(x∗) to the right and left of x∗.

Furthermore, every edge in the tree is assigned a length equal to the difference of
the values of f(x) at the local extrema that correspond to the vertices adjacent to
this edge according to the bijections (i) and (ii) above. The tree root corresponds
to the global minimum of f(x) on I. If the minimum is achieved at x ∈ I \ ∂I,
then the level set tree is stemless, level(f) ∈ L∨

plane; this case is shown in
Fig. 25. Otherwise, if the minimum is on the boundary ∂I, then the level set

tree is planted, level(f) ∈ L|
plane.

8.2.2. General case

For a function f(x) ∈ C(I) on a closed interval I ⊂ R, the level set tree is
defined via the framework of Def. 1, following Aldous [4, 5] and Pitman [135].
Specifically, let f [a, b] := infx∈[a,b] f(x) for any subinterval [a, b] ⊂ I. We define
a pseudo-metric on I as [5, 135]

df (a, b) :=
(
f(a)− f [a, b]

)
+
(
f(b)− f [a, b]

)
, a, b ∈ I. (161)

We write a ∼f b if df (a, b) = 0. Here df is a metric on the quotient space
If ≡ I/∼f . It can be shown [135] that (If , df ) is a tree by Def. 1. Figure 26
illustrates this construction for a particular piece-wise function (left panel), and

shows the respective tree (If , df ) as an element of L|
plane (right panel).
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We describe now the unique path σa,b ⊂ If between a pair of points a, b. Let
c ∈ [a, b] be the leftmost point where f(x) achieves the minimum on [a, b]:

c = min{x ∈ [a, b] : f(x) = f [a, b]}.

We define a function f(x) on [a, b] as

f(x) =

{
infy∈[a,x] f(y), if x ∈ [a, c],
infy∈[x,b] f(y), if x ∈ [c, b].

(162)

By construction, f(x) is a continuous function that is monotone non-increasing
on [a, c] and monotone nondecreasing on [c, b]. Furthermore, f(x) ≤ f(x) and,
in particular, f(x) = f(x) for x ∈ {a, b, c}. An example of f(x) is shown in
Fig. 26 (left panel, black dashed line).

Lemma 19 (Rising Sun Lemma, F. Riesz [138]). Let

S = {x : f(x) < f(x)} ⊂ [a, b].

Then S is an open set that can be represented as a countable union of disjoint
intervals

S =
⋃
k

(ak, bk)

such that f(ak) = f(bk) = f(ak) = f(bk) and f(x) > f(ak) for any x ∈ (ak, bk).

Proof. The statement is equivalent to that of the Rising Sun Lemma of Riesz
[138, 152] applied to the functions −f(x) on [c, b] and −f(−x) on [a, c]. We just
notice that f(c) is the global minimum of f(x) on [a, b] and so c cannot be a
part of S. The union of two open sets, each represented as a countable union of
disjoint intervals, is itself an open interval represented as a countable union of
disjoint intervals. This completes the proof.

Figure 27 illustrates the Rising Sun Lemma for the function f(x) shown
in Fig. 26 on the interval [c, b]. As the sun rises from east (right), it shades
light (dashed gray arrows) on the those segments of the graph that satisfy
f(x) = f(x), and leaves in shade the segments that satisfy f(x) < f(x). The
preimage of the shadowed segments is the set S, while the preimage of the lighted
segments is the path σc,b. The path, considered as a set in [c, b], is making at
most a countable number of jumps over the intervals (ak, bk) that comprise the
set S of Lem. 19.

For a tamed function with a finite number of local extrema, the path σa,b is
the preimage of the graph of f(x) excluding the constant intervals. The Rising
Sun Lemma generalizes this statement to any continuous function. Here, the
path σa,b is given by

σa,b = [a, b] \ S = {x : f(x) = f(x)} ⊂ [a, b],

and is travelled at unit speed left to right. As a real set, the path σa,b may
have quite complicated structure. For instance, it can be the Cantor set. This,
however, does not disturb the continuity of the map [0, df (a, b)]→ If in Def. 1.
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Fig 27. Rising Sun Lemma: an illustration. The left panel shows the graph of the function
f(x) of Fig. 26 on the interval [c, b] (solid gray line). Dashed black line shows the function
f(x). The sun light falls from the right (gray arrows). The preimage of the lighted segments of
f(x) (defined by f(x) = f(x)) consists of three intervals, [c, a1]∪ [b1, a2]∪ [b2, b]. It comprises
the path σc,b (solid black segments on the x-axis). The preimage of the shadowed segments of
f(x) (defined by f(x) < f(x)) consists of two intervals, (a1, b1)∪ (a2, b2). It comprises the set
S of Lem. 19. The path σc,b jumps over the intervals (ak, bk) that form the set S, as shown
by dashed arrows, using the equivalence of the interval ends, ak ∼f bk. The right panel shows
the tree that corresponds to f(x) on [c, b]. The path σc,b is shown by dashed black line. Every
interval (ak, bk) corresponds to a tree attached to the path σc,b at the vertex corresponding to
bk.

The Rising Sun Lemma asserts that the function f(x) on [a, b] has at most

a countable set of constant disjoint intervals I(k) = (ak, bk), each of which
corresponds to a positive excursion of f(x). The end points of these intervals

are equivalent in If , hence each interval generates a tree (I
(k)
f , df ) whose root

corresponds to the equivalence class on I consisting of {ak, bk}. This observations
leads to the following statement.

Corollary 9. The level set tree level(f) of a continuous function f(x) on
a real closed interval [a, b] ⊂ R consists of a segment of length df (a, b) and
at most a countable number of trees attached to this segment with the same
orientation. There is a one-to-one correspondence between these trees and the
intervals (ak, bk) from the Rising Sun Lemma.

It is straightforward to observe that the tree (If , df ) is equivalent to the above
defined level set tree level(f) for a function f(x) ∈ C (I) with a finite number
of distinct local minima. We just notice that for any subinterval [a, b] ⊂ I, the
correspondence a ∼f b implies {f(x) : x ∈ [a, b]} is a nonnegative excursion
i.e.,

[a, b] ⊂ Lα(f) = {x : f(x) ≥ α} where α = f(a) = f(b).

In other words, every point in (If , df ) is an equivalence class of points on I
with respect to ∼f . There exist three types of equivalence classes, depending
on the number of distinct points from I they include: (i) each single point
class corresponds to a leaf vertex (local maximum), (ii) each two point class
corresponds to an internal edge point (positive excursion), and (iii) each three
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point class corresponds to an interval vertex (two adjacent positive excursions).
For a general f(x) ∈ C(I) there may exist equivalence classes that include an
arbitrary number n of points from I, corresponding to (n− 1) adjacent positive
excursions; and classes that consist of an infinite (countable or uncountable)
number of points. Conversely, for every α, the level set Lα(f) is a union of
non-overlapping intervals [aj , bj ], i.e.,

Lα(f) =
⋃
j

[aj , bj ],

where for each j, aj ∼f bj .

Representing level sets of a continuous function as a tree goes back to works
of Menger [117] and Kronrod [92]. A multivariate analog of level set tree is
among the key tools in proving the celebrated Kolmogorov-Arnold representa-
tion theorem (every multivariate continuous function can be represented as a
superposition of continuous functions of two variables) that gives a positive an-
swer to a general version of the Hilbert’s thirteenth problem [9, 163]. Such trees
have also been discussed by Vladimir Arnold in connection to topological clas-
sification of Morse functions and generalizations of Hilbert’s sixteenth problem
[10, 11]. Level set trees for multivariate Morse functions (albeit slightly different
from those considered by Arnold) are discussed in Sect. 8.9.

8.3. Reciprocity of Harris path and level set tree

Consider a function f(x) ∈ C(I) with a finite number of distinct local minima.
By construction, the level set tree level(f) is completely determined by the
sequence of the values of local extrema of f , and is not affected by timing of
those extrema, as soon as their order is preserved. This means, for instance,
that if g(x) is a continuous and monotone increasing function on I, then the
trees level(f) and level(f ◦ g) are equivalent in Lplane. Hence, without loss
of generality we can focus on the level set trees of continuous functions with
alternating slopes ±1. We write Eex for the space of all positive piece-wise linear
continuous finite excursions with alternating slopes ±1 and a finite number of
segments (i.e., a finite number of local extrema).

The level set tree of an excursion from Eex and Harris path are reciprocal to
each other as described in the following statement.

Proposition 14 (Reciprocity of Harris path and level set tree). The

Harris path H : L|
plane → Eex and the level set tree level : Eex → L|

plane

are reciprocal to each other. This means that for any T ∈ L|
plane we have

level(HT (t)) ≡ T , and for any g(t) ∈ Eex we have Hlevel(g)(t) ≡ g(t).

This statement is readily verified by examining the excursions and trees in
Figs. 24, 26.
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Fig 28. Horton pruning of a positive excursion: transition to the local minima of an excursion
Xt corresponds to pruning of the corresponding level set tree. (a) An original excursion Xt

(gray line) and linearly interpolated sequence X
(1)
t of the respective local minima (black line).

(b) The level set tree level(X
(1)
t ) of the local minima sequence (black lines) is obtained by

pruning of the level set tree level(Xt) of the original excursion (whole tree). The pruned
edges are shown in gray – each of them corresponds to a local maximum of the original
excursion.

8.4. Horton pruning of positive excursions

This section examines the level set tree and its Horton pruning for a positive
excursion on a finite real interval. We use these results for analysis of random
walks Xk, k ∈ Z, which motivates us to write here Xt, t ∈ R, for a continuous
function.

Consider a continuous positive excursion Xt, t ∈ [a, b], with a finite number
of distinct local minima and such that Xa = Xb = 0 and Xt > 0 for a <
t < b. Furthermore, consider excursion X

(1)
t , t ∈ [a, b], obtained by a linear

interpolation of the boundary values and the local minima of Xt; as well as

functions X
(m)
t , t ∈ [a, b], for m ≥ 1, obtained by taking the local minima of

Xt iteratively m times, and linearly interpolating their values together with
Xa = Xb = 0 (see Fig. 28a).

In the space of level set trees of tamed continuous functions, the Horton prun-
ing R corresponds to coarsening the respective function by removing (smooth-
ing) its local maxima, as illustrated in Fig. 28. An iterative pruning corresponds
to iterative transition to the local minima, as we describe in the next statement.

Proposition 15 (Horton pruning of positive excursions, [173]). The

transition from a positive excursion Xt to the respective excursion X
(1)
t of its

local minima corresponds to the Horton pruning of the level set tree level(Xt).
This is illustrated in a diagram of Fig. 29. In general,

level

(
X

(m)
t

)
= Rm (level(Xt)) , ∀m ≥ 1.

Proof. First,

level

(
X

(1)
t

)
= R (level(Xt)) (163)
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Fig 29. Transition to the local minima of a function Xt corresponds to the Horton pruning
R of the corresponding level set tree level(Xt).

is established via the following observation. For a pair of consecutive local min-
ima s1 < s2, the level set tree level(X̃t) of the function

X̃t = Xt1t 
∈[s1,s2] +

(
s2 − t

s2 − s1
Xs1 +

t− s1
s2 − s1

Xs2

)
1t∈[s1,s2]

is obtained from level (Xt) by removing the leaf that corresponds to the unique
local maximum ofXt inside (s1, s2) together with its parental edge that connects
it to the parental vertex, corresponding to max{Xs1 , Xs2}. Thus, substituting
Xt with linear interpolation of local minima, X

(1)
t , will result in simultaneous

removal of leaves together with the parental edges. The statement of the propo-
sition follows via recursion of (163).

It is straightforward to formulate an analog of Prop. 15 without the excur-
sion assumption, for continuous functions with a finite number of distinct local
minima within [a, b].

8.5. Excursion of a symmetric random walk

We turn now to random walks {Xk}k∈Z. Linear interpolation of their trajectories
corresponds to the tamed continuous functions. A random walk {Xk}k∈Z with
a transition kernel p(x, y) is called homogeneous if p(x, y) ≡ p(y − x) for any
x, y ∈ R. A homogeneous random walk is symmetric if p(x) = p(−x) for all
x ∈ R. The transition kernel of a symmetric random walk can be represented
as the even part of a p.d.f. f(x) with support supp(f) ⊆ R+:

p(x) =
f(x) + f(−x)

2
. (164)

We assume that p(x), and hence f(x), is an atomless density function.

We write {X(1)
k }k∈Z for the sequence of local minima of {Xk}k∈Z, listed in the

order of occurrence, from left to right. In particular, we set X
(1)
0 to be the value

of the leftmost local minima of Xk for k ≥ 0. Recursively, we let {X(j+1)
k }k∈Z

denote the sequence of local minima of {X(j)
k }k∈Z.
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Lemma 20 (Local minima of random walks, [173]). The following state-
ments hold.

(i) The sequence of local minima {X(1)
k }k∈Z of a homogeneous random walk

{Xk}k∈Z is itself a homogeneous random walk.

(ii) The sequence of local minima {X(1)
k }k∈Z of a symmetric homogeneous ran-

dom walk {Xk}k∈Z is itself a symmetric homogeneous random walk.

Proof. Let dj = X
(1)
j+1 −X

(1)
j . We have, for each j ∈ Z,

dj =

ξ+∑
i=1

Yi −
ξ−∑
i=1

Zi, (165)

where the first sum corresponds to ξ+ positive increments of Xk between a local

minimum X
(1)
j and the subsequent local maximum mj , and the second sum

corresponds to ξ− negative increments between the local maximum mj and the

subsequent local minimum X
(1)
j+1.

Recall that Geom1(p) denotes the geometric distribution with p.m.f. p(m) =
p (1−p)m−1, m ∈ N. Accordingly, ξ+ and ξ− are independent geometric random
variables

ξ+
d∼ Geom1(p

+), ξ−
d∼ Geom1(p

−)

with parameters, respectively,

p+ =

∞∫
0

p(x) dx and p− =

0∫
−∞

p(x) dx,

and Yi, Zi are i.i.d. positive continuous random variables with p.d.f.s, respec-
tively,

fY (x) =
p(x)1{x≥0}

p+
and fZ(x) =

p(−x)1{x≤0}
p−

.

(i) By independence of increments of a random walk, the random jumps dj
have the same distribution for each j. This establishes the statement.

(ii) For the kernel of a symmetric random walk, we have representation (164).
In this case, ξ+ and ξ− are independent geometric random variables with param-
eters p+ = p− = 1/2 and Yi, Zi are i.i.d. positive continuous random variables
with p.d.f. f(x). Hence, both sums in (165) have the same distribution, and

their difference has a symmetric distribution. Thus {X(1)
j }j∈Z is a symmetric

homogeneous random walk.

We notice that the symmetric kernel p(1)(x) for the chain of local minima

{X(1)
j }j∈Z is necessarily different from p(x) in both parts of Lemma 20. Hence,

the random walk {X(1)
j } of local minima is always different from the initial

random walk {Xk}. In a symmetric case, however, both the processes happen
to be closely related in terms of the structure of their level set trees. Now we
explore this relation.
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Fig 30. Excursion of a symmetric homogeneous random walk: illustration. The values of
time series Xk, k ∈ Z, are shown by circles; the circles that form the excursion are filled.
The linear interpolation function Xt, t ∈ R, is shown by solid line; the excursion of Xt on
[k, r(k)] is shown in bold. This is the first positive excursion of Xt to the right of k.

Consider linear interpolation {Xt}t∈R of a symmetric homogeneous random
walk {Xk}k∈Z with an atomless transition kernel p(x). For any k ∈ Z, let

T ex = T ex(Xt, k) ∈ BL|
plane

be the level set tree of the first positive excursion of Xt −Xk to the right of k,
with convention T ex = φ if Xk+1 −Xk < 0. Formally, let r = r(k) ∈ R be the
unique epoch such that (Fig. 30)

r ≥ k, Xt > Xk for all t ∈ (k, r), and Xr = Xk.

The epoch r(k) is almost surely finite, as can be demonstrated by a renewal
argument using the symmetry of the increments of Xk. We define

T ex(Xt, k) := level(Xt, t ∈ [k, r(k)]).

It follows from this definition that

{Xk+1 −Xk > 0} ⇔ {T ex(Xt, k) �= φ}.

The basic properties of symmetric homogeneous random walks imply that the
distribution of T ex(Xt, k) is the same for all points k ∈ Z. This justifies the
following definition.

Definition 28 (Positive and nonnegative excursions). In the above setup,
we call process Xex

t a nonnegative excursion of the linearly interpolated sym-
metric homogeneous random walk {Xt}t∈R if

Xex
t

d
= {Xs−k −Xk, s ∈ [k, r(k)]} for any k ∈ Z.

Furthermore, we call process Xex
t a positive excursion of the linearly interpolated

symmetric homogeneous random walk {Xt}t∈R if

Xex
t

d
= {Xs−k −Xk, s ∈ [k, r(k)]

∣∣Xk+1 −Xk > 0} for any k ∈ Z.
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A positive excursion defined above will also be called a positive right excur-
sion. The corresponding positive excursion in the reversed time order, starting
from k and going in the negative time direction, will be called positive left ex-
cursion. According to Def. 28, a nonnegative excursion may consist of a single
point (if r(k) = k), in which case its level set tree is the empty tree. A positive
excursion necessarily includes at least one positive value, and its level set tree
is non-empty.

Consider a homogeneous random walk Xk with a symmetric atomless transi-
tion kernel p(x), x ∈ R, represented as in (164). Note that Xk is time reversible,
with p(x) also being the transition kernel of the reversed process. The increment
between a pair of consecutive local extrema (a minimum and a maximum) of
Xk is a sum of Geom1(1/2)-distributed number of i.i.d. f(x)-distributed random
variables, and therefore has density

s(x) :=
∞∑
k=1

2−k f ∗ . . . ∗ f︸ ︷︷ ︸
k times

(x). (166)

We now examine a positive-time process {Xk}k≥0, conditioned on X0 = 0.

Consider a sequence of local minima
{
X

(1)
j

}
j≥1

, where we set X
(1)
0 = 0, and

X
(1)
1 , X

(1)
2 , . . . are the local minima of the random walk Xk, listed from left to

right. For a positive right excursion Xex originating at k = 0, the number N of
leaves in the level set tree level(Xex) is determined by the location of the first
local minimum below zero:

N = min{j ≥ 1 : X
(1)
j ≤ 0}.

The number of edges in the level set tree is #level(Xex) = 2N − 1. Moreover,

let κ > 0 be the time of the first local minimum below zero, Xκ = X
(1)
N . Next,

we define the quantity by which the first nonpositive local minimum of Xk falls
below the starting point at zero.

Definition 29 (Extended positive excursion and excess value). In the
above setup, the process X̆ex = {Xt}t∈[0,κ] is called the extended positive excur-

sion or extended positive right excursion. That is, X̆ex is obtained by extending
the excursion Xex until the first local minimum Xκ below the starting value. The

quantity Λ
(
X̆ex

)
:= −X(1)

N is called the excess value of the extended excursion.
This definition is illustrated in Fig. 31(a).

The notions of the extended positive excursion and the excess value Λ
(
X̆ex

)
can be expanded to the left and right excursions with arbitrary initial values.

Theorem 18 (Combinatorial excursion tree is critical Galton-Watson).
Suppose Xex is a positive excursion of a homogeneous random walk on R with
a symmetric atomless transition kernel and T = level(Xex). Then, the com-

binatorial shape of T has the same distribution on BT | as the critical binary
Galton-Watson tree:

shape(T )
d∼ GW

(
1

2
,
1

2

)
.
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Fig 31. Extended excursion: An illustration. (a) Extended positive right excursion X̆ex on the
interval [0, κ]. It is obtained by extending the respective positive right excursion Xex on the
interval [0, ε] until the first local minimum Xκ below zero. The panel also illustrates the excess

value −X
(1)
N and the lowest local minimum of the excursion at epoch d∗. (b) A trajectory from

XLR on the interval [κL, κR] consists of a positive left excursion on [κL, 0] and a positive
right excursion on [0, κR]. Observe that the trajectory in panel (b) is obtained by a horizontal
and vertical shift of the trajectory in panel (a). The proof of Thm. 18 uses the one-to-one
correspondence between extended (left/right) positive excursions with ord(T ) ≥ 2 of panel (a)
and trajectories of panel (b).

Proof. Recall that shape(T ) is almost surely in BT |. Without loss of generality
we consider a positive right excursion Xex originating at k = 0, where we set
X0 = 0. The tree shape(T ) has exactly one leaf if and only if the first local
minimum falls below zero. That is, if the jump from X0 = 0 to the first local
maximum is smaller than or equal to the size of the jump from the first local
maximum to the consecutive local minimum. The probability of this event is:

P (ord(T ) = 1) =

∞∫
0

⎛⎝ ∞∫
x

s(y) dy

⎞⎠ s(x)dx =
1

2
. (167)

According to the characterization of the critical Galton-Watson distribution
GW

(
1
2 ,

1
2

)
given in Remark 2 of Sect. 2.8, the proof will be complete if we show

that conditioned on ord(T ) ≥ 2, the tree shape(T ) splits into a pair of complete
subtrees sampled independently from the same distribution as shape(T ). This
step is completed as follows.

Consider the space XL of all the trajectories of all extended positive left
excursions originating at X0 = 0 and whose level set trees are of Horton-Strahler
order ≥ 2. Similarly, consider the space XR of all the trajectories of all extended
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positive right excursions originating at X0 = 0 and whose level set trees are of
Horton-Strahler order ≥ 2. We know from (167) that the probability measure
for each of the sets XL and XR totals 1/2. Thus, we may consider the union set
of left and right extended positive excursions XL ∪ XR and equip it with a new
probability measure obtained by gluing together the two respective restrictions
of probability measures for the left and the right positive excursions. That is the
probability measure over the trajectories in XL ∪ XR when restricted to either
XL or XR, will coincide with the respective probability measures for the left and
for the right positive excursions, with the total probability adding up to one.
Now, since all the left and the right extended positive excursions in XL ∪ XR

have Horton-Strahler order ≥ 2, for each X̆ex ∈ XL ∪ XR there is almost surely
a unique integer d∗ such that X̆ex

d∗ > 0 is the smallest local minimum of the

excursion X̆ex.
Next, conditioning on X0 = 0 being a local minimum of Xt, we consider

a space XLR of all possible trajectories such that each trajectory consists of
the left and the right extended positive excursions originating from X0 = 0
(with no restrictions on their orders). For a trajectory in XLR, let κL < 0
and κR > 0 denote the (random) endpoints of the left and the right extended
positive excursions. Thus, a trajectory Xt, t ∈ [κL, κR], in XLR consists of a
left extended positive excursion Xt (κL ≤ t ≤ 0) and a right extended positive
excursion Xt (0 ≤ t ≤ κR). This construction is illustrated in Fig. 31(b). The
probability measure over the space XLR is a product measure of the left and
the right positive excursions. We claim that there exists a bijective measure
preserving shift map

Ψ : XLR → XL ∪ XR.

Indeed, if the excess value Λ
(
{Xt}κL≤t≤0

)
= −XκL

for the left excursion is

smaller than the excess value Λ
(
{Xt}κL≤t≤0

)
= −XκR

for the right excursion,
we set

Ψ
(
{Xt}κL≤t≤κR

)
= {Xt+κL

−XκL
}0≤t≤−κL+κR

∈ XR.

Otherwise, we set

Ψ
(
{Xt}κL≤t≤κR

)
= {Xt+κR

−XκR
}κL−κR≤t≤0 ∈ XL.

The map Ψ is one-to-one onto as it consists of the vertical and the horizontal
shifts. Also observe that under the mapping Ψ, the point (0, 0) of a trajectory
in XLR is sent to the point (d∗, X̆ex

d∗) of the image trajectory in XL∪XR. We can
construct Ψ−1 : XL ∪ XR → XLR accordingly as a map that shifts a trajectory
X̆ex in XL ∪ XR by subtracting (d∗, X̆ex

d∗). Finally, because we take the same
product of the transition kernel values s(x) for the increments of a trajectory in
XLR as for its image in XL ∪XR under the one-to-one mapping Ψ, the mapping
Ψ is measure preserving.

Thus, since vertical and horizontal shifts of a function preserve its level set
tree, we conclude that the distribution of the level set trees for the trajectories in
XLR and the trajectories in XL∪XR coincide. The level set tree for a trajectory
in XLR consists of a stem that branches into two level set trees of the left and
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right positive excursions adjacent to X0 = 0, sampled independently from the
same distribution as shape(T ). This is so since for the trajectories in XLR,
X0 = 0 is the smallest local minimum. Finally, we observe that the distribution
of shape

(
level(X̆ex)

)
is the same when X̆ex is sampled from XL as when

it is sampled from XR. Thus, for X̆ex sampled from XR, shape
(
level(X̆ex)

)
consists of a stem that branches into two level set trees. If Xex is the right
positive excursion corresponding to X̆ex sampled from XR, then almost surely,

shape

(
level(Xex)

)
= shape

(
level(X̆ex)

)
.

Thus, conditioned on ord(T ) ≥ 2, the tree shape(T ) splits into a pair of complete
subtrees sampled independently from the same distribution as shape(T ). This
completes the proof.

Theorem 18 establishes that the level set trees of symmetric random walks
have the same combinatorial structure (equivalent to that of a ciritical binary
Galton-Watson tree), independently of the choice of the transition kernel p(x).
The planar embedding and metric structure of the level set trees, however, may
depend on the kernel, as we illustrate in the following remark.

Remark 17. Consider an extended positive right excursion X̆ex of a symmetric
homogeneous random walk and let T = level(X̆ex) be its level set tree. Con-
dition on the event ord(T ) ≥ 2, which ensures that the left and right principal
subtrees of T , which we denote T 
 and T r, respectively, are non-empty.

It follows from the construction in the proof of Thm. 18 that the subtrees T 


and T r can be sampled as follows. Consider two independent excursions – an
extended positive right excursion X̆ex,r

t , t ∈ [0, κr], and an extended positive left

excursion X̆ex,

t , t ∈ [κ
, 0]. Next, condition on the event that the excess value

of the left excursion is less than that of the right excursion:

Λ
(
{X̆ex,


t }t∈[κ�,0]

)
< Λ

(
{X̆ex,r

t }t∈[0,κr ]

)
.

