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Abstract: Clusters of different objects are of great interest in many fields,
such as agriculture and ecology. One kind of clustering methods is very dif-
ferent from the traditional statistical clustering analysis, which is based
on discrete data points. This method of clustering defines clusters as the
connected areas where a well-defined spatial random field is above certain
threshold. The statistical properties, especially the distributional proper-
ties, of the defined clusters are vital for the studies of related fields. However,
the available statistical techniques for analyzing clustering models are not
applicable to these problems. We study the distribution properties of the
clusters by defining a distribution function of the clusters rigorously and
providing methods to estimate the spatial distribution function. Our results
are illustrated by numerical experiments and an application to a real world
problem.
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1. Introduction

Analyses of clusters of soil, water and species have been of great interest in agri-
culture, ecology and hydrology; see, for example, Asnera and Warner (2003);
Wootton (2001); Martin and Goldenfeld (2006); Sole (2007). For instance, clus-
ters of trees have been analyzed frequently since their properties are closely
related to the environmental conditions. Many studies have been carried out
based on spatial modeling (for instance, see Chen, Mohanty and Rodriguez-
Iturbe (2017)) and simulations since data of clusters are often hard to collect.
Real data have been used to verify whether models and simulations are capable
of reproducing patterns observed in nature (see Scanlon et al. (2007)).

In ecology, the analyses of clusters often focus on the spatial properties, such
as the size of an individual cluster and the locations of the centers of clusters,
assuming the object of interest is modeled by a continuous random process
y(s, ω), where s is the parameter of space and ω is some sample point. See
Rodriguez-Iturbe et al. (2019) for modeling and simulations, and Staver et al.
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Fig 1. (a) is a realization of the random field y on the squared spatial domain D. In (b), the
clusters in red are the areas where y > 0.2.

(2019) for real data analysis. For instance, {y(s, ω) : s ∈ D,ω ∈ Ω} represents
the soil moisture in some area D, and {s ∈ D : y(s) > 0.2} could be the set
of interest where the number of trees might be relatively large. Figure 1 is an
example for illustration. Figure 1a is a realization of the random field y, and the
clusters in red in Figure 1b are the areas of interest (where y > 0.2). However,
traditional statistical cluster analysis mostly studies methods of grouping a set
of objects with similar properties based on discrete data points (see Azzalini
and Torelli (2007); Cattelan and Varin (2018); Li (2006); McNicholas (2016);
Menardi and Azzalini (2014); Steinwart (2015) for existing clustering methods).
In contrast, we are interested in the distributional properties of the clusters
based on a stochastic process defined on a continuous domain, assuming that
the clusters can be easily identified. Currently there are no available statistical
tools to study data about clusters in hydrology and ecology. The most com-
mon and fundamental property about this kind of cluster analysis is the size of
an individual cluster, which contains much information about the environmen-
tal conditions. Data of sizes of clusters of different objects, such as canopies,
have been collected and the “distribution” of the size of individual cluster has
been studied by many researchers. However, the mathematical and statistical
definition of the size of individual cluster has not been well defined and stud-
ied, though samples can be easily collected from images obtained from many
different ways, such as remote sensors. Note that since samples of clusters are
correlated, they can not be regarded as independent samples from an unknown
distribution. In fact, given a well-defined spatial statistical model, it is gener-
ally difficult to define a random variable as the size of an individual cluster and
study its distribution.
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Without a well defined distribution function of the clusters, it is difficult for
researchers to study the statistical properties of the data of image clustering
and perform efficient statistical inferences. Much information in the data is not
utilized, which is possible to result in inaccurate conclusions. Therefore, it is
important to have a well defined distribution, and derive an efficient method to
estimate the defined distribution function. Then we are able to get the distribu-
tional properties of the clusters, from which more accurate conclusions can be
drawn.

The definition of the distribution function of image clusters in spatial random
fields is crucial and cannot be done in a usual way, namely induced by a random
variable. Thus in this paper we define the distribution of the size of an individual
cluster in a special way, without defining a random variable to be the size of an
individual cluster. The estimation of the defined distribution function will be
introduced and the asymptotic properties of the estimators will be investigated,
which enable us to make statistical inferences and hypothesis tests.

In the following sections, basic definitions are described in Section 2. Then
main results are presented in Section 3, which include some statistical properties
in Section 3.1, the definition of the distribution function and its estimation in
Section 3.2, and applications to Gaussian random fields in Section 3.3. A simu-
lation study and a data analysis are carried out in Sections 4 and 5, respectively.
Some concluding remarks are given in Section 6.

2. Preliminaries

Let D be the spatial domain and (Ω,F , P ) be the probability space of inter-
est where a random process y(s, ω), s ∈ D, ω ∈ Ω, is defined. Without loss of
generality (WLOG), we assume D = [0, 1]2 for simplicity. To define the clus-
ters of interest on D, we need the definitions of open sets and connected sets
as follows, which are standard definitions from point set topology (Gemignani
(1990), Chapter 9).

Definition 2.1. (Open in D) A set S ⊂ D is called an open set in D if there
exists an open set S̃ ⊂ R

2 such that S = S̃ ∩D.

Definition 2.2. (Connected and disconnected in D) A set S ⊂ D is called a
disconnected set in D if it can be divided into two disjoint nonempty open sets
in D, i.e., there exist A and B open in D such that A �= ∅, B �= ∅, A ∩ B = ∅,
and S = A ∪B. Otherwise, S is called a connected set in D.

All open sets and connected sets are meant to be open or connected in D if
not specified.

Denote the area of interest by A = A(ω), which is a subset of D depending
on y. For instance, A can be the area with soil moisture greater than some value
c:

A = A(ω) = {s ∈ D : y(s, ω) > c} .
For simplicity, we assume c = 0 and

A = A(ω) = {s ∈ D : y(s, ω) > 0}
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in the following sections. However, the conclusions still hold when A is more
complicated. We assume further that ∀ω ∈ Ω, y(s, ω) is continuous in D and
∀s ∈ D, P (y(s) > 0) > 0. Then for any fixed ω, A = A(ω) is open in D (an
open set with respect to the topology of D). By a basic property of R2, A can
be represented as

A =

M⋃
m=1

Am, (2.1)

where Am’s are mutually exclusive, open and connected subsets ofD, also known
as the connected components of A, andM is some positive integer or∞, depend-
ing on ω. We say s′ and s′′ are connected if there exists m such that s′, s′′ ∈ Am.
These Am’s can be regarded as “islands” in the spatial domain D. When two
islands are “very close”, we consider them as a cluster since they would affect
each other. This consideration is reasonable in applications: think of two tree
canopies which are very close. They would probably be the same species and
compete with each other for groundwater. Therefore, they should be considered
as one cluster. More clearly, for some fixed positive number δ, if the distance
between two islands is less than δ, they should be in the same cluster. We can
now define clusters formally by introducing the following relation.

