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Abstract: Mixture models appear in many research areas. In genetic and
epidemiology applications, sometimes the mixture proportions may vary
but are known. For such data, the existing methods for the underlying
component density estimation may produce undesirable results: negative
values in the density estimates. In this paper, we propose a maximum
smoothed likelihood method to estimate these component density func-
tions. The proposed estimates maximize a smoothed log likelihood func-
tion which can inherit all the important properties of probability density
functions. A majorization-minimization algorithm is suggested to compute
the proposed estimates numerically. We show that, starting from any initial
value, the algorithm converges. Furthermore, we establish the asymptotic
convergence rate of the L1 errors of our proposed estimators. Our method
provides a general framework for dealing with many similar mixture model
problems. An adaptive procedure is suggested for choosing the bandwidths
in our estimation procedure. Simulation studies show that the proposed
method is very promising and can be much more efficient than the existing
method in terms of the L1 errors. A malaria data application shows the
advantages of our method over others.
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1. Introduction

In this paper, we study data sets with the following mixture structure. Let
{Xi,αi}, i = 1, . . . , n, be independent and identically distributed (i.i.d.) copies
of {X,α}. For every i = 1, . . . , n, Xi comes from one of the M subpopulations
with probability density functions (pdfs) f1(x), . . . , fM (x). Denote by αi,j the
probability thatXi is from the jth subpopulation and let αi = (αi,1, . . . , αi,M )τ .

Clearly αi,j ≥ 0 and
∑M

j=1 αi,j = 1. The pdf of Xi conditioning on αi is given
by

Xi|αi ∼
M∑
j=1

αi,jfj(x). (1.1)
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Practically, αi is known, observable, or can be reliably estimated from other
sources. That is, conditioning on αi, Xi follows a mixture model with known
mixing proportions. To make this model identifiable, we need some condition
on α. The details of such a condition is given in Condition 4 of Section 4; a
stronger but more intuitive condition is that α is a continuous random vector,
or it is a discrete random vector with at least M supports. Our main interest
in this paper is to estimate f1(x), . . . , fM (x) nonparametrically.

Data with the mixture structure in (1.1) have been frequently identified in
the literature and in practice. Acar and Sun (2013) provided one example of
such data. In genetic association studies of single nucleotide polymorphisms
(SNPs), the corresponding genotypes of the SNPs are usually not deterministic;
in the resulting data, they are typically delivered as genotype probabilities from
various genotype calling or imputation algorithms (see for example Li et al.,
2009 and Carvalho et al., 2010). Ma and Wang (2012) summarized two types
of genetic epidemiology studies in which such mixture data are collected. These
studies are kin-cohort studies (Wang et al., 2008) and quantitative trait locus
studies (Lander and Botstein, 1989; Wu et al., 2007); see also Wang et al. (2012)
and the references therein. Section 7 also gives an example of such data in the
context of malaria.

Under the mixture model (1.1), statistical methods for estimating the com-
ponent cumulative distribution functions (cdfs) have been investigated; see Ma
and Wang (2012) and the references therein. Ma and Wang observed that the
classical maximum empirical likelihood estimators of these component cdfs are
either highly inefficient or inconsistent, and they proposed a class of weighted
least square estimators. The estimation of the pdfs has received less attention.
Ma et al. (2011) proposed a family of kernel-based weighted least squares es-
timators for the component pdfs under the assumption that αi is continuous.
However, their approach has two limitations: (1) the estimates do not inherit the
nonnegativity property of a regular density function; as is well known, this prop-
erty is often important in downstream density-based studies. (2) Their method
depends on an initial guess for the underlying densities; as a result, their esti-
mators are locally efficient only when this initial guess is correct.

The maximum smoothed likelihood was introduced by Eggermont and LaR-
iccia (1995a). It is analogous to the maximum parametric likelihood, but in
the nonparametric setup for density estimation. It inherits many of the good
properties of the parametric likelihood estimation. This method has been used
successfully to solve many difficult inverse convolution problems; see for example
Eggermont and LaRiccia (1995b). It has also been widely applied for the esti-
mation of the density and distribution functions in various statistical problems.
For example, it has been applied to estimate smooth monotone and unimodal
densities (Eggermont and LaRiccia, 2000), the density and hazard rate of the
event time distribution (Groeneboom et al., 2010), the component densities in
multivariate mixture model (Levine et al., 2011), the cumulative distribution
function for the interval censoring model (Groeneboom, 2014), the densities in
two-sample problem with likelihood ratio ordering (Yu et al., 2017). We incor-
porate this idea in our method. Our proposed estimators for f1, . . . , fM , namely
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f̂1, . . . , f̂M , inherit all the important properties of pdfs and can handle data
with continuous or discrete αi’s. We also propose a majorization-minimization
algorithm that computes these density estimates numerically. We show that for
finite samples, starting from any initial value, this algorithm not only increases
the smoothed likelihood function but also leads to estimates that maximize the
smoothed likelihood function.

Another contribution of this paper is to establish the L1 asymptotic consis-
tency and the corresponding convergence rate for our density estimates. Because
of the properties (see Section 4) of the nonlinear operator “N h” defined in Sec-
tion 2 and the complicated form of the smoothed log-likelihood function, the
development of asymptotic theory for nonparametric density estimates in the
framework of mixture models is technically challenging and still lacking in the
literature. We solve this problem by employing advanced theory from empirical
processes (see van der Vaart and Wellner 1996, Kosorok 2008, and the references
therein). We expect that the technical tools established in this paper will benefit
the future study of asymptotic theory for nonparametric density estimates in
other mixture models; see for example Levine et al. (2011).

The rest of the paper is organized as follows. Section 2 presents our pro-
posed density estimates based on the smoothed likelihood principle. Section 3
suggests a majorization-minimization algorithm to numerically compute these
density estimates and establishes the finite-sample convergence properties of this
algorithm. Section 4 studies the asymptotic behaviour of our density estimators.
Section 5 proposes a bandwidth selection procedure that is easily imbedded into
the majorization-minimization algorithm. Section 6 presents simulation studies,
which show that the proposed method is more efficient than existing methods
in terms of the integrated square error. Section 7 applies our method to a real-
data example, and Section 8 ends the paper with some discussion. The technical
details are relegated to the Appendix.

2. Maximum smoothed likelihood estimation

With the observed data {Xi,αi}ni=1 from Model (1.1), we propose a maximum
smoothed likelihood method for estimating f1, . . . , fM . We consider the set of
functions

C = {(f1, . . . , fM ) : fj is a pdf, j = 1, . . . ,M} .

Furthermore, we assume that the fj ’s have the common support Sx.
Given Model (1.1) and the observations {Xi,αi}ni=1, the conditional log-

likelihood is given by

l̃n(f1, . . . , fM ) =
n∑

i=1

log

⎧⎨⎩
M∑
j=1

αi,jfj(Xi)

⎫⎬⎭ .

However, as is well known, this log-likelihood function is unbounded in C; see
p. 25 in Silverman (1986) and p. 111 in Eggermont and LaRiccia (2001). There-
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fore, the corresponding maximum likelihood estimates do not exist. This un-
boundedness problem can be solved by incorporating the smoothed likelihood
approach (Eggermont and LaRiccia, 1995a). Specifically, we define the smoothed
log-likelihood of f1(x), . . . , fM (x) to be

ln(f1, . . . , fM ) =

n∑
i=1

log

⎧⎨⎩
M∑
j=1

αi,jN hjfj(Xi)

⎫⎬⎭ , (2.1)

where N hf(x) is the nonlinear smoothing operator for a density function f ,
represented by

N hf(x) = exp

{∫
R

Kh(u− x) log f(u)du

}
. (2.2)

Here Kh(x) = 1
hK(x/h), K(·) is a kernel function supported on [−L,L], and

h is the bandwidth for the nonlinear smoothing operator. By convention, we
define 0 log(0) = 0, log(0) = −∞, and exp(−∞) = 0.