Denote by Xex,
 and Xex,r the positive left and right excursions that correspond
to the extended excursions X̆ex,
 and X̆ex,r. Then,

T 
 d
= level(Xex,


t ) and T r d
= level(Xex,r

t ). (168)

Write Xex for the positive right excursion that corresponds to the extended

excursion X̆ex. Then, the stem of the tree level(Xex) ∈ BL|
plane has length

equal to Λ
(
{X̆ex,


t }t∈[0,κ�]

)
. This, in general, may introduce dependence between

the planar embedding of T and its edge lengths. Such dependence is absent in
the exponential critical binary Galton-Watson tree GW(λ).

Next, condition on the event that Xex is an Λ-shaped excursion, which is
equivalent to

{#level(Xex) = 1} = {#level(X̆ex) = 1}.



Random self-similar trees 121

Fig 32. Excess value Λ(X̆ex) may depend on the tree shape shape(level(X̆ex)). Equations
(169), (170) demonstrate why the excess value for a Λ-shaped excursion of panel (a) may
differ from the excess value of an M-shaped excursion of panel (b), and, hence, from the
excess value of a general excursion of panel (c).

Then, the density function of the excess value Λ
(
X̆ex

)
that we denote by λ1(x)

satisfies

λ1(x) = 2

∞∫
0

s(x+ y)s(y) dy, (169)

where s(x) was defined in (166). This is so because conditioned on

{#level(X̆ex) = 1},

the extended excursion X̆ex consists of an s-distributed jump upward, and a
larger s-distributed jump downward. The excess value Λ

(
X̆ex

)
is the difference

between the jumps. The multiple of 2 in (169) is due to conditioning upon the
event of probability 1/2 that the jump up is smaller than the jump down.

Similarly, one can condition on the event that Xex is an M -shaped excursion,
which is equivalent to the event that the level set tree has 2 leaves and 3 edges,
i.e.,

{#level(Xex) = 3} = {#level(X̆ex) = 3}.
Then, the density function of the excess value Λ

(
X̆ex

)
that we denote by λ2(x)

satisfies

λ2(x) = 2

∞∫
0

λ1(x+ y)λ1(y) dy. (170)

This is so because conditioned on

{#level(X̆ex) = 3},

the extended excursion X̆ex consists of two Λ-shaped (left and right) extended
positive excursions originating from the only local minimum within the interior
of the time domain [0, κ] of X̆ex. The excess value Λ

(
X̆ex

)
is the difference

between the two λ1-distributed excess values of the two Λ-shaped extended
positive excursions.



122 Y. Kovchegov and I. Zaliapin

Lemma 21. Consider a homogeneous random walk Xk on R with a symmetric
atomless transition kernel p(x), x ∈ R, i.e., there is a p.d.f. f(x) with the
support supp(f) ⊆ R+ such that p(x) = 1

2 (f(x)+ f(−x)). Consider an extended

positive excursion X̆ex of Xk, and the corresponding positive excursion Xex. Let
T = level(Xex). Then, the following statements are equivalent:

(a) T is independent of the excess value Λ
(
X̆ex

)
;

(b) conditioned on p-shape(T ), the edge lengths are identically distributed;
(c) f(x) is an exponential p.d.f.

If any of these statements holds, then the edge lengths are i.i.d. exponential
random variables.

Proof. (c) ⇒ (a). It is easy to show via the characteristic functions that s(x)
is an exponential p.d.f. if and only if f(x) is an exponential p.d.f. The mem-
oryless property of the exponential random variables implies that if s(x) is an
exponential p.d.f., then T = level(Xex) is independent of the excess value
Λ
(
X̆ex

)
.

(a)⇒ (c). The excess value of a Λ-shaped extended positive excursion has the
same distribution as the excess value of a M -shaped extended positive excursion
if and only if λ1(x) ≡ λ2(x). If this equality holds, then by equation (170) the
p.d.f. λ1(x) satisfies equation (237) in Lemma 34, which implies that λ1(x) ≡
λ2(x) is an exponential density function. Hence, from (169) and Lemma 35 we
conclude that s(x) ≡ λ1(x) is an exponential density function, which in turn
implies that f(x) is exponential.

(b) ⇒ (c). The distribution of the leaf length is the minimum of two in-
dependent s(x)-distributed random variables. Thus the cumulative distribution
function of the leaf length equals

F1(x) = 1−

⎛⎝ ∞∫
x

s(y) dy

⎞⎠2

.

The cumulative distribution function for the length of the non-leaf edge in a
Y -shaped branch equals

F2(x) = 1−

⎛⎝ ∞∫
x

λ1(y) dy

⎞⎠2

.

Here, F1(x) ≡ F2(x) if and only if λ1(x) ≡ s(x), which by Lemma 34 and
equation (169) happens if and only if s(x) is exponential. This implies that f(x)
is an exponential p.d.f.

(c) ⇒ (b). Suppose f(x) is the exponential density with parameter λ, i.e.,
f(x) = φλ(x). According to the construction in the proof of Thm. 18, together
with statement (a), and because any edge in T is a stem of a unique descendant
subtree of T , it suffices to prove that conditioned on p-shape(T ), the tree stem
(root edge) has exponential distribution with parameter λ.
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According to (166), s(x) has the exponential density with parameter λ/2.
Conditioned on ord(T ) = 1, the length of the stem (the only edge of the tree)
equals the minimum of two independent exponentially distributed random vari-
ables with density s(x), and hence has the exponential density with parameter
λ. Conditioned on ord(T ) ≥ 2, the length of the stem is the minimum of the
excess values of two independent extended positive excursions. By the memory-
less property of the exponential distribution, each of these excess values has the
exponential distribution with parameter λ/2. Hence, the stem length has the
exponential distribution with parameter λ. This shows that the edge lengths in
T have the same distribution.

Finally, suppose any and therefore all three of the statements (a)–(c) hold,
then properties (b) and (c) insure that the edge lengths are identically and
exponentially distributed, while property (a) insures the independence of edge
lengths. This completes the proof.

8.6. Exponential random walks

Proposition 15 (and the subsequent comment) suggests that the problem of
finding Horton self-similar trees with edge lengths is related to finding extreme-
invariant processes{

X
(1)
j −X

(1)
0

}
j∈Z

d
=

{
ζ(Xk −X0)

}
k∈Z

for some ζ > 0, (171)

where {Xk}k∈Z, is a time series with an atomless distribution at every k and

X
(1)
j is the corresponding time series of local minima. The equality (171) is

understood as the distributional equivalence of two time series.
In this section we establish a sufficient condition for a symmetric homoge-

neous random walk to solve (171), and show that in this case ζ = 2. Moreover,
we show that if a symmetric random walk Xk satisfies (171), the level set tree
of its finite positive excursion, considered as elements of Lplane, is self-similar
according to Def. 9. Symmetric random walks with exponential increments is
an example of a process that solves (171).

The following result describes the solution of the problem (171) in terms of
the characteristic function of f(x).

Proposition 16 (Extreme-invariance of a symmetric homogeneous ran-
dom walk, [173]). Consider a symmetric homogeneous random walk {Xk}k∈Z

with a transition kernel p(x) = f(x)+f(−x)
2 , where f(x) is a p.d.f. with support

supp(f) ⊆ R+ and a finite second moment. Then, the local minima {X(1)
j }j∈Z

of {Xk}k∈Z form a symmetric homogeneous random walk with transition kernel

p(1)(x) = ζ−1 p(x/ζ), ζ > 0 (172)

if and only if ζ = 2 and

!
[
f̂(2s)

]
=

∣∣∣∣∣ f̂(s)

2− f̂(s)

∣∣∣∣∣
2

, (173)
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where f̂(s) is the characteristic function of f(x) and ![z] denotes the real part
of z ∈ C.

Proof. Each increment between the consecutive local minima of Xk can be rep-
resented as dj of (165) where {Yi} and {Zi} are i.i.d. with density f(x), and ξ+
and ξ− are independent geometric random variables with parameter 1/2, i.e.,
Geom1(1/2).

The law of total variance readily implies that ζ = 2. Indeed,

Var

⎛⎝ ξ+∑
i=1

Yi

⎞⎠ = E

⎡⎣Var
⎛⎝ ξ+∑

i=1

Yi

∣∣∣ ξ+
⎞⎠⎤⎦+ Var

⎛⎝E

⎡⎣ ξ+∑
i=1

Yi

∣∣∣ ξ+
⎤⎦⎞⎠

= σ2E[ξ+] + μ2Var(ξ+) = 2(μ2 + σ2), (174)

where μ and μ2 + σ2 are the first and the second moments of f(x) respectively.
Thus, on one hand, the variance of the increments of Xk is

Var(Xk+1 −Xk) = μ2 + σ2

since for a symmetric homogeneous random walk, E[Xk+1 − Xk] = 0. On the
other hand, (165) and (174) imply that the variance of the increments in the

sequence of local minima X
(1)
j is

Var(X
(1)
j+1 −X

(1)
j ) = Var(dj) = Var

⎛⎝ ξ+∑
i=1

Yi

⎞⎠+ Var

⎛⎝ ξ−∑
i=1

Zi

⎞⎠ = 4(μ2 + σ2).

Hence, Var(X
(1)
j+1 −X

(1)
j ) = 4Var(Xk+1 −Xk), and therefore ζ = 2 is the only

value of ζ for which the scaling (172) may hold.
Taking the characteristic functions in (172), we obtain

p̂(1)(s) = p̂(ζs) = !
[
f̂(ζs)

]
,

while taking the characteristic function of dj in (165) we have

p̂(1)(s) = E[eisdj ] = E

[(
f̂(s)

)ξ+
]
E

[(
f̂(−s)

)ξ−
]
=

∣∣∣∣∣ f̂(s)

2− f̂(s)

∣∣∣∣∣
2

.

Thus, (172) is satisfied if and only if

!
[
f̂(ζs)

]
=

∣∣∣∣∣ f̂(s)

2− f̂(s)

∣∣∣∣∣
2

. (175)

Substituting ζ = 2 into (175) completes the proof.

Example 13. Exponential density f(x) = φλ(x) of (72) solves (173) with any
λ > 0; see Thm. 19 below for more detail.
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Consider a time series {Xk}k∈Z, with an atomless distribution of values at
each k. Let {Xt}t∈R, be a continuous function of linearly interpolated values of
Xk. We define a positive excursion of Xk as a fragment of the time series on
an interval [l, r], l, r ∈ Z, such that Xl ≥ Xr and Xk > Xl for all l < k < r
(see Fig. 30). To each positive excursion of Xk on [l, r] corresponds a positive
excursion of Xt on [l, r̃], where r̃ ∈ (r− 1, r] is such that Xr̃ = Xl. The level set
tree of a positive excursion of Xk is that of the corresponding positive excursion
of Xt.

Propositions 16 and 15 imply the following statement.

Corollary 10. Consider a symmetric homogeneous random walk {Xk}k∈Z

with a transition kernel p(x) = f(x)+f(−x)
2 , where f(x) is a p.d.f. with support

supp(f) ⊆ R+ and a finite second moment. Let

T = level

(
{Xt}t∈[l,r]

)
be the level set tree for a positive excursion {Xt}t∈[l,r] generated by the random
walk Xk as defined in Sect. 8.2. Then, the tree T has a Horton self-similar

distribution (Def. 9) over BL|
plane, if and only if the condition (173) holds for

the characteristic function f̂(s) of f(x).

Proof. Horton prune-invariance is established in Props. 16, 15.

A homogeneous random walk on R is called exponential random walk if its
transition kernel is a mixture of exponential jumps:

p(x) = ρφλu(x) + (1− ρ)φλd
(−x), 0 ≤ ρ ≤ 1, λu, λd > 0,

where φλ is the exponential density with parameter λ > 0 as defined in Eq. (72).
We refer to an exponential random walk by its parameter triplet {ρ, λu, λd}.
Each interpolated exponential random walk with parameters {ρ, λu, λd} is a
piece-wise linear function whose positive (up) and negative (down) increments
are independent exponential random variables with respective parameters λu

and λd, and the probabilities of a positive or negative increment at every inte-
ger instant are ρ and (1 − ρ), respectively. After a time change that makes all
segments to have slopes ±1, each interpolated exponential random walk with
parameters {ρ, λu, λd} corresponds to a piece-wise linear function with alternat-
ing rises and falls that have independent exponential lengths with parameters
(1 − ρ)λu and ρλd, respectively. An exponential random walk is symmetric if
and only if ρ = 1/2 and λu = λd.

Theorem 19 (Self-similarity of exponential random walks, [173]). Let
{Xk}k∈Z be an exponential random walk with parameters {ρ, λu, λd}. Then

(a) The sequence {X(1)
j }j∈Z of the local minima of Xk is an exponential ran-

dom walk with parameters {ρ∗, λ∗
u, λ

∗
d} such that

ρ∗ =
ρ λd

ρ λd + (1− ρ)λu
, λ∗

d = ρλd, and λ∗
u = (1− ρ)λu. (176)
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(b) The exponential walk Xk satisfies the self-similarity condition (171) if and
only if it is symmetric (ρ = 1/2 and λu = λd), i.e., when p(x) is a mean
zero Laplace p.d.f.

(c) The self-similarity (171) is achieved after the first Horton pruning, for the

chain {X(1)
j }j∈Z of the local minima, if and only if the walk’s increments

have zero mean, ρ λd = (1− ρ)λu.

Proof. (a) By Lemma 20(i), the sequence of local minima X
(1)
j of Xk is a homo-

geneous random walk with transition kernel p(1)(x). The latter is the probability
distribution of the jumps dj given by (165) with

ξ+
d∼ Geom1(1− ρ), ξ−

d∼ Geom1(ρ), Yi
d∼ φλu , and Zi

d∼ φλd
.

The characteristic function p̂(1)(s) of the transition kernel p(1)(x) is found here
as follows

p̂(1)(s) = E
[
exp

{
is
(
X

(1)
j+1 −X

(1)
j

)}]
=

ρ(1− ρ)λdλu

((1− ρ)λu − is) (ρλd + is)

= ρ∗ φ̂λ∗
u
(s) + (1− ρ∗) φ̂λ∗

d
(s),

where

φ̂λ(s) =
λ

λ− is
(177)

is the characteristic function of an exponential random variable with parameter
λ, and ρ∗, λ∗

u, λ
∗
d are given by (176). Thus,

p(1)(x) = ρ∗φλ∗
u
(x) + (1− ρ∗)φλ∗

d
(−x).

This means that the sequence of local minima {X(1)
j } also evolves according

to a two-sided exponential transition kernel, only with different parameters, ρ∗,
λ∗
d, and λ∗

u.
Part (b) of the theorem follows immediately from part (a). Alternatively, we

observe that the exponential density f(x) = φλ(x) solves (173) with any λ > 0:
by (177) we have

!
[
φ̂λ(2s)

]
= !

[
λ

λ− 2is

]
=

λ2

λ2 + 4s2

and ∣∣∣∣∣ φ̂λ(s)

2− φ̂λ(s)

∣∣∣∣∣
2

=

∣∣∣∣ λ

λ− 2is

∣∣∣∣2 =
λ2

λ2 + 4s2
.

Hence, Part (b) follows from Prop. 16.
(c) Observe that ρ∗ = 1/2 and λ∗

d = λ∗
u if and only if ρ λd = (1− ρ)λu.

We now extend Def. 20 to non-critical Galton-Watson trees.
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Definition 30 (Exponential binary Galton-Watson tree, [135]). We say

that a random planted embedded binary tree T ∈ BL|
plane is an exponential binary

Galton-Watson tree and write T
d∼ GW(λ′, λ), for 0 ≤ λ′ < λ, if

(i) shape(T ) is a binary Galton-Watson tree GW(q0, q2) with

q0 =
λ+ λ′

2λ
, q2 =

λ− λ′

2λ
;

(ii) the orientation for every pair of siblings in T is random and symmetric;
and

(iii) conditioned on a given shape(T ), the edges of T are sampled as inde-
pendent exponential random variables with parameter λ, i.e., with den-
sity (72).

In particular, we observe that GW(λ) = GW(0, λ). A connection between
exponential random walks and exponential Galton-Watson trees is provided by
the following well known result.

Theorem 20 ([135, Lemma 7.3], [105, 124]). Consider a random excursion
Yt in Eex. The level set tree level(Yt) is an exponential binary Galton-Watson
tree GW(λ′, λ) if and only if the alternating rises and falls of Yt, excluding
the last fall, are distributed as independent exponential random variables with
parameters λ+λ′

2 and λ−λ′

2 , respectively, for some 0 ≤ λ′ < λ.
Equivalently, for a random excursion Yt of a homogeneous random walk in

Eex, the level set tree level(Yt) is an exponential binary Galton-Watson tree
GW(λ′, λ) if and only if Yt, as an element of Eex, corresponds to an excursion

of an exponential walk with parameters {ρ, λu, λp} satisfying (1 − ρ)λu = λ+λ′

2

and ρλd = λ−λ′

2 .

The following statement is a corollary of Lem. 8 in Sect. 5.2.2 and Thm. 20.

Corollary 11. The p.d.f. f(x) of the length of an excursion in an exponential
symmetric random walk with parameter λ is given by

f(x) =
1

2
�(x/2). (178)

Proof. Observe that the excursion has twice the length of a tree GW(λ).

We also emphasize the following direct consequence of Thms. 19(a) and 20.

Corollary 12. Suppose T
d∼ GW(γ) is an exponential critical binary Galton-

Watson tree. Then, the following statements hold:

(a) The pruned exponential critical binary Galton-Watson tree is an exponen-
tial critical binary Galton-Watson tree:(

Rk(T )
∣∣ Rk(T ) �= φ

)
d∼ GW

(
2−kγ

)
for any k ∈ N.
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(b) The lengths of branches of Horton-Strahler order j ≥ 1 in T (see Def. 5)
has exponential distribution with parameter 21−j γ. The lengths of branches
(of all orders) are independent.

Remark 18 (A link between Thm. 19 and Thm. 6). Consider an excursion
of an exponential random walk Xt with parameters {ρ, λu, λd}. The geometric
stability of the exponential distribution implies that the monotone rises and
falls of Xt are exponentially distributed with parameters (1 − ρ)λu and ρ λd,
respectively. Thus, Thm. 20 implies that shape (level(Xt)) is distributed as a
binary Galton-Watson tree GW(q0, q2) with

q2 =
ρ λd

(1− ρ)λu + ρ λd
= 1− q0.

The first pruning X
(1)
t (see Sect. 8.4), according to (176), is an exponential

random walk with parameters{
ρ∗ =

ρ λd

(1− ρ)λu + ρ λd
, λ∗

u = (1− ρ)λu, λ∗
d = ρ λd

}
.

Its upward and downward increments are exponentially distributed with param-
eters, respectively,

(1− ρ∗)λ∗
u =

[(1− ρ)λu]
2

(1− ρ)λu + ρ λd
and ρ∗λ∗

d =
[ρ λd]

2

(1− ρ)λu + ρ λd
.

Accordingly, the level set tree for a positive excursion X
(1)
t is a binary Galton-

Watson tree GW(q
(1)
0 , q

(1)
2 ) with

q
(1)
2 =

[ρ λd]
2

[(1− ρ)λu]2 + [ρ λd]2
= 1− q

(1)
0 .

Continuing this way, we find that n-th pruning X
(n)
t of Xt is an exponential

random walk such that the level set tree of its positive excursion has binary

Galton-Watson distribution GW(q
(n)
0 , q

(n)
2 ) with

q
(n)
2 =

[
q
(n−1)
2

]2
[
q
(n−1)
0

]2
+
[
q
(n−1)
2

]2 =
[ρ λd]

2n

[(1− ρ)λu]2
n + [ρ λd]2

n = 1− q
(n)
0 (179)

The first equality in (179) defines the same iterative system as (64) in Thm. 6
of Burd et al. that describes iterative Horton pruning of Galton-Watson trees.

Another noteworthy relation connecting the exponential random walkX
(n)
t with

parameters {ρ(n), λ(n)
u , λ

(n)
d } and the Galton-Watson tree GW(q

(n−1)
0 , q

(n−1)
2 ) is

given by

ρ(n) = q
(n−1)
2 for any n ≥ 1 (where q

(0)
2 ≡ q2).
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8.7. Geometric random walks and critical non-binary
Galton-Watson trees

A recent study by Barbosa et al. [17] examines the self-similar properties of
the level-set trees corresponding to the excursions of the so-called geometric
random walk on Z, defined below (Def. 31). The results in [17] give a discrete-
space version of the results discussed in Sect. 8.6.

For the given probabilities {p1, p2, r1, r2} such that p1 + p2 ≤ 1, consider a
discrete-time random walk on Z, where at each time step, p1 is the probability
of an upward jump, p2 is the probability of a downward jump, and 1− p1 − p2
is the probability of remaining at the same location. Conditioned on jumping
upward, the increment size is a Geom1(r1)-distributed random variable, while
conditioned on jumping downward, the increment size is a Geom1(r2)-distributed
random variable. Here is a formal definition.

Definition 31 (Geometric random walk). A geometric random walk Xk,
k ∈ Z, with probability parameters

{p1, p2, r1, r2}

is a discrete time space-homogeneous random walk on Z with transition probabil-
ities p(x, y) = p(y−x) such that its jump kernel p(x) is a double-sided geometric
probability mass function (discrete Laplace distribution) that can be expressed as

p(x) = p1g1(x) + (1− p1 − p2)δ0(x) + p2g2(−x), (180)

where δ0(x) denotes the Kronecker delta function at 0, and gi(x) (i = 1, 2) is
the probability mass function of a Geom1(ri)-distributed random variable. The
distribution for a geometric random walk is denoted by GRW(p1, p2, r1, r2).

Example 14. The most celebrated example of a geometric random walk is the
simple random walk on Z with distribution GRW

(
1
2 ,

1
2 , 1, 1

)
.

By (180), the characteristic function for the increments in a geometric walk
is given by

p̂(s) =
p1r1e

is

1− (1− r1)eis
+

p2r2e
−is

1− (1− r2)e−is
+ (1− p1 − p2). (181)

Equation (181) leads to the derivation of the following invariance result, analo-
gous to Thm. 19(a) in a discrete space setting.

Theorem 21 ([17]). Suppose Xk is a geometric random walk GRW(p1, p2,

r1, r2), then the time series X
(1)
k of its consecutive local minima (including flat

plateaus) is also a geometric random walk GRW
(
p
(1)
1 , p

(1)
2 , r

(1)
1 , r

(1)
2

)
with prob-

ability parameters

r
(1)
1 =

p2r1
p1 + p2

, p
(1)
1 =

r
(1)
2 (1− r

(1)
1 )

1− (1− r
(1)
1 )(1− r

(1)
2 )

,
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r
(1)
2 =

p1r2
p1 + p2

, p
(1)
2 =

r
(1)
1 (1− r

(1)
2 )

1− (1− r
(1)
1 )(1− r

(1)
2 )

.

If r1 = r2 = r and p1 = p2 = p, the geometric random walk SGRW(p, r) ≡
GRW(p, p, r, r) is called symmetric geometric random walk (SGRW). In this
case, Thm. 21 can be reinterpreted as the following statement, analogous to
Thm. 19(b) adapted to the discrete space Z.

Corollary 13 ([17]). Suppose Xk
d∼ SGRW(p, r) is a symmetric geometric

random walk on Z. Then, the time series X
(1)
k of its consecutive local minima

is also a symmetric geometric random walk SGRW
(
p(1), r(1)

)
with probability

parameters

p(1) =
1− r(1)

2− r(1)
and r(1) =

r

2
.

Next, consider the case of a geometric random walk Xt with mean zero in-
crements,

E[Xk+1 −Xk] =
p1
r1
− p2

r2
= 0.

In this case p1r2 = p2r1, and Thm. 21 and Cor. 13 imply the following result.

Corollary 14 ([17]). Suppose Xk
d∼ GRW(p1, p2, r1, r2) is a geometric random

walk with zero mean, i.e., p1r2 = p2r1. Then, the time series X
(1)
k of its con-

secutive local minima is a symmetric geometric random walk SGRW
(
p(1), r(1)

)
with probability parameters

p(1) =
1− r(1)

2− r(1)
and r(1) =

r

2
,

where r = 2p1r2
p1+p2

= 2p2r1
p1+p2

.

Furthermore, let X
(n+1)
k for n = 1, 2, . . . be the time series of the consecutive

local minima of X
(n)
k . Then, X

(n)
k is also a symmetric geometric random walk

SGRW
(
p(n), r(n)

)
with probability parameters

p(n) =
1− r(n)

2− r(n)
and r(n) =

r

2n
. (182)

For the remainder of this section, let {p(n), r(n)} denote the parameters of
the symmetric geometric random walk SGRW

(
p(n), r(n)

)
, obtained by taking k

iterations of local minima of Xk
d∼ GRW(p1, p2, r1, r2), as in Cor. 14.

Corollary 15 ([17]). Suppose Xk
d∼ GRW(p1, p2, r1, r2) is a mean zero geo-

metric random walk, i.e., p1r2 = p2r1. Then,

lim
n→∞

r(n) = 0 and lim
n→∞

p(n) =
1

2
.

The following is a discrete analogue of Thm. 20, stated in Sect. 8.6.



Random self-similar trees 131

Theorem 22 ([17]). Suppose Xk
d∼ GRW(p1, p2, r1, r2) is a geometric random

walk with a nonnegative drift, i.e., p1r2 ≤ p2r1. Let T
ex be the level set tree of

a positive excursion of Xk. Then,

shape(T ex)
d∼ GW

(
{qm}

)
on T |

with

q0 = 1− p
(1)
1 , and qm = p

(1)
1

(
r
(1)
2

)m−2
(1− r

(1)
2 ) for m = 2, 3 . . . ,

where r
(1)
1 , r

(1)
2 , p

(1)
1 , and p

(1)
2 are as in Theorem 21 (recall that q1 ≡ 0 since

we work with reduced trees). Moreover, if Xk is a mean zero geometric random
walk (i.e., p1r2 = p2r1), then

q0 =
1

2− r(1)
, and qm =

(
r(1)

)m−2
(1− r(1))2

2− r(1)
for m = 2, 3 . . . ,

where r
(1)
1 and r

(1)
2 are as in Corollary 14.