Definition 2.3. Suppose s′, s′′ ∈ A and δ > 0. We say that s′ and s′′ belong to
the same cluster, denoted by s′ ∼ s′′, if there exist 0 � n < ∞ and s1, s2, ..., sn ∈
A, such that for each i = 1, 2, ..., n+ 1, ‖si−1 − si‖ < δ (s′ = s0, s

′′ = sn+1).

One may ask whether δ could tend to 0 when the resolution k tends to
infinity. In general, in practice people would identify clusters of specific objects
with δ = 0. Introduce δ here is for the purpose of the theoretical derivations in
probability. In applications, a fixed small δ would lead to a negligible difference
compared to δ = 0. For instance, when a study is focusing on the islands in
oceans one can set δ equal to 1 cm, and when studying clusters of soil moisture
one can set δ equal to 1 nm.

The relation ∼ groups together the points of A which are close to each other.
Since ∼ is reflective, symmetric and transitive, it is an equivalence relation in
A. Let S/ ∼ denote the quotient space of a set S by an equivalence relation ∼.
Now we can define clusters as follows.

Definition 2.4. (Clusters). The equivalence classes partitioned by the equiv-
alence relation ∼ in A (elements of A/ ∼) are called clusters and denoted by
{Cβ}β∈Δ.

The definition of clusters seem to be abstract and complicated at a first
glance. In fact, each cluster Cβ defined in Definition 2.4 is just a union of “is-
lands” (connected components) of A, which is shown in the following Theorem.
Let

d(s, S) = inf
s′∈S

‖s′ − s‖ , d(S′, S′′) = inf
s′∈S′,s′′∈S′′

‖s′ − s′′‖

denote the distance between a point and a set and the distance between two
sets in R

2, respectively.
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Theorem 2.1. Suppose that {Cβ}β∈Δ are the clusters defined in Definition 2.4
and {Am}∞m=1 are the connected components of A. Then for any cluster C = Cβ

of A, we have

C =
⋃

i:Ai⊂C

Ai.

Proof. See Appendix A.1.

Let λ(·) denote the Lebesgue measure in R
2 and R+ = [0,∞). Then we have

Definition 2.5. (Number of clusters). For x ∈ R+, define

Nx = card ({β ∈ Δ : λ(Cβ) > x}) ,

which is the number of clusters with Lebesgue measure greater than x.

When x = 0, Nx = N0 is the total number of clusters. Let

B(s, r) = {s′ : ‖s′ − s‖ < r}

denote the open balls in R
2. For each β ∈ Δ, define

C̃β = {s ∈ D : d(s, Cβ) < δ/2} .

Then C̃β ’s are open and mutually exclusive since by Definition 2.3 and 2.4,

d(Cβ , Cβ′) � δ if β �= β′. Furthermore, each C̃β contains an open setB(sβ , δ)∩D,

where sβ ∈ Cβ . Therefore, λ(C̃β) � πδ2/16 (since λ(B(sβ , δ) ∩D) � π(δ/2)2/4
for sufficient small δ) and

0 � Nx � N0 � λ(D)

π

16

δ2
=

16

πδ2
< ∞. (2.2)

In applications, collected data are often transferred into images with certain
resolutions. Therefore, the information we have is based on pixels or grid points.
In this paper, we assume that

Gk =

{
1

2k
,
2

2k
, ...,

2k − 1

2k
, 1

}2

⊂ R
2, k = 1, 2, ...,

are the sets of grid points, and

G =

∞⋃
k=1

Gk = lim
k→∞

Gk

is the set of all grid points when the resolution goes to infinity.
Now we have similar definitions for the grid points.

Definition 2.6. Suppose s′, s′′ ∈ A ∩ Gk for some k and δ > 0. We say that

s′ and s′′ belong to the same cluster of Gk, denoted by s′
Gk∼ s′′, if there exist

0 � n < ∞ and s1, s2, ..., sn ∈ A ∩ Gk, such that for each i = 1, 2, ..., n + 1, at
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least one of the following two conditions is satisfied (s0 = s′, sn+1 = s′′, si =
(yi, zi), i = 0, 1, ..., n+ 1):

(1) |yi−1 − yi|+ |zi−1 − zi| = 2−k (si is in the Von Neumann Neighborhood
of si−1);

(2) ‖si−1 − si‖ < δ (si−1 and si are very close).

We say s′
G∼ s′′ if there exists K > 0 such that for all k > K, s′

Gk∼ s′′.

Definition 2.6 has one more “neighborhood” condition than Definition 2.3.
The reason is that when identifying clusters in the continuous domain D, we
only need to consider the true distance between points. However, for finite res-
olution k, the true image, A(ω) = {s ∈ D : y(s, ω) > 0} is approximated by the
pixels y(Gk, ω). When 2−k < δ, no points of Gk would satisfy condition (2)
of Definition 2.6, and each cluster can only contain one pixel. In practice, it is
reasonable to group these points in A∩Gk that are neighbors when studying the
cluster properties with finite resolution k. Therefore, condition (1) is added to
Definition 2.6, although it is not necessary for theoretical derivations for δ > 0
and k → ∞.

Definition 2.7. (Clusters of grids). The equivalence classes partitioned by the

equivalence relation
Gk∼ in Gk (elements of A∩Gk/

Gk∼ ) are called clusters of Gk

and denoted by {Cβ,k}β∈Δk
.

Definition 2.8. (Number of clusters on grids). For x ∈ R+, define

Nx,k = card ({β ∈ Δk : λk(Cβ,k) > x}) ,

where λk is the counting measure defined in Gk (each grid point with mass 4−k).

Similarly to Equation (2.2), define

C̃β,k = {s ∈ D : d(s, Cβ,k) < δ/2} ,

and C̃β,k’s are open and mutually exclusive. Thus we have

0 � Nx,k � N0,k � λ(D)

π(δ/2)2/4
=

16

πδ2
< ∞. (2.3)

3. Main results

3.1. Some statistical properties

To study the statistical properties of the clusters from real data, we need to
ensure that when the resolution gets higher, the plot with pixels obtained from
the data becomes closer to the true spatial random field. In other words, the
clusters of Gk’s should be almost the same as the true clusters. Since the defini-
tion of clusters is based on connectivity, we need the following theorem, which
shows the relationship between the connectivity of girds and the connectivity
in D.
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Theorem 3.1. Suppose s′, s′′ ∈ A ∩G. Then s′
G∼ s′′ if and only if s′ ∼ s′′.

Proof. See Appendix A.2.

Before we define the distribution function through Nx,k, we should make
sure that Nx,k is well defined, i.e., we should make sure that Nx,k is a random
variable.

Theorem 3.2. For any x ∈ R+ and k ∈ N+, Nx,k : Ω 
→ N is a random
variable.