Our proposed maximum smoothed likelihood estimators for f1, . . . , fM are
given by

(f̂1, . . . , f̂M ) = argmax(f1,...,fM )∈Cln(f1, . . . , fM ). (2.3)

We observe that the smoothed likelihood function defined in (2.1) has the fol-
lowing properties. First, based on Lemma 3.1(iii) of Eggermont (1999), ln(·) is
concave in C, and C is a convex set of functions. Second, if the kernel function
K(t) is bounded and hj > 0, j = 1, . . . ,M are fixed, then ln(·) is also bounded
in C, since for every x and (f1, . . . , fM ) ∈ C,

N hjfj(x) ≤ exp

[
log

{∫
R

Khj (u− x)f(u)du

}]
≤ sup

t
K(t)/hj .

Therefore, the maximizer of ln(·) exists, i.e. the optimization problem (2.3) is
well defined. Furthermore, if we assume that for every j = 1, . . . ,M , the Xi’s
corresponding to αi,j > 0 are dense in Sx, then ln(·) is strictly concave in C and
thus the solution to the optimization problem (2.3) is unique. Here, “dense”
means that for every j = 1, . . . ,M , and x ∈ Sx, the interval [x− Lhj , x+ Lhj ]
contains at least one observation Xi such that the corresponding αi,j > 0.

3. The majorization-minimization algorithm

In this section, we propose an algorithm that numerically calculates f̂1, . . . , f̂M
with given bandwidths h1, . . . , hM and we study the finite-sample convergence
property of this algorithm. The proposed algorithm, called the majorization-
minimization algorithm, is in spirit similar to the majorization-minimization
algorithm in Levine et al. (2011) and the EM-like algorithm in Hall et al. (2005).
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To facilitate our theoretical development, we define the majorization-minimi-
zation updating operator G on C as follows. For any (f1, . . . , fM ) ∈ C, let

G(f1, . . . , fM ) = (fG
1 , . . . , f

G
M ), (3.1)

where

fG
j (x) =

∑n
i=1 wi,jKhj (x−Xi)∑n

i=1 wi,j
,

with wi,j =
αi,jN hjfj(Xi)∑M

k=1 αi,kN hk
fk(Xi)

. (3.2)

Note that in every updating step, the updated fG
j (·) is essentially obtained by

maximizing the minorant

ln(f1, . . . , fM ) +
n∑

i=1

M∑
j=1

wi,j

{
logN hjgj(Xi)− logN hjfj(Xi)

}
with respect to gj(·).

We first show that G is capable of increasing the smoothed log-likelihood
function ln at every updating step.

Theorem 1. For every (f1, . . . , fM ) ∈ C, we have

ln (G(f1, . . . , fM )) ≥ ln (f1, . . . , fM ) .

Theorem 1 immediately leads to our proposed majorization-minimization al-
gorithm as follows. Given initial values (f0

1 , . . . , f
0
M ) ∈ C, for s = 0, 1, 2, · · · , we

iteratively update from (fs
1 , . . . , f

s
M ) to (fs+1

1 , . . . , fs+1
M ) via

(fs+1
1 , . . . , fs+1

M ) = G(fs
1 , . . . , f

s
M ).

Clearly, Theorem 1 above ensures that for every s = 0, 1, . . ., we have

ln
(
fs+1
1 , . . . , fs+1

M

)
≥ ln (f

s
1 , . . . , f

s
M ) .

Furthermore, since for any (f1, . . . , fM ) ∈ C, G(f1, . . . , fM ) belongs to the class
of functions

Fn =

{
(f1, . . . , fM ) : fj(x) =

∑n
i=1 wi,jKhj (x−Xi)∑n

i=1 wi,j
; 0 ≤ wi,j ≤ 1

}
, (3.3)

we have (fs
1 , . . . , f

s
M ) ∈ Fn for s ≥ 1. Next, we study the finite-sample con-

vergence property of this majorization-minimization algorithm; we observe that
the technical development of this property is nontrivial. We first present a nec-
essary and sufficient condition under which (f̂1, . . . , f̂M ) ∈ C is a solution of the
optimization problem (2.3).
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Theorem 2. Assume that
∑n

i=1 αi,j > 0 for every j. For (f̂1, . . . , f̂M ) ∈ C, we
have

ln(f̂1, . . . , f̂M ) = sup
(f1,...,fM )∈C

ln(f1, . . . , fM )

if and only if (f̂1, . . . , f̂M ) = G(f̂1, . . . , f̂M ) almost surely under the Lebesgue
measure.

The following corollary results from an immediate application of Theorem 2;
the straightforward proof is omitted.

Corollary 1. Assume that
∑n

i=1 αi,j > 0 for every j. Let (f̂1, . . . , f̂M ) be a

solution of the optimization problem (2.3); then (f̂1, . . . , f̂M ) ∈ Fn almost surely
under the Lebesgue measure.

Corollary 1 is useful for our technical development of asymptotic theory for
f̂1, . . . , f̂M in Section 4. It indicates that the solution of (2.3) is equivalent to
the solution of

(f̂1, . . . , f̂M ) = argmax(f1,...,fM )∈Fn
ln(f1, . . . , fM ), (3.4)

provided the stated condition
∑n

i=1 αi,j > 0 for every j is satisfied. This con-
dition is quite reasonable since if

∑n
i=1 αi,j = 0 for some j then the jth sub-

population does not appear in the data, and we can delete the corresponding
fj(x) from the mixture model (1.1). Therefore, developing asymptotic theory

for f̂1, . . . , f̂M from (2.3) is equivalent to developing it from (3.4).
Using Theorem 2, we show that the updating sequence ln (f

s
1 , . . . , f

s
M ) con-

verges to its global maximum, which implies the convergence of the proposed
majorization-minimization algorithm.

Theorem 3. Assume that supt K(t) < ∞. Then we have

lim
s→∞

ln(f
s
1 , . . . , f

s
M ) = ln(f̂1, . . . , f̂M ),

where (f̂1, . . . , f̂M ) ∈ Fn is a solution of the optimization problem (2.3).

Using Theorem 3, if we do not impose further conditions on the data, ln(·)
is not necessarily strictly concave. Therefore, we can show only that the updat-
ing sequence ln(f

s
1 , . . . , f

s
M ) converges to the maximum of ln(f1, . . . , fM ). Note

that this does not guarantee the convergence of (fs
1 , . . . , f

s
M ) to (f̂1, . . . , f̂M ),

i.e. the maximizer of ln(f1, . . . , fM ), because this maximizer may not be uniquely
defined. Instead, referring to the proof of this theorem, we have shown that
there exists at least a subsequence of (fs

1 , . . . , f
s
M ) converging to a maximizer of

ln(f1, . . . , fM ). Furthermore, if we impose a technical condition to ensure that

ln(·) is strictly concave, then (f̂1, . . . , f̂M ) is uniquely defined by (2.3). We can

immediately show lims→∞(fs
1 , . . . , f

s
M ) = (f̂1, . . . , f̂M ) for every x ∈ Sx. We

refer to the discussion at the end of Section 2 for a sufficient condition ensuring
that ln is strictly concave in C.
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We end this section with the following remark about the proposed major-
ization-minimization algorithm above.