Observe that, in the setting of Thm. 22, if we consider a mean zero GRW

(p1r2 = p2r1 and, equivalently, r
(1)
1 = r

(1)
2 ) then,

∑
m

mqm =

(
1− r

(1)
1

1− r
(1)
2

)(
r
(1)
2 + r

(1)
2 (1− r

(1)
2 )

r
(1)
2 + r

(1)
1 (1− r

(1)
2 )

)
= 1.

In other words, the level set tree of its positive excursion is distributed as a
critical Galton-Watson tree GW

(
{qm}

)
. Combining Prop. 15 with Thm. 22 we

have the following corollary.

Corollary 16 ([17]). Suppose Xk
d∼ GRW(p1, p2, r1, r2) is a mean zero geo-

metric random walk, i.e., p1r2 = p2r1. Let T
ex be the level set tree of a positive

excursion of Xk. Then, shape(T
ex)

d∼ GW
(
{qm}

)
, where GW

(
{qm}

)
is a crit-

ical Galton-Watson distribution on T |. Moreover, for any n ≥ 1, the level set

tree of a positive excursion of X
(n)
k is distributed as(

Rn
(
T ex

) ∣∣∣Rn
(
T ex

)
�= φ

)
d∼ GW

(
{q(n)m }

)
with

q
(n)
0 =

1

2− r(n+1)
and q(n)m =

(r(n+1))m−2(1− r(n+1))2

2− r(n+1)
(∀m ≥ 2), (183)

where r(n) is given by equation (182) of Corollary 14.
Finally, letting n→∞, we have

q
(n)
0 → 1

2
, q

(n)
2 → 1

2
, and q(n)m → 0 (∀m > 2). (184)
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The convergence in (184) follows from Cor. 15 as r(n) → 0. Writing ν =
GW

(
{qm}

)
, we have by Cor. 16 that the pushforward measure νn := Rn

∗ (ν) =
ν ◦ R−n satisfies

νn
(
T |T �= φ

) d
= GW

(
{q(n)m }

)
while equation (184) additionally asserts that

lim
n→∞

νn
(
T |T �= φ

)
= ρ∗(τ), (185)

where ρ∗ denotes the critical binary Galton-Watson measure GW
(
1
2 ,

1
2

)
on T |

with the support on BT |. Equation (185) provides a specific example of Thm. 5
showing that recursive pruning of a critical Galton-Watson tree satisfying

∞∑
m=2

m2−εqm <∞ ∀ε > 0

will have the critical binary Galton-Watson tree measure as its limit.

8.8. White noise and Kingman’s coalescent

This section establishes an interesting correspondence between the tree repre-
sentations of a white noise (sequence of i.i.d. random variables) and celebrated
Kingman’s coalescent process [89]. We begin by an informal review of coalescent
processes and their trees.

8.8.1. Coalescent processes, trees

Coalescent processes [135, 6, 29, 25, 62]. A general finite coalescent process
begins with N singletons. The cluster formation is governed by a symmetric
collision rate kernel K(i, j) = K(j, i) > 0. Specifically, a pair of clusters with
masses (weights) i and j coalesces at the rate K(i, j)/N , independently of the
other pairs, to form a new cluster of mass i + j. The process continues until
there is a single cluster of mass N .

Formally, for a given N ≥ 1 consider the space P[N ] of partitions of [N ] =

{1, 2, . . . , N}. Let Π(N)
0 be the initial partition in singletons, and Π

(N)
t (t ≥ 0)

be a strong Markov process such that Π
(N)
t transitions from partition π ∈ P[N ]

to π′ ∈ P[N ] with rate K(i, j)/N provided that partition π′ is obtained from
partition π by merging two clusters of π of weights i and j. If K(i, j) ≡ 1

for all positive integer masses i and j, the process Π
(N)
t is known as the N -

particle Kingman’s coalescent process. If K(i, j) = i+ j the process is called the
N -particle additive coalescent. Finally, if K(i, j) = ij the process is called the
N -particle multiplicative coalescent.

Coalescent tree. A merger history of the N -particle coalescent process can
be naturally described by a time oriented binary tree constructed as follows.
Start with N leaves that represent the initial N particles and have time mark



Random self-similar trees 133

t = 0. When two clusters coalesce (a transition occurs), merge the corresponding
vertices to form an internal vertex with a time mark of the coalescent. The
final coalescence forms the tree root. The resulting time oriented binary tree
represents the history of the process. We notice that a given unlabeled tree
corresponds to multiple coalescent trajectories obtained by relabeling of the
initial particles.

Let T
(N)
K denote the coalescent tree for the N -particle Kingman’s coalescent

process. Let Nj denote the number of branches of Horton-Strahler order j in the

tree T
(N)
K . In Sect. 9 we will show that for each j ≥ 1, the asymptotic Horton

ratios Nj are well-defined (Def. 18), that is

Nj

N

p→ Nj as N →∞. (186)

Moreover, the Horton ratios Nj are finite and can be expressed as

Nj =
1

2

∫ ∞

0

g2j (x) dx,

where the sequence gj(x) solves the following system of ordinary differential
equations (ODEs):

g′j+1(x)−
g2j (x)

2
+ gj(x)gj+1(x) = 0, x ≥ 0 (187)

with g1(x) = 2/(x+ 2), gj(0) = 0 for j ≥ 2. Equivalently,

Nj =

∫ 1

0

(1− (1− x)hj−1(x))
2
dx,

where h0 ≡ 0 and the sequence hj(x) satisfies the ODE system

h′
j+1(x) = 2hj(x)hj+1(x)− h2

j (x), 0 ≤ x ≤ 1 (188)

with the initial conditions hk(0) = 1 for j ≥ 1.
The root-Horton law (Def. 19) for the well-defined Horton ratios Nj (186) of

the Kingman’s coalescent process is stated in Thm. 25, with the Horton exponent
bounded by the interval 2 ≤ R ≤ 4. Moreover, the Horton exponent is estimated
to be R = 3.0438279 . . . via the ODE representation in (187) and (188). The
numerical computation (not shown here) affirms that the ratio-Horton and the
strong Horton laws of Def. 19 are valid for the Kingman’s coalescent as well.

8.8.2. White noise

In this section we will show that the combinatorial shape function for the level
set tree Twn of white noise is closely connected to the shape function of the

Kingman’s coalescent tree TK = T
(N)
K introduced in Sect. 8.8.1. Specifically, the
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two are separated by a single Horton pruning R. In other words, conditioning

on the same number of leaves, shape
(
R(TK)

) d
= shape

(
Twn

)
.

Let W
(N)
j with j = 1, . . . , N−1 be a discrete white noise that is a discrete

time process comprised of N−1 i.i.d. random variables with a common atomless

distribution. Next, we consider an auxiliary process W̃
(N)
i with i = 1, . . . , 2N−

1, such that it has exactly N local maxima and N−1 internal local minima

W̃
(N)
2j = W

(N)
j , j = 1, . . . , N−1. We call W̃

(N)
i an extended white noise. It can

be constructed as in the following example.

Example 15 (Extended white noise).

W̃
(N)
i =

⎧⎨⎩ W
(N)
i/2 , for even i,

max
{
W

(N)
i′ ,W

(N)
i′′

}
+ 1, for odd i,

(189)

where i′ = max
(
1, i−1

2

)
and i′′ = min

(
N − 1, i+1

2

)
.

Let T
(N)
wn = level

(
W̃

(N)
i

)
be the level set tree of W̃

(N)
i . By construc-

tion, T
(N)
wn has exactly N leaves. Also observe that the level set trees T

(N)
wn

and level

(
W

(N)
j

)
are separated by a single Horton pruning:

R
(
T (N)
wn

)
= level

(
W

(N)
j

)
. (190)

Lemma 22. The distribution of shape

(
T

(N)
wn

)
on BT | is the same for any

atomless distribution F of the values of the associated white noise W
(N)
j .

Proof. The condition of atomlessness of F is necessary to ensure that the level
set tree is binary with probability one. By construction, the combinatorial level
set tree is completely determined by the ordering of the local minima of the
respective trajectory, independently of the particular values of its local maxima
and minima. We complete the proof by noticing that the distribution for the

ordering of W
(N)
j is the same for any choice of atomless distribution F .

Let T
(N)
K be the tree that corresponds to the Kingman’s N -coalescent, and

let shape
(
T

(N)
K

)
be its combinatorial version that drops the time marks of the

vertices. Both the trees shape
(
T

(N)
wn

)
and shape

(
T

(N)
K

)
, belong to the space

BT | (or, more specifically, to BT | conditioned on N leaves).

Theorem 23. The trees shape

(
T

(N)
wn

)
and shape

(
T

(N)
K

)
have the same dis-

tribution on BT |.

Proof. The proof uses a construction similar in some respect to the celebrated
Kingman paintbox process [89, 135, 29, 25]. For the Kingman’s N -coalescent,
let us enumerate the initial singletons from 1 to N . We will identify each cluster
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with a collection of singletons listed from left to right, where the order in which
they are listed is important as it contains a certain amount of information
regarding the process’s merger history. Specifically, consider a pair of clusters i
and j, identified with the corresponding collection of singletons as follows

i = {i1, . . . , ik} and j = {j1, . . . , jm}.
Next, we split the merger rate of 1

N into two. We let the clusters i and j merge
into the new cluster

{i, j} = {i1, . . . , ik, j1, . . . , jm}
with rate 1

2N , or into the new cluster

{j, i} = {j1, . . . , jm, i1, . . . , ik}
also with rate 1

2N . The final merger results in a cluster consisting of all N
singletons, listed as a permutation from SN ,

σ = {σ1, . . . , σN}.
Conditioning on the final permutation σ, the merger history is described by the
random connection times,

t1, t2, . . . , tN−1,

where tj is the merger time when the singletons σj and σj+1 meet in the same
cluster. The following diagram helps visualize the connection times:

σ1
t1−→ σ2

t2−→ σ3
t3−→ . . . σN−1

tN−1−→ σN .

Since all (N−1)! orderings of the connection times t1, . . . , tN−1 are equiprobable,
the combinatorial shape of the resulting coalescent tree is distributed as the

combinatorial tree shape

(
T

(N)
wn

)
, where all (N−1)! orderings of the analogous

connection times W
(N)
1 ,W

(N)
2 , . . . ,W

(N)
N−1 are also equiprobable.

The following result is a consequence of the above Thm. 23 and Thm. 25
that we state and prove in Sect. 9 establishing the root-Horton law (Def. 19) for

Kingman’s coalescent tree shape

(
T

(N)
K

)
.

Corollary 17. The combinatorial level set tree of a discrete white noise W
(N)
j is

root-Horton self similar with the same Horton exponent R as that for Kingman’s
N -coalescent.

Proof. Together, Thms. 23 and 25 imply the root-Horton self-similarity for

shape

(
T

(N)
wn

)
, with the same Horton exponent R.

By definition, Horton pruning corresponds to an index shift in Horton statis-
tics: Nj

[
R(T )

]
= Nj+1[T ] (j ≥ 1). Thus, the root-Horton self-similarity for

shape

(
T

(N)
wn

)
implies the root-Horton self-similarity for shape

(
level

(
W

(N)
j

))
.

Finally, the Horton exponent is preserved under the extra Horton pruning as

lim
j→∞

(
Nj+1

)− 1
j

= lim
j→∞

(
Nj

)− 1
j

= R.
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Fig 33. Illustration to Lem. 23 (a counterexample). Here, a function f : M ⊂ R2 → R is such
that the region f−1([a, b]), which is shaded in the bottom part, contains a saddle (critical point
of index n − 1 = 1); hence the conditions of the lemma are violated. Observe, accordingly,
that the image of any path γ : p → q must go below the point a = f(q) by a finite amount,
i.e., there exists δ > 0 such that γ 
⊂ La−δ.

8.9. Level set trees on higher dimensional manifolds and Morse
theory

Here we give a brief introduction to the theory of level set trees of Morse func-
tions on multidimensional manifolds. This section is intended to outline a natu-
ral next step beyond the theory of level set trees for real functions on R discussed
earlier. The reader, however, will not find here any results on self-similarity of
trees under pruning, the main topic of this survey.

Consider an n-dimensional differentiable manifold M = Mn, and a differen-
tiable function f : M → R. A point p is called a critical point of f if df(p) = 0,
in which case, f(p) is said to be a critical value of f . A point x ∈M is called a
regular point of f if it is not a critical point.

If p is a critical point of f , then

f(x) = f(p) +
1

2
Hf,p(x, x) +O(3)

is the Taylor expansion of f around p, where

Hf,p(u, v) =
∑
i,j

∂2f

∂xi ∂xj
(p)uivj : TpM × TpM → R
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Fig 34. Level set tree of a Morse function: An illustration. (a) A Morse function f(x) :
M ⊂ R2 → R (top) and its level sets Lα (bottom). (b) The level set tree level(f) shows how
distinct components of Lα merge as threshold α decreases. The color code illustrates the value
of f(x) at different level lines. Each critical point of index 2 (local maximum) corresponds to
a leaf. In this figure, each critical point of index 1 (saddle) corresponds to an internal vertex.

is a symmetric bilinear form over the tangent space TpM generated by the

Hessian matrix ∂2f
∂xi ∂xj

(p), and O(3) denotes the third and higher order terms.

Definition 32 (Nondegenerate points and Morse functions [127]). Let
M and f to be as above. A critical point p ∈M of f is said to be nondegenerate

if the determinant of its Hessian matrix ∂2f
∂xi ∂xj

(p) is not equal to zero. A differ-

entiable function f : M → R is said to be a Morse function if all of its critical
points are nondegenerate.

Theorem 24 (Morse, [127]). Consider an n-dimensional differentiable man-
ifold M , and a differentiable function f : M → R. If p ∈M is a nondegenerate
critical point of f , then there exists an open neighborhood U of p and local co-
ordinates (x1, . . . , xn) on U with(

x1(p), . . . , xn(p)
)
= (0, . . . , 0)

such that in this coordinates f(x) is a quadratic polynomial represented as

f(x) = f(p) +
1

2
Hf,p(x, x).

If B(u, v) : V × V → R is a nondegenerate (i.e., with non-zero determinant)
symmetric bilinear form over an n-dimensional vector space V , then there exists
a unique nonnegative integer λ ≤ n and at least one basis B of V such that, in
basis B,

B(x, x) = −x2
1 − . . .− x2

λ + x2
λ+1 + . . .+ x2

n.
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This implies the following corollary to the Morse Theorem (Thm. 24), known
as the Morse Lemma.

Corollary 18 (Morse Lemma [127]). Consider an n-dimensional differen-
tiable manifold M , and a differentiable function f : M → R. If p ∈ M is a
nondegenerate critical point of f , then there exists and open neighborhood U of
p and local coordinates (x1, . . . , xn) on U with(

x1(p), . . . , xn(p)
)
= (0, . . . , 0)

such that in this coordinates,

f(x) = f(p)− x2
1 − . . .− x2

λ + x2
λ+1 + . . .+ x2

n.

The integer λ in Cor. 18 is called the index of the nondegenerate critical point
p ∈M . The next lemma concerns directly the structure of the level set trees for
f : M → R. Let M and f to be as above. Following the one-dimensional setup
of Sect. 8.2.1, for α ∈ R we consider the level set

Lα = Lα(f) = {x ∈M : f(x) ≥ α}.

Lemma 23 ([121, 36]). Consider an n-dimensional differentiable manifold M ,
and a Morse function f : M → R. Given points p, q ∈ M and a differentiable
curve γ : [0, 1]→M such that γ(0) = p and γ(1) = q. Let a = min

{
f(p), f(q)

}
be the minimal endpoint value, and let b = min

t∈[0,1]

(
f ◦ γ(t)

)
.

Suppose f−1
(
[a, b]

)
is compact and does not contain any critical points of

index n or n − 1. Then, for any δ > 0, there exists a differentiable curve γ̃ :
[0, 1]→M homotopic to γ such that γ̃(0) = p and γ̃(1) = q, and

γ̃
(
[0, 1]

)
⊂ La−δ.

Consider an n-dimensional compact differentiable manifold M , and a Morse
function f : M → R. Recalling the definition of a level set tree in dimension
one, for p, q ∈M , let

f(p, q) := sup
γ:p→q

inf
x∈γ

f(x),

where the supremum is taken over all continuous curves γ : [0, 1] → M such
that γ(0) = p and γ(1) = q. Next, as it was the case when dim(M) = 1, we
define a pseudo-metric on M as

df (p, q) :=
(
f(p)− f(p, q)

)
+
(
f(q)− f(p, q)

)
, p, q ∈ M. (191)

We write p ∼f q if df (p, q) = 0, and observe that df is a metric over the
quotient space M/∼f . Thus, (M/∼f , df ) is a metric space, satisfying Def. 1 of
a tree. This tree will be called the level set tree of f , and denoted by level(f).
Here, df (p, q) ≥ |f(p)− f(q)|, with df (p, q) = |f(p)− f(q)| if and only if points
(p/∼f ) and (q/∼f ) of level(f) belong to the same lineage. In particular, if
df (p, q) = f(p) − f(q), then (p/ ∼f ) is the descendant point to (q/ ∼f ), and
respectively, (q/ ∼f ) is the ancestral point to (p/ ∼f ). Figures 34, 35 show
examples of level set trees for functions f on R2.
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Fig 35. Level set tree of a Morse function: An illustration. In this figure, the critical point
of index 1 (saddle) does not correspond to an internal vertex. The rest of notations are the
same as in Fig. 34.

Example 16 (Compactness requirement). The requirement for the mani-
fold M to be compact is necessary to ensure that there are no pairs of disjoint
closed sets such that the distance between the two sets equals zero. As a coun-
terexample, consider a function f(x, y) = x2 − ey on M = R2 (Fig. 36). Here,
the level set L0 consists of two nonintersecting closed regions, marked by gray
shading in Fig. 36(b):

A = {f(x, y) ≥ 0, x > 0} =
{
x ≥ ey/2

}
and

B = {f(x, y) ≥ 0, x < 0} =
{
x ≤ −ey/2

}
.

The distance between A and B is zero, as the two sets get arbitrary close along
the line x = 0 as y → −∞. Consider points p = (e, 2) ∈ A and q = (−e, 2) ∈ B
marked in Fig. 36. The points p and q are not connected by a continuous path
inside L0, since each such a path must intersect the line x = 0 along which f < 0.
Yet, if we were to extend the distance in (191) to M = R2, then f(p, q) = 0
since for any δ > 0 there exists a path similar to γ in Fig. 36(b), with the tip
on the line x = 0 for large enough y, so that γ ⊂ L−δ. Consequently, we have
df (p, q) = 0 implying that the points p and q are equivalent on the level set tree
of f , p =∼f

q, albeit they belong to two disconnected components of L0.

Naturally, if f : M → R is a Morse function, the critical points of index n
(local maxima) correspond to the leaves of the level set tree level(f). As we
decrease α, new segments of Lα appear at the critical points of index n, and
disconnected components of Lα merge at some critical points of index less than
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Fig 36. Illustration to Example 16. The manifold M must be compact to properly define the
level set tree of a function f : M → R. In this example, M = R2 is not compact. This allows
for the existence of points p and q such that df (p, q) = 0, while they belong to disconnected
components of L0.

n. If M is a compact manifold and f : M → R is a Morse function, then by
Lem. 23 the critical points of index less than n− 1 cannot be the merger points
of separated pieces of Lα. Thus, we obtain the following corollary of Lem. 23.

Corollary 19. Consider an n-dimensional compact differentiable manifold M ,
and a Morse function f : M → R. Then, there is a bijection between the leaves of
level(f) and the critical points of f of index n, and a one-to-one (but not neces-
sarily onto) correspondence between the internal (non-leaf) vertices of level(f)
and the critical points of f of index n− 1.

Proof. Suppose c ∈M is a critical point of f of index less than n− 1 such that
(c/∼f ) is an internal (non-leaf) vertex of level(f). Then, (c/∼f ) is a parent
vertex to at least one pair of points (p/∼f ) and (q/∼f ) of level(f) that do
not belong to the same lineage, f(p, q) = f(c), and therefore

df (p, q) = f(p)+f(q)−2f(c) = |f(p)−f(c)|+2(a−f(c)) > |f(p)−f(q)|, (192)

where a = min
{
f(p), f(q)

}
. Thus, since M is a differentiable manifold, there

exists a differentiable curve γ : [0, 1] → M such that γ(0) = p and γ(1) = q,
and min

t∈[0,1]

(
f ◦ γ(t)

)
= f(c). Then, by Lemma 23, for any δ > 0, there exists

a differentiable curve γ̃ : [0, 1] → M homotopic to γ such that γ̃(0) = p and
γ̃(1) = q, and

γ̃
(
[0, 1]

)
⊂ La−δ.

Hence,
df (p, q) ≤ f(p) + f(q)− 2(a− δ) = |f(p)− f(q)|+ 2δ
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for any δ > 0. Therefore, df (p, q) = |f(p) − f(q)|, contradicting (192), i.e.,
contradicting the assumption that (p/ ∼f ) and (q/ ∼f ) do not belong to the
same lineage in level(f).

Remark 19. Corollary 19 asserts that while every internal vertex of the level
set tree corresponds to a critical point of index 1, not every critical point of
index 1 may correspond to an internal vertex. Figure 34 shows an example
of a function where every critical point of index 1 (saddle) corresponds to an
internal vertex. Figure 35 shows an example of a function where the critical
point of index 1 (saddle) does not corresponds to an internal vertex.

Finally, Cor. 19 together with Morse Lemma (Cor. 18) imply the following
lemma.

Lemma 24. Consider an n-dimensional compact differentiable manifold M ,
and a Morse function f : M → R. Suppose there is no two distinct critical
points p and q of index n− 1 with the same value f(p) = f(q). Then, the level
set tree level(f) is binary.

Note that an alternative commonly used definition of Morse function is the
one where we require that all of its critical points are nondegenerate and have
distinct function values, e.g. [56]. For so defined Morse function, the statement
of Lem. 24 will only call for f : M → R to be a Morse function.

Proof. Suppose p is a critical point of f corresponding to an internal (non-leaf)
vertex in level(f). Then, by Corollary 19, p has index λ = n− 1. Corollary 18
asserts that there exists and open neighborhood U of p and local coordinates
(x1, . . . , xn) on U with (

x1(p), . . . , xn(p)
)
= (0, . . . , 0)

such that in this coordinates,

f(x) = f(p)− x2
1 − . . .− x2

n−1 + x2
n.

Hence, as α decreases, the merger of distinct components of Lα happens along
the xn-coordinate axis. This allows for the merger of at most two components.

Vladimir Arnold studied an alternative (albeit similar in spirit) construction
of level set trees that he called the graph of Morse function f : M → R,
concentrating mainly on the spheres M = S2; see [9, 10, 11] and references
therein. Arnold has shown that these graphs are binary trees as well. These
trees are constructed in such a way that both the local minima (index 0) and
the local maxima (index 2) points of f correspond to the leaves, while the
saddle points (index 1) correspond to the internal (non-leaf) vertices. The goal
of Arnold’s study was to shed light on the problem of classifying all possible
configurations of the horizontal lines on the topographical maps formulated by
A. Cayley in 1868. In [11], Arnold quotes a communication with Morse: M.
Morse has told me, in 1965, that the problem of the description of the possible
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combinations of several critical points of a smooth function on a manifold looks
hopeless to him. L. S. Pontrjagin and H. Whitney were of the same opinion.
Arnold’s work of topological classification of level lines for Morse functions on
S2 enriched the collection of questions accompanying the Hilbert’s sixteenth
problem, which promoted the study of the topological structures of the level
lines of real polynomials p(x) over x ∈ Rn, [83, 10, 11].

9. Kingman’s coalescent process

We refer to a general definition of a coalescent process in Section 8.8.1. Recall
that in an N -particle coalescent process, a pair of clusters with masses i and j
coalesces at the rate K(i, j)/N . The mass-independent rate K(i, j) = 1 defines
the Kingman’s coalescent process [89]. The following result establishes a weak
form of Horton law for Kingman’s coalescent.

Theorem 25 (Root-Horton law for Kingman’s coalescent, [97]). Con-

sider Kingman’s N -coalescent process and its tree representation T
(N)
K . Let Nj =

N
(N)
j denote the number of branches of Horton-Strahler order j in the tree T

(N)
K .

(i) The asymptotic Horton ratios Nj exist and are finite for all j ∈ N, as in
Def. 18. That is, for each j, the following limit exists and is finite:

N
(N)
j /N

p→ Nj as N →∞. (193)

(ii) Furthermore, Nj satisfy the root-Horton law (Def. 19):

lim
j→∞

(Nj)
− 1

j = R

with Horton exponent 2 ≤ R ≤ 4.

9.1. Smoluchowski-Horton ODEs for Kingman’s coalescent

In this section we provide a heuristic derivation of Smoluchowski-type ODEs

for the number of Horton-Strahler branches in the coalescent tree T
(N)
K and

consider the asymptotic version of these equations as N → ∞. Section 9.2
formally establishes the validity of the hydrodynamic limit.

Recall that K(i, j) ≡ 1. Let |Π(N)
t | denote the total number of clusters at

time t ≥ 0, and let η(N)(t) := |Π(N)
t |/N be the total number of clusters relative

to the system size N . Then η(N)(0) = N/N = 1 and η(N)(t) decreases by 1/N
with each coalescence of clusters; this happens with the rate

1

N

(
N η(N)(t)

2

)
=

η2(N)(t)

2
·N + o(N), as N →∞,

since 1/N is the coalescence rate for any pair of clusters regardless of their
masses. Informally, this implies that the large-system limit relative number of
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clusters η(t) = lim
N→∞

η(N)(t) satisfies the following ODE:3

d

dt
η(t) = −η2(t)

2
. (194)

The initial condition η(0) = 1 implies a unique solution η(t) = 2/(2 + t). The
existence of the limit η(t) is established in Lem. 25(a) of Sect. 9.2.