Proof. See Appendix A.3.

Let ∅ be the empty set and

∂S = {s ∈ D : ∀ε > 0, B(s, ε) ∩ S �= ∅, B(s, ε) ∩ Sc �= ∅}

denote the boundary of S ⊂ R
2. The next lemma and theorem show the behavior

of Nx,k when the resolution k goes to infinity.

Lemma 3.1. Suppose that the random process y satisfies

λ (∂A(ω)) = λ (∂ {s ∈ D : y(s, ω) > 0}) = 0, ∀ω ∈ Ω. (3.1)

Then for any x ∈ R+, Nx is a random variable. Define

Ux = {ω ∈ Ω : λ(Ci(ω)) �= x, i = 1, 2, ..., N0(ω)}, (3.2)

where C1, C2, ..., CN0 denote the clusters of interest. Then Nx,k → Nx as k → ∞
for all ω ∈ Ux.

Proof. See Appendix A.4.

Theorem 3.3. Suppose that the random process y satisfies the condition in
Lemma 3.1. Then ∀x ∈ R+, Ux ⊂ Ω is measurable with respect to F . Define

V = {x ∈ R+ : P (Ux) = 1}. (3.3)

Then R+\V is at most countable. In other words,

Nx,k
a.s.→ Nx

except for an at most countable set in R+.

Proof. According to the proof of Lemma 3.1, Equation (A.1) holds for all ω ∈ Ω.
Thus for any x ∈ R+, we can rewrite Ux as

Ux =

∞⋃
h=1

∞⋃
j=1

∞⋂
k=j

{
ω ∈ Ω : Nx−1/h,k(ω) = Nx+1/h,k(ω)

}
,

which indicates that Ux is measurable.
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Now suppose R+\V is uncountable. Since

R+\V = {x ∈ R+ : P (Ux) < 1} =

∞⋃
m=1

{
x ∈ R+ : P (Ux) � 1− 1

m

}
,

there exists m0 ∈ N+ such that
{
x ∈ R+ : P (Ux) � 1− 1

m0

}
is uncountable.

Then we can choose a sequence

{xi}∞i=1 ⊂
{
x ∈ R+ : P (Ux) � 1− 1

m0

}

such that xi �= xj if i �= j. Let U c
x = Ω\Ux. Then U c

x consists of ω’s such that
y(s, ω) has at least one cluster with size x. Since, by Equation (2.2), the number
of clusters is finite, ∀ω ∈ Ω, it cannot belong to infinite many sets in {U c

xi
}∞i=1.

In other words, lim sup
i→∞

U c
xi

= ∅. Thus by Fatou’s Lemma,

0 = P (∅) = P (lim sup
i→∞

U c
xi
) � lim sup

i→∞
P (U c

xi
) � lim sup

i→∞

1

m0
=

1

m0
,

which is a contradiction.

By Equation (2.2) we know that N0 is bounded and E(N0) < ∞. Besides,
P (N0 > 0) � P (y((0, 0)) > 0) > 0 and E(N0) > 0. Define

F̃ (x) = 1− E(Nx)

E(N0)
, x ∈ V. (3.4)

Then we have the following corollary:

Corollary 3.1. Suppose that y satisfies the conditions in Lemma 3.1 and x0 ∈
V . Then

lim
x→x0
x∈V

Nx = Nx0 , a.s., (3.5)

and F̃ (x) is continuous in V .

Proof. Fix ω ∈ Ux0 . Let C1, C2, ..., CN0 be the clusters and

γ = min
1�i�N0

|λ(Ci)− x0|.

Then γ > 0 and when |x − x0| < γ and x ∈ V , Nx = Nx0 . Since P (Ux0) = 1,
we have

lim
x→x0
x∈V

Nx = Nx0 , a.s.

Finally, by the Dominated Convergence Theorem, we have

lim
x→x0
x∈V

F̃ (x) = 1− 1

E(N0)
lim

x→x0
x∈V

E(Nx) = 1− E(Nx0)

E(N0)
= F̃ (x0).

Hence F̃ (x) is continuous in V .
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Remark 1. Now it is obvious that F̃ (x) has all the properties of distribution
functions, but it is only defined in V . Note that V is dense in R+, we can
let the right limit of F̃ (x) be the well-defined distribution function. It may
look strange that the distribution function of clusters has the form (3.4). One
can think of E(N0) as the expected number of clusters, and E(Nx) as the
expected number of clusters with size greater than x. Then E(Nx)/E(N0) can
be regarded as the proportion of clusters with size greater than x, which should
be 1− F̃ (x) by definition. This suggests that the right limit of F̃ (x) should be
the cumulative distribution function of the size of clusters. This idea comes from
practical problems in various fields, such as agriculture, ecology and hydrology
(Pascual et al. (2002); Scanlon et al. (2007); Staver et al. (2019)). More examples
will be given after the Empirical Distribution Function (EDF) is defined in the
next section.

3.2. The distribution function and its estimation

Now we are ready to formally obtain the distribution function of cluster size.

Theorem 3.4. Suppose y satisfies the conditions in Lemma 3.1 and F̃ (x) is
defined as in Corollary 3.1. Define

F (x) = inf
z∈V ∩[x,∞)

F̃ (z), x ∈ R+, (3.6)

and F (x) = 0 when x < 0. Then F (x) has the following properties:
(1) F (x) is non-decreasing;
(2) F (−∞) = 0, F (+∞) = 1;
(3) F (x) is right continuous.

Therefore, F (x) is a valid distribution function defined in R.

Proof. (1) follows immediately by the definition of F (x). Note that F (x) =
F̃ (x) = 1 when x > λ(D) = 1, we have F (−∞) = 0, F (+∞) = 1 and (2)
holds. Besides, ∀x0 ∈ R+ and ∀ε > 0, by the definition of F (x0), there exists
x′ ∈ V such that 0 � F̃ (x′) − F (x0) < ε/2. Note that F̃ (x) is monotone and
continuous in V and that R+\V is at most countable, there exists x′′ > x′ such
that 0 � F̃ (x′′) − F̃ (x′) < ε/2. Let γ = x′′ − x0. When 0 < x − x0 < γ, since
F (x) = F̃ (x) when x ∈ V , we have

0 � F (x)− F (x0) � F (x′′)− F (x0)

= F̃ (x′′)− F (x0)

= F̃ (x′′)− F̃ (x′) + F̃ (x′)− F (x0)

< ε/2 + ε/2 = ε,

which completes the proof.

For any real function h defined in R, let C (h) = {x ∈ R : h is continuous atx}.
Define

Fk(x) = 1− E(Nx,k)

E(N0,k)
, x ∈ R. (3.7)
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The following theorem shows explicitly what V in (3.3) is and how we can
approximate the true distribution function F at resolution k. Though the dis-
tribution functions are not induced by specific random variables, we will show
that Fk converges to F in distribution, which means Fk(x) converges to F (x)
for all x ∈ C (F ).