Remark 1. Ma et al. (2011) discussed an EM-like algorithm in their discussion
section to obtain nonnegative component density estimates. In particular, they
suggested defining

wi,j =
αi,jfj(Xi)∑M

k=1 αi,kfk(Xi)
,

and using a similar way as (3.1) to update the resultant density estimates in
their paper. Yet, the corresponding theoretical properties as well as the numer-
ical performance of these estimates are left unknown. As commented by Levine
et al. (2011), algorithms of this kind do not minimize/maximize any particular
objective function; this may impose difficulty in the subsequent technical devel-
opment. We refer to Levine et al. (2011) for more discussion of such a method.

4. Asymptotic properties for (f̂1, . . . , f̂M)

In this section, we investigate the asymptotic behaviour of (f̂1, . . . , f̂M ) given

in (2.3). First, we consider the consistency of p̂(x,α) =
∑M

j=1 αjN hj f̂j(x) un-
der the Hellinger distance, where the Hellinger distance between nonnegative
functions m1(x,α) and m2(x,α) is defined to be

d(m1,m2) =

[∫
Sγ

∫
R

{
m

1/2
1 (x,α)−m

1/2
2 (x,α)

}2

dxdα

]1/2

,

with Sγ being the support of the random vector α.
To facilitate our technical development, we assume that all the bandwidths,

h1, . . . , hM , are of the same order as n → ∞. That is:

Condition 0: There exists a common bandwidth h > 0 such that C1 ≤
inf1≤j≤M,n≥1 hj/h ≤ sup1≤j≤M,n≥1 hj/h ≤ C2 for some fixed constants
C2 ≥ C1 > 0.

Furthermore, we need the following conditions for deriving the theoretical
results in this section.

Condition 1: h → 0 and n1−ϑh → ∞ when n → ∞, where ϑ > 0 is an
arbitrarily small value.
Condition 2: The kernel function K(x) is symmetric about 0 and sup-
ported and continuous on [−L,L] for some L > 0, and infx∈[−L,L] K(x) >

0. The ath-order derivative K(a)(x) of K(x) exists for every a = 1, 2, . . .
and x ∈ (−L,L). Further, supa,x |K(a)(x)| is bounded.
Condition 3: The true component pdfs f0,j(x), j = 1, . . . ,M are bounded,
supported on Sx = [c1, c2], and twice continuously differentiable in (c1, c2)
with bounded second-order derivatives. Furthermore, infx∈Sx f0,j(x) > 0.
Condition 4: There exist M × 1 vectors α0,1, . . . ,α0,M in the support Sγ

of γ(α) satisfying (i) and (ii) below.
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(i). The M vectors α0,1, . . . ,α0,M are linearly independent.

(ii). There exist balls Oj ⊂ Sγ , j = 1, . . . ,M , where α0,j ∈ Oj , the Oj ’s
are disjoint, and γ(α) > 0 for every α ∈ Oj .

Note that Condition 1 requires that the M bandwidths satisfy hj → 0 and
n1−ϑhj → ∞. Condition 2 requires that the kernel function K(x) is symmet-
ric and sufficiently smooth. Condition 3 requires that the component pdfs are
sufficiently smooth and positive on the support of X. Condition 4 is an identi-
fiability condition, which is satisfied when α is a continuous random vector, or
a discrete random vector with at least M supports.

Theorem 4. Assume Conditions 0–3. For any arbitrarily small ϑ > 0, we have

d(γp̂, γp̃0) = Op(h
0.5) +Op(n

−0.5+ϑh−0.5),

where γ(α) is the marginal density of α, p̃0(x,α) =
∑M

j=1 αjf0,j(x) is the con-
ditional density of X given α, and f0,j(x), j = 1, . . . ,M , are the true values of
fj(x).

Next we establish the asymptotic convergence rate for N hj f̂j , j = 1, . . . ,M
under the L1-distance. The proof of this theorem relies heavily on the results
given in Theorem 4.

Theorem 5. Assume Conditions 0–4. For any arbitrarily small ϑ > 0 and
j = 1, . . . ,M , we have∫

R

|N hj f̂j(x)− f0,j(x)|dx = Op(h
1/2) +Op(n

−0.5+ϑh−0.5).

Finally, we establish the L1 convergence of f̂j(x). We observe that Theorems
2 and 5 play key roles in the proof.

Theorem 6. Assume Conditions 0–4. For any arbitrarily small ϑ > 0, we have∫
R

|f̂j(x)− f0,j(x)|dx = Op(h
1/2) +Op(n

−0.5+ϑh−0.5), j = 1, . . . ,M.

For presentational continuity, we have placed the long proofs of Theorems
4–6 in the Appendix. As observed in the Appendix, these proofs are techni-
cally challenging. The main obstacles are the following undesirable properties
of N hf(x) with f(x) being an arbitrary pdf. First, N hf(x) is neither a den-
sity nor necessarily sufficiently close to the corresponding f(x). Therefore, the
well-developed empirical process theory and techniques for M-estimators in den-
sity estimation (see for example Section 3.4.1 in van der Vaart and Wellner
1996) are not directly applicable. Secondly, N hf(x) introduces significant bias
on the boundary of the support of f(x). For example, if f(x) is supported on
[c1, c2], then N hf(x) is supported on [c1 + Lh, c2 − Lh], i.e. N hf(x) = 0 when
x ∈ [c1, c1+Lh)∪(c2−Lh, c2]. Here [−L,L] is the support for the kernel function
K(x).
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These two properties of N hf(x) significantly challenge our technical develop-

ment. To date, we can show only the asymptotic behaviour of p̂(x), N hj f̂j(x),

and f̂j(x) as given in Theorems 4, 5, and 6. The convergence rate given in
Theorems 5 and 6 may not be optimal; there is some room for improvement.
However, because of these two properties of “N h”, we conjecture that Op(h

0.5)
is the best rate achievable by d(γp̂, γp̃0) under the assumption that the f0,j(x)’s
are supported on a compact support. The intuition is as follows. One can show
that even in the extreme case where the f̂j(x)’s are estimated ideally well,

f̂j(x) = f0,j(x) say, the convergence rate for d(γp̂, γp̃0) can not be better than
Op(h

0.5). Consequently, based on this and the convergence rates shown in our
theorems, we can only show that the best L1 convergence rate of our estimators
can be arbitrarily close to n−0.25.