Next, for any k ∈ N we write ηk,N (t) for the relative number of clusters
(with respect to the system size N) that correspond to branches of Horton-

Strahler order k in tree T
(N)
K at time t. Initially, each particle represents a leaf

of Horton-Strahler order 1. Accordingly, the initial conditions are set to be,
using Kronecker’s delta notation,

ηk,N (0) = δ1(k).

Below we describe the evolution of ηk,N (t) using the definition of Horton-
Strahler orders.

Observe that ηk,N (t) increases by 1/N with each coalescence of clusters of
Horton-Strahler order k − 1 that happens with the rate

1

N

(
N ηk−1,N (t)

2

)
=

η2k−1,N (t)

2
·N + o(N).

Thus
η2
k−1,N (t)

2 + o(1) is the instantaneous rate of increase of ηk,N (t).
Similarly, ηk,N (t) decreases by 1/N when a cluster of order k coalesces with

a cluster of order strictly higher than k that happens with the rate

ηk,N (t)

⎛⎝η(N)(t)−
k∑

j=1

ηj,N (t)

⎞⎠ ·N,

and it decreases by 2/N when a cluster of order k coalesces with another cluster
of order k that happens with the rate

1

N

(
N ηk,N (t)

2

)
=

η2k,N (t)

2
·N + o(N).

Thus the instantaneous rate of decrease of ηk,N (t) is

ηk,N (t)

⎛⎝η(N)(t)−
k∑

j=1

ηj,N (t)

⎞⎠+ η2k,N (t) + o(1).

3A similar heuristic argument leading to the hydrodynamic limit η(t) satisfying (194)
was given in [25, proof of Thm. 2.1]. Furthermore, a rigorous argument employing similar
hydrodynamical limits and martingale inequalities is used in [23] to obtain an asymptotic
estimate for the total length of a Λ-coalescent tree.
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We can informally write the limit rates-in and the rates-out for the clusters of
Horton-Strahler order via the following Smoluchowski-Horton system of ODEs:

d

dt
ηk(t) =

η2k−1(t)

2
− ηk(t)

⎛⎝η(t)−
k−1∑
j=1

ηj(t)

⎞⎠ , (195)

with the initial conditions ηk(0) = δ1(k). Here we interpret ηk(t) as the hydro-
dynamic limit of ηk,N (t) as N → ∞, which will be rigorously established in
Lem. 25(b) of Sect. 9.2. We also let η0 ≡ 0.

Since ηk(t) has the instantaneous rate of increase η
2
k−1(t)/2, the relative total

number of clusters corresponding to branches of Horton-Strahler order k is then

Nk = δ1(k) +

∞∫
0

η2k−1(t)

2
dt. (196)

This equation has a simple heuristic interpretation. Specifically, according to
the Horton-Strahler rule (5), a branch of order k > 1 can only be created by
merging two branches of order k − 1. In Kingman’s coalescent process these
two branches are selected at random from all pairs of branches of order k − 1
that exist at instant t. As N goes to infinity, the asymptotic density of a pair of
branches of order (k−1), and hence the instantaneous intensity of newly formed
branches of order k, is η2k−1(t)/2. The integration over time gives the relative
total number of order-k branches. The validity of equation (196) is established
within the proof of Thm. 25(i) that follows Lem. 25.

It is not hard to compute the first three terms of the sequence Nk by solving
equations (194) and (195) in the first three iterations:

N1 = 1, N2 =
1

3
, and N3 =

e4

128
− e2

8
+

233

384
= 0.109686868100941 . . .

Hence, we have N1/N2 = 3 and N2/N3 = 3.038953879388 . . . Our numerical
results yield, moreover,

lim
k→∞

(Nk)
− 1

k = lim
k→∞

Nk

Nk+1
= 3.0438279 . . .

9.2. Hydrodynamic limit

This section establishes the existence of the asymptotic ratiosNk of (193) as well
as the validity of the equations (194), (195) and (196) in a hydrodynamic limit.
We refer to Darling and Norris [42] for a survey of techniques for establishing
convergence of a Markov chain to the solution of a differential equation.

Notice that if the first k−1 functions η1(t), . . . , ηk−1(t) are given, then (195) is
a linear equation in ηk(t). This quasilinearity implies the existence and unique-
ness of a solution.
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We now proceed with establishing a hydrodynamic limit for the Smoluchowski-
Horton system of ODEs (195). Let

ηk,N (t) :=
Nk(t)

N
and gk,N (t) := η(N)(t)−

∑
j:j<k

ηj,N (t).

Lemma 25. Let η(N)(t) be the relative total number of clusters and η(t) be the
solution to equation (194) with the initial condition η(0) = 1. Let ηk,N (t) denote
the relative number of clusters that correspond to branches of Horton-Strahler
order k and let functions ηk(t) solve the system of equations (195) with the
initial conditions ηk(0) = δ1(k). Then, as N →∞,

(a)
∥∥η(N)(t)− η(t)

∥∥
L∞[0,∞)

p→ 0;

(b) ‖ηk,N (t)− ηk(t)‖L∞[0,∞)
p→ 0, ∀k ≥ 1.

Proof. We adopt here the approach of [95] that uses the weak limit law estab-
lished in [60, Theorem 2.1, Chapter 11] and [103, Theorem 8.1]; it is briefly
explained in Appendix A of this manuscript. This approach is different from
the original proof given in [97], and also from the method developed in Norris
[128] for the Smoluchowski equations.

For a fixed positive integer K, let

X̂N (t) =
(
N1(t), N2(t), . . . , NK(t), N(t)

)
∈ ZK+1

+

with X̂N (0) = Ne1. The process X̂N (t) is a finite dimensional Markov process.
Its transition rates can be found using the formalism (232) for density dependent
population processes. Specifically, let x = (x1, x2, . . . , xK+1). Then, for any
1 ≤ k ≤ K, the change vector � = −ek − eK+1 corresponding to a merger of a
cluster of order k into a cluster of order higher than k has the rate

q(n)(x, x+ �) =
1

N
xk

⎛⎝xK+1 −
k∑

j=1

xj

⎞⎠ = Nβ


( x

N

)
,

where β
(x) = xk

(
xK+1 −

k∑
j=1

xj

)
. For a given k such that 1 ≤ k ≤ K, the

change vector
� = −2ek + ek+11k<K − eK+1

corresponding to a merger of a pair of clusters of order k is assigned the rate

q(n)(x, x+ �) =
1

N

[
x2
k

2
− xk

2

]
= N

[
β


( x

N

)
+O

(
1

n

)]
, (197)

where β
(x) =
x2
k

2 . Finally, the change vector � = −eK+1 corresponding to a
merger of two clusters, both of order greater than K, is assigned the rate

q(n)(x, x+ �) =
1

N

[
x2
K+1

2
− xK+1

2

]
= N

[
β


( x

N

)
+O

(
1

n

)]
,
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where β
(x) =
x2
K+1

2 .

By Thm. 35, XN (t) = N−1X̂N (t) converges to X(t) as in (235), where X(t)
satisfies (234) with

F (x) :=
∑



�β
(x) =

K∑
k=1

xk

⎛⎝xK+1 −
k∑

j=1

xj

⎞⎠ [−ek − eK+1]

+
1

2

K+1∑
k=1

x2
k[−2ek1k≤K + ek+11k<K − eK+1]

=

K∑
k=1

⎛⎝x2
k−1

2
− xk

⎛⎝xK+1 −
k−1∑
j=1

xj

⎞⎠⎞⎠ ek −
x2
K+1

2
eK+1, (198)

where we let x−1 = 0 at all times. Here, F (x) naturally satisfies the Lipschitz
continuity conditions (233), and the initial conditions X(0) = Xn(0) = e1.

Therefore, for a given integer K > 0 and a fixed real T > 0, equation (234)
in Thm. 35 with F (x) as in (198) yields

lim
N→∞

sup
s∈[0,T ]

∣∣N−1η(N)(s)− η(s)
∣∣ = 0 a.s. (199)

and
lim

N→∞
sup

s∈[0,T ]

∣∣N−1ηk,N (s)− ηk(s)
∣∣ = 0 a.s. (200)

for all k = 1, 2, . . . ,K, with η(N) satisfying (194) and ηk,N satisfying the system
of Smoluckowski-Horton system of ODEs (195).

Let Tm be the time when the first m clusters merge. The expectation for the
time Tm is

E[Tm] =
N(
N
2

) +
N(

N−1
2

) + · · ·+ N(
N−m+1

2

) =
2m

N −m
. (201)

For given ε ∈ (0, 1) and γ > 1 let m = �(1− ε)N�. Taking T > 2(1−ε)
ε γ, we have

for all t ≥ T ,

0 < η(t) ≤ η(T ) < η

(
2(1− ε)

ε
γ

)
< η

(
2(1− ε)

ε

)
= ε.

Thus
∣∣η(N)(t)− η(t)

∣∣ > ε would imply η(N)(t) > ε > η(t) > 0, and by Markov’s
inequality, we obtain

P
(∥∥η(N)(t)− η(t)

∥∥
L∞[T,∞)

> ε
)
≤ P

(
η(N)(T ) > ε

)
= P

(
Tm > T

)
≤ 2(1− ε)

εT
< 1/γ. (202)

Together (199) and the above equation (202) imply

lim
N→∞

P
(∥∥η(N)(t)− η(t)

∥∥
L∞[0,∞)

< ε
)
= 1.
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Hence ‖η(N)(t)− η(t)‖L∞[0,∞) → 0 in probability, establishing Lemma 25(a).
Finally, observe that for any ε > 0 and for T > 0 large enough so that

η(T ) < ε,
ηk(t) ≤ η(t) ≤ η(T ) < ε for all t ≥ T.

Thus,

P
(∥∥ηk,N (t)− ηk(t)

∥∥
L∞[T,∞)

> ε
)
≤ P

(∥∥ηk,N (t)
∥∥
L∞[T,∞)

> ε
)

≤ P
(∥∥η(N)(t)

∥∥
L∞[T,∞)

> ε
)

= P
(
η(N)(T ) > ε

)
≤ 2(1− ε)

εT
, (203)

where the last bound is obtained from Markov inequality: for m = �(1− ε)N�,

P
(
η(N)(T ) > ε

)
= P (Tm > T ) ≤ E[Tm]

T
=

2m

(N −m)T
≤ 2(1− ε)

εT

by (201). Together, equations (200) and (203) imply

‖ηk,N − ηk‖L∞[0,∞)
p→ 0 ∀k ≥ 1.

Consequently, we establish a hydrodynamic limit for the Horton ratios
(Thm. 25(i)) and validate formula (196).

Proof of Theorem 25(i). The existence of the limit Nj = limN→∞ Nj/N in
probability and its expression (196) via the solution η(N)(t) of (194) follows
from (197) in the context of Theorem 35 and the tail bound (202).

9.3. Some properties of the Smoluchowski-Horton system of ODEs

Here we restate the Smoluchowski-Horton system of ODEs (195) as a simpler
quasilinear system of ODEs (205), which we later (Sect. 9.3.2) rescale to the
interval [0, 1] (208). Some of the properties established in Prop. 17 and Lem. 26
of this section are used in the proof of Thm. 25(ii) in Sect. 9.4.

9.3.1. Simplifying the Smoluchowski-Horton system of ODEs

Let g1(t) = η(t) and gk(t) = η(t) −
∑

j: j<k

ηj(t) be the asymptotic number of

clusters of Horton-Strahler order k or higher at time t. We can rewrite (195) via
gk using ηk(t) = gk(t)− gk+1(t):

d

dt
gk(t)−

d

dt
gk+1(t) =

(
gk−1(t)− gk(t)

)2
2

− (gk(t)− gk+1(t))gk(t).



148 Y. Kovchegov and I. Zaliapin

We now rearrange the terms, obtaining for all k ≥ 2,

d

dt
gk+1(t)−

g2k(t)

2
+ gk(t)gk+1(t) =

d

dt
gk(t)−

g2k−1(t)

2
+ gk−1(t)gk(t). (204)

One can readily check that d
dtg2(t)−

g2
1(t)
2 + g1(t) g2(t) = 0; the above equations

hence simplify as follows

g′k+1(t)−
g2k(t)

2
+ gk(t)gk+1(t) = 0 (205)

with g1(t) =
2

t+ 2
, and gk(0) = 0 for k ≥ 2.

Observe that the existence and uniqueness of the solution sequence gk of
(205) follows immediately from the quasilinear structure of the system (205):
for a known gk(t), the next function gk+1(t) is obtained by solving a first-order
linear equation.

From (205) one has gk(t) > 0 for all t > 0, and similarly, from the equation
(195) one has

ηk(t) = gk(t)− gk+1(t) > 0 for all t > 0. (206)

Next, returning to the asymptotic ratios Nk, we observe that (204) implies,
for k ≥ 2,

Nk =

∞∫
0

η2k−1(t)

2
dt =

∞∫
0

(gk−1(t)− gk(t))
2

2
dt =

∞∫
0

g2k(t)

2
dt

since
(gk−1(t)− gk(t))

2

2
=

d

dt
gk(t) +

g2k(t)

2
,

where 0 ≤ gk(t) < g1(t)→ 0 as t→∞, and
∞∫
0

d
dtgk(t)dt = gk(∞)−gk(0) = 0 for

k ≥ 2. Let nk represent the number of order-k branches relative to the number
of order-(k + 1) branches:

nk :=
Nk

Nk+1
=

1
2

∞∫
0

g2k(t)dt

1
2

∞∫
0

g2k+1(t)dt

=
‖gk‖2L2[0,∞)

‖gk+1‖2L2[0,∞)

. (207)

Consider the following limits that represent, respectively, the root and the ratio
asymptotic Horton laws:

lim
k→∞

(Nk)
− 1

k = lim
k→∞

⎛⎝ k∏
j=1

nj

⎞⎠
1
k

and lim
k→∞

nk = lim
k→∞

‖gk‖2L2[0,∞)

‖gk+1‖2L2[0,∞)

.
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Theorem 25(ii) establishes the existence of the first limit. We expect the sec-
ond, stronger, limit also to exist and both of them to be equal to 3.043827 . . .
according to our numerical results. We now establish some basic facts about gk
and nk.

Proposition 17. Let gk(x) solve the ODE system (205). Then

(a) 1
2

∞∫
0

g2k(t)dt =
∞∫
0

gk(t)gk+1(t)dt,

(b)
∞∫
0

g2k+1(t)dt =
∞∫
0

(gk(t)− gk+1(t))
2dt,

(c) lim
t→∞

tgk(t) = 2,

(d) nk =
‖gk‖2

L2[0,∞)

‖gk+1‖2
L2[0,∞)

≥ 2,

(e) nk =
‖gk‖2

L2[0,∞)

‖gk+1‖2
L2[0,∞)

≤ 4.

Proof. Part (a) follows from integrating (205), and part (b) follows from part
(a). Part (c) is done by induction, using the L’Hôpital’s rule as follows. It is
obvious that lim

x→∞
tg1(t) = 2. Hence, for any k ≥ 1, (206) implies

tgk(t) ≤ tg1(t) =
2t

t+ 2
< 2 ∀t ≥ 0.

Also,

[tgk+1]
′ =

tg2k(t)

2
− tgk(t)gk+1(t) + gk+1(t)

=

(
gk(t)− gk+1(t)

)
tgk(t) +

(
2− tgk(t)

)
gk+1(t)

2

implying [tgk+1]
′ ≥ 0 for all t ≥ 0 as gk(t) − gk+1(t) ≥ 0 and 2 − tgk(t) > 0.

Hence, tgk+1(t) is bounded and nondecreasing. Thus, lim
t→∞

tgk+1(t) exists for all

k ≥ 1.
Next, suppose lim

t→∞
tgk(t) = 2. Then by the Mean Value Theorem, for any

t > 0 and for all y > t,

gk+1(t)− gk+1(y)

t−1 − y−1
≤ sup

z: z≥t

g′k+1(z)

−z−2
.

Taking y →∞, obtain

gk+1(t)

t−1
≤ sup

z: z≥t

g′k+1(z)

−z−2
.

Therefore

lim
t→∞

tgk+1(t) = lim
t→∞

gk+1(t)

t−1
= lim sup

z→∞

g′k+1(z)

−z−2
= lim sup

z→∞

g2
k(z)
2 − gk(z)gk+1(z)

−z−2
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= lim sup
z→∞

[
z2gk(z)gk+1(z)−

z2g2k(z)

2

]
= 2 lim

t→∞
tgk+1(t)− 2

implying lim
t→∞

tgk+1(t) = 2.

Statement (d) follows from (207) as we have Nk ≥ 2Nk+1 from the definition
of the Horton-Strahler order. An alternative proof of (d) using the system of
ODEs (208) is given in Sect. 9.3.2.

Part (e) follows from part (a) together with Hölder inequality

1

2
‖gk‖2L2[0,∞) =

∞∫
0

gk(t)gk+1(t)dt ≤ ‖gk‖L2[0,∞) · ‖gk+1‖L2[0,∞),

which implies nk =
‖gk‖2

L2[0,∞)

‖gk+1‖2
L2[0,∞)

≤ 4.

Remark 20. The statements (a) and (b) of Proposition 17 have a straightfor-
ward heuristic interpretation, similar to that of equation (196) above. Specifi-
cally, (a) claims that the asymptotic relative total number of vertices of order
k+1 and above in the Kingman’s tree (left-hand side) equals twice the asymp-
totic relative total number of vertices of order k+1 and above except the vertices
parental to two vertices of order k (right-hand side). This is nothing but the
asymptotic property of a binary tree – the number of leaves equals twice the
number of internal nodes. The item (a) hence merely claims that the Kingman’s
tree formed by clusters of order above k is binary for any k ≥ 1. Similarly, item
(b) claims that the asymptotic relative total number of vertices of order (k+2)
and above (left-hand side) equals the asymptotic relative total number of ver-
tices of order (k + 1) (right-hand side). This is yet another way of saying that
the Kingman’s tree is binary.

9.3.2. Rescaling to [0, 1] interval

Define

hk(x) = (1− x)−1 − (1− x)−2gk+1

(
2x

1− x

)
for x ∈ [0, 1). Then h0 ≡ 0, h1 ≡ 1, and the system of ODEs (205) rewrites as

h′
k+1(x) = 2hk(x)hk+1(x)− h2

k(x) (208)

with the initial conditions hk(0) = 1.
Observe that the above quasilinearized system of ODEs (208) has hk(x) con-

verging to h(x) = 1
1−x as k →∞, where h(x) is the solution to Riccati equation

h′(x) = h2(x) over [0, 1), with the initial value h(0) = 1. Specifically, we have
proven that gk(x)→ 0 as k →∞. Thus

hk(x) = (1− x)−1 − (1− x)−2gk+1

(
2x

1− x

)
−→ h(x) =

1

1− x
.
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Observe that h2(x) = (1+e2x)/2, but for k ≥ 3 finding a closed form expression
becomes increasingly hard.

We observe from (207) that the quantity nk rewrites in terms of hk as follows

nk =

∥∥1− hk/h
∥∥2
L2[0,1]∥∥1− hk+1/h
∥∥2
L2[0,1]

. (209)

Consequently, equation (209) implies

lim
k→∞

(Nk)
− 1

k = lim
k→∞

⎛⎝ k∏
j=1

nj

⎞⎠
1
k

= lim
k→∞

(∫ 1

0

(
1− hk(x)

h(x)

)2

dx

)− 1
k

. (210)

Now, for a known hk(x), (208) is a first-order linear ODE in hk+1(x). Its
solution is given by hk+1(x) = Hhk(x), where H is a nonlinear operator defined
as follows

Hf(x) =
[
1−

∫ x

0

f2(y)e
−2

y∫
0

f(s)ds
dy

]
· e

2
x∫
0

f(s)ds
. (211)

Hence, the problem of establishing the limit (210) for the root-Horton law con-
cerns the asymptotic behavior of an iterated nonlinear functional.

The following lemma will be used in Sect. 9.4.

Lemma 26. ∥∥1− hk+1/h
∥∥
L2[0,1]

=
∥∥hk+1/h− hk/h

∥∥
L2[0,1]

Proof. Observing h′
k+1(x) + (hk+1(x)− hk(x))

2 = h2
k+1(x) , we use integration

by parts to obtain

1∫
0

(hk+1(x)− hk(x))
2

h2(x)
dx =

1∫
0

h2
k+1(x)

h2(x)
dx−

1∫
0

h′
k+1(x)

h2(x)
dx

=

1∫
0

h2
k+1(x)

h2(x)
dx+ 1− 2

1∫
0

hk+1(x)

h(x)
dx =

1∫
0

(1− hk+1(x))
2

h2(x)
dx

as 1/h(x) = 1− x.

Next, we notice that (206) implies

h(x) > hk+1(x) > hk(x) for all x ∈ (0, 1) (212)

for all k ≥ 1.
Finally, an alternative proof to Proposition 17(d) using the system of ODEs

(208) follows from Lemma 26 and (212).
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Alternative proof of Proposition 17(d). Lemma 26 implies

∥∥1− hk/h
∥∥2
L2[0,1]

= 2

1∫
0

(1− hk/h)(1− hk+1/h)dx

= 2
∥∥1− hk+1/h

∥∥2
L2[0,1]

+2

1∫
0

(hk+1/h− hk/h)(1− hk+1/h)dx.

Hence, equation (212) yields nk =

∥∥1−hk/h
∥∥2

L2[0,1]∥∥1−hk+1/h
∥∥2

L2[0,1]

≥ 2.

9.4. Proof of the existence of the root-Horton limit

Here we present a proof of Thm. 25(ii). The proof is based on Lemmas 27 and
28 stated below that will be proven in the Sects. 9.4.1 and 9.4.2.

Lemma 27. If the limit lim
k→∞

hk+1(1)
hk(1)

exists, then lim
k→∞

(Nk)
− 1

k =

lim
k→∞

(
k∏

j=1

nj

) 1
k

also exists, and

lim
k→∞

(Nk)
− 1

k = lim
k→+∞

(
1

hk(1)

)− 1
k

= lim
k→∞

hk+1(1)

hk(1)
.

Lemma 28. The limit lim
k→∞

hk+1(1)
hk(1)

≥ 1 exists, and is finite.

Once Lemmas 27 and 28 are established, the validity of root-Horton law
Theorem 25(ii) is proved as follows.

Proof of Theorem 25(ii). The existence and finiteness of lim
k→∞

hk+1(1)
hk(1)

established

in Lemma 28 is the precondition for Lemma 27 that in turn implies the existence
and finiteness of the limit

lim
k→∞

(Nk)
− 1

k = lim
k→∞

⎛⎝ k∏
j=1

nj

⎞⎠
1
k

= R

as needed for the root-Horton law. Furthermore,

R = lim
k→∞

hk+1(1)

hk(1)
, (213)

and 2 ≤ R ≤ 4 by Proposition 17.
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9.4.1. Proof of Lemma 27 and related results

Proposition 18.∥∥1− hk+1(x)/h(x)
∥∥2
L2[0,1]

≤ 1

hk+1(1)
≤
∥∥1− hk(x)/h(x)

∥∥2
L2[0,1]

. (214)

Proof. Equation (208) implies

h′
k+1(x)

h2
k+1(x)

= 1− (hk+1(x)− hk(x))
2

h2
k+1(x)

∀x ∈ (0, 1]. (215)

Integrating both sides of the equation (215) from 0 to 1 we obtain

1

hk+1(1)
=

1∫
0

(hk+1(x)− hk(x))
2

h2
k+1(x)

dx =
∥∥1− hk(x)/hk+1(x)

∥∥2
L2[0,1]

as hk+1(0) = 1.
Hence, using Lemma 26, the first inequality in (214) is proved as follows

1

hk+1(1)
=

1∫
0

(hk+1(x)− hk(x))
2

h2
k+1(x)

dx ≥
1∫

0

(hk+1(x)− hk(x))
2

h2(x)
dx

=
∥∥1− hk+1/h

∥∥2
L2[0,1]

=
∥∥1− hk+1(x)/h(x)

∥∥2
L2[0,1]

.

Finally, equations (212) and (215) imply

1

hk+1(1)
=
∥∥1− hk(x)/hk+1(x)

∥∥2
L2[0,1]

≤
∥∥1− hk(x)/h(x)

∥∥2
L2[0,1]

.

This completes the proof.

Proof of Lemma 27. If the limit lim
k→∞

hk+1(1)
hk(1)

exists and is finite, then so is

the limit lim
k→∞

(
1

hk(1)

)− 1
k

. Then, the existence and the finiteness of the limit

lim
k→∞

(Nk)
− 1

k follow from equation (210) and Proposition 18.

9.4.2. Proof of Lemma 28 and related results

In this subsection we use the approach developed by Drmota [47] to prove the

existence and the finiteness of lim
k→∞

hk+1(1)
hk(1)

≥ 1. As we saw earlier, this re-

sult was used for proving existence, finiteness, and positivity of lim
k→∞

(Nk)
− 1

k =

lim
k→∞

(
k∏

j=1

nj

) 1
k

, the root-Horton law.
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Definition 33. Given γ ∈ (0, 1]. Let

Vk,γ(x) =

{
1

1−x for 0 ≤ x ≤ 1− γ,

γ−1hk

(
x−(1−γ)

γ

)
for 1− γ ≤ x ≤ 1.

Note that the sequences of functions hk(x) and Vk,γ(x) can be extended
beyond x = 1.

Next, we make some observations about the above defined functions.

Observation 1. Vk,γ(x) are positive continuous functions satisfying

V ′
k+1,γ(x) = 2Vk+1,γ(x)Vk,γ(x)− V 2

k,γ(x)

for all x ∈ [0, 1] \ (1− γ), with initial conditions Vk,γ(0) = 1.