Theorem 3.5. Under the same conditions as in Theorem 3.3, we have V =
C (F ) ∩ R+. Moreover, Fk(x) is well-defined and

Fk(x)
D→ F (x) as k → ∞.

Proof. Firstly note that 0 ∈ V ∩ C (F ). ∀x0 ∈ V \{0} and ε > 0, since F̃
is continuous at x0, there exists x′, x′′ ∈ V , such that x′ < x0 < x′′ and
F̃ (x′′) − ε < F̃ (x0) < F̃ (x′) + ε. Let γ = min(x′′ − x0, x0 − x′). Then for all x
satisfying |x− x0| < γ, we have

F (x)− ε � F (x′′)− ε = F̃ (x′′)− ε < F̃ (x0) < F̃ (x′) + ε = F (x′) + ε � F (x) + ε.

Hence x0 ∈ C (F ) ∩ R+ and V ⊂ C (F ) ∩ R+.

Now suppose x0 ∈ R+\V . Then by definition, P (U c
x0
) > 0. ∀γ > 0, since

R+\V is at most countable, there exist x′ ∈ (x0 − γ, x0)∩ V and x′′ ∈ (x0, x0 +
γ) ∩ V . Note that ω ∈ U c

x0
implies there is at least one cluster with size x0 and

Nx′(ω) > Nx′′(ω), we have

F (x′′)− F (x′) = F̃ (x′′)− F̃ (x′) =
E (Nx′ −Nx′′)

E(N0)

�
E

(
(Nx′ −Nx′′) 1{Nx′−Nx′′>0}

)
E(N0)

�
E

(
1{Nx′−Nx′′>0}

)
E(N0)

=
P (Nx′ > Nx′′)

E(N0)

�
P (U c

x0
)

E(N0)
> 0.

The last term above is a constant only depending on x0, which indicates that
limx→x0 F (x) �= F (x0) and x0 ∈ R+\C (F ). Therefore, R+\V ⊂ R+\C (F ) and
C (F ) ∩ R+ ⊂ V . Hence V = C (F ) ∩ R+.

Now since P (N0,k > 0) � P (y((1, 1)) > 0) > 0, by Equation (2.3) we have

0 < E(N0,k) < ∞ and thus Fk(x) is well defined in R. To show Fk(x)
D→ F (x),

it suffices to show that ∀x ∈ V , Fk(x) → F (x). Since N0,k’s and Nx,k’s are
bounded, we have, by Theorem 3.3 and the Dominated Convergence Theorem,

lim
k→∞

Fk(x) = 1− limk→∞ E(Nx,k)

limk→∞ E(N0,k)
= 1− E(Nx)

E(N0)
= F (x), x ∈ V,

which completes the proof.
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We now address the problem of estimating the distribution function Fk(x) for
some specific k. In practice, data are often obtained as images with some fixed
resolution. For instance (see Chen, Mohanty and Rodriguez-Iturbe (2017)), a
800 m by 800 m square field D is divided into 64 pixels, and each pixel is 100
m by 100 m. Then a remote sensor detects the soil moisture of the center point
of each pixel, and produces a image of soil moisture with resolution k = 3. Now
let y denote the process of soil moisture and c = 0.2 be the threshold. After
each measurement, we obtain a realization of y at 64 locations and a series
of sizes of clusters x1, x2, ..., xN0 . Suppose n different fields D1, D2, ..., Dn with
same size and similar soil properties are chosen, and they are far away from
each other so that the soil moisture of each field is considered to be independent
of each other. Then we have y1, y2, ..., yn that are independent and identically
distributed random processes defined in D1, D2, ..., Dn, respectively. After mea-
suring the soil moisture of field Di, i = 1, 2, ..., n, a series of sizes of clusters
xi,1, xi,2, ..., xi,N0,k,i

is obtained, where Nx,k,i is the corresponding number of
clusters with size greater than x in Di. Then in practice, a commonly used EDF
of clusters F̂k,n(x) is defined as the sample EDF of the whole data set

x1,1, ..., x1,N0,k,1
, x2,1, ..., x2,N0,k,2

, ..., xn,1, ..., xn,N0,k,n
.

It is obvious that it is equivalent to define F̂k,n(x) as

F̂k,n(x) = 1−
∑n

i=1 Nx,k,i∑n
i=1 N0,k,i

. (3.8)

We now show an asymptotic property of this EDF in the following theorem.

Theorem 3.6. Suppose that y1, y2, ..., yn are independent and identically dis-
tributed random processes that are defined in D and satisfy the condition in
Lemma 3.1. Define

Tn = sup
x∈R

∣∣∣F̂k,n(x)− Fk(x)
∣∣∣.

Then we have

Tn
a.s.→ 0, (3.9)

i.e., F̂k,n converges to Fk almost surely uniformly.

Proof. Let xj = j/2k, j = 0, 1, 2, ..., 2k, and

I0 = (−∞, x1), Ij = [xj , xj+1), j = 1, 2, ..., 2k − 1, I2k = [1,∞).

Then by the definition of Nx,k (note that λk(·) only takes finite values), we have

Nx,k = Nxj ,k, ∀x ∈ Ij

and

Fk(x) = Fk(xj), F̂k,n(x) = F̂k,n(xj), ∀x ∈ Ij .
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Therefore,

Tn = sup
x∈R

∣∣∣F̂k,n(x)−Fk(x)
∣∣∣ = max

0�j�2k

∣∣∣F̂k,n(xj)−Fk(xj)
∣∣∣ �

2k∑
j=0

∣∣∣F̂k,n(xj)−Fk(xj)
∣∣∣.

Note that by the strong law of large numbers (SLLN) we have∣∣∣F̂k,n(xj)− Fk(xj)
∣∣∣ = ∣∣∣ 1

n

∑n
i=1 Nxj ,k,i

1
n

∑n
i=1 N0,k,i

−
E(Nxj ,k)

E(N0,k)

∣∣∣ a.s.→ 0, j = 0, 1, 2, ..., 2k.

Since there are only finite many j’s, we conclude that

Tn �
2k∑
j=0

∣∣∣F̂k,n(xj)− Fk(xj)
∣∣∣ a.s.→ 0,

as desired.