5. Bandwidth selection

The maximum smoothed likelihood estimates f̂1, . . . , f̂M depend on the choice of
the bandwidths h1, . . . , hM . In this section, we propose a mean integrated square
error (MISE) based method to select them numerically. Recall that f̂j(x), for
j = 1, . . . ,M , has the form:

f̂j(x) =

∑n
i=1 ŵi,j(Xi)Khj (x−Xi)∑n

i=1 ŵi,j(Xi)
,

where ŵi,j(Xi) =
αi,jN hj

f̂j(Xi)∑M
k=1 αi,kN hk

f̂k(Xi)
. We derive the bias of f̂j(x) first. In the

proof of Theorem 6, we have derived that

1

n

n∑
i=1

ŵi,j(Xi) →
∫
α∈Sγ

αjγ(α)dα (5.1)

in probability. Therefore

E
{
f̂j(x)

}
≈

∑n
i=1 E

{
ŵi,j(Xi)Khj (x−Xi)

}∑n
i=1 ŵi,j(Xi)

≈
∑n

i=1

∫
ŵi,j(u)Khj (x− u)p(u,αi)du∑n

i=1 ŵi,j(Xi)

=

∫
Khj (x− u)f̆j(u)du

= fj(x) +

∫
Khj (x− u)

{
f̆(u)− fj(u)

}
du

+

∫
Khj (x− u) {fj(u)− fj(x)} du

≈ fj(x)+

∫
Khj (x− u)

{
f̆(u)−fj(u)

}
du+

h2
jf

′′
j (x)

2

∫
t2K(t)dt,
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where p(u,αi) =
∑M

k=1 αi,kfk(u) is the conditional density of Xi given αi; and

f̆j(u) =
1∑n

i=1 ŵi,j(Xi)

n∑
i=1

αi,j

{ ∑M
k=1 αi,kfk(u)∑M

k=1 αi,kN hk
f̂k(u)

}
N hj f̂j(u)

=
1∑n

i=1 ŵi,j(Xi)

n∑
i=1

αi,jŵi,j(u)p(u,αi).

Next, we derive the variance of f̂j(x) as follows. Because of (5.1), we have

var{f̂j(x)} ≈
{

1∑n
i=1 ŵi,j(Xi)

}2 n∑
i=1

var
{
ŵi,j(Xi)Khj (x−Xi)

}
=

{
1∑n

i=1 ŵi,j(Xi)

}2 n∑
i=1

(
E

[{
ŵi,j(Xi)Khj (x−Xi)

}2
]

−
[
E

{
ŵi,j(Xi)Khj (x−Xi)

}]2 )
.

Note that

n∑
i=1

E
{
ŵi,j(Xi)Khj (x−Xi)

}2

≈
n∑

i=1

∫
ŵ2

i,j(u)K
2
hj
(x− u)p(u,αi)du

=
1

hj

n∑
i=1

ŵ2
i,j(x)p(x,αi)

∫
K2(t)dt+OP

(
hj

n∑
i=1

{ŵi,j(x)p(x,αi)}′′
)

≈ 1

hj

n∑
i=1

ŵ2
i,j(x)p(x,αi)

∫
K2(t)dt, (5.2)

and similarly

n∑
i=1

[
E

{
ŵi,j(Xi)Khj (x−Xi)

}]2
≈

n∑
i=1

{∫
ŵi,j(u)Khj (x− u)p(u,αi)du

}2

≈
n∑

i=1

{ŵi,j(x)p(x,αi)} ,

which is ignorable comparing to (5.2) under appropriate regularity conditions.
Hence

var{f̂j(x)} ≈
{

1∑n
i=1 ŵ

2
i,j(Xi)

}2
1

hj

n∑
i=1

ŵi,j(x)p(x,αi)

∫
K2(u)du.
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Then the MISE of of f̂j(x) can be approximated by

MISE(f̂j) ≈
∫ [∫

Khj (x− u)
{
f̆(u)− fj(u)

}
du+

h2
jf

′′
j (x)

2

∫
t2K(t)dt

]2

dx

+
1{∑n

i=1 ŵ
2
i,j(Xi)

}2
hj

∫ n∑
i=1

ŵi,j(x)p(x,αi)dx

∫
K2(u)du,

which relies on fj(x) and f ′′
j (x) that can be approximated by estimators from

other approaches. In our numerical implementation, we assume fj(x) ∼
N(μj , σ

2
j ), and estimate them by the classical EM algorithm.

Note that directly finding hj , j = 1, . . . ,M , which minimize the MISE, may
not be computationally feasible, partially because that ŵi,j(x) depends on hj

and need to be evaluated based on iterations, and their relation to hj has no
explicit formula. Based on this MISE, we propose an iterative algorithm to
select hj ; in each iteration, we replace ŵi,j(x) with their estimates from the last
iteration.

Given initial bandwidths (h
(0)
1 , . . . , h

(0)
M ), we update (h

(t)
1 , . . . , h

(t)
M ) for t =

0, 1, 2, · · · as follows.

Step 1. For every i = 1, . . . , n and j = 1, . . . ,M , update w
(t)
i,j (·) by the

majorization-minimization algorithm given in Section 3 with h
(t)
j .

Step 2. Update h
(t)
j,1, j = 1, . . . ,M to be the minimizer of

∫ [∫
K

h
(t)
j

(x− u)
{
f̆(u)− fj(u)

}
du+

h2
jf

′′
j (x)

2

∫
t2K(t)dt

]2

dx

+
1{∑n

i=1 ŵ
2
i,j(Xi)

}2
hj

∫ n∑
i=1

ŵi,j(x)p(x,αi)dx

∫
K2(u)du,

with ŵi,j(·) replaced with w
(t)
i,j (·) from Step 1, and fj(·) and f ′′

j (·) replaced
with the estimates from other approaches.
Step 3. Let nj be the positive integer closest to

∑n
i=1 αi,j , which serves

as an estimate of the average number of observations from the j the pop-

ulation. For each j = 1, . . . ,M , sort w
(t)
i,j : w

(t)
(1),j ≥ w

(t)
(2),j ≥ . . . ≥ w

(t)
(n),j .

Let St
j = {Xi : w

(t)
i,j ≥ w

(t)
(nj),j

}. Treating the observations in St
j as if they

are from a single population, we apply the available bandwidth-selection
method for the classical kernel density estimate to choose hj . Denote by

h
(t)
j,2 the resulting bandwidth; we use it as an upper bound for our selected

bandwidth to hold back the potential over-smoothing in Step 2.

Step 4. Based on h
(t)
j,1 from Step 2 and h

(t)
j,2 from Step 3, we update h

(t+1)
j =

min
{
h
(t)
j,1, h

(t)
j,2

}
.
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We update Steps 1–4 until convergence to obtain w
(∞)
i,j and h

(∞)
j ; and let

f̂j(x) =

∑n
i=1 w

(∞)
i,j K

h
(∞)
j

(x−Xi)∑n
i=1 w

(∞)
i,j

.

The philosophy of the selection method in Step 3 is as follows. St
j collects the

nj observations that are most likely to come from the jth population based on
the preceding iteration. We use these observations to obtain an upper bound of
the bandwidth for the corresponding density estimates in the current iteration.

When implementing this algorithm in our numerical studies, we use the quar-
tic kernel, which was also used by Ma et al. (2011). In Step 3, once St

j is ob-

tained, we use R function dpik() to obtain h
(t)
j,2, j = 1, . . . ,M . dpik() in the

R package KernSmooth is implemented by Wand and Matt (publicly available
at http://CRAN.R-project.org/package=KernSmooth). This package is based
on the kernel methods in Wand and Jones (1995). Furthermore, the initial band-

widths are set to h
(0)
j = h(0) for every j = 1, . . . ,M , where h(0) is the output of

dpik() based on all the observations X1, . . . , Xn. We iterate Steps 1–4 until

M∑
j=1

(
h
(t+1)
j − h

(t)
j

)2

≤ 0.0052.

6. Simulation study

We use the following two simulation studies to examine the numerical perfor-
mance of our density estimates.