Observation 2. Let γk = hk(1)
hk+1(1)

. Then

Vk,γk
(1) = hk+1(1) (216)

and
Vk,γ(1) = γ−1hk(1) ≥ hk+1(1) whenever γ ≤ γk. (217)

Observation 3.
Vk,γ(x) ≤ Vk+1,γ(x)

for all x ∈ [0, 1] since hk(x) ≤ hk+1(x).

Observation 4. Since h1(x) ≡ 1 and γ1 = h1(1)
h2(1)

,

h2(x) ≤ V1,γ1(x) =

{
1

1−x for 0 ≤ x ≤ 1− γ1,

γ−1
1 = h2(1) for 1− γ1 ≤ x ≤ 1.

Observation 4 generalizes as follows.

Proposition 19.

hk+1(x) ≤ Vk,γk
(x) =

{
1

1−x for 0 ≤ x ≤ 1− γk,

γ−1
k hk

(
x−(1−γk)

γk

)
for 1− γk ≤ x ≤ 1.

In order to prove Proposition 19 we will need the following lemma.

Lemma 29. For any γ ∈ (0, 1) and k ≥ 1, function Vk,γ(x)− hk+1(x) changes
its sign at most once as x increases from 1−γ to 1. Moreover, since Vk,γ(1−γ) =
h(1− γ) > hk+1(1 − γ), function Vk,γ(x) − hk+1(x) can only change sign from
nonnegative to negative.

Proof. This is a proof by induction with base at k = 1. Here V1,γ(x) = 1
γ is

constant on [1− γ, 1], while h2(x) = (1 + e2x)/2 is an increasing function, and

V1,γ(1− γ) = h(1− γ) > h2(1− γ).
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For the induction step, we need to show that if Vk,γ(x)−hk+1(x) changes its
sign at most once, then so does Vk+1,γ(x) − hk+2(x). Since both sequences of
functions satisfy the same ODE relation (see Observation 1), we have

d
dx

⎡⎣(Vk+1,γ(x)− hk+2(x)) · e
−2

x∫
1−γ

hk+1(y)dy

⎤⎦

= (2Vk+1,γ(x)−Vk,γ(x)−hk+1(x))·(Vk,γ(x)−hk+1(x))·e
−2

x∫
1−γ

hk+1(y)dy

,

where hk+1(x) ≤ Vk+1,γ(x) by definition of Vk+1,γ(x), and Vk,γ(x) ≤ Vk+1,γ(x)
as in Observation 3.

Now, let

I(x) :=

x∫
1−γ

(2Vk+1,γ(s)−Vk,γ(s)−hk+1(s))·(Vk,γ(s)−hk+1(s))·e
−2

s∫
1−γ

hk+1(y)dy

ds.

Then

(Vk+1,γ(x)− hk+2(x)) · e
−2

x∫
1−γ

hk+1(y)dy

= Vk+1,γ(1− γ)− hk+2(1− γ) + I(x).

The function 2Vk+1,γ(x)−Vk,γ(x)−hk+1(x) ≥ 0, and since Vk,γ(x)−hk+1(x)
changes its sign at most once, then I(x) should change its sign from nonnegative
to negative at most once as x increases from 1− γ to 1. Hence

Vk+1,γ(x)− hk+2(x) = (Vk+1,γ(1− γ)− hk+2(1− γ) + I(x)) · e
2

x∫
1−γ

hk+1(y)dy

should change its sign from nonnegative to negative at most once as

Vk+1,γ(1− γ) = h(1− γ) > hk+2(1− γ)

by (212).

Proof of Proposition 19. Take γ = γk in Lemma 29. Then function hk+1(x) −
Vk,γk

(x) should change its sign from nonnegative to negative at most once within
the interval [1−γk, 1]. Hence, Vk,γk

(1−γk) > hk+1(1−γk) and hk+1(1) = Vk,γk
(1)

imply hk+1(x) ≤ Vk,γk
(x) as in the statement of the proposition.

Now we are ready to prove the monotonicity result.

Lemma 30.
γk ≤ γk+1 for all k ∈ N+.

Proof. We prove it by contradiction. Suppose γk ≥ γk+1 for some k ∈ N+. Then

Vk,γk
(x) ≤ Vk,γk+1

(x) =

{
1

1−x for 0 ≤ x ≤ 1− γk+1,

γ−1
k+1hk

(
x−(1−γk+1)

γk+1

)
for 1− γk+1 ≤ x ≤ 1
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and therefore

hk+1(x) ≤ Vk,γk
(x) ≤ Vk,γk+1

(x) ≤ Vk+1,γk+1
(x)

as hk+1(x) ≤ Vk,γk
(x) by Proposition 19.

Recall that for x ∈ [1− γk+1, 1],

V ′
k+1,γk+1

(x) = 2Vk,γk+1
(x)Vk+1,γk+1

(x)− V 2
k,γk+1

,

where at 1 − γk+1 we consider only the right-hand derivative. Thus for x ∈
[1− γk+1, 1],

d

dx

(
Vk+1,γk+1

(x)− hk+2(x)
)
= A(x) +B(x)

(
Vk+1,γk+1

(x)− hk+2(x)
)
,

where A(x) = 2Vk+1,γk+1
(x)− Vk,γk+1

(x)− hk+1(x) ≥ 0, B(x) = 2hk+1(x) > 0,
and Vk+1,γk+1

(1− γk+1)− hk+2(1− γk+1) = h(1− γk+1)− hk+2(1− γk+1) > 0.
Hence

Vk+1,γk+1
(1)− hk+2(1) ≥ Vk+1,γk+1

(1− γk+1)− hk+2(1− γk+1) > 0

arriving to a contradiction since Vk+1,γk+1
(1) = hk+2(1).

Corollary 20. Limit lim
k→∞

γk exists.

Proof. Lemma 30 implies γk is a monotone increasing sequence, bounded by
1.

Proof of Lemma 28. Lemma 28 follows immediately from Corollary 20 and an

observation that hk+1(1)
hk(1)

= 1
γk
.

10. Generalized dynamical pruning

The Horton pruning (Def. 3), which is the key element of the self-similarity
theory developed in previous sections, is a very particular way of erasing a tree.
Here we suggest a general approach to erasing a finite tree from leaves down to
the root that include both combinatorial and metric prunings, and discuss the
respective prune-invariance.

Given a tree T ∈ L and a point x ∈ T , let Δx,T be the descendant tree of x: it
is comprised of all points of T descendant to x, including x; see Fig. 37a. Then
Δx,T is itself a tree in L with root at x. Let T1 = (M1, d1) and T2 = (M2, d2)
be two metric rooted trees (Def. 1), and let ρ1 denote the root of T1. A function
f : T1 → T2 is said to be an isometry if Image[f ] ⊆ Δf(ρ1),T2

and for all pairs
x, y ∈ T1,

d2
(
f(x), f(y)

)
= d1(x, y).

The tree isometry is illustrated in Fig. 37b. We use the isometry to define a
partial order in the space L as follows. We say that T1 is less than or equal
to T2 and write T1 " T2 if there is an isometry f : T1 → T2. The relation "
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Fig 37. Descendant subtree and tree isometry: an illustration. (a) Subtree Δx,T (solid black
lines) descendant to a point x (gray circle) in a tree T (union of dashed gray and soling black
lines). (b) Isometry of trees. Tree T1 (left) is mapped to tree T2 (right). The image of T1

within T2 is shown by black lines, the rest of T2 is shown by dashed gray lines. Here, tree T1

is less than tree T2, T1 � T2.

is a partial order as it satisfies the reflexivity, antisymmetry, and transitivity
conditions. Moreover, a variety of other properties of this partial order can be
observed, including order denseness and semi-continuity.

We say that a function ϕ : L → R is monotone nondecreasing with respect
to the partial order " if ϕ(T1) ≤ ϕ(T2) whenever T1 " T2. Consider a mono-
tone nondecreasing function ϕ : L → R+. We define the generalized dynamical
pruning operator St(ϕ, T ) : L → L induced by ϕ for any t ≥ 0 as

St(ϕ, T ) := ρ ∪
{
x ∈ T \ ρ : ϕ

(
Δx,T

)
≥ t

}
, (218)

where ρ denotes the root of tree T . Informally, the operator St cuts all subtrees
Δx,T for which the value of ϕ is below threshold t, and always keeps the tree
root. Extending the partial order to L by assuming φ " T for all T ∈ L, we
observe for any T ∈ L that Ss(T ) " St(T ) whenever s ≥ t.

10.1. Examples of generalized dynamical pruning

The dynamical pruning operator St encompasses and unifies a range of problems,
depending on a choice of ϕ, as we illustrate in the following examples.
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10.1.1. Example: pruning via the tree height

Let the function ϕ(T ) equal the height of tree T :

ϕ(T ) = height(T ). (219)

In this case the operator St satisfies the continuous semigroup property:

St ◦ Ss = St+s for any t, s ≥ 0.

It coincides with the continuous pruning (a.k.a. tree erasure) studied by Jacques
Neveu [123], who established invariance of a critical and sub-critical binary
Galton-Watson trees with i.i.d. exponential edge lengths with respect to this
operation.

It is readily seen that for a coalescent process (Sect. 8.8.1), the dynamical
pruning St of the corresponding coalescent tree with ϕ(T ) as in (219) replicates
the coalescent process. More specifically, the timing and order of particle mergers
is reproduced by the dynamics of the leaves of St(ϕ, T ). See Sect. 11.2.3, Thm. 29
for a concrete version of this statement for the coalescent dynamics of shocks in
the continuum ballistic annihilation model.

10.1.2. Example: pruning via the Horton-Strahler order

Let the function ϕ(T ) be one unit less than the Horton-Strahler order ord(T ) of
a tree T :

ϕ(T ) = ord(T )− 1. (220)

This function is also known as the register number [59, 66], as it equals the
minimum number of memory registers necessary to evaluate an arithmetic ex-
pression described by a tree T , assuming that the result is stored in an additional
register that also can be used for calculations.

With the choice (220), the dynamical pruning operator coincides with the
Horton pruning (Def. 3): St = R�t�, if we assume that all edge lengths equal to
unity. It is readily seen that St satisfies the discrete semigroup property:

St ◦ Ss = St+s for any t, s ∈ N.

Most of the present survey is focused on invariance of a tree distribution with
respect to this operation.

10.1.3. Example: pruning via the total tree length

Let the function ϕ(T ) equal the total lengths of T :

ϕ(T ) = length(T ). (221)

The dynamical pruning by the tree length is illustrated in Fig. 38 for a Y-shaped
tree that consists of three edges.
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Fig 38. Pruning by tree length: an illustration. Figure shows five generic stages in the dy-
namical pruning of a Y-shaped tree T , with pruning function ϕ(T ) = length(T ). The pruned
tree St is shown by solid black lines; the pruned parts of the initial tree are shown by dashed
gray lines.
Stage I: Initial tree T consists of three edges, with lengths a, b, c indicated in the panel; with-
out loss of generality we assume a < b.
Stage II: For any t < a the pruned tree St has a Y-shaped form with leaf edges truncated by
t.
Stage III: For any a ≤ t < b the pruned tree St consists of a single edge of length c+ b− t.
Stage IV: For any b ≤ t ≤ a + b the pruned tree St consists of a single edge of length c.
Notice that during this stage the tree St does not change with t; this loss of memory causes
the process to violate the semigroup property.
Stage V: For any a+ b < t < a+ b+ c the pruned tree St consists of a single edge of length
a+ b+ c− t.

Importantly, in this case St does not satisfy the semigroup property. To see
this, consider an internal vertex point x ∈ T (see Fig. 38, where the only internal
vertex is marked by a gray ball). Then Δx,T consists of point x as its root, the
left subtree of length a and the right subtree of length b. Observe that the whole
left subtree is pruned away by time a, and the whole right subtree is pruned
away by time b. However, since

ϕ(Δx,T ) = length(Δx,T ) = a+ b,

the junction point x will not be pruned until time instant a+ b. Thus, x will be
a leaf of St(ϕ, T ) for all t such that

max{a, b} ≤ t ≤ a+ b.

This situation corresponds to Stage IV in Fig. 38.
The semigroup property in this example can be introduced by considering

mass-equipped trees. Informally, we replace each pruned subtree τ of T with
a point of mass equal to the total length of τ . The massive points contain
some of the information lost during the pruning process, which is enough to
establish the semigroup property. Specifically, by time a, the pruned away left
subtree (Fig. 38, Stage III) turns into a massive point of mass a attached to x
on the left side. Similarly, by time b, the pruned away right subtree (Fig. 38,
Stage IV) turns into a massive point of mass b attached to x on the right
side. For max{a, b} ≤ t ≤ a + b, this construction keeps track of the quantity
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a + b − t associated with point x, and when the quantity a + b − t decreases
to 0, the two massive points coalesce into one. If at instant t a single massive
point seats at a leaf, its mass m = t, and the leaf’s parental edge is being
pruned. If at instant t two massive points (left and right) seat at a leaf, they
total mass m ≥ t, and further pruning of the leaf’s parental edge is prevented
until the instant t = m, when the two massive points coalesce. Keeping track
of all such quantities makes St satisfy the continuous semigroup property. This
construction is formally introduced in Sect. 11, which shows that the pruning
operator St with (221) coincides with the potential dynamics of continuum
mechanics formulation of the 1-D ballistic annihilation model, A+A→ ∅.

10.1.4. Example: pruning via the number of leaves

Let the function ϕ(T ) equal the number of leaves in a tree T . This choice is
closely related to the mass-conditioned dynamics of an aggregation process.
Specifically, consider N singletons (particles with unit mass) that appear in
a system at instants tn ≥ 0, 1 ≤ n ≤ N . The existing clusters merge into
consecutively larger clusters by pair-wise mergers. The cluster mass is additive:
a merger of two clusters of masses i and j results in a cluster of mass i+ j. We
consider a time-oriented tree T that describes this process. The tree T has N
leaves and (N −1) internal vertices. Each leaf corresponds to an initial particle,
each internal vertex corresponds to a merger of two clusters, and the edge lengths
represent times between the respective mergers. The action of St on such a tree
coincides with a conditional state of the process that only considers clusters of
mass ≥ t. A well-studied special case is a coalescent process with a kernel K(i, j)
of Sect. 8.8.1.

10.2. Pruning for R-trees

The generalized dynamical pruning is readily applied to real trees (Sect. 2.2),
although this is not the focus of our work. We notice that the total tree length
(Example 10.1.3) and number of leaves (Example 10.1.4) might be undefined
(infinite) for an R-tree. We introduce in Sect. 11.5.3 a mass function that can
serve as a natural general analog of these and other functions on finite trees.
We show (Sect. 11.2.3, Thm. 30) that pruning by mass is equivalent to the
pruning by the total tree lengths in a particular situation of ballistic annihilation
model with piece-wise continuous potential with a finite number of segments.
Accordingly, our results should be straightforwardly extended to R-trees that
appear, for instance, as a description of the continuum ballistic annihilation
dynamics for other initial potentials.

10.3. Relation to other generalizations of pruning

A pruning operation similar in spirit to the generalized dynamical pruning was
considered in a work by Duquesne and Winkel [54] that extended a formalism by
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Evans [63] and Evans et al. [64]. We notice that the two definitions of pruning,
the generalized dynamical pruning of Sect. 10 and that in [54], are principally
different, despite their similar appearance. In essence, the work [54] assumes the
Borel measurability with respect to the Gromov-Hausdorff metric ([54], Section
2), which implies the semigroup property of the respective pruning ([54], Lemma
3.11). On the contrary, the generalized dynamical pruning defined here may
have the semigroup property only under very particular choices of ϕ(T ) as in
the examples in Sect. 10.1.1 and 10.1.2. The majority of natural choices of ϕ(T ),
including the tree length ϕ(T ) = length(T ) (Sect. 10.1.3) or the number of
leaves in a tree (Sect. 10.1.4), do not satisfy the semigroup property, and hence
are not covered by the pruning of [54]. The main results of our Sect. 11 refer to
the pruning function ϕ(T ) = length(T ) that does not satisfy the semigroup
property, as shown in Sect. 10.1.3.

Curiously, for the above two examples with no semigroup property, i.e., when
ϕ(T ) = length(T ) and when ϕ(T ) equals the number of leaves in T , the
following discontinuity property holds with respect to the Gromov-Hausdorff
metric dGH defined in [63, 64, 54]. For any ε > 0 and any M > 0, there exist
trees T and T ′ in L such that

|ϕ(T )− ϕ(T ′)| > M while dGH(T, T
′) < ε.

Indeed, if ϕ(T ) = length(T ), we consider a tree T with the number of leaves
exceeding M/ε, and let T ′ be the tree obtained from T by elongating each of
its leaves by ε. Similarly, if ϕ(T ) is the number of leaves in T , we construct T ′

from T by attaching at least M/ε new leaves, each of length ε.

10.4. Invariance with respect to the generalized dynamical pruning

Consider a tree T ∈ Lplane with edge lengths given by a vector lT = (l1, . . . , l#T ).
The vector lT can be specified by distribution χ(·) of a point xT = (x1, . . . , x#T )
on the standard simplex

Δ#T =

{
xi :

#T∑
i

xi = 1, 0 < xi ≤ 1

}
,

and conditional distribution F (·|xT ) of the tree length length(T ), so that

lT = xT · length(T ).

Accordingly, a tree T can be completely specified by its planar shape, a vector
of proportional edge lengths, and the total tree length:

T = {p-shape(T ), xT , length(T )} .

A measure η on Lplane is a joint distribution of these three components:

η(T ∈ {τ, dx̄, d�}) = μ(τ) · χτ (dx̄) · Fτ,x̄(d�),



162 Y. Kovchegov and I. Zaliapin

where the tree planar shape is specified by

μ(τ) = Law (p-shape(T ) = τ) , τ ∈ Tplane,

the relative edge lengths is specified by

χτ (x̄) = Law (xT = x̄ | p-shape(T ) = τ) , x̄ ∈ Δ#T ,

and the total tree length is specified by

Fτ,x̄(�) = Law (length(T ) = � |xT = x̄, p-shape(T ) = τ) , � ≥ 0.

Let us fix t ≥ 0 and a function ϕ : Lplane → R+ that is monotone nondecreasing
with respect to the partial order ". We denote by S−1

t (ϕ, T ) the preimage of a
tree T ∈ Lplane under the generalized dynamical pruning:

S−1
t (ϕ, T ) = {τ ∈ Lplane : St(ϕ, τ) = T}.

Consider the distribution of edge lengths induced by the pruning:

Ξτ (x̄) = Law
(
xT̃ = x̄ | p-shape

(
T̃
)
= τ

)
and

Φτ,x̄(�) = Law
(
length

(
T̃
)
= � |xT̃ = x̄, p-shape

(
T̃
)
= τ

)
,

where the notation T̃ := St(ϕ, T ) is used for brevity.

Definition 34 (Generalized prune-invariance). Consider a function ϕ :
Lplane → R+ that is monotone nondecreasing with respect to the partial order
". A measure η on Lplane is called invariant with respect to the generalized
dynamical pruning St(·) = St(ϕ, ·) (or simply prune-invariant) if the following
conditions hold for all t ≥ 0:

(i) The measure is prune-invariant in shapes. This means that for the push-
forward measure ν = (St)∗(μ) = μ ◦ S−1

t we have

μ(τ) = ν(τ |τ �= φ).

(ii) The measure is prune-invariant in edge lengths. This means that for any
combinatorial planar tree τ ∈ Tplane

Ξτ (x̄) = χτ (x̄)

and there exists a scaling exponent ζ ≡ ζ(ϕ, t) > 0 such that for any
relative edge length vector x̄ ∈ Δ#τ we have

Φτ,x̄(�) = ζ−1Fτ,x̄

(
�

ζ

)
.
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Remark 21 (Pruning trees with no embedding). The generalized dynam-
ical pruning (218) and the notion of prune-invariance (Def. 34) can be similarly
defined on the space L of metric trees with no planar embedding. In this work
we only apply the concept of prune-invariance to planar trees.

Remark 22 (Relation to Horton prune-invariance). Definition 34 is sim-
ilar to Def. 9 of prune-invariance with respect to the Horton pruning, with com-
binatorial Horton pruning R being replaced with metric generalized dynamical
pruning St.

The prune-invariance of Def. 34 unifies multiple invariance properties exam-
ined in the literature. For example, the classical work by Jacques Neveu [123] es-
tablishes the prune-invariance of the exponential critical binary Galton-Watson
trees GW(λ) with respect to the tree erasure from the leaves down to the root at
a unit rate, which is equivalent to the generalized dynamical pruning with func-
tion ϕ(T ) = height(T ) (Sect. 10.1.1). The prune-invariance with respect to the
Horton pruning (Sect. 10.1.2) has been established by Burd et al. [34] for the
combinatorial critical binary Galton-Watson GW

(
1
2 ,

1
2

)
trees (Thm. 4 in Sect.

5.1.1). Duquesne and Winkel [54] established the prune-invariance of the expo-
nential critical binary Galton-Watson GW(λ) trees with respect to the so-called
hereditary property, which includes the tree erasure of Sect. 10.1.1 and Horton
pruning of Sect. 10.1.2. The critical Tokunaga trees analyzed in Sect. 7.5 are
prune-invariant with respect to the Horton pruning; this model includes GW(λ)
trees as a special case. Section 10.5 below establishes the prune-invariance of
the exponential critical binary Galton-Watson GW(λ) trees with respect to the
generalized pruning with an arbitrary pruning function ϕ(T ).

10.5. Prune-invariance of GW(λ)

This section establishes prune-invariance of exponential critical binary Galton-
Watson trees with respect to arbitrary generalized pruning.

Theorem 26 ([100]). Let T
d∼ GW(λ), T ∈ BL|

plane, be an exponential critical
binary Galton-Watson tree with parameter λ > 0. Then, for any monotone

nondecreasing function ϕ : BL|
plane → R+ and any Δ > 0 we have

TΔ := {SΔ(ϕ, T )|SΔ(ϕ, T ) �= φ} d∼ GW(λpΔ(λ, ϕ)),

where pΔ(λ, ϕ) = P(SΔ(ϕ, T ) �= φ). That is, the pruned tree TΔ conditioned on
surviving, is an exponential critical binary Galton-Watson tree with parameter

EΔ(λ, ϕ) = λpΔ(λ, ϕ).

Proof. Let X denote the length of the stem (edge adjacent to the root) in T ,
and Y denote the length of the stem in TΔ. Let x be the nearest descendent
vertex (a junction or a leaf) to the root in T . Then X, which is an exponential
random variable with parameter λ, represents the distance from the root of T
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Fig 39. Sub-events used in the proof of Thm. 26. Gray dashed line shows (a part of) initial
tree T . Solid black line shows (a part of) pruned tree TΔ. We denote by xh a point in T
located at distance h from the root, if it exists.

to x. Let degT (x) denote the degree of x in tree T and degTΔ(x) denote the
degree of x in tree TΔ. If TΔ = φ, then Y = 0. Let

F (h) = P(Y ≤ h | SΔ(ϕ, T ) �= φ).

Let xh denote a point in T located at distance h from the root, if such exists.
If X ≥ h, the choice of xh is unique. The event {Y ≤ h} is partitioned into the
following non-overlapping sub-events S1, . . . , S4 illustrated in Fig. 39:

(S1) The event S1 =
{
degT (x) = 1 and X ≤ h

}
has probability

P(S1) =
1

2
(1− e−λh).

(S2) The event

S2 =
{
X > h and all points of T descendant to xh do not belong to TΔ

}
has probability

P(S2) = e−λh(1− pΔ).

(S3) The event S3 =
{
X ≤ h and degT (x) = 3 and either both subtrees of T

descending from x are pruned away completely (not intersecting TΔ) or

{x ∈ TΔ, degTΔ(x) = 3}
}
has probability

P(S3) =
1

2
(1− e−λh)

(
(1− pΔ)

2 + p2Δ
)
.

(S4) The event

S4 = {X ≤ h, degT (x) = 3} ∩ {x ∈ TΔ, degTΔ(x) = 2} ∩ {Y ≤ h}
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has probability4

P(S4) =
1

2

h∫
0

λe−λt·2pΔ(1−pΔ)·F (h−t) dt = pΔ(1−pΔ)
∞∫
0

λe−λtF (h−t) dt.

Using this we have two representations for the probability P(Y ≤ h):

P(Y ≤ h) = (1− pΔ) + pΔF (h)

and

P(Y ≤ h) =P(S1) + P(S2) + P(S3) + P(S4)

=
1

2
(1− e−λh) + e−λh(1− pΔ)

+
1

2
(1− e−λh)

(
(1− pΔ)

2 + p2Δ
)

+ pΔ(1− pΔ)

∞∫
0

λe−λtF (h− t) dt.

Equating the two expressions of P(Y ≤ h) and simplifying, we obtain

(1− pΔ)+ pΔF (h) = (1− pΔ + p2Δ)− e−λhpΔ + pΔ(1− pΔ)

∞∫
0

λe−λtF (h− t) dt.

Differentiating the above equality we obtain the following equation for the p.d.f.
f(t) = d

dtF (t) of Y :

f(h) = pΔ φλ(h) + (1− pΔ)φλ ∗ f(h),

where as before φλ denotes the exponential density with parameter λ as in (72).
Applying integral transformation on both sides of the equation, we obtain the
characteristic function f̂(s) = E

[
eisY

]
of Y ,

f̂(s) =
λpΔ

λpΔ − is
= φ̂λpΔ(s).

Thus, we conclude that Y is an exponential random variable with parameter
λpΔ.

Next, let y be the descendent vertex (a junction or a leaf) to the root in TΔ.
If TΔ = φ, let y denote the root. Let

q = P
(
degTΔ(y) = 3

∣∣ SΔ(ϕ, T ) �= φ
)
.