3.3. Applications to Gaussian random fields

All results of the previous section are based on the condition (3.1) in Lemma 3.1.
Note that the area of interest A = {y > 0} = {y � 0}\{y = 0} is the difference
between an excursion set and a level set, and many results of properties of level
sets and excursion sets have already been obtained; see, for example, Flores and
Leon (2010); Worsley (1995, 1997). The following theorem is based on Rice’s
Formula (see Chapter 11 of Adler and Taylor (2007) and Ulrich (1984)), which
makes the condition (3.1) easy to check when y is a Gaussian random field. Let
∇y denote the almost surely gradient of y: (∂y/∂s1, ∂y/∂s2), and∇2y denote the
almost surely Hessian matrix of y with entries ∂2y/∂si∂sj . The joint distribution
of (y,∇y,∇2y) is defined as the joint distribution of y,∇y and the 2(2+1)/2 = 3
dimensional vector vech(∇2y). First of all, we introduce the following lemma,
which is necessary for the proof of the next theorem.

Lemma 3.2. Suppose that f is a deterministic function defined in D and f ∈
C 1(D). Let

B0 = ∂ {s ∈ D : f(s) > 0} , R0 = {s ∈ D : f(s) = ∇f(s) = 0} .
Then λ(B0) = 0 if λ(R0) = 0.

Proof. See Appendix A.5.

Now suppose that y is a centered Gaussian random field (GRF) defined
in D. Furthermore, assume that y is twice continuously differentiable almost
surely, i.e., y ∈ C 2(D) a.s., and the joint distributions of (y,∇y,∇2y) are non-
degenerate. Let C(s, t) denote the covariance function of y and Cij(s, t) denote
the covariance function of ∂2y/∂si∂sj , namely for s, t ∈ D,

C(s, t) = E (y(s)y(t)) , Cij(s, t) = E

(
∂2y

∂si∂sj
(s)

∂2y

∂ti∂tj
(t)

)
. (3.10)

Then we have the main theorem of this subsection:
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Theorem 3.7. Suppose that, for some finite K > 0, α > 0 and small enough
|t− s|, Cij’s satisfy

max
i,j=1,2

|Cij(t, t) + Cij(s, s)− 2Cij(s, t)| � K |ln |t− s||−(1+α)
(3.11)

and
|C(t, t) + C(s, s)− 2C(s, t)| � K |ln |t− s||−(1+α)

. (3.12)

Then condition (3.1) in Lemma 3.1 holds.

Proof. By Lemma 3.2, condition (3.1) is satisfied if with probability one,

R0(ω) = {s ∈ D : y(s) = ∇y(s) = 0}

has zero Lebesgue measure. In Theorem 11.2.1, Corollary 11.2.2 and Lemma
11.2.12 of Adler and Taylor (2007), let T = D, B = (0,∞), f = ∇y, g = y. Then
Lemma 11.2.12 indicates that when conditions (3.11) and (3.12) are satisfied,
R0 = ∅ with probability one. This implies λ(R0) = 0 a.s., as desired.

Remark 2. If y is stationary, we can let C(t) = C(t1, t2) be the covariance
function of y. By the property of GRF, C is fourth differentiable and (3.11)
becomes (see Section 5.5 of Adler and Taylor (2007))

max
i,j=1,2

∣∣∣∣ ∂4C

∂2ti∂2tj
(0)− ∂4C

∂2ti∂2tj
(t)

∣∣∣∣ � K |ln |t||−(1+α)
(3.13)

when t is small enough. (3.12) is not needed anymore since the differentiability
of C implies that the left hand side of (3.12) is O(|t − s|). Condition (3.13)
is satisfied, for example, when y is isotropic and C is the Matern covariance
function with ν > 2.

4. Simulation study

Firstly, we simulated y as a Gaussian process in D with mean 0 and isotropic
Gaussian covariance function K1(r) = e−r2 . We used δ = 0.001 and y was
simulated n = 500 times with k = 3, k = 5, k = 7 and k = 9 respectively.
Then we calculated the EDFs and plotted them against x as in Figure 2a. After
that, instead of fixing the sample size, we fixed k = 7 and used n = 25, n = 50,
n = 100 and n = 500 respectively. The EDFs with different sample sizes are
shown in Figure 2b.

Figure 2a shows the convergence rate of the distribution function. When
n = 500 is fixed, F̂7,n(x) and F̂9,n(x) are almost identical. This indicates that
the convergence of the distribution function in resolution is quite fast. Regarding
the sample sizes, Figure 2b shows that when k = 7 is fixed, F̂7,n(x) is close to

F̂7(x) when n � 100.
We also considered the distribution function with covariance functionK2(r) =

sin(r)/r, which is only valid in R
d, d � 3. We used the same value of δ and
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Fig 2. The EDFs of the areas of clusters with covariance function K1(r) = e−r2 . (a): The
EDFs of n = 500 samples with different resolutions and δ = 0.001. (b): The EDFs of resolu-
tion k = 7 with different sample sizes and δ = 0.001.

Fig 3. The EDFs of the areas of clusters with covariance function K2(r) = sin(r)/r. (a):
The EDFs of n = 500 samples with different resolutions and δ = 0.001. (b): The EDFs of
resolution k = 7 with different sample sizes and δ = 0.001.

plotted the EDF curves for different resolutions and sample sizes, as described
above. The results are shown in Figure 3. Though the shape of the EDF curves
of K2 are different from the curves obtained using K1, both of them essentially
converged at k = 7.

Finally we changed the covariance function to the exponential covariance
function K3(r) = e−10r and used δ = 0.01. Note that K3 is not differentiable at
r = 0 and that a centered Gaussian process with covariance function K(r) =
e−10r does not satisfy the conditions of Theorem 3.7 (K3(r) = e−10r is not
differentiable at r = 0 and y is not differentiable in D). We again simulated y
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Fig 4. The EDFs of n = 500 samples for different resolutions and δ = 0.01 with covariance
function K3(r) = e−10r. (a): The EDFs versus x in original scale. (b): The complimentary
EDFs versus x in log-log scale.

500 times with k from 6 to 10. The corresponding EDFs F̂k,n(x) against x are

shown in Figure 4a. We also plot the complimentary EDFs 1− F̂ (x) against x
in log-log scale in Figure 4b.

Figures 4a and 4b suggest that the EDF still converges as k gets large, though
K3(r) = e−10r does not satisfy the condition of Theorem 3.7. However, it con-

verges much slower compared to the EDF with covariance K1(r) = e−r2 and
the EDF with K2(r) = sin(r)/r.

5. Data analysis

In this section we perform an analysis of the tree clusters data introduced in
Staver et al. (2019). The tree clusters data were collected across n = 10 land-
scapes in April 2012 in Kruger National Park, South Africa, with each pixel
= 56 cm on a side. Let y(s) denote the height of the tree at location s and
y(s) = 0 imply that there is no tree presenting at s. According to Staver et al.
(2019), the area of interest is the set of locations where there are trees with
height > 3.5 meters presenting, namely

A = {s ∈ D : y(s) > 3.5} ,

and the tree clusters are the connected components in A. The tree clusters in
the data set are identified by Moore Neighborhood, which are equivalent to
the tree clusters identified by Von Neumann Neighborhood with δ satisfying√
2l < δ < 2l, where l = 56 cm is the side length of each pixel.