In Study I, we generate data using two populations, i.e. M = 2. The first
population has a standard normal distribution, so that f0,1 = φ0, where φ0

denotes the pdf of the standard normal distribution. The second population has
a mixture normal distribution: f0,2(x) = λφ0(x) + (1− λ)φ(x− μ); we consider
different values of λ and μ so that f0,2(x) has different mixture structures.
For every value of (λ, μ), we generate X1, . . . , Xn with n = 400. For every
Xi, we set αi = (αi,1, αi,2)

τ with αi,1 = ui,1/(ui,1 + ui,2), where ui,1, ui,2 are
generated independently from the uniform distribution over [0, 1]. Therefore,
approximately 200 observations will come from each of the populations.

In Study II, we simulate densities that mimic the shape of those estimated
from the real-data example in Section 7. The data are generated via:

Xi|αi ∼ αf1 + (1− α)f2(x) when i > n1

Xi|αi ∼ 0.677f1(x) + 0.323f2(x) when i ≤ n1,

where n1 = 211, n2 = 81, and f1(x) and f2(x) are the pdfs of N(10.77, 1.19)
and 0.48N(5.68, 1.04)+0.52N(9.17, 0.78) respectively. Here, N(μ, σ) denotes the
normal distribution with mean μ and variance σ2. f1(x) and f2(x) are similar
to the densities estimated from the real-data example in Section 7. We consider

http://CRAN.R-project.org/package=KernSmooth
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different values of α. When α = 0, the simulated data has the same α values as
those in the real data.

For every combination of (λ, μ) in Study I and every α in Study II, we repeat
the simulation 1000 times and therefore obtain 1000 replicated simulation data
sets, {Xi,αi}ni=1; here n = 400 for study I and n = 292 for Study II.

For both studies, we apply the algorithm in Section 5 to obtain f̂1 and f̂2.
The 5%, 50%, and 95% point-wise quantiles for f̂1 (left panel) and f̂2 (right
panel) over 1000 replications are given in Figure 1 (top panels: Study I, λ = 0,
μ = 0; middle panels: Study I, λ = 0.5, μ = 2; bottom panels: Study II, α = 0).
We observe that the 90% confidence bands of f1 and f2 cover the corresponding
true density.

For study II, the number of elements in the support of α is equal to that
of the mixing components. A referee pointed out that we can use the following
alternative method to estimate f1 and f2. Denote by g1(x) = αf1(x) + (1 −
α)f2(x) and g2(x) = 0.667f1(x)+ 0.323f2(x), which are respectively the pdfs of
the observations {Xn1+1, . . . , Xn} and {X1, . . . , Xn1}. Therefore g1(·) and g2(·)
can be estimated separately by classical kernel density estimates based on their
corresponding observations. We denote these estimates by ĝ1,A(·) and ĝ2,A(·). As

a consequence, the estimates for f1(·) and f2(·), denoted by f̂1,A(·) and f̂2,A(·),
can be obtained by solving the aforementioned linear equations. We call this
method the “alternative method” and compare it with other methods in study
II.

We compare our method with the methods proposed by Ma et al. (2011)
in both studies, and with the alternative method in study II. We compute the
average values of the L1 errors for f̂1 and f̂2 over 1000 replications for both
studies; for study I, we consider different combinations of λ and μ; for study
II, we consider α = 0, 0.5, and 1. We give the results together with those of
the alternative method and Ma et al. (2011), “OLS, ICV”, named the Ma et al.
method hereafter, in Table 1. As observed in that paper, the other methods of
Ma et al. (2011) give results that are similar or not as good. Here L1 error is
defined to be

L1(f̂j) =

∫ ∣∣∣f̂j(x)− f0,j(x)
∣∣∣ dx.

Table 1 clearly shows that our method gives smaller or comparable average
values of the L1 errors to those of the alternative and the Ma et al. methods.
The improvement is significant, particularly when f0,1 and f0,2 are simulated
similarly (i.e., λ = 0 and μ = 0). Furthermore, we observe that both the Ma
et al. and the alternative methods do not inherit the nonnegativity property of
a regular density function.

7. Real-data example

We consider the malaria data described by Vounatsou et al. (1998). The data
come from a cross-sectional survey of parasitemia and fever of children less than
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Table 1

Average values of the L1 errors for our method and the Ma et al. method. Each value in the
table was computed from 1000 replications.

Study I L1(f̂1) L1(f̂2)
λ μ our Ma et al. our Ma et al.
0 0 0.137 0.165 0.138 0.166
0 1 0.155 0.169 0.157 0.169
0.5 1 0.144 0.168 0.139 0.167
0 2 0.182 0.177 0.181 0.178
0.5 2 0.158 0.175 0.134 0.163
0 3 0.191 0.208 0.192 0.205
0.5 3 0.164 0.186 0.155 0.182
0 4 0.175 0.220 0.175 0.223
0.5 4 0.168 0.204 0.192 0.238

Study II L1(f̂1) L1(f̂2)
α our Ma et al. alternative our Ma et al. alternative
0 0.186 0.218 0.209 0.189 0.247 0.215
0.5 0.339 0.406 0.449 0.554 0.639 0.761
1 0.140 0.157 0.160 0.406 0.443 0.512

a year old in a village in the Kilombero district of Tanzania (Kitua et al. 1996).
They considered a subset of this data for children of between six and nine
months collected in two seasons: (1) January–June, the wet season, when malaria
prevalence is high; (2) July–December, the dry season, when malaria prevalence
is low. We use one of these data sets, which has also been analyzed by Qin and
Leung (2005) with other statistical methods.

The measurements are the parasite levels (per μl), ranging from 0 to 399952.1.
There are n1 = 211 observations with positive parasite levels from the mixture
sample and n2 = 81 observations with positive parasite levels for nonmalaria
cases in the community. If we denote these parasite levels (after log transforma-
tion) as X1, . . . , Xn1 , Xn1+1, . . . , Xn with n = n1 + n2, then

Xi|αi ∼ αif1(x) + (1− αi)f2(x),

where f1(x) and f2(x) are the pdfs of the log parasite levels for the malaria
and nonmalaria subjects respectively; αi is the probability that the ith subject
is a malaria patient. Clearly, when i > n1, αi = 0 since it is known that all
the subjects in this group are nonmalaria patients. When i ≤ n1, αi ≈ 0.677,
which is estimated from the ratio of malaria patients to fevered patients in the
endemicity and the community (Qin and Leung 2005). Therefore,

Xi|αi ∼ f2(x) when i > n1

Xi|αi ∼ 0.677f1(x) + 0.323f2(x) when i ≤ n1.

We apply our method and the Ma et al. method to {Xi,αi}ni=1 above, where

αi = (αi, 1 − αi)
τ . The density estimates from our method, named f̂1(x) and

f̂2(x), and Ma et al., name f̃1(x) and f̃2(x), are displayed in Figure 2. The “hat”

and “tilde” esitmates for f1 (and f2) are similar in shape, but f̃1(x) is not always
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Fig 1. Point-wise quantile density estimates for Study I (top panels: λ = 0, μ = 0; middle
panel: λ = 0.5, μ = 2), and Study II (bottom panels). In each plot, the solid line is the true
density and the other three curves are the point-wise quantiles for density estimates over 1000
replicates: median (dotted), 5% (dashed), and 95% (dashed).

nonnegative. Considering these estimates together with the observations in our
simulation studies, we expect that f̂1(x) and f̂2(x) are more accurate than f̃1(x)

and f̃2(x). Figure 3 presents histograms for the nonmalaria sample (i.e. that for
f2(x)) and the mixture sample (i.e. that for 0.677f1(x) + 0.323f2(x)) with the
corresponding density estimates from our method. From this figure, we observe
that our density estimates agree well with the observed data (see the histogram
of the observations from the relevant sample).
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Fig 2. Component density estimates for malaria data based on our method and Ma et al.