Then,

q pΔ = P(degTΔ(y) = 3) =P(degT (x) = 3)
[
P
(
degTΔ(x) = 3 | degT (x) = 3

)
4Here, degTΔ (x) = 2 means x is neither a junction nor a leaf in TΔ.
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+ q P
(
degTΔ(x) = 2 | degT (x) = 3

)]
=
1

2

[
p2Δ + 2pΔ(1− pΔ)q

]
implying

q =
1

2
pΔ + (1− pΔ)q,

which in turn yields q = 1
2 .

Finally, if Y ≥ h, let xh denote the unique point of T located at distance h
from the root that survived the pruning. Letting TΔ

xh
:= SΔ(ϕ,Δxh,T ), we have(

TΔ
xh

∣∣Y > h
) d
=

(
TΔ

∣∣SΔ(ϕ, T ) �= φ
)
.

Hence, conditioned on SΔ(ϕ, T ) �= φ, the events
{
degTΔ(y) = 3} and

{
Y > h

}
are independent.

We saw that conditioning on SΔ(ϕ, T ) �= φ, the pruned tree TΔ has the stem
length distributed exponentially with parameter λpΔ. Next, independently of
the stem length Y , we have the pruned tree TΔ branching at y (the stem end
point farthest from the root), with probability q = 1

2 , into two independent
subtrees, each distributed5 as {TΔ | TΔ �= φ}. Thus, we recursively obtain that
TΔ is a critical binary Galton-Watson tree with i.i.d. exponential edge length
with parameter λpΔ.

Next, we find an exact form of the survival probability pΔ(λ, ϕ) for three
particular choices of ϕ, thus obtaining EΔ(λ, ϕ).
Theorem 27 ([100]). In the settings of Theorem 26, we have

(a) If ϕ(T ) equals the total length of T (ϕ = length(T )), then

EΔ(λ, ϕ) = λe−λΔ
[
I0(λΔ) + I1(λΔ)

]
.

(b) If ϕ(T ) equals the height of T (ϕ = height(T )), then

EΔ(λ, ϕ) =
2λ

λΔ+ 2
.

(c) If ϕ(T ) + 1 equals the Horton-Strahler order of the tree T , then

EΔ(λ, ϕ) = λ2−�Δ�,

where �Δ� denotes the maximal integer ≤ Δ.

Proof. Part (a). Suppose T
d∼ GW(λ), and let �(x) once again denote the p.d.f.

of the total length length(T ). Then, by Lemma 8,

pΔ =1−
Δ∫
0

�(x) dx = 1−
λΔ∫
0

1

x
e−xI1

(
x
)
dx

5Here, y is also a junction vertex in T of which it is only known that both of its descendent
subtrees survived pruning (were not completely erased).
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= e−λΔ
[
I0(λΔ) + I1(λΔ)

]
, (222)

where for the last equality we used formula 11.3.14 in [3].

Part (b). Suppose T
d∼ GW(λ). Let H(x) once again denote the cumulative

distribution function of the height height(T ). Then by Lemma 9, for any Δ > 0,

pΔ = 1− H(Δ) =
2

λΔ+ 2
.

Part (c). Follows from Corollary 12(a).

Remark 23. Let EΔ(λ, ϕ) = 2λ
λΔ+2 as in Theorem 27(b). Here E0(λ, ϕ) = λ

and EΔ(λ, ϕ) is a linear-fractional transformation associated with matrix

AΔ =

(
1 0
Δ
2 1

)
.

Since AΔ form a subgroup in SL2(R), the transformations {EΔ}Δ≥0 satisfy the
semigroup property

EΔ1EΔ2 = EΔ1+Δ2

for any pair Δ1,Δ2 ≥ 0.
We notice also that the operator EΔ(λ, ϕ) in part (c) of Theorem 27 satisfies

only the discrete semigroup property for nonnegative integer times. Finally, one
can check that EΔ(λ, ϕ) in part (a) does not satisfy the semigroup property.

11. Continuum 1-D ballistic annihilation

As an illuminating application of the generalized dynamical pruning (Sect. 10)
and its invariance properties (Sect. 10.4), we consider the dynamics of particles
governed by 1-D ballistic annihilation model, traditionally denoted A+ A→ ∅
[57]. This model describes the dynamics of particles on a real line: a particle
with Lagrangian coordinate x moves with a constant velocity v(x) until it col-
lides with another particle, at which moment both particles annihilate, hence
the model notation. The annihilation dynamics appears in chemical kinetics
and bimolecular reactions and has received attention in physics and probability
literature [57, 21, 20, 134, 49, 22, 58, 33, 102, 148].

In a continuum version of the ballistic annihilation model introduced in [100],
the moving shock waves represent the sinks that aggregate the annihilated par-
ticles and hence accumulate the mass of the media. Dynamics of these sinks
resembles a coalescent process that generates a tree structure for their trajecto-
ries, which explains the term shock wave tree that we use below. The dynamics of
a ballistic annihilation model with two coalescing sinks is illustrated in Fig. 40.

Sect. 11.1 introduces the continuum annihilation model and describes the
natural emergence of sinks (shocks). The model initial conditions are given by
a particle velocity distribution and particle density on R. Subsequently, we only
consider a constant density and initial velocity distribution with alternating
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Fig 40. Ballistic annihilation model: an illustration. A particle with Lagrangian coordinate
x moves with velocity v(x, 0) until it collides with another particle and annihilates. (Bottom
panel): Initial velocity v(x, 0). (Top panel): The space-time portrait of the system. The tra-
jectories of selected particles are depicted by gray thin lines. The shock wave that describes
the motion and coalescence of sinks is shown by solid black line. The sink trajectory forms
an inverted Y-shaped tree.

values ±1, or, equivalently, initial piece-wise linear potential ψ(x, 0) with alter-
nating slopes ±1 (Fig. 41). Section 11.2 discusses a construction of the graphical
embedding of the shock wave tree into the phase space (x, ψ(x, t)) and space-
time domain (x, t). Theorems 29, 30 in Sect. 11.2.3 establish equivalence of
the ballistic annihilation dynamics to the generalized dynamical pruning of a
(mass-equipped) shock wave tree. Sections 11.3, 11.4 illustrate how the pruning
interpretation of annihilation dynamics facilitates analytical treatment of the
model. Specifically, we give a complete description of the time-advanced po-
tential function ψ(x, t) at any instant t > 0 for the initial potential in a form
of exponential excursion (Thm. 31), and describe the temporal dynamics of a
random sink (Thms. 32, 33). A real tree representation of ballistic annihilation
is discussed in Sect. 11.5.

11.1. Continuum model, sinks, and shock trees

Consider a Lebesgue measurable initial density g(x) ≥ 0 of particles on an
interval [a, b] ⊂ R. The initial particle velocities are given by v(x, 0) = v(x).
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Prior to collision and subsequent annihilation, a particle located at x0 at time
t = 0 moves according to its initial velocity, so its coordinate x(t) changes as

x(t) = x0 + tv(x0). (223)

When the particle collides with another particle, it annihilates. Accordingly, two
particles with initial coordinates and velocities (x−, v−) and (x+, v+) collide and
annihilate at time t when they meet at the same new position,

x− + tv− = x+ + tv+,

given that neither of the particles annihilated prior to t. In this case, the anni-
hilation time is given by

t = −x+ − x−
v+ − v−

. (224)

Let g(x, t) and v(x, t) be the Eulerian specification of the particle density and
velocity field, respectively, at coordinate x and time instant t, with a convention
that g(x, t) = 0⇒ v(x, t) = 0. We define the corresponding potential function

ψ(x, t) = −
∫ x

a

v(y, t)dy, x ∈ [a, b], t ≥ 0,

so that v(x, t) = −∂xψ(x, t). Let ψ(x, 0) = Ψ0(x) be the initial potential.
We call a point σ(t) sink (or shock), if there exist two particles that annihilate

at coordinate σ(t) at time t. Suppose v(x) ∈ C1(R). The equation (224) implies
that appearance of a sink is associated with a negative local minima of v′(x∗);
we call such points sink sources. Specifically, if x∗ is a sink source, then a sink
will appear at breaking time t∗ = −1/v′(x∗) at the location given by

σ(t∗) = x∗ + t∗v(x∗) = x∗ − v(x∗)

v′(x∗)
,

provided there exists a punctured neighborhood

Nδ(x
∗) = {x : 0 < |x− x∗| < δ} ⊆ [a, b]

such that none of the particles with the initial coordinates in Nδ(x
∗) is annihi-

lated before time t∗.
Sinks, which originate at sink sources, can move and coalesce (see Fig. 40).

We refer to a sink trajectory as a shock wave. We impose the conservation of
mass condition by defining the mass of a sink at time t to be the total mass
of particles annihilated in the sink between time zero and time t. When sinks
coalesce, their masses add up. It will be convenient to assume that sinks do
not disappear when they stop accumulating mass. Informally, we assume that
the sinks are being pushed by the system particles. Formally, there exists three
cases depending on the occupancy of a neighborhood of σ(t). If there exists an
empty neighborhood around the sink coordinate σ(t), the sink is considered at
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Fig 41. Piece-wise linear unit slope potential: an illustration. (Top): Arrows indicate alter-
nating directions of particle movement on an interval in R. (Middle): Potential Ψ0(x) is a
piece-wise linear unit slope function. (Bottom): Particle velocity alternates between values ±1
within consecutive intervals.

rest – its coordinate does not change. If only the left neighborhood of σ(t) is
empty, and the right adjacent velocity is negative:

v(σ+, t) := lim
x↓σ(t)

v(x, t) < 0,

the sink at σ(t) moves with velocity v(σ+, t). A similar rule is applied to the
case of right empty neighborhood. The appearance, motion, and subsequent
coalescence of sinks can be described by a time oriented shock tree. In particular,
the coalescence of sinks under initial conditions with a finite number of sink
sources is described by a finite tree.

The dynamics of ballistic annihilation, either in discrete or continuum ver-
sions, can be quite intricate and is lacking a general description. The existing
analyses focus on the evolution of selected statistics under particular initial con-
ditions. In the following sections, we give a complete description of the dynamics
in case of two-valued initial velocity and constant particle density.

11.2. Piece-wise linear potential with unit slopes

The discrete 1-D ballistic annihilation model with two possible velocities ±v
was considered in [57, 20, 22, 58, 33]; the three velocity case (−1, 0, and +1)
appeared in [49, 148]. Here, we explore a continuum version of the 1-D ballistic
annihilation with two possible initial velocities and constant initial density, i.e.,
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v(x) = ±v and g(x, 0) ≡ g(x) ≡ g0 for x ∈ [a, b]. Since we can scale both space
and time, without loss of generality we let v(x) = ±1 and g(x) ≡ 1.

Recall (Sect. 8.3) the space Eex of positive piece-wise linear continuous ex-
cursions with alternating slopes ±1 and finite number of segments. We write
Eex([a, b]) for the restriction of this space on the real interval [a, b]. We consider
an initial potential ψ(x, 0) = Ψ0(x) such that −ψ(x, 0) ∈ Eex([a, b]); see Fig. 41.
This space bears a lot of symmetries that facilitate our analysis.

The dynamics of a system with a simple unit slope potential is illustrated in
Fig. 42. Prior to collision, the particles move at unit speed either to the left or
to the right, so their trajectories in the (x, t) space are given by lines with slope
±1 (Fig. 42, top panel, gray lines). The local minima of the potential Ψ0(x)
correspond to the points whose right neighborhood moves to the left and left
neighborhood moves to the right with unit speed, hence immediately creating a
sink. Accordingly, the sinks appear at t = 0 at the local minima of the potential;
and those are the only sinks of the system. The sinks move and merge to create
a shock wave tree, shown in blue in Fig. 42.

Observe that the domain [a, b] is partitioned into non-overlapping subintervals
with boundaries xj such that the initial particle velocity assumes alternating
values of ±1 within each interval, with boundary values v(a, 0) = v(a) = 1 and
v(b, 0) = v(b) = −1. Because of the choice of potential Ψ0(x), we have

b∫
a

v(x) dx = Ψ0(b)−Ψ0(a) = 0,

i.e., the total length of the subintervals with the initial velocity −1 equals the
total length of the subintervals with the initial velocity 1. For a finite interval
[a, b], there exists a finite time tmax = (b− a)/2 at which all particles aggregate
into a single sink of mass m = (b − a) = 2 tmax [100]. We only consider the
solution on the time interval [0, tmax], and assume that the density of particles
vanishes outside of [a, b].

11.2.1. Graphical representation of the shock wave tree

For our fixed choice of the initial particle density g(x) ≡ 1, the model dynamics
is completely determined by the potential Ψ0(x). We will be particularly inter-
ested in the dynamics of sinks (shocks), which we refer to as shock waves. The
trajectories of sinks can be described by a set (Fig. 42, top panel)

G(x,t)(Ψ0) =
{(

x, t
)
∈ R2 : ∃ a sink satisfying σ(t) = x

}
in the system space-time domain (x, t) : x ∈ [a, b], t ∈

[
0, (b − a)/2

]
. These

trajectories have a finite binary tree structure: the combinatorial planar shape

of G(x,t)(Ψ0) is a finite tree in BT |
plane [100]. For any two points (xi, ti) ∈

G(x,t)(Ψ0), i = 1, 2, connected by a unique self-avoiding path γ within G(x,t)(Ψ0),
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we define the distance between them as

d(x,t)
(
(x1, t1), (x2, t2)

)
=

∫
γ

|dt| = 2t∗ − t1 − t2,

where

t∗ := max{t : (x, t) ∈ γ}.

Equivalently, the distance between the points within a single edge is defined as
their nonnegative time increment; this induces the distance d(x,t) on G(x,t)(Ψ0).

Similarly, the trajectories of the sinks can be described by a set (Fig. 42,
bottom panel)

G(x,ψ)(Ψ0) =
{(

x, ψ(x, t)
)
∈ R2 : ∃ a sink satisfying σ(t) = x

}
in the system phase space (x, ψ(x, t)) : x ∈ [a, b], t ∈

[
0, (b − a)/2

]
. For any

two points (xi, ψi) ∈ G(x,ψ)(Ψ0), i = 1, 2, connected by a unique self-avoiding
path γ within G(x,ψ)(Ψ0), we define the distance between them as

d(x,ψ)
(
(x1, ψ1), (x2, ψ2)

)
=

∫
γ

(
|dt|+ |dx|

)
.

Equivalently, one can consider the L1 distance between the points within a single
edge; this induces the distance d(x,ψ) on G(x,ψ)(Ψ0).

Lemma 31 ([100]). The metric spaces
(
G(x,t)(Ψ0), d

(x,t)
)

and
(
G(x,ψ)(Ψ0),

d(x,ψ)
)
are trees (Def. 1). Furthermore, they have a finite number of edges and

are isomeric to a unique binary tree from BL|
plane that we denote by S(Ψ0).

We refer to the trees of Lem. 31 as the graphical trees G(x,t)(Ψ0) and G(x,ψ)(Ψ0)
since they are two alternative graphical representations of the shock wave tree
S(Ψ0).

11.2.2. Structure of the shock wave tree

Importantly, for our particular choice of the initial potential, the combinatorial
structure and the planar embedding of the shock wave tree coincide with that
of the level set tree T = level

(
−Ψ0

)
of the initial potential, as we state in the

following theorem.

Theorem 28 (Shock wave tree is a level set tree, [100]). Suppose g(x) ≡ 1
and the initial potential Ψ0(x) is such that −Ψ0(x) ∈ Eex. Then

p-shape

(
level (−Ψ0)

)
= p-shape

(
S(Ψ0)

)
.
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Theorem 28 implies that there is one-to-one correspondence between internal
local maxima of Ψ0(x) and internal non-root vertices of S(Ψ0). There is also a
one-to-one correspondence between local minima and the leaves. We label the
tree vertices with the indices j that correspond to the enumeration of the local
extrema xj of Ψ0(x); see Fig. 43. We write parent(i) for the index of the parent
vertex to vertex i; right(i) and left(i) for the indices of the right and the left
offsprings of an internal vertex i; and sibling(i) for the index of the sibling of
vertex i.

For a local extremum xj , we define its basin Bj as the shortest interval that
contains xj and supports a non-positive excursion of Ψ0(x). Formally, Bj =

[xleft
j , xright

j ], where

xright
j = inf

{
x : x > xj and Ψ0(x) > Ψ(xj)

}
,

xleft
j = sup

{
x : x < xj and Ψ0(x) > Ψ(xj)

}
.

We observe that the basin Bj for a local minimum xj coincides with its coordi-

nate: Bj = {xj = xleft
j = xright

j }.
The basin’s length is

∣∣Bj∣∣ = xright
j −xleft

j . Point cj = (xright
j +xleft

j )/2 denotes
the center of the basin Bj . Additionally, we let

vj = Ψ0(xparent(j))−Ψ0(xj) and hj =
∣∣Bsibling(j)∣∣/2.

We are now ready to describe the metric structure of the shock tree S(Ψ0)
and a constructive embedding G(x,ψ)(Ψ0) of the tree S(Ψ0) into the system’s
phase space.

Metric tree structure. The length lj of the parental edge of a non-root
vertex j within S(Ψ0) is given by lj = vj + hj .

Graphical shock tree in the phase space. The tree G(x,ψ)(Ψ0) is the
union of the following vertical and horizontal segments:

(v) For every local extremum xj of Ψ0(x) there exists a vertical segment from
(cj ,Ψ0(xj)) to (cj ,Ψ0(xj) + vj).

(h) For every local maximum xj of Ψ0(x) there exists a horizontal segment of
length hleft(j) + hright(j) from (cleft(j),Ψ0(xj)) to (cright(j),Ψ0(xj)).

Figure 43 shows the graphical shock trees G(x,ψ) and G(x,t) for an initial
potential with two local maxima and three local minima, and illustrates the
labeling of vertical (vj) and horizontal (hj) segments of the tree. Figure 44
shows an example of the graphical tree G(x,ψ) for an initial potential with nine
local minima (and, hence, with nine initial sinks).

Consider a tree V(Ψ0) ∈ BL|
plane that has the same planar combinatorial

structure as S(Ψ0), and the length of the parental edge of vertex j is given by
lj = vj . Informally, this is a tree that consists of the vertical segments of the
graphical tree G(x,ψ)(Ψ0) (Fig. 42, bottom). We have the following corollary of
Thm. 28.
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Fig 42. Shock wave tree (sink tree) in a model with a unit slope potential: an illustration.
(Top panel): Space-time dynamics of the system. Trajectories of particles are illustrated by
gray lines. The trajectory of coalescing sinks is shown by blue line – this is the graphical rep-
resentation G(x,t)(Ψ0) of the shock wave tree S(Ψ0). Notice the appearance of empty regions
(zero particle density) in the space-time domain. (Bottom panel): Initial unit slope potential
Ψ0(x) with three local minima (black line) and a graphical representation G(x,ψ)(Ψ0) of the
shock wave tree (blue line) in the phase space (x, ψ(x, t)).

Corollary 21 ([100]). Suppose g(x) ≡ 1 and potential Ψ0(x) is such that
−Ψ0(x) ∈ Eex. Then

V(Ψ0) = level (−Ψ0) .

11.2.3. Ballistic annihilation as generalized pruning

This section shows that the dynamics of continuum ballistic annihilation with
constant initial density and unit-slope potential is equivalent to the generalized
dynamical pruning of either the shock wave tree (Thm. 29) or the level set tree
of the potential (Thm. 30).

Suppose a tree T ∈ BL|
plane has a particular graphical representation GT ∈ R2

implemented by a bijective isometry f : T → GT that maps the root of T into
the root of GT . We extend the notion of the generalized dynamical pruning
St(ϕ,GT ) for the graphical tree GT by considering the f -image of St(ϕ, T ):

St(ϕ,GT ) = f
(
St(ϕ, T )

)
.
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Fig 43. Shock tree for a piece-wise linear potential with two local maxima. (Top): The shock
tree in space-time domain (blue). Hatching illustrates motion of regular particles. There exist
two empty rectangular areas, each corresponding to one of the local maxima. The panel illus-
trates indexing of the tree vertices. (Bottom): Potential Ψ0(x) (black) and the shock tree in
the phase space (blue). The panel illustrates the labeling of vertical (vj) and horizontal (hj)
segments of the tree.

Consider a natural isometry (Lem. 31) between the shock wave tree S(Ψ0) and
either of the graphical shock trees, G(x,t)(Ψ0) (in the space-time domain) or
G(x,ψ)(Ψ0) (in the phase space). The next theorem formalizes an observation
that the dynamics of sinks is described by the continuous pruning (Sect. 10.1.1)
of the shock wave tree.

Theorem 29 (Annihilation pruning I, [100]). Suppose g(x) ≡ 1, and the
initial potential Ψ0(x) is such that −Ψ0(x) ∈ Eex. Then, the dynamics of sinks
is described by the generalized dynamical pruning St(ϕ,G) of either the graphical
tree G = G(x,ψ)(Ψ0) (in the phase space) or G = G(x,t)(Ψ0) (in the space-time
domain), with the pruning function ϕ(T ) = height(T ). Specifically, the loca-
tions of sinks at any instant t ∈ [0, tmax) coincide with the location of the leaves
of the pruned tree St(ϕ,G).
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Fig 44. Graphical representation G(x,ψ)(Ψ0) (blue) of the sink tree S(Ψ0) for initial potential
Ψ0(x) with nine local minima (black). There are nine sinks that correspond to the leaves of
the tree. The trajectory of each sink can be traced by going from the corresponding leaf to the
root of the tree.

Theorem 29 only refers to the dynamics of the sinks; it is, however, intuitively
clear that the entire potential ψ(x, t) at any given t > 0 can be uniquely re-
constructed from either of the pruned graphical trees, G(x,t)(Ψ0) or G(x,ψ)(Ψ0).
Because of the multiple symmetries [100], the graphical trees possess signifi-
cant redundant information. It has been shown in [100] that the reduced tree
V(Ψ0) (Cor. 21) equipped with information about the sinks provides a mini-
mal description sufficient for reconstructing the entire continuum annihilation
dynamics.

Lemma 32 ([100]). Suppose g(x) ≡ 1, and the initial potential Ψ0(x) is such
that −Ψ0(x) ∈ Eex. Then,

level(ψ(x, t)) = St(length,V(Ψ0)).

Lemma 32 states that the level set tree (i.e., the sequence of the local ex-
treme values) of ψ(x, t) is uniquely reconstructed from the pruned tree V(Ψ0).
This, however, is not sufficient to reconstruct the entire time-advanced poten-
tial, which has plateaus corresponding to the intervals of zero density (recall
the empty regions in the top panels of Fig. 42). The information about such
plateaus is lost in the pruned tree. It happens that it suffices to remember “the
size” of the pruned out parts of the tree in order to completely reconstruct the
annihilation dynamics from V(Ψ0). Specifically, we store the value ϕ(τ) for each
subtree τ that has been pruned out. These values are stored in the cuts – the
points where the pruned subtrees were attached to the initial tree; see Fig. 45(a).
The cuts is a union of the leaves of the pruned tree and the vertices of the initial
tree that became edge points in the pruned tree. A formal definition is given
below.

Definition 35 (Cuts). The set Dt(ϕ, T ) of cuts in a pruned tree St(ϕ, T ) is
defined as the boundary of the pruned part of the tree

Dt(ϕ, T ) = ∂{x ∈ T : ϕ(Δx,T ) < t}.

We now define an extension S̃t(ϕ, T ) of the generalized dynamical pruning
that preserves the sizes of pruned subtrees. Such pruning starts with a tree from
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Fig 45. Cuts and massive points: an illustration. (a) Pruned tree St(length, T ) (solid black)
with the set of cuts (red circles). The pruned parts of the initial tree T are shown in gray.
Here, we prune by length; the cuts a, d correspond to Stage IV of Fig. 38. The cuts a and
d are placed at vertices of T that became leaves within St(length, T ). The cuts b and e are
placed at the leaves of the pruned tree. The cuts c and f are placed at vertices of T that became
non-vertex points within St(length, T ). (b) Massive points (red circles) placed at the cuts.
Each of the cuts a and d hosts two oriented massive points. Each of the cuts b and e hosts
a single unoriented massive point. Each of the cuts c and f hosts a single oriented massive
point. The circle size is proportional to the mass.

BL|
plane and results in a tree from the space of mass-equipped trees, denoted

B̃L
|
plane. The pruning S̃t(ϕ, T ) of a tree T ∈ BL

|
plane is a tree from B̃L

|
plane, whose

projection to BL|
plane coincides with St(ϕ, T ). In addition, the tree is equipped

with massive points placed at the cuts. Each massive point corresponds to a
pruned out subtree τ of T , with mass equal ϕ(τ). If a cut is the boundary for
two pruned subtrees (Fig. 45(a), cuts a, d), then it hosts two oriented masses.
Such cuts are typical in prunings that do not have the semigroup property (see

Fig. 38, Stage IV). Figure 45(b) illustrates mass-equipped pruning S̃t(ϕ, T ) with
pruning function ϕ = length.

Next, we describe how to construct a potential ψT,t(x) for a given t ∈ [0, tmax]

and all x ∈ [a, b] from a pruned mass-equipped tree T = S̃t(length,V(Ψ0)).
Theorem 30 then shows that this reconstructed potential coincides with the
time-advances potential of the annihilation dynamics.

Construction 1 (Tree → potential). Suppose T = S̃t(length,V(Ψ0)). The
corresponding potential ψT,t(x), with −ψT,t(x) ∈ Eex, is constructed in the fol-
lowing steps:

(1) Construct the Harris path HT (x) for the projection of T to BL|
plane (i.e.,

disregarding masses), and consider the negative excursion −HT (x).
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(2) At every local minimum of −HT (x) that corresponds to a double mass
(mL,mR), insert a horizontal plateau of length

ε = 2(mL +mR − t),

as illustrated in Fig. 46, Stage 3.
(3) At every monotone point of −HT (x) that corresponds to an internal mass

m, insert a horizontal plateau of length 2m (Fig. 46, Stage 2).
(4) At every internal local maxima of −HT (x), insert a horizontal plateau of

length 2t (Fig. 46, Stage 1).