The data set we analyzed is Dataset S1 in the Supporting Information of
Staver et al. (2019), which contains the areas and the perimeters of M =
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Fig 5. The complimentary EDF of the area of the tree clusters in the log-log scale. The
horizontal axis, x, is in unit of number of pixels (56 cm × 56 cm each).

2,450,127 identified tree clusters. This data set is available on the PNAS web-
site and more detailed descriptions and analyses of this data set can be found
in Staver et al. (2019).

The complimentary EDF 1− F̂ (x) versus x is plotted in the log-log scale in
Figure 5. We observe in Figure 5 that the size of tree clusters, x, may have a
log-log linear relationship with its complimentary distribution function 1−F (x).
Let xi, i = 1, 2, ...,M, be the samples of sizes of tree clusters that we obtained,
and yi = 1 − F̂ (xi), i = 1, 2, ...,M, be the value of the complimentary EDF
at xi. A simple linear regression of log(yi) versus log(xi) resulted in a slope of
−1.26 and R2 = 0.98. This implies that for the tree clusters,

1− F (x) ∝ x−β ,

and the size of tree clusters has a power-law distribution. Interestingly, a recently
developed soil moisture space-time model has shown that the soil moisture clus-
ters also have a similar power-law distributional property, indicating that the
distributional properties of tree clusters result from the space-time probabilistic
structure of soil moisture fields (Rodriguez-Iturbe et al. (2019)).

This type of power-law clustering distribution is of great interest in various
fields. For instance, the power-law cluster size distribution for the nonwetting
phase in sandstones reveals the existence of ganglia of all sizes presenting a
large surface area for dissolution and reaction in waterflooded oil reservoirs or
CO2 storage sites (Iglauer et al. (2010)). In addition, the power-law distribution
of forest fires indicates the relationship between fire probability and population
density, which can be used in forest-fire danger rating method and system (Song
et al. (2006)). Moreover, the change in the power-law distribution of vegetation
patterns should be regarded as early warning signals of ecological transitions
(Kefi et al. (2014)).
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6. Concluding remarks

In this paper, we considered the problem of a particular and practically useful
image clustering focusing on the distributional properties of clusters of spatial
random fields. It is different from the traditional statistical clustering models.
A formal definition of a well-defined distribution function of the clusters F (x) is
given in Theorem 3.4. The definition of distribution function at specific resolu-
tion Fk(x) and the EDF F̂k,n(x) are also defined, respectively. The asymptotic
properties of these two functions under general conditions are shown in Theo-
rems 3.5 and 3.6. This provides an efficient way to estimate F (x) in applica-
tions. However, the regularity condition (3.1) in Lemma 3.1 is not easy to verify.
Theorem 3.7 shows that under the Gaussian assumption, instead of verifying
condition (3.1), one can verify the smoothness of the covariance function of the
Gaussian random field to ensure the asymptotic results hold.

The simulation studies demonstrated the convergence of F̂k,n(x) with differ-
ent covariance functions and different values of k and n. The results imply that
the convergence rate depends highly on the smoothness of the covariance func-
tion K(·). When the isotropic exponential covariance function K(r) = e−10r is
used, F̂k,n(x) appears to converge, though K(r) = e−10r does not satisfy the
regularity conditions of Theorem 3.7 (K(r) = e−10r is not differentiable at r = 0
and y is not differentiable in D).

Section 5 presented an analysis of a data set of tree clusters that became
publicly available recently. Based on this data set, we obtained the empirical
distribution function of the size of tree clusters. The result indicates that the
tree clusters have a power-law distributional property, which is widely observed
in many studies (Scanlon et al. (2007); Staver et al. (2019); Rodriguez-Iturbe
et al. (2019)). A recently developed space-time model of soil moisture has indi-
cated that the soil moisture clusters also have similar distributional properties.
We conjecture that this power-law distributional property may result from some
specific covariance functions, such as the isotropic exponential covariance func-
tion K(r) = e−cr.

As a future research problem, it would be interesting to study the relationship
between the model of the random field, y, and F , the distribution of the size of
clusters. Assuming that y is a Gaussian Markov random field, F mainly depends
on C, the covariance function of y. Studying the relationship between C and F
is of great importance in many related fields since one can get the information
of the random field through the image data using the relationship. In addition,
in Section 3.2, we assume that D1, D2, ..., Dn are far from each other so that
y1, y2, ..., yn are independent. However, in applications, D1, D2, ..., Dn might
be close to each other and y1, y2, ..., yn would be correlated. In this case, how to
obtain the distributional properties of the size of clusters using correlated data
still remains a nontrivial question. Furthermore, in this paper we have obtained
the main results when the domain D is bounded. When the area of D tends
to infinity, stronger regularity conditions might be needed, and the asymptotic
limiting distribution of cluster size could be very different from the case when
D is bounded.



4384 Z. Chen and S. Wang

Appendix A: Proofs of Lemmas and Theorems

This appendix includes some proofs of the results in Sections 2 and 3.

A.1. Proof of Theorem 2.1

Proof. For any s ∈ C, there exists m such that s ∈ Am. By Definitions 2.2 and
2.3, ∀s̃ ∈ Am, s̃ ∼ s. Thus we have s̃ ∈ C by Definition 2.4. Hence Am ⊂ C and
s ∈ Am ⊂

⋃
i:Ai⊂C Ai. Since s is arbitrary, we conclude that C ⊂

⋃
i:Ai⊂C Ai

and thus C =
⋃

i:Ai⊂C Ai.

A.2. Proof of Theorem 3.1

Proof. The proof consists of two parts.

(Necessity) Assume that s′
G∼ s′′. Then there exists K > 0 such that s′

Gk∼ s′′

when k > K. Fix k > max{K,− log2 δ}. Then since 2−k < δ, Definition 2.6
implies that there exist s1, s2, ..., sn ∈ A ∩ Gk such that ‖si−1 − si‖ < δ, i =
1, 2, ..., n+1, where s0 = s′ and sn+1 = s′′. Thus the condition of Definition 2.3
is satisfied for all i = 1, 2, ..., n+ 1, which means s′ ∼ s′′.

(Sufficiency) Assume that s′ ∼ s′′. Then there exist 0�n<∞ and s1, s2, ..., sn ∈
A, such that for each i = 1, 2, ..., n + 1, ‖si−1 − si‖ < δ (s′ = s0, s

′′ = sn+1).
Note that s1, s2, ..., sn might not belong to G. Let

ε =
1

2

(
δ − max

i=1,2,...,n+1
‖si−1 − si‖

)
> 0.