Fig 3. Histograms for the nonmalaria sample (i.e. that for f2(x)) and the mixture sample
(i.e. that for 0.677f1(x) + 0.323f2(x)) along with the corresponding density estimates based
on our method.

Furthermore, from Figure 2, we observe that the density estimate for the log
parasite levels of the malaria patients (the black solid line) has a clearer peak
and more concentrated curve (centred around 11) than that for the nonmalaria
sample (the red dashed line), which has a bimodal feature. From a practical point
of view, we argue that this observation is not surprising: the log parasite levels
for the nonmalaria sample may result from more than one cause; these causes
may lead to different parasite levels and therefore the corresponding density
is in fact a mixture of a number of subpopulations. In contrast, the cause for
the malaria sample is clear, i.e. the malaria disease; therefore, the density is
concentrated and has a clear peak.
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8. Discussion

In this paper, we consider the density estimation for several subpopulations,
where every observation in the data is composed of a measurement and the
probability of every subpopulation that this measurement comes from. With
the smoothed likelihood principal, we have proposed density estimators and a
majorization-minimization algorithm that numerically computes these density
estimates. In theory, we have shown the convergence of the proposed major-
ization-minimization algorithm, and established the asymptotic L1 convergence
rate of our estimates when the sample size goes to infinity. However, because
of the features of the nonlinear operator “N h”, the theoretical development for
the asymptotic behaviors of our proposed estimators is technically challenging,
and so far, we can only obtain the convergence rate presented in Theorems 5
and 6. We conjecture there is some room to improve this convergence rate. We
leave it for future research. We have conducted numerical studies to illustrate
the effectiveness of our method and compared our proposed method with the
existing methods in the literature. We have observed that our method does lead
to comparable or smaller L1 errors.

As far as we are aware, there are a number of interesting future research
topics that can be very closely related to our works in this paper. One is to
develop better convergence rate and establish the asymptotic normality of our
density estimates. We may also extend the current method and theory to the
censored data, as considered by Wang et al. (2012) and Qin et al. (2014). We
can further consider imposing various constraints on the densities under the
framework of this paper based on practical and scientific interests. For example,
in the real data example given in Section 7, it could be reasonable to assume that
the posterior probability of a subject having malaria given the log parasite level
x is a nondecreasing function of x; this is equivalent to assume that f1(x)/f2(x)
is a nondecreasing function of x; see Yu et al. (2017) and the references therein
for more details. We plan to incorporate such a constraint condition into our
method under the framework of this paper and study all the relevant theoretical
and numerical properties in the near future. We also expect that the technical
tools in this paper may benefit the theoretical development for the smoothed
likelihood density estimates for mixture data of other kinds.

Appendix A: Proof of Theorems 1–3

A.1. Proof of Theorem 1

The proof of this theorem uses a strategy similar to that in Levine et al. (2011).

Recall that for (f1, . . . , fM ) ∈ C, wi,j =
αi,jN hj

fj(Xi)∑M
k=1 αi,kN hk

fk(Xi)
. Then for every

i = 1, . . . , n,
∑M

j=1 wi,j = 1. By the concavity of the logarithm function, we
have for every (g1, . . . , gM ) ∈ C,

ln(g1, . . . , gM )− ln(f1, . . . , fM )
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=

n∑
i=1

log

∑M
j=1 αijN hjgj(Xi)∑M
j=1 αijN hjfj(Xi)

=

n∑
i=1

log

M∑
j=1

wi,j

N hjgj(Xi)

N hjfj(Xi)

≥
n∑

i=1

M∑
j=1

wi,j

{
logN hjgj(Xi)− logN hjfj(Xi)

}
=

M∑
j=1

{bj(g1, . . . , gM )− bj(f1, . . . , fM )} , (A.1)

where

bj(g1, . . . , gM ) =

n∑
i=1

wi,j logN hjgj(Xi)

=

∫ n∑
i=1

wi,jKh(u−Xi) log gj(u)du, (A.2)

which is maximized when gj(x) =
∑n

i=1 wi,jKh(x−Xi)∑n
i=1 wi,j

= fG
j (x). This together

with (A.1) completes the proof of this theorem. �

A.2. Proof of Theorem 2

We first show necessity. Assume ln(f̂1, . . . , f̂M ) = sup(f1,...,fM )∈C ln(f1, . . . , fM ).

Based on Theorem 1, we immediately have l(f̂1, . . . , f̂M ) = l(G(f̂1, . . . , f̂M )).

Next we show that (f̂1, . . . , f̂M ) = G(f̂1, . . . , f̂M ) almost surely under the
Lebesgue measure.

With exactly the same calculation as for (A.1) and (A.2), we have

0 = l(G(f̂1, . . . , f̂M ))− l(f̂1, . . . , f̂M )

≥
M∑
j=1

{(
n∑

i=1

ŵi,j

)∫
f̂G
j (x) log

f̂G
j (x)

f̂j(x)
dx

}
,

where f̂G
j denotes the jth component of G(f̂1, . . . , f̂M ), ŵi,j=

αi,jN hj
f̂j(Xi)∑M

k=1 αi,kN hk
f̂k(Xi)

.

On the other hand, since f̂G
j and f̂j are pdfs, we have∫
f̂G
j (x) log

f̂G
j (x)

f̂j(x)
dx ≥ 0.

Furthermore, for every j = 1, . . . ,M , since
∑n

i=1 αi,j > 0 and (f̂1, . . . , f̂M ) ∈ C,
we have

∑n
i=1 ŵi,j > 0. Therefore,∫

f̂G
j (x) log

f̂G
j (x)

f̂j(x)
dx = 0,
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which together with the fact that log(·) is strictly concave leads to f̂G
j (x) = f̂j(x)

almost surely under the Lebesgue measure. That is, (f̂1, . . . , f̂M )=G(f̂1, . . . , f̂M )
almost surely under the Lebesgue measure as claimed before.

We proceed to show sufficiency. Assume (f̂1, . . . , f̂M ) = G(f̂1, . . . , f̂M ). Let

f̂ = (f̂1, . . . , f̂M ). For an arbitrary f = (f1, . . . , fM ) ∈ Fn, we need to show

that ln(f) ≤ ln(f̂).

Define

H(t) = ln(f̂ + t(f − f̂)), (A.3)

with t ∈ [0, 1]. Next, we verify that H(·) has the following properties:

(P1). H(t) is a concave function in [0, 1].
(P2). H(t) is continuously differentiable in (0, 1), H ′(0+) exists, and H ′(0+) =

0.

We first show (P1) above. Note that ln is concave in C, so we immediately
have for every t1, t2 ∈ [0, 1],

H

(
t1 + t2

2

)
= ln

⎛⎝
{
f̂ + t1(f − f̂)

}
+

{
f̂ + t2(f − f̂)

}
2

⎞⎠
≥ 1

2
ln

(
f̂ + t1(f − f̂)

)
+

1

2
ln

(
f̂ + t2(f − f̂)

)
=

1

2
H(t1) +

1

2
H(t2),

leading to (P1).