The following theorem establishes the equivalence of the continuum annihila-
tion dynamics and mass-equipped generalized dynamical pruning with respect
to the tree length. In particular, it includes the statement of Lem. 32.

Theorem 30 (Annihilation pruning II, [100]). Suppose g(x) ≡ 1 and the
initial potential Ψ0(x) is such that −Ψ0(x) ∈ Eex. Then, for any t ∈ [0, tmax],
the time-advances potential ψ(x, t) is uniquely reconstructed (by Construction 1)

from the pruned tree T = S̃t(length,V(Ψ0)). That is, ψ(x, t) ≡ ψT,t for all
x ∈ [a, b].

It is shown in [100] that, inversely, the mass-equipped tree S̃t(length,V(Ψ0))
can be uniquely reconstructed from the time-advanced potential ψ(x, t). Hence,
the continuum ballistic annihilation dynamics is equivalent to the mass-equipped
generalized dynamical pruning of the level set tree of the initial potential. The
next sections illustrates how this equivalence facilitates the analytical treatment
of the model.

11.3. Ballistic annihilation of an exponential excursion

This section examines a special case of piece-wise linear potential with unit
slopes: a negative exponential excursion. Consider potential

ψ(x, 0) = −HGW(λ)(x)

that is the negative Harris path (Sect. 8.1) of an exponential critical binary
Galton-Watson tree with parameter λ (Def. 30). In words, the potential is a
negative finite excursion with linear segments of alternating slopes ±1, such
that the lengths of all segments except the last one are i.i.d. exponential random
variables with parameter λ/2. Accordingly, the initial particle velocity v(x, 0)
alternates between the values ±1 at epochs of a stationary Poisson point process
on R with rate λ/2, starting with +1 and until the respective potential crosses
the zero level.

Corollary 22 (Exponential excursion). Suppose g(x) ≡ 1 and initial poten-

tial Ψ0(x) = −HGW(λ)(x). Then the corresponding tree V(Ψ0) ∈ BL|
plane is an

exponential binary critical Galton-Watson tree GW(λ).
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Fig 46. Four generic stages in the ballistic annihilation dynamics of a W-shaped potential
(left), and respective mass-equipped trees (right). The lengths v1 and v3 of the two vertical
leaf segments are assigned as illustrated in the Stage 4 (see also Fig. 43). (Left): Potential
ψ(x, t) is shown in solid black. Each plateau (dashed gray) corresponds to an interval of zero
density. The graphical shock tree G(x,ψ)(Ψ0) (blue) and sinks (black circles) are shown for
visual convenience. (Right): Mass-equipped trees. Segment lengths are marked in black, point
masses are indicated in gray. Notice progressive increase of the point masses from Stage 1
to 4. The Stages 1 to 4 refer to time instants t1 < t2 < t3 < t4. Here v3 < v1, v3 > t1,
v3 < t2 < v1, v1 < t3, and t3 < v1 + v3 < t4.

Proof. By Cor. 21, the tree V(Ψ0) is the level set tree of the negative potential
−Ψ0(x). The statement now follows from Thm. 20.

To formulate the next result, recall that if T
d∼ GW(λ) and ϕ(T ) =
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length(T ), then by (222),

pt := P(ϕ(T ) > t) = e−λt
[
I0(λt) + I1(λt)

]
.

Also, the p.d.f. of length(T ) is given by �(x) of (73).

Theorem 31 (Ballistic annihilation dynamics of an exponential excur-
sion, [100]). Suppose the initial particle density is constant, g(x) ≡ 1, and the
initial potential ψ(x, 0) is the negative Harris path of an exponential critical bi-

nary Galton-Watson tree with parameter λ, i.e., V(Ψ0)
d∼ GW(λ). Then, at any

instant t > 0 the mass-equipped shock tree Vt = S̃t(length,V(Ψ0)) conditioned
on surviving, Vt �= φ, is distributed according to the following rules.

(i) The planar shape of the tree, as an element of BL|
plane, is distributed as

an exponential binary Galton-Watson tree GW(λt) with λt := λpt.
(ii) A single or double mass points are placed independently in each leaf with

the probability of a single mass being

2

λ

�(t)

p2t
.

(iii) Each single mass at a leaf has mass m = t. For a double mass, the indi-
vidual masses (mL,mR) have the following joint p.d.f.

f(a, b) =
�(a)�(b)

p2t − 2
λ�(t)

for a, b > 0, a ∨ b ≤ t < a+ b.
(iv) The number of mass points placed in the interior of any edge is distributed

geometrically with the probability of placing k masses being

pt
(
1− pt

)k
, k = 0, 1, 2, . . . .

The locations of k mass points are independent uniform in the interior of
the edge. The orientation of each mass is left or right independently with
probability 1/2.

(v) The edge masses are i.i.d. random variables with the following common
p.d.f.

�(a)

1− pt
, a ∈ (0, t).

11.4. Random sink in an infinite exponential potential

Here we focus on the dynamics of a random sink in the case of a negative ex-
ponential excursion potential. To avoid subtle conditioning related to a finite
potential, we consider here an infinite exponential potential Ψexp

0 (x), x ∈ R,
constructed as follows. Let xi, i ∈ Z be the epochs of a Poisson point process on
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Fig 47. Random sink M0 originates at point x0 – the local minimum closest to the origin.
Its dynamics during a finite time interval [0, t] is completely specified by a finite negative
excursion Bt

0 similar to the one highlighted in the figure.

R with rate λ/2, indexed so that x0 is the epoch closest to the origin. The ini-
tial velocity v(x, 0) is a piece-wise constant continuous function that alternates
between values ±1 within the intervals (xi − 1, xi] and with v(x0, 0) = 1. Ac-
cordingly, the initial potential Ψexp

0 (x) is a piece-wise linear continuous function
with a local minimum at x0 and alternating slopes ±1 of independent expo-
nential duration. The results in this section refer to the sink M0 with initial
Lagrangian coordinate x0. We refer toM0 as a random sink, using translation
invariance of Poisson point process.

Observe that for any fixed t > 0, the dynamics ofM0 is completely specified
by a finite excursion within Ψexp

0 (x). For instance, one can consider the shortest
negative excursion of Ψexp

0 (x) within interval Bt
0 such that x0 ∈ Bt

0, |Bt
0| > 2t,

and one end of Bt
0 is a local maximum of Ψexp

0 (x) (see Fig. 47). The respective
Harris path is an exponential Galton-Watson tree GW(λ). The dynamics of
M0 consists of alternating intervals of mass accumulation (vertical segments
of G(x,ψ)) and motion (horizontal segments of G(x,ψ)), starting with a mass
accumulation interval. Label the lengths vi of the vertical segments and the
lengths hi of the horizontal segments in the order of appearance in the examined
trajectory. Corollary 22 implies that vi, hi are independent; the lengths of vi are
i.i.d. exponential random variables with parameter λ; and the lengths of hi equal
the total lengths of independent Galton-Watson trees GW (λ). This description,
illustrated in Fig. 48, allows us to find the mass dynamics of a random sink,
which is described in the next two theorems.

Theorem 32 (Growth probability of a random sink, [100]). The proba-
bility ξ(t) that a random sink M0 is growing at a given instant t > 0 (that is,
it is at rest and accumulates mass) is given by

ξ(t) = e−λtI0(λt). (225)

Theorem 33 (Mass distribution of a random sink, [100]). The mass of
a random sinkM0 at instant t > 0 has probability distribution

μt(da) =
λ

2
e−λt

[
I0
(
λ(t− a/2)

)
+ I1

(
λ(t− a/2)

)]
I0(λa/2) · 1(0,2t)(a)da

+ e−λtI0(λt)δ2t(da),
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Fig 48. Dynamics of a random sink: an illustration. The trajectory of a sink is partitioned
into alternating intervals of mass accumulation of duration vj and intervals of movement
with no mass accumulation of duration hj . Each vj is an exponential random variable with
parameter λ. Each hj is distributed as the total length of a critical Galton-Watson tree with
exponential edge lengths with parameter λ.

where δ2t denotes Dirac delta function (point mass) at 2t.

Remark 24. The distribution of mass found in Thm. 33 is a mixture of two
components. The first component (the first term on the right) is a distribution
absolutely continuous with respect to the Lebesgue measure. It describes con-
tinuous mass accumulation during intervals of no movement; see Fig. 48. The
second component (the second term on the right) is a delta function. It describes
instantaneous mass increases associated with coalescences of the examined ran-
dom sink with other sinks.

Remark 25. One can notice that the continuum annihilation dynamics of this
section, with its shock waves, shock wave trees, and sink masses is reminiscent
of that in the 1-D inviscid Burgers equation that describes the evolution of the
velocity field v(x, t):

∂tv(x, t) + v(x, t) ∂xv(x, t) = 0, x ∈ R, t ∈ R+. (226)

The Burgers dynamics appears in a surprising variety of problems, ranging from
cosmology to fluid dynamics and vehicle traffic models; see [19, 68, 77] for com-
prehensive review. The solution of the Cauchy problem for the Burgers equation
develops singularities (shocks) that correspond to intersection of individual par-
ticles. The shocks evolve via the shock waves that can be described as massive
particles that aggregate the colliding regular particles and hence accumulate
the mass of the media. The dynamics of these massive particles generates a tree
structure for their world trajectories, the shock wave tree [28, 77].

The case of smooth random initial velocity can be treated explicitly via the
Hopf-Cole solution. The case of non-smooth random initial velocities, e.g. a
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white noise or a (fractional) Brownian motion, has been extensively studied,
both numerically [145] and analytically [149, 27, 28, 70]. In this case, tracing the
dynamics of the massive particles backward in time (from a point within a shock
tree to the leaves) corresponds to fragmentation of the mass and describes the
genealogy of the shocks, i.e., the sets of particles that merge with a given massive
particle [26, 70]. In particular, it has been established in [28] that the shock
wave tree for a Brownian motion initial velocity becomes the eternal additive
coalescent after a proper time change; similar arguments apply for the Lévy
type initial velocities [120]. However, despite general heuristic understanding of
the structure of the Burgers shock wave tree, a complete analytical description
is lacking (e.g., [145]).

11.5. Real tree description of ballistic annihilation

Recall that an R-tree is a generalization of the concept of a finite tree with edge
lengths to infinite spaces; see Sect. 2.2 for a formal setup. We construct here
(Sect. 11.5.1) an R-tree T = T(Ψ0) that describes the entire model dynamics
as coalescence of particles and sinks; this tree is sketched by gray lines in the
top panel of Figs. 42 and 49. Specifically, the tree consists of points (x, t) such
that there exist either a particle or a sink with coordinate x at time t. There is
one-to-one correspondence between the initial particles (x, 0) and leaf vertices
of T. Each leaf edge of T corresponds (one-to-one) to the free (ballistic) run of
a corresponding particle before annihilating in a sink. Four of such free runs
are depicted by green arrows in Fig. 49. The shock wave tree (movement and
coalescence of sinks) corresponds to the non-leaf part of the tree T; it is shown
by blue lines in Figs. 42, 49. We adopt a convention that the motion of a particle
consists of two parts: an initial ballistic run at unit speed, and subsequent motion
within a respective sink. For example, the within-sink motion of particles x and
x′ is shown by red line in Fig. 49. This interpretation extends motion of all
particles to the same time interval [0, tmax], with tmax being the time when the
last remaining sink accumulates the total mass on the initial interval. This final
sink serves as the tree root. Section 11.5.1 introduces a proper metric on this
space so that the model is represented by a time oriented rooted R-tree. In
particular, the metric induced by this tree on the initial particles (x, 0) becomes
an ultrametric, with the distance between any two particles equal to the time
until their collision (as particles or as respective sinks).

Section 11.5.2 discusses two non-Lebesgue metrics of the system’s domain
[a, b]. Both describe the ballistic annihilation dynamics and are readily con-
structed from the initial potential Ψ0(x). One of these decsriptions is an R-tree
and the other is not. The R-tree description establishes an equivalence between
the pairs of points that collide with each other, like the pairs (x, x′) and (y, y′)
in Fig. 49. This tree is isometric to the level set tree level(−Ψ0) of the initial
potential that is used in this work to describe the shock wave tree (Cor. 21);
it is known in the literature as a tree in continuous path [135, Def. 7.6], [63,
Ex. 3.14]. In Sect. 11.5.3 we briefly discuss a natural way of introducing prun-
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Fig 49. R-tree representation of a ballistic annihilation model with a unit slope potential:
an illustration. Figure illustrates dynamics of four points, x, x′, y, and y′, marked in the
horizontal space axis. The pairs of points {x, x′} and {y, y′} collide and annihilate with each
other. Green arrows correspond to ballistic runs of points x, x′, y, y′, and hence to leaves of
tree T(Ψ0). Red line corresponds to the trajectory of points x, x′ after their collision, within
a sink. The rest of notations are the same as in Fig. 42.

ings on R-trees and show that a typical pruning does not have the semigroup
property.

11.5.1. R-tree representation of ballistic annihilation

We construct here a real tree representation of the continuum ballistic anni-
hilation model of Sect. 11.2. Specifically, we assume a unit particle density
g(x) ≡ 1 and initial potential −Ψ0(x) ≡ −ψ(x, 0) ∈ Eex, i.e., Ψ0(x) is a unit
slope negative excursion with a finite number of segments on a finite interval
[a, b] (e.g., bottom panel of Fig. 42). Recall that the interval [a, b] completely
annihilates by time tmax = (b − a)/2, producing a single sink at space-time
location ((b+ a)/2, tmax).

Consider the model’s entire space-time domain T = T(Ψ0) that consists of all
points of the form (x, t), x ∈ [a, b], 0 ≤ t ≤ tmax, such that there exists either a
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particle or a sink at location x at time instant t. The shaded (hatched) regions
in the top panels of Figs. 42, 43 are examples of such sets of points. For any pair
of points (x, t) and (y, s) in T, we define their unique earliest common ancestor
as a point

AT((x, t), (y, s)) = (z, w) ∈ T

such that w is the infimum over all w′ such that

∃ z′ : {(x, t), (y, s)} ∈ Δ(z′,w′),T.

The length of the unique segment between the points (x, t) and (y, s) is defined
as

d
(
(x, t), (y, s)

)
=

1

2

(
(w − t) + (w − s)

)
=

1

2
(2w − s− t), (227)

where w is the time component of (z, w) = AT((x, t), (y, s)).

The tree (T, d) for a simple initial potential is illustrated in the top panel of
Fig. 42 by gray lines. The tree has a relatively simple structure. There is a one-
to-one correspondence between the initial particles (x, 0), x ∈ [a, b], and the leaf
vertices of T. There is a one-to-one correspondence between the ballistic runs of
the initial particles (runs before collision and annihilation) and the leaf edges of
T. Four of such runs are shown by green arrows in Fig. 49. There is one-to-one
correspondence between the sink points (σ(t), t) and the non-leaf part of T. In
particular, the tree root corresponds to the final sink ((a+ b)/2, tmax). The sink
points are shown by blue line in Figs. 42, 43. It is now straightforward to check
that the tree (T, d) satisfies the four point condition.

Consider again the sink subspace of T, which consists of the points {σ(t), t)}
such that there exists a sink at location σ(t) at time instant t, equipped with the
distance (227). This metric subspace is also a tree, as a connected subspace of an
R-tree [63]. This tree is isometric to the shock wave tree S(Ψ0) and hence to ei-
ther of its graphical representations G(x,t)(Ψ0) or G(x,ψ)(Ψ0) that are illustrated
in Figs. 42, 43 (top and bottom panels, respectively).

From the above construction, it follows that all leaves (x, 0) are located at the
same depth (distance from the root) tmax. To see this, consider the segment that
connect a leaf and the root and apply (227). Moreover, each time section at a
fixed instant t0, sec(T, t0) = {(x, t0) ∈ T}, is located at the same depth tmax−t0.
This implies, in particular, that for any fixed t0 ≥ 0, the metric induced by T on
sec(T, t0) is an ultrametric, which means that d1(p, q) ≤ d1(p, r)∨d1(r, q) for any
triplet of points p, q, r ∈ sec(T, t0). Accordingly, each triangle p, q, r ∈ sec(T, t0)
is an isosceles, meaning that at least two of the three pairwise distances between
p, q and r are equal and not greater than the third [63, Def. 3.31]. The length
definition (227) implies that the distance between any pair of points from any
fixed section sec(T, t0) equals the time until the two points (each of which can
be either a particle or a sink) collide.

We notice that the collection of leaf vertices Δ◦
p,T descendant to a point p ∈ T

can be either a single point (xp, 0), if p is within a leaf edge and represents the
ballistic run of a particle, or an interval {(x, 0) : xleft(p) ≤ x ≤ xright(p)}, if p
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is a non-leaf point that represents a sink. We define the mass m(p) of a point
p ∈ T as

m(p) =

∫
x:(x,0)∈Δ◦

p,T

g(z)dz = xright(p)− xleft(p),

where the last equality reflects the assumption g(z) ≡ 1. The mass m(p) gener-
alizes the quantity “number of descendant leaves” (Sect. 10.1.4) to the R-tree
situation with an uncountable set of leaves. We observe that (i) a point p ∈ T

represents a ballistic run if and only if m(p) = 0; (ii) a point p ∈ T represents
a sink if and only if m(p) > 0. This means that the shock wave tree, which is
isometric to the sink part of the tree (T, d), can be extracted from (T, d) by the
condition {p : m(p) > 0}.

11.5.2. Metric spaces on the set of initial particles

In this section we discuss two metrics on the system’s domain [a, b], which is
isometric to the set {(x, 0) : x ∈ [a, b]} of initial particles. These spaces contain
the key information about the system dynamics and, unlike the complete tree
(T, d) of Sect. 11.5.1, can be readily constructed from the potential Ψ0(x).

Metric h1(x, y) reproduces the ultrametric induced by (T, d) on [a, b]. Below
we explicitly connect this metric to Ψ0(x). For any pair of points x, y ∈ [a, b]
we define a basin BΨ0(x, y) as the interval that supports the minimal negative
excursion within Ψ0(x) that contains the points x, y. Formally, assuming without
loss of generality that x < y we find the maximum of Ψ0 on [x, y]:

mΨ0(x, y) = sup
z∈[x,y]

Ψ0(z)

and use it to define the basin BΨ0(x, y) = [l, r], where

l = sup{z : z ≤ x,Ψ0(z) ≥ mΨ0(x, y)},

r = inf{z : z ≥ y,Ψ0(z) ≥ mΨ0(x, y)}.
The metric is now defined as

h1(x, y) =
1

2
|BΨ0(x,y)|.

It is straightforward to check that

h1(x, y) = the time until collision of the particles (x, 0) and (y, 0),

where the collision is understood as either collision of particles, collision of sinks
that annihilated the particles, or collision between a sink that annihilated one
of the particles and the other particle. For instance, the claim is readily verified,
by examining the bottom panel of Fig. 49, for any pair of points from the set
{x, x′, y, y′}. The metric space ([a, b], h1) is not a tree. Moreover, this space
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is totally disconnected, since there only exists a finite number of points (local
minima of Ψ0(x)) that have a neighborhood of arbitrarily small size. Any other
point at the Euclidean distance ε from the nearest local minimum is separated
from other points by at least ε/2.

Metric h2(x, y) describes the mass accumulation by sinks during the anni-
hilation process. Specifically, we introduce an equivalence relation among the
annihilating particles, by writing x ∼Ψ0 y if the particles with initial coordi-
nates x and y collide and annihilate with each other. For example, in Fig. 49
we have x ∼Ψ0 x′ and y ∼Ψ0 y′. The following metric is now defined on the
quotient space [a, b]|∼Ψ0

:

h2(x, y) = 2 sup
z∈[x,y]

[Ψ0(z)]−Ψ0(x)−Ψ0(y).

In words, the distance h2(x, y) between particles x and y equals the total
mass accumulated by the sinks to which the particles belong during the time
intervals between the instants when the particles joined the respective sinks
and the instant of particle (or respective sink) collision. Another interpreta-
tion is that h2(x, y) equals to the minimal Euclidean distance between points
x, y ∈ [a, b]|∼Ψ0

in the quotient space; one can travel in this quotient space as
along a regular real interval, with a possibility to jump (with no distance ac-
cumulation) between equivalent points. This R-tree construction is know as the
tree in continuous path [135, Def. 7.6], [63, Ex. 3.14].

The metric space ([a, b]|∼Ψ0
, h2) is a tree that is isometric to the level set

tree of the potential Ψ0(x) on [a, b] and hence to the (finite) shock wave tree
V(Ψ0) (by Cor. 21), with the convention that the root is placed in a ∼Ψ0 b. This
means, in particular, that prunings of these two trees, with the same pruning
function and pruning time, coincide.

11.5.3. Other prunings on T

One can introduce a large class of prunings on an R-tree (T, d) following the
approach used above to define the point mass m(p). Specifically, consider a
measure η(·) on [a, b] and define mη(p) = η(Δ◦

p,T). The function mη(p) is non-
decreasing along each segment that connect a leaf and the root ρT of T. Hence,
one can define a pruning with respect to mη on T by cutting all points p with
mη(p) < t for a given t ≥ 0. It is readily seen that the function mη(p) typically
has discontinuities along a path between a leaf and the root of T. This means
that pruning with respect to mη typically does not have the semigroup property.

12. Infinite trees built from leaves down

Examples of infinite trees built from the root up are plentiful; they include the
infinite trees induced by the Yule processes or any other birth processes; infinite
trees generated by a supercritical branching process; the trees that represent
depth-first search and breadth-first search algorithms on infinite networks. In
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this section we explore the infinite trees built from leaves down that arise natu-
rally in the context of infinitely many coalescing particles or the level set trees
of continuous functions. Interestingly, many of the results about finite trees can
be obtained from the characterizations of the corresponding infinite trees built
from leaves down.

12.1. Infinite plane trees built from the leaves down

In the context of Sect. 8.2, set I = R and consider a function f(x) ∈ C(R).
Let X and Y be the sets containing all locations of local minima and local
maxima of f(x), respectively. Formally, x0 ∈ X if ∃δ > 0 s.t. f(x) ≥ f(x0)
∀x ∈ (x0−δ, x0+δ), and Y is defined analogously. Hence, the local extrema may
include plateaus of constant values. We assume that f(x) satisfies the following
conditions:

(a) The set X of the locations of local minima has infinite image, i.e.,

|f
(
X
)
| =∞.

This condition guarantees that the level set tree of f(x) that we construct
below has an infinite number of vertices.

(b) The intersection of X with any finite interval [a, b] is either empty or
consists of a finite number of closed intervals (possibly including separate
points). This condition guarantees that every descendant subtree of the
infinite level set tree of f(x) is finite. The conditions (a), (b) guarantee
that the level set tree has countably many vertices.

(c) ∀a ∈ R, the sets

(a,∞) ∩ f−1
(

inf
(a,∞)

f(x)
)

and (−∞, a) ∩ f−1
(

inf
(−∞,a)

f(x)
)

are empty or consist of finitely many closed intervals (including separate
points). Here, f−1(−∞) is an empty set. This condition, or equivalent,
guarantees that the level set tree has finite branching (no vertices of infinite
degree).

Recalling the construction in Sect. 8.2.2, the level set tree T∞ = level

(
f(x)

)
has infinitely many leaves. There, T∞ =

(
R/∼f , df

)
is a metric quotient space

obtained with respect to identification (denoted by a
 ∼f ar) of pairs of points
a
 and ar in R as one point. Recall that we have a
 ∼f ar whenever the following
conditions are satisfied

1. a
 < ar and f(a
) = f(ar);
2. ∀x ∈ (a
, ar) we have f(x) ≥ f(a
) = f(ar).

The local maxima Y (including plateaus) constitute the leaves in T∞, and the
local minima X (including plateaus) constitute the internal vertices (junctions)
in T∞. Such T∞ is also called an infinite plane tree built from the leaves down
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Fig 50. Golden lineage representation of a level set tree: an illustration. The figure shows a
part of the level set tree for a piece-wise linear function on R. The initial part of the golden
lineage is shown in blue. There exist five finite binary trees attached to the golden lineage –
they are shown in green. The tree index is shown along the stem of each tree. The trees indexed
1, 2, 3 have left orientation, and the trees indexed 4, 5 have right orientation with respect to
the golden lineage.

induced by function f(x). The reason for the name being that as we study f(x)
over larger and larger intervals (e.g. [−a, a] as a → ∞) we discover more and
more leaves of T∞ (local maxima) and their merger history (local minima) from
leaves down, but never reaching the root.

To give a convenient description of an infinite tree T∞ built from leaves
down, we designate one leaf as the golden leaf, and its ancestral lineage is called
the golden lineage (Fig. 50). In the above construction, we let the leaf that
corresponds to the first local maximum in the nonnegative half-line,

min{x ∈ Y : x ≥ 0},

to be designated as the golden leaf. Let L∞
plane denote the space of infinite plane

trees built from the leaves down, with edge lengths and designated golden leaf.
For a tree T∞ ∈ L∞

plane with a designated golden leaf γ∗, we let � = [γ∗, φ] denote
the unique ancestral path from the golden leaf γ∗ to its parent, grandparent,
great-grandparent and on towards the tree root φ, where φ is a point at infinity.
Here, the ancestral path � will be called the golden lineage. The golden lineage
� = {�(i), e(i)} consists of infinitely many vertices �(i) that we enumerate by
the index i ≥ 0 along the path, starting from the golden leaf �(0) = γ∗ and
increasing as we go down the golden lineage �, and infinitely many edges e(i) =
[�(i), �(i+ 1)].