Since G is dense in D and A is open, for each i = 1, ..., n, there exists s̃i such
that s̃i ∈ G ∩A ∩B(si, ε). Let s̃0 = s′, s̃n+1 = s′′. Then we have

‖s̃i−1 − s̃i‖ � ‖s̃i−1 − si−1‖+ ‖si−1 − si‖+ ‖si − s̃i‖
< ε+ max

i=1,2,...,n+1
‖si−1 − si‖+ ε = δ.

Besides, since for all i = 0, 1, ..., n + 1, s̃i ∈ A ∩ G, there exists Ki > 0, such
that s̃i ∈ A ∩ GKi for all k > Ki. Let K = max{K0,K1, ...,Kn+1}, we have,
when k > K, s̃i ∈ A ∩ Gk for all i = 0, 1, ..., n + 1. This satisfies the condition

(2) in Definition 2.6, which implies s′
Gk∼ s′′ for all k > K. Hence s′

G∼ s′′, as
desired.

A.3. Proof of Theorem 3.2

Proof. Let σ(X) denote the σ-algebra generated by a random variable X. Fix
x ∈ R and k ∈ N+. It suffices to show that Nx,k is a composition of two
measurable functions. Let Ek be the set of 2k × 2k matrices whose entries are
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0 or 1, and the collection of all subsets of Ek is defined as the σ-algebra in Ek.
Define fk : Ω 
→ Ek such that

fk(ω)(m,n) = 1{y(m/2k,n/2k)>0}, m = 1, 2, ..., 2k, n = 1, 2, ..., 2k,

i.e., the (m,n)th entry of fk(ω) is equal to 1 if y
(
m/2k, n/2k

)
> 0 and is equal

to 0 otherwise. Then fk is measurable since ∀e ∈ Ek we can express f−1
k (e) as

f−1
k (e) =

2k⋂
n=1

2k⋂
m=1

Fm,n,

where Fm,n = {y
(
m/2k, n/2k

)
> 0} or Fm,n = {y

(
m/2k, n/2k

)
� 0}, depend-

ing on e(m,n), the (m,n)th entry of e. Now for e ∈ Ek, let

Qe =
{
(m,n) : e(m,n) = 1,m = 1, 2, ..., 2k, n = 1, 2, ..., 2k

}
.

We define an equivalence class
e∼ in Qe (similar to Definition 2.6) as follows:

if q′ = (m′, n′) and q′′ = (m′′, n′′), then q′
e∼ q′′ if there exist 0 � l < ∞ and

q1, q2, ..., ql ∈ Qe, such that for each i = 1, 2, ..., l+1, at least one of the following
two conditions is satisfied (q0 = s′, ql+1 = q′′, qi = (mi, ni), i = 0, 1, ..., l + 1):

(1) |mi−1 −mi|+ |ni−1 − ni| = 1;
(2) |mi−1 −mi|2 + |ni−1 − ni|2 < (δ · 2k)2.

Now we define gx,k as the number of “clusters” with size larger than x on a
given matrix in Ek:

gx,k : Ek 
→ N, gx,k(e) = card
({

U ∈ Qe/
e∼: card(U) · 4−k > x

})
.

Then automatically gx,k is measurable since any subset of Ek belongs to the σ-
algebra defined in Ek. Finally, it is clear that Nx,k = gx,k ◦ fk, which completes
the proof.

A.4. Proof of Lemma 3.1

Proof. We first prove the case when x = 0 (note that U0 = Ω). Fix ω ∈ Ω. Note
that from Theorem 2.1,

Ci =
⋃

j:Aj⊂Ci

Aj , i = 1, 2, ..., N0,

where Ci’s are open, nonempty and mutually exclusive. Since G is dense in D,
there exists K1 ∈ N+ such that for any k � K1, Ci ∩ Gk �= ∅, i = 1, 2, ..., N0.
Besides, from the first part of the proof of Theorem 3.1, there exists K2 ∈ N+

such that for any k � K2, s
′ Gk∼ s′′ implies s′ ∼ s′′. Let K = max{K1,K2}.

Then we can choose si such that si ∈ Ci ∩ GK , i = 1, 2, ..., N0. For k > K, if

i �= j then si and sj must belong to different clusters in Gk since si
Gk∼ sj would
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imply si ∼ sj . Therefore, there should be at least N0 different clusters in Gk

and thus N0,k � N0 when k > K. Therefore, we have

lim inf
k→∞

N0,k � N0.

Now it suffices to show
lim sup
k→∞

N0,k � N0.

Suppose lim supk→∞ N0,k > N0. Then there exists an increasing sequence of
integer {kn}∞n=1 such that k1 > K and N0,kn > N0 for all n. Let C1,kn , C2,kn ,
..., CN0,kn ,kn be the clusters of Gkn and sj ∈ Cj,kn ⊂ Cj , j = 1, 2, ..., N0, as
chosen above. Let s̃n be a point in CN0+1,kn , n = 1, 2, .... Since D is compact in
R

2, there exists a subsequence of s̃n that converges to a limit s̃ ∈ D. WLOG,
we can assume s̃n → s̃ as n → ∞. Then there exists N ∈ N+ such that
‖s̃n − s̃N‖ < δ for all n � N . Again, WLOG, assume s̃N ∈ C1. Then s̃N ∼ s1,

which implies s̃N
G∼ s1 by Theorem 3.1. Hence there exists n0 > N such that

s̃N
Gkn0∼ s1. Since ‖s̃n0 − s̃N‖ < δ, we have

s1
Gkn0∼ s̃N

Gkn0∼ s̃n0 .

However, this is a contradiction since s1 ∈ C1,kn0
, s̃n0 ∈ CN0+1,kn0

, s1 and s̃n0

would not belong to a same cluster of Gkn0
. Hence we conclude that N0,k → N0

for all ω ∈ Ω = U0, which also implies that N0 is a random variable.
Now we prove the case when x > 0. From the proof above, there exists

K ∈ N+ such that N0,k = N0 and s′
Gk∼ s′′ implies s′ ∼ s′′ for all k � K. Let

C1,k, C2,k, ..., CN0,k be the clusters of Gk. Then for any i and j, either Cj,k ⊂ Ci

or Cj,k ∩ Ci = ∅. Assume that Cj,k ⊂ Cj , j = 1, 2, ..., N0. Then we have

λk(Cj,k) =

(
1

2k

)2 ∑
s∈Gk

1Cj,k
(s) =

(
1

2k

)2 ∑
s∈Gk

1Cj (s), j = 1, 2, ..., N0,

which is a Riemann sum. To show that it converges to the Lebesgue integral∫
D

1Cj (s)ds = λ(Cj), j = 1, 2, ..., N0,

it suffices to show that the set of discontinuous points of 1Cj has zero Lebesgue
measure, i.e., λ(∂Cj) = 0 for j = 1, 2, ..., N0. For j = 1, suppose s ∈ ∂C1. Then
for any 0 < ε < δ/2, there exist s′ and s′′ such that s′ ∈ B(s, ε) ∩ Cc

1 and
s′′ ∈ B(s, ε) ∩ C1, y(s

′′) > 0. Since ‖s′ − s′′‖ < δ, if y(s′) > 0, we would have
s′ ∼ s′′ and s′ ∈ C1, which contradicts the fact that s′ ∈ Cc

1. Thus y(s′) � 0.
Therefore, for any 0 < ε < δ/2, there exist s′ and s′′ in B(s, ε) such that
y(s′) � 0, y(s′′) > 0. By the definition of ∂A(ω), we have s ∈ ∂A(ω). Therefore,
we have shown that

∂C1 ⊂ ∂A(ω) = ∂ {s ∈ D : y(s, ω) > 0} ,
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and thus
λ(∂C1) = λ(∂A(ω)) = 0.