We proceed to show (P2). First, to verify that H(t) is continuously differen-
tiable in (0, 1) and the existence of H ′(0+), it suffices to verify that for every

x ∈ Sx and j = 1, . . . ,M ,
∫
Kh(u − x) log

[
f̂j(u) + t

{
fj(u)− f̂j(u)

}]
du is

continuously differentiable when t ∈ (0, 1) and right differentiable at t = 0,
and that the derivative can be exchanged with the integration. This is valid
because of the definition of Fn and the dominant convergence theorem. There-
fore, it remains to verify H ′(0+) = 0. For notational convenience, we write

f t = f̂ + t(f − f̂) = (f1,t, . . . , fM,t) and let (fG
1,t, . . . , f

G
M,t) = G(f1,t, . . . , fM,t).

Using the chain rule for derivatives, we have for every t ∈ (0, 1),

H ′(t) =

n∑
i=1

M∑
j=1

αi,jN hjfj,t∑M
k=1 αi,kN hk

fk,t(Xi)

∫
Khj (u−Xi)

fj,t(u)

{
fj(u)− f̂j(u)

}
du

=

M∑
j=1

∫
fG
j,t(u)

fj,t(u)

{
fj(u)− f̂j(u)

}
du.

Noting that fj,0 = f̂j and f̂G
j = f̂j almost surely under the Lebesgue measure
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because of our assumption, we immediately have

H ′(0+) =

M∑
j=1

∫
fG
j,0(u)

fj,0(u)

{
fj(u)− f̂j(u)

}
du

=

M∑
j=1

∫ {
fj(u)− f̂j(u)

}
du = 0,

which completes our proof of (P2) above. Now, from (P1) and (P2) and the
property of concave functions, we immediately have

H(1) ≤ H(0) +H ′(0+)(1− 0),

which is

ln(f) ≤ ln(f̂).

This completes the proof of the theorem. �

A.3. Proof of Theorem 3

Since (fs
1 , . . . , f

s
M ) ∈ Fn, for every j = 1, . . . ,M , we can write

fs
j (x) =

∑n
i=1 w

s
i,jKhj (x−Xi)∑n
i=1 w

s
i,j

.

Clearly, for every s, the set of coefficients ws = {ws
i,j : i = 1, . . . , n; j =

1, . . . ,M} belongs to

Ωw = {{wi,j : i = 1, . . . , n; j = 1, . . . ,M} : 0 ≤ wi,j ≤ 1} ,

which is a closed subset of RnM . Therefore, there exists a subsequence of ws,
namely wsl , and w∞ = {w∞

i,j : i = 1, . . . , n; j = 1, . . . ,M} ∈ Ωw, such that

lim
l→∞

wsl = w∞. (A.4)

Let

f∞
j (x) =

∑n
i=1 w

∞
i,jKhj (x−Xi)∑n
i=1 w

∞
i,j

.

We can readily check that

lim
l→∞

fsl
j (x) = f∞

j (x) (A.5)

for all x ∈ Sx and hence

lim
l→∞

ln(f
sl
1 , . . . , fsl

M ) = ln(f
∞
1 , . . . , f∞

M ),
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which together with Theorem 1 ensures that

lim
s→∞

ln(f
s
1 , . . . , f

s
M ) = ln(f

∞
1 , . . . , f∞

M )

almost surely under the Lebesgue measure. It remains to show that

G(f∞
1 , . . . , f∞

M ) = (f∞
1 , . . . , f∞

M ). (A.6)

Then based on Theorem 2, we have

ln(f
∞
1 , . . . , f∞

M ) = ln(f̂1, . . . , f̂M ),

which completes our proof of this theorem.
In fact, along the subsequence sl defined above, using the same derivations

as for (A.1) and (A.2), we have

0 = lim
l→∞

{
ln(f

sl+1
1 , . . . , fsl+1

M )− ln(f
sl
1 , . . . , fsl

M )
}

≥ lim
l→∞

M∑
j=1

{(
n∑

i=1

wsl
i,j

)∫
fsl+1
j (x) log

fsl+1
j (x)

fsl
j (x)

dx

}
≥ 0.

Hence

lim
l→∞

M∑
j=1

{(
n∑

i=1

wsl
i,j

)∫
fsl+1
j (x) log

fsl+1
j (x)

fsl
j (x)

dx

}
= 0. (A.7)

On the other hand, (A.5) implies liml→∞ G(fsl
1 , . . . , fsl

M ) = G(f∞
1 , . . . , f∞

M ), or
equivalently,

lim
l→∞

(fsl+1
1 , . . . , fsl+1

M ) = (f∞,G
1 , . . . , f∞,G

M ), (A.8)

where (f∞,G
1 , . . . , f∞,G

M ) = G(f∞
1 , . . . , f∞

M ). Combining (A.4), (A.5), (A.7), and
(A.8), we have

M∑
j=1

{(
n∑

i=1

w∞
i,j

)∫
f∞,G
j (x) log

f∞,G
j (x)

f∞
j (x)

dx

}
= 0,

which indicates that for every j = 1, . . . ,M ,∫
f∞,G
j (x) log

f∞,G
j (x)

f∞
j (x)

dx = 0. (A.9)

Since log(·) is strictly concave, (A.9) implies f∞
j (x) = f∞,G

j (x). That is,

G(f∞
1 , . . . , f∞

M ) = (f∞
1 , . . . , f∞

M )

almost surely under the Lebesgue measure, which proves (A.6), and therefore
completes the proof of this theorem. �
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Appendix B: Proof of Theorems 4–6

B.1. Preliminaries

The proofs of Theorems 4–6 rely heavily on well-developed results for M-esti-
mation in empirical processes. We use van der Vaart and Wellner (1996) (VM)
as the main reference and adapt the commonly used notation of this book. In
this section, we introduce some necessary notation and review two important
results.

We first review some notation necessary for introducing the result for the
M-estimation. Let “�” (“�”) denote smaller (greater) than, up to a universal
constant. Throughout, we will use C to denote a sufficiently large universal
constant. For a function m(x,α), we define

Pn{m(X,α)} =
1

n

n∑
i=1

m(Xi,αi);

P{m(X,α)} =

∫
Sγ

∫
R

m(x,α)γ(α)p̃0(x,α)dxdα.

When m(x,α) is a nonrandom function, P{m(X,α)} = E0{m(X,α)}, where
E0 means that the expectation is taken under γ(α)p̃0(x,α). This convention
will be used throughout the proofs. For a set M of functions of (x,α), we define

Gnm =
√
n [Pn{m(X,α)} − P{m(X,α)}] for m ∈ M; (B.1)

‖Gn‖M = sup
m∈M

|Gnm| . (B.2)

Let Pn denote the class of functions:

Pn =

⎧⎨⎩p(x,α) =

M∑
j=1

αjN hjfj(x) : (f1, . . . , fM ) ∈ Fn

⎫⎬⎭ , (B.3)

where Fn is defined by (3.3). For any nonnegative functions p(x,α) and p1(x,α),
we define

mp,p1(X,α) = log
p(X,α) + p1(X,α)

2p1(X,α)
;

Mn(p, p1) = Pn {mp,p1(X,α)} =
1

n

n∑
i=1

mp,p1(Xi,αi);

Mn(p, p1) = P {mp,p1(X,α)} =

∫
Sγ

∫
R

mp,p1(x,α)γ(α)p̃0(x,α)dxdα;

Mn,δ,p,p1 = {mp,p1 −mp1,p1 : p ∈ Pn, d(γp, γp1) < δ} .