Each tree T∞ ∈ L∞
plane can be represented as a forest of finite trees attached

to the golden lineage � as follows

T∞ =
(
�,
{
Di, σi

}
i≥1

)
, (228)

where for each i ≥ 1, Di = Δ
(i) ∈ L|
plane denotes the complete subtree of T∞

rooted at �(i) that does not include the golden leaf, and σi ∈ {−1,+1} denotes
the left-right orientation of Di with respect to the golden lineage �. Figure 50
illustrates this construction.
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The representation (228) of a tree T∞ ∈ L∞
plane allows one to relate the space

L∞
plane of infinite planar trees built from the leaves down with edge lengths and a

designated golden leaf to the notion of a forest of trees attached to the floor line
described in Sect. 7.4 of [135]. In addition, the golden lineage construct helps at
meterizing the space L∞

plane.
Importantly, for any point x ∈ T∞, the descendant tree Δx,T is a finite tree in

Lplane. Therefore, the definition of generalized dynamical pruning (218) extends
naturally to the space L∞

plane of infinite plane trees built from the leaves down.
Applying the generalized dynamical pruning St to an infinite tree built from
the leaves down, the uppermost point of the golden lineage within St(ϕ, T ) will
become the golden leaf for the pruned tree St(ϕ, T ).

Next, we extend the notion of prune-invariance in planar shapes from Def.
34(i) to a subspace S∞ of the space L∞

plane. Consider a subspace S
∞ of L∞

plane. For

a given monotone nondecreasing function ϕ : Lplane → R+, consider generalized
pruning dynamics St(ϕ, T∞) (T∞ ∈ S∞). We say that a probability measure μ
on S∞ is prune-invariant in planar shapes if

μ(A) = μt(A) ∀t ≥ 0, A ∈ Σ, (229)

where μt = (St)∗(μ) = μ◦S−1
t is the pushforward measure, and Σ is the induced

σ-algebra.
The above definition of prune-invariance (229) is significantly different from

the original Def. 34(i) for finite trees as φ �∈ S∞ and we do not need to condition
on the event St(ϕ, T ) �= φ in the pushforward measure. Importantly, the prune-
invariance in (229) coincides with the John Von Neumann [164] definition of
the invariant measure, fundamental for ergodic theory and dynamical systems.
At the same time, the definition of prune-invariance in edge lengths Def. 34(ii)
does not need to be reformulated any differently for the infinite trees built from
leaves down.

The renown Krylov-Bogolyubov theorem [93] states that for a compact metriz-
able topological space Ω with the induced Borel σ-algebra Σ, and a continuous
function S : Ω → Ω, there exists an invariant probability measure μ on (Ω,Σ)
satisfying

μ(A) = μ∗(A) ∀A ∈ Σ, (230)

where μ∗ = (S)∗(μ) = μ ◦ S−1 is the pushforward measure.
Here we will not concentrate on constructing a suitable metric for the space

L∞
plane. However, in the spirit of the Krylov-Bogolyubov theorem, we will show

in Thm. 34 that the infinite critical planar binary Galton-Watson tree GW∞(λ)
built from the leaves down that we construct in Sect. 12.2 is prune-invariant
under generalized dynamical pruning St induced by a monotone nondecreasing
function ϕ : Lplane → R+. Additionally, it will be observed that Thm. 34 is a
generalization of Thm. 26.

Remark 26. The reader would benefit from the following observation made by
one of the anonymous reviewers of this paper. The golden lineage representation
of an infinite planar tree built from the leaves down is reminiscent (but distinct
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from) Bismut’s decomposition of the Brownian excursion (see [30] and [137,
Theorem 4.7 in Chapter 12]). Specifically, in [105], Bismut’s decomposition of
the Brownian excursion has been translated to a decomposition of real trees with
respect to the ancestral lineage of a leaf chosen according to the mass measure
in the setting of the continuum random tree (CRT), introduced by Aldous [4, 5].
The golden lineage idea is also similar to the Williams’ decomposition [167] with
respect to the ancestral lineage of the last individual alive in the genealogy of the
total population given by a Lévy continuum random tree [106, 107, 52] which
was established in Abraham and Delmas [2]. In the cases like ours, where the
trees are infinite, the tree decompositions with respect to a particular lineage are
also used in the context of superprocesses, where they are referred to as “skele-
ton decomposition”, “backbone decomposition”, or “spine decomposition”. See
[61, 24, 55] and references therein. Finally, [53] uses a similar approach when
constructing the Galton-Watson forest.

12.2. Infinite exponential critical binary Galton-Watson tree built
from the leaves down

Consider a Poisson point process {Tk}k∈Z on R with parameter λ/2, enumerated
from left to right (where T0 is the epoch closest to zero). Let

Xt =

⎧⎪⎪⎨⎪⎪⎩
k∑

j=1

(−1)j+1
(
Tj − Tj−1

)
+ (−1)k(Tk − t) if t ∈ [Tk−1, Tk), k ≥ 1,

0∑
j=k+1

(−1)j+1
(
Tj − Tj−1

)
+ (−1)k(Tk − t) if t ∈ [Tk, Tk+1), k ≤ −1.

In other words, Xt is a continuous piecewise linear function with slopes alter-
nating between ±1 as it crosses the Poisson epochs {Tk}k∈Z, i.e., the slope

d

dt
Xt =

{
−1 if t ∈ (Tk−1, Tk), k even,

+1 if t ∈ (Tk−1, Tk), k odd.

The level set tree T∞ = level

(
Xt

)
is invariant under shifting Xt vertically, or

shifting and scaling Xt horizontally.
Fix a point t∗ ∈ R and generate Xt with a Poisson point process {Tk}k∈Z.

Then, with probability one, there will be a positive excursion of Xt−Xt∗ over an
interval that begins or ends at t∗. By Thm. 20, the level set tree of this adjacent
positive excursion is distributed as GW(λ). Therefore, the infinite binary level set
tree T∞ = level

(
Xt

)
forXt will be referred to as the infinite planar exponential

critical binary Galton-Watson tree built from the leaves down with parameter λ,
and denoted by GW∞(λ). We also refer to this tree as the infinite exponential
critical binary Galton-Watson tree.

In the representation (228) of a tree T∞
d∼ GW∞(λ), the golden lineage �

is distributed as a one-dimensional Poisson process with parameter λ, the ori-
entation variables σi are i.i.d. Bernoulli with parameter 1/2, and the complete
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Fig 51. Illustration to the proof of Thm. 34. (a) A fragment of the pruned tree TΔ
∞ (black).

Parts of the pruned out subtrees of the initial tree T∞ are shown in gray. The point x is a
leaf of TΔ

∞; it has the left parent a and right parent b in TΔ
∞. The point x, considered as an

edge point in T∞, has the same left parent a in T∞, but its right parent in T∞ is different
from b. (b) A part of the Harris path for the pruned tree TΔ

∞. The proof of Thm. 34 finds
that the increments of the segments |xa| and |xb| are i.i.d. exponential r.v.s. with parameter
λpΔ/2.

subtrees Di are i.i.d. GW(λ) trees. Finally, the golden lineage λ and the se-
quences, σi and Di, are all sampled independently of each other.

The following is a variation of Thm. 26 for the infinite critical exponential
binary Galton-Watson tree.

Theorem 34. Let T∞
d∼ GW∞(λ) with λ > 0. Then, for any monotone nonde-

creasing function ϕ : BL|
plane → R+ and any Δ > 0 we have

TΔ
∞ := SΔ(ϕ, T∞)

d∼ GW∞
(
λpΔ(λ, ϕ)

)
,

where
pΔ := pΔ(λ, ϕ) = P(SΔ(ϕ, T ) �= φ) for T

d∼ GW(λ).

That is, the pruned tree TΔ
∞ is also an infinite exponential critical binary Galton-

Watson tree with the scaled parameter

EΔ(λ, ϕ) = λpΔ(λ, ϕ).

Notice that since we are dealing with an infinite tree T∞, we do not need to
be concerned about it surviving under the pruning operation SΔ. The survival
probability pΔ used in the statement of Thm. 34 is computed for finite trees, so
the values of scaled parameter EΔ(λ, ϕ) for selected pruning functions are given
by Thm. 27.

Proof. Let par(x) denote the right parent to a point x in T∞. This means that
the vertex par(x) is the parent of the first right subtree that one meets when
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travels the tree T∞ from x down to the root. In the Harris path of T∞, there
exist two points that correspond to x (they merge into a single point when x is a
leaf). Consider the rightmost of these points, rx, which belongs to a downward
increment of the Harris path. The vertex par(x) corresponds to the nearest right
local minima of rx. Similarly, we let parΔ(·) denote the right parent on TΔ

∞.

Consider a leaf x ∈ TΔ
∞, which is also a point in T∞; see Fig. 51(a). We now

find the distribution of the distance from x to parΔ(x), i.e., the length of the
respective downward segment of the Harris path; see Fig. 51(b). Consider the
descendant lineage of x in T∞, which consists of vertices

x1 = par(x), x2 = par(x1), x3 = par(x2), . . . .

Due to the memorylessness property of exponential distribution, and the sym-
metry of left-right orientation of subtrees in T∞, the distance from x down
to par(x) has exponential distribution with rate λ/2. The point x belongs to
one (left) of the two complete subtrees rooted at par(x) in T∞. Observe that
parΔ(x) = par(x) if and only if the subtree that does not contain x (we call it
sibling subtree) has not been pruned out completely, i.e., the intersection of the
sibling subtree with TΔ

∞ is not empty. (In the example of Fig. 51(a), we have
parΔ(x) = x2 ≡ b.) The sibling subtree is known to be distributed as GW(λ).
Therefore,

P
(
parΔ(x) = x1

)
= pΔ.

Iterating this argument, we have for k ≥ 1,

P
(
parΔ(x) = xk

∣∣ parΔ(x) �= x1, . . . , parΔ(x) �= xk−1

)
= pΔ(1− pΔ)

k−1.

Therefore, the distance from a vertex x down to parΔ(x) is a geometric
Geom1(pΔ) sum of independent exponential random variables with parameter
λ/2. Hence, it is itself an exponential random variable with parameter λpΔ/2.
In other words, the downward segment of the Harris path of the pruned tree TΔ

∞
adjacent to the local maximum that corresponds to the leaf x has exponential
lengths with parameter λpΔ/2; see Fig. 51(b).

The same argument (using left parents) shows that the upward segment of
the Harris path of the pruned tree TΔ

∞ adjacent to the local maximum that
corresponds to the leaf x has exponential lengths with parameter λpΔ/2. The
lengths of the upward and downward segments are independent; see Fig. 51(b).

Applying the above argument to all leaves in TΔ
∞, we conclude that the Har-

ris path of TΔ
∞ consists of alternating up/down increments with independent

lengths, distributed exponentially with the parameter λpΔ/2. Theorem 20 states
that in this case TΔ

∞ is an exponential critical binary Galton-Watson tree with
parameter λpΔ. This completes the proof.

Observe that Thm. 26 can be obtained from Thm. 34 by considering finite
excursions of Xt. Also notice that for the particular case of Horton pruning
(Sect. 10.1.2), the statement of Thm. 34 follows from Thm. 19.
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12.3. Continuum annihilation

One can observe that the continuum annihilation dynamics that begins with
an infinite exponential potential Ψexp

0 (x), x ∈ R (see Sect. 11.4), is nothing
but the generalized dynamical pruning St(ϕ, T∞) of the infinite planar critical
exponential binary Galton-Watson tree built from the leaves down

T∞ := level

(
−Ψexp

0 (x)
) d∼ GW∞(λ),

where ϕ(T ) = length(T ) for T ∈ BL|
plane. Moreover, the key results of Sect.

11.4, Thms. 32 and 33, that describe the growth dynamics of a sink in the
continuum annihilation model are in fact describing the length distributions of

pruned out sections of T∞
d∼ GW∞(λ) under the generalized dynamical pruning

St(ϕ, T∞). The proofs of these results can be rewritten in the infinite tree style
of Thm. 34.

13. Some open problems

1. Consider the cumulative distribution function Hn(x) for the height of an
exponential critical binary Galton-Watson tree GW(λ) (Def. 20) condi-
tioned on having n leaves; see (80) of Sect. 5.2.3. Can one derive the limit
(89) from the equation (86)?

2. For a given sequence {Tk}k∈Z+ of positive real numbers, construct a coales-
cent process whose symmetric kernel is a function of the clusters’ Horton-
Strahler orders, in such a way that the combinatorial part of the coalescent
tree is mean self-similar with respect to Horton pruning (Defs. 12 and 14),
with Tokunaga coefficients {Tk}. This would complement an analogous
branching process construction of Sect. 7.

3. Generalize equation (63) of Flajolet et al. [66] for the critical Tokunaga
processes (Sect. 7.5). Formally, consider a tree T that corresponds to a
critical Tokunaga process STok(t; c, γ) (Def. 25). Establish the following
generalization of (63): for any given c > 1, there exists a periodic function
Dc(·) of period one such that

E
[
ord(T )

∣∣#T = 2n− 1
]
= logR n+Dc

(
logR n

)
+ o(1) (231)

as n→∞, where R = 2c. We confirmed the validity of (231) numerically;
see Fig. 52.

4. For a hierarchical branching process S(t) (Def. 22, Sect. 7.1), describe
the correlation structure of its Harris path. A special case is given by
Thm. 20; it shows that the Harris path of the exponential critical bi-
nary Galton-Watson tree GW(λ), which corresponds to the hierarchical

branching process S(t)
d∼ STok(t; c, γ) (Sect. 7.5), is an excursion of the

exponential random walk (Sect. 8.6), with parameters
{

1
2 , λ, λ

}
.
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Fig 52. Periodic fluctuations of the average order of a critical Tokunaga tree STok(t; c, γ) as a
function of the tree size (number n of leaves): numerical simulations. (a) Critical Tokunaga
tree with c = 2, R = 2c = 4 (critical binary Galton-Watson tree); see (63). (b) Critical
Tokunaga tree with c = 1.5, R = 2c = 3; see (231). The jitter at large values of n is due to
stochastic variability in our numerical simulations.

5. Recall that a rescaled Harris path of an exponential critical binary Galton-
Watson tree GW(λ) converges to the excursion of a standard Brownian
motion [105, 124]. For a hierarchical branching process S(t) (Def. 22, Sect.
7.1), explore the existence of a proper infinite-tree limit and the respective
limiting excursion process.

6. Prove the following extension of Lem. 21. In the setup of the Lemma,
suppose that for any tree T , conditioned on p-shape(T ), the edge lengths
in T are independent. Show that f(x) is an exponential p.d.f.

7. Can the finite second moment assumption in Prop. 16 be removed? Also,
does (173) characterize the exponential distribution (like the characteri-
zations in Appendix B)?

8. In the context of Sect. 8.9, extend the one-dimensional result of Prop. 15 to
higher dimensions. Specifically, consider an n-dimensional compact differ-
entiable manifold M = Mn, and a Morse function f : M → R. Construct
a natural Morse function f (1) : M → R such that

level

(
f (1)

)
= R

(
level(f)

)
.
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9. In the setting of Thm. 25 from Sect. 9, establish the asymptotic ratio-
Horton law (Def. 19) for the Kingman’s coalescent tree, and, if possi-
ble, prove the asymptotic strong Horton law (Def. 19). Specifically, prove

lim
j→∞

Nj

Nj+1
= R, and if possible, lim

j→∞

(
NjR

j
)
= const. Is it possible to

derive a closed form expression for the Horton exponent R?
10. Find a suitable ramification of the generalized dynamical pruning sufficient

for describing the evolution of the shock tree in the one-dimensional invis-
cid Burgers equation (226) and its multidimensional modification known
as the adhesion model [19, 68, 77]. Use this to complement the framework
developed in [149, 27, 28, 70].

Appendix A: Weak convergence results of Kurtz for density
dependent population processes

We first formulate the framework for the convergence result of Kurtz as stated in
[60, Chapter 11, Theorem 2.1], [103, Theorem 8.1]. There, the density dependent
population processes are defined as continuous time Markov processes with state
spaces in Zd, and transition intensities represented as follows

q(n)(k, k + �) = n

[
β


(
k

n

)
+O

(
1

n

)]
, (232)

where �, k ∈ Zd, and β
 is a given collection of rate functions.
In Section 5.1 of [6], Aldous observes that the results from Chapter 11 of

Ethier and Kurtz [60] can be used to prove the weak convergence of a Marcus-
Lushnikov process to the solutions of Smoluchowski system of equations in the
case when the Marcus-Lushnikov process can be formulated as a finite dimen-
sional density dependent population process. Specifically, the Marcus-Lushnikov
processes corresponding to the multiplicative and Kingman’s coalescent with
the monodisperse initial conditions (n singletons) can be represented as finite
dimensional density dependent population processes defined above.

Define F (x) =
∑



�β
(x). Then, Theorem 2.1 in Chapter 11 of [60] (The-

orem 8.1 in [103]) states the following law of large numbers. Let X̂n(t) be
the Markov process with the intensities q(n)(k, k + �) given in (232), and let
Xn(t) = n−1X̂n(t). Finally, let |x| =

√∑
x2
i denote the Euclidean norm in Rd.

Theorem 35. Suppose for all compact K ⊂ Rd,∑



|�| sup
x∈K

β
(x̄) <∞,

and there exists MK > 0 such that

|F (x)− F (y)| ≤MK|x− y|, for all x, y ∈ K. (233)

Suppose lim
n→∞

Xn(0) = x0, and X(t) satisfies

X(t) = X(0) +

∫ t

0

F (X(s))ds, (234)
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for all T ≥ 0. Then

lim
n→∞

sup
s∈[0,T ]

|Xn(s)−X(s)| = 0 a.s. (235)

Appendix B: Characterization of exponential random variables

This section contains a number of characterization results for exponential ran-
dom variables that we use in this manuscript. We refer the reader to [13, 8] for
more on characterization of exponential random variables.

The following result of K. S. Lau and C. R. Rao [104] that implies a charac-
terization of exponential random variables is used by us for establishing Lemma
21. See [15] for more on Integrated Cauchy Functional Equations.

Lemma 33 ([104]). Consider an Integrated Cauchy Functional Equation

∞∫
0

G(x+ y)

G(y)
dμ(y) = G(x) ∀x ≥ 0, (236)

where μ(·) is a p.d.f. on [0,∞) and G(x) > 0 for x in the support of μ. Then,
G(x) = e−λx for some λ ≥ 0.

The following characterization of exponential random variables follows im-
mediately from Lemma 33.

Lemma 34. Consider a p.d.f. g(x) defined on [0,∞), and satisfying

g(x) = 2

∞∫
0

g(x+ y)g(y) dy ∀x ≥ 0. (237)

Then, g(x) is an exponential density function.

Proof. Let G(a) =
∞∫
a

g(x) dx. Then, integrating (237), we have for all a ≥ 0,

G(a) =

∞∫
a

g(x) dx = 2

∞∫
0

G(a+ y)g(y) dy =

∞∫
0

G(a+ y)

G(y)
dμ(y), (238)

where μ(y) = 1 − G2(y) is a p.d.f. on [0,∞). We notice that (238) produces
equation (236). Hence, by Lem. 33, G(x) = e−λx, where λ > 0 as g(x) is
p.d.f.

Next, we recall the Parseval’s identity, which we will use in the proof of
characterization Lemma 35.
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Theorem 36 (Parseval’s identity, [160]). For a pair of cumulative distribu-

tion functions F (x) and G(x) and their respective characteristic functions f̂(s)
and ĝ(s) the following identity holds for all s ∈ R

∞∫
−∞

eisx ĝ(x) dF (x) =

∞∫
−∞

f̂(x+ s) dG(x).

We give yet another characterization of the exponential p.d.f. φλ(x) =
λe−λx1{x≥0} as defined in (72).

Lemma 35. Consider a p.d.f. g(x) defined on [0,∞), and satisfying

φλ(x) = 2

∞∫
0

g(x+ y)g(y) dy ∀x ≥ 0. (239)

Then, g(x) = φλ(x).

Proof. Observe that φλ(x) satisfies

φλ(x) = 2

∞∫
0

φλ(x+ y)φλ(y) dy ∀x ≥ 0. (240)

Thus,
∞∫
0

φλ(x+ y)φλ(y) dy =

∞∫
0

g(x+ y)g(y) dy ∀x ≥ 0. (241)

Hence, for the two pairs of independent random variables

X1, X2
d∼ p.d.f. φλ(x) and Y1, Y2

d∼ p.d.f. g(x),

we have

X1 −X2
d
= Y1 − Y2.

Therefore, for the characteristic functions φ̂λ and ĝ, we have∣∣φ̂λ(s)
∣∣2 = E

[
eis(X1−X2)

]
= E

[
eis(Y1−Y2)

]
=

∣∣ĝ(s)∣∣2. (242)

Observe that (242) can be also obtained from (241) via multiplying both sides
by eisx and integrating.

Next, from the Parseval’s identity Theorem 36 and (241), we have ∀s ≥ 0,

∞∫
0

eisy ĝ(y) g(y) dy =

∞∫
0

g(s+ y)g(y) dy
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=

∞∫
0

φλ(s+ y)φλ(y) dy

=

∞∫
0

eisyφ̂λ(y)φλ(y) dy. (243)

Therefore,
ĝ(x) g(x) ≡ φ̂λ(x)φλ(x),

and (242) implies for any x > 0,

g(x) =

∣∣ĝ(x) g(x)∣∣∣∣ĝ(x)∣∣ =

∣∣φ̂λ(x)φλ(x)
∣∣∣∣φ̂λ(x)

∣∣ = φλ(x).

Appendix C: Notations

ρ root vertex;
φ the empty tree comprised of a root vertex and no edges;
T the space of finite unlabeled rooted reduced trees with no

planar embedding;
L the space of trees from T with edge lengths;
Tplane the space of finite unlabeled rooted reduced trees with planar

embedding;
Lplane the space of trees from Tplane with edge lengths;
BS the subspace of binary trees in a given space of rooted trees

S, e.g., S = T , Tplane,L,Lplane;
S | the subspace of planted trees in a given space of rooted trees

S;
S∨ the subspace of stemless trees in a given space of rooted trees

S;
B̃Lplane the subspace of mass-equipped trees in BLplane;
GW({qk}) the probability distribution of (combinatorial) Galton-Watson

trees on T | with offspring p.m.f. {qk};
GW(q0, q2) the probability distribution of (combinatorial) binary Galton-

Watson trees on BT | with termination probability q0 and split
probability q2;

GWplane(q0, q2) the planar embedding of trees in GW(q0, q2) that assigns the
left-right orientation to each pair of offsprings uniformly and
independently;

IGW(q) the invariant Galton-Watson (IGW) measure with parameter
q and generating function z + q(1− z)1/q (see Def. 21);

GW(λ′, λ) the probability distribution of exponential binary Galton-
Watson trees (see Def. 30);

GW(λ) the probability distribution of exponential critical binary
Galton-Watson trees (Def. 20);
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GW∞(λ) the probability distribution of infinite exponential critical bi-
nary Galton-Watson tree built from the leaves down, with
parameter λ > 0;

parent(v) the unique parent vertex of a non-root vertex v;

X
d∼ D random element X has distribution D;

X
d
= Y random elements X and Y are equidistributed;

t̂(z) the generating function (z-transform) of a sequence
{t(j)}j=0,1,...;

f̂(s) the characteristic function of a random variable with p.d.f.
f(x);

Lf(s) the Laplace transform of f(x);
a.s.→ almost sure convergence;
d→ convergence in distribution;
p→ convergence in probability;

xn ∼ yn asymptotic equivalence: lim
n→∞

xn

yn
= 1;

Eex the space of all positive piece-wise linear continuous finite
excursions with alternating slopes ±1;

N the set of natural numbers {1, 2, . . . };
Z+ the set of nonnegative integer numbers {0, 1, 2, . . . };
R+ the set of nonnegative real numbers [0,∞).

Appendix D: Standard distributions

Exp(λ) the exponential distribution with rate λ; the respective p.d.f.
is φλ(x) = λe−λx, x ≥ 0;

Gamma(α, λ) the gamma distribution with parameters α > 0 and λ > 0;
the respective p.d.f. is f(x) = λαxα−1e−λx/Γ(α) for x ≥ 0;

Geom0(p) the geometric distribution with p.m.f. p(m) = p (1 − p)m for
m = 0, 1, 2, . . .;

Geom1(p) the geometric distribution with p.m.f. p(m) = p (1 − p)m−1

for m = 1, 2, 3, . . .;
Poi(λ) the Poisson distribution with rate λ > 0; the respective p.m.f.

is p(m) = λme−λ/m! for m = 0, 1, 2, . . . ;
Unif(A) the uniform distribution over a set A.

Appendix E: Tree functions and mappings

length(T ) the length of a tree T ∈ L (or Lplane) defined as the sum of
the lengths of its edges;

height(T ) the height of a tree T ∈ L (or Lplane) defined as the maximal
distance between the root and a vertex;

shape(T ) the combinatorial shape of a tree T ∈ L (or Lplane); it is a
mapping from L (or Lplane) to T ;
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p-shape(T ) the combinatorial shape of a tree T ∈ Lplane together with
the tree’s planar embedding; it is a mapping from Lplane to
Tplane;

level(f) the level set tree of a continuous function f(x).
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Sarantsev, Sunder Sethuraman, Alejandro Tejedor, Enrique Thomann, Donald
L. Turcotte, Guochen Xu, Anatoly Yambartsev, and many others. Finally, we
thank the participants of the workshop Random Trees: Structure, Self-similarity,
and Dynamics that took place during April 23–27, 2018, at the Centro de In-
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geometric, 129
homogeneous, 114

symmetric, 114
register function, 59
register number, 59
rising sun lemma, 110

segment, 16
series reduction, 17
shock, 168

tree, 168
wave, 168

side branch counts, 28
side branching, 22
sink, 168
stem, 14
Strahler number, 5
subtree

complete subtree of a given
order, 20

Toeplitz property, 30
Tokunaga

coefficients, 28
index, 23

self-similarity, 33
sequence, 30

tree, 12
binary, 15
coalescent, 133
combinatorial, 14
empty, 13
Galton-Watson, 23
height, 15
length, 15
level set, 108
metric, 16
perfect binary, 34
planar embedding, 13
planted, 14
real, 17
reduced, 13
rooted, 13
size, 13
stemless, 14
weighted, 13
with edge lengths, 13

ultrametric, 185

vertex
offspring, 13
parental, 13
sibling, 22

white noise
discrete, 134
extended, 134

Zipf’s law, 72
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