Similarly, this equation holds when j = 2, 3, ..., N0. Therefore, ∀ω ∈ Ω,

λk(Cj,k) → λ(Cj), j = 1, 2, ..., N0(ω). (A.1)

Now to show Nx is a random variable, it suffices to show that ∀l ∈ N+,

{ω ∈ Ω : Nx(ω) = l} =

∞⋃
p=1

∞⋂
q=p

∞⋃
r=1

∞⋂
k=r

{
ω ∈ Ω : Nx+1/q,k(ω) = l

}
.

WLOG, assume λ(C1) � λ(C2) � · · · � λ(CN0). Suppose Nx(ω) = l. Let p = 1
if l = 0. Otherwise, choose p > 0 large enough such that x+1/p < λ(CNx). Then
we have λ(Ci) > x+1/p, i = 1, 2, ..., Nx and λ(Ci) < x+1/p, i = Nx +1, Nx +
2, ..., N0. By (A.1), there exists r > 0, such that for all k � r, λk(Cj,k) > x+1/p,
j = 1, 2, ..., Nx and λk(Cj,k) < x = 1/p, j = Nx + 1, Nx + 2, ..., N0. Therefore,
for all q � p and k � r, Nx+1/q,k(ω) = l, which implies that ω is in the right
hand side (RHS). Thus the left hand side (LHS) ⊂ RHS.

Now suppose that ω is in RHS. Then there exists q0 > 0 such that

ω ∈
∞⋃
r=1

∞⋂
k=r

{
Nx+1/q0,k(ω) = l

}
,

which indicates that Nx(ω) � l by (A.1). Suppose Nx(ω) > l. Then for all
q > 1/(λ(CNx) − x), we have x + 1/q < λ(CNx). Similarly, as the proof above,
when k is large enough, we would have Nx+1/q,k(ω) > l, which is a contradiction
since ω is in RHS. Hence Nx(ω) = l and ω is in LHS. This implies LHS = RHS.

Finally, assume ω ∈ Ux. Again, WLOG, we can assume λ(Ci) > x, i =
1, 2, ..., Nx and λ(Ci) < x, i = Nx + 1, Nx + 2, ..., N0. Then we have, for
sufficiently large k, λk(Cj,k) > x, j = 1, 2, ..., Nx and λk(Cj,k) < x, j =
Nx + 1, Nx + 2, ..., N0. Thus Nx,k = Nx for sufficiently large k, which implies
∀ω ∈ Ux, Nx,k → Nx as k → ∞, as desired.

A.5. Proof of Lemma 3.2

Proof. Firstly, note that for any x ∈ B0 and ε > 0, there exist x′ and x′′ such
that x′, x′′ ∈ B(x, ε) and f(x′) > 0, f(x′′) � 0. Since f is continuous, we have
f(x) = 0 and B0 ⊂ {f(x) = 0}. Since

λ(B0) = λ(B0 ∩ {∇f(x) = 0}) + λ(B0 ∩ {∇f(x) �= 0})
� λ({f(x) = 0} ∩ {∇f(x) = 0}) + λ({f(x) = 0} ∩ {∇f(x) �= 0})
= λ(R0) + λ({f(x) = 0} ∩ {∇f(x) �= 0}),

it suffices to show λ({f(x) = 0}∩{∇f(x) �= 0}) = 0. Since λ(∂D) = 0, it suffices
to show

λ({f(x) = 0} ∩ {∇f(x) �= 0} ∩Do) = 0,
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where Do = (0, 1)2 is the interior of D. Let S0 = {f(x) = 0}∩{∇f(x) �= 0}∩Do.
Now suppose x = (x1, x2) ∈ S0. WLOG, we can assume that ∂f(x)/∂x2 �= 0.
By the Implicit Function Theorem, there exist γ1

x, γ
2
x > 0 and a continuously

differentiable function g : Ix 
→ Jx such that

{(y1, g(y1)) : y1 ∈ Ix} = {(y1, y2) ∈ Ix × Jx : f(y1, y2) = 0}
= (Ix × Jx) ∩ {f(y) = 0},

where Ix = (x1−γ1
x, x1+γ1

x) and Jx = (x2−γ2
x, x2+γ2

x) are the neighborhoods
of x1 and x2 respectively. Now we show that the above set has zero Lebesgue
measure. For any 0 < γ < γ1

x and ε > 0, since g is uniformly continuous in
[x1 − γ, x1 + γ], there exists ξ > 0 such that when z′, z′′ ∈ [x1 − γ, x1 + γ] and
|z1 − z2| < ξ, |g(z1)− g(z2)| < ε. Choose K ∈ N such that 2γ/K < ξ and let

zk = x1 − γ +
2γk

K
, k = 0, 1, 2, ...,K.

Then we have

{(z, g(z)) : z ∈ [x1 − γ, x1 + γ]} ⊂
K⋃

k=1

[zk−1, zk]×
[
g

(
zk−1 + zk

2

)
− ε, g

(
zk−1 + zk

2

)
+ ε

]
,

where the Lebesgue measure of RHS is

K∑
k=1

2(zk − zk−1)ε = 4γε.

Since ε is arbitrary, we conclude that

λ ({(z, g(z)) : z ∈ [x1 − γ, x1 + γ]}) = 0.

By letting γ ↑ γ1
x, we obtain

λ ({(y1, g(y1)) : y1 ∈ Ix}) = 0.

Finally, note that Ix×Jx exists for each x in S0, {Ix×Jx}x∈S0 is an open cover
of S0. Since R

2 is Lindelof, there exists a countable subcover {In × Jn}∞n=1 of
S0 (Gemignani (1990), Chapter 7). Therefore, we have

λ(S0) = λ

( ∞⋃
n=1

(S0 ∩ (In × Jn))

)

�
∞∑

n=1

λ (S0 ∩ (In × Jn))

�
∞∑

n=1

λ ({f(y) = 0} ∩ (In × Jn))

=

∞∑
n=1

λ ({(y1, g(y1)) : y1 ∈ In}) = 0,

which completes the proof.
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