With the above preparation, we present an important lemma, which is an
application of Theorem 3.4.1 of van der Vaart and Wellner (1996) to our setup.
It serves as the basis for the proof of Theorem 4.
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Lemma 1. Suppose Mn, Mn, and ‖Gn‖Mn,δ,p,p̃0
are as defined above, p̃0(x,α)=∑M

j=1 αjf0,j(x) is the true conditional density of X given α, and γ(·) is the
marginal density of α. Suppose further that the following three conditions are
satisfied:

(a) for every n and p ∈ Fn, Mn(p, p̃0)−Mn(p̃0, p̃0) � −d2(γp, γp̃0);
(b) for every n and δ > 0, E0‖Gn‖Mn,δ,p,p̃0

� φn(δ) for functions φn(·) such
that φn(δ)/δ

α is decreasing on (0,∞) for some α < 2;

(c) Mn(p̂, p̃0) ≥ Mn(p̃0, p̃0)−Op(r
−2
n ), where p̂(x,α) =

∑M
j=1 αjN hj f̂j(x) and

rn satisfies r2nφ(1/rn) ≤
√
n, for every n.

Then we have
rnd(γp̂, γp̃0) = Op(1).

A difficult step in the application of the above lemma is to verify Condition
(b). A useful technique is to establish a connection between E0‖Gn‖Mn,δ,p,p̃0

and the bracketing integral of the class γPn. For convenience of presentation
in the next subsections, we introduce some necessary notation and review an
important lemma.

We first introduce the concept of bracketing numbers, which will be used to
define the bracketing integral. Consider a set M of functions and the norm ‖ · ‖
defined on the set M. For any ε > 0, the bracketing number N[](ε,M, ‖ · ‖)
is the minimum number of N for which there exists a set of pairs of functions
or brackets {[lj , uj ], j = 1, . . . , N} such that (i) ‖uj − lj‖ < ε and (ii) for any
m ∈ M, there exists a j = j(m) such that lj ≤ m ≤ uj . The bracketing integral
of the class M is then defined to be

J̃[](δ,M, ‖ · ‖) =
∫ δ

0

√
1 + logN[](ε,M, ‖ · ‖)dε. (B.4)

Next, we review a result about the bracketing number of a class of continuous
functions, which will be useful to calculate the bracketing number of γPn and
the bracketing integral of γPn. For every function f defined on A ⊂ R and a
positive integer a, define the norm

‖f‖a = max
k:k≤a

sup
x∈A

|f (k)(x)|,

where f (k)(x) denotes the kth-order derivative of f ; f (0) = f . Let Ca
W (A) be

the set of all continuous functions f : A → R with ‖f‖a ≤ W .

Lemma 2. Let A be an interval with finite length in R. Then

logN[]

(
ε, Ca

1 (A), Lr(Q)
)
� 1/ε1/a,

for every r ≥ 1, ε > 0, and any probability measure Q on R, where the universal
constant in “�” depends only on a and the length of A. Here Lr(Q) is the
Lr-norm under the probability measure Q.

This lemma is a special case of Corollary 2.7.2 of VW; see p. 157.
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B.2. Proof of Theorem 4

In this section, we show Theorem 4, which establishes the consistency of
d(γp̂, γp̃0) and plays a key role in the proofs of Theorems 5 and 6. Recall that
we need to show

d(γp̂, γp̃0) = Op(h
0.5) +Op(n

−0.5+ϑh−0.5).

This proof contains three steps. At each step, we verify one condition in
Lemma 1.

In Step 1, we verify that Condition (a) in Lemma 1 is satisfied. We need the
following lemma giving a property of the smoothing operator N h.

Lemma 3. Given N hf(x) defined by (2.2), for any density function f(x), we
have ∫

R

N hf(x)dx ≤ 1.

Proof. By the concavity of the logarithm and Jensen’s inequality, the result
follows. �

We now verify Condition (a). For any p ∈ Fn, let q = (p + p̃0)/2. Since
log x ≤ 2(

√
x− 1) for every x > 0, we have

Mn(p, p̃0)−Mn(p̃0, p̃0) = E0

(
log

q

p̃0

)
≤ 2E0

(
q1/2

p̃
1/2
0

− 1

)

= −d2(γp̃0, γq) +

∫
R

γ(q − p̃0)dxdα

= −d2(γp̃0, γq) + 0.5

∫
R

γ

{∫
R

pdx− 1

}
dα

≤ −d2(γp̃0, γq),

where, to achieve the last “≤”, we have applied Lemma 3. Note that

∣∣∣√γp−
√

γp̃0

∣∣∣ = 2

√
γq +

√
γp̃0

√
γp+

√
γp̃0

∣∣∣√γq −
√
γp̃0

∣∣∣ ≤ 4
∣∣∣√γq −

√
γp̃0

∣∣∣ ,
which implies that

−d2(γp̃0, γq) ≤ − 1

16
d2(γp̃0, γp).

Therefore

Mn(p, p̃0)−Mn(p̃0, p̃0) ≤ − 1

16
d2(γp̃0, γp).

Hence Condition (a) of Lemma 1 is satisfied.
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In Step 2, we establish the upper bound for E0‖Gn‖Mn,δ,p,p̃0
. Following ex-

actly the same process as for Theorem 3.4.4 of VM, we get

E0‖Gn‖Mn,δ,p,p̃0
� J̃[](δ, γPn, d)

{
1 +

J̃[](δ, γPn, d)

δ2
√
n

}
, (B.5)

where the bracketing integral J̃[] is defined in (B.4). Lemma 4 below gives the

upper bound for J̃[](δ, γPn, d), which, combined with (B.5), immediately leads
to φn(·) in Condition (b) of Lemma 1.

Lemma 4. Let a be an arbitrary positive integer. Then

J̃[](δ, γPn, d) � δ1−1/(2a)
M∑
j=1

| log hj |0.5h−0.5−0.25/a
j . (B.6)

Proof. Consider

Pn,j =

{
N hjf : f =

∑n
i=1 wi,jKhj (x−Xi)∑n

i=1 wi,j
; 0 ≤ wi,j ≤ 1

}
.

Let S∗
x = [c1 −Δ, c2 + Δ], where Δ > 0 is an arbitrarily small constant. Note

that for any g ∈ Pn,j , g(x) = 0 when x /∈ S∗
x. In the following proof, we focus

on the function class defined on S∗
x.

With Condition 2, we first check that for any arbitrary a > 0, we have(
hj

| log hj |

)a √
hjC3

√
Pn,j ⊂ Ca

1 (S
∗
x) (B.7)

for some universal constant C3 > 0. For presentational brevity, we show only
the case a = 1; the cases a = 2, 3, . . ., can be proved similarly. For any

√
Nhjf ∈√

Pn,j , using the conditions that K(t) is bounded below and |K ′(t)| is bounded
in Condition (b), and by straightforward calculus, we have

∣∣∣∣(√Nhjf
)′∣∣∣∣

� 1

hj
exp

{
0.5

∫
R

K(t) log f(x+ thj)dt

}∫
R

K(t) |log f(x+ thj)| dt

≤ 1

hj
exp

[
0.5

∫
R

K(t) {log f(x+ thj)}+ dt− 0.5

∫
R

K(t) {log f(x+ thj)}− dt

]
×

[∫
R

K(t) {log f(x+ thj)}+ dt+

∫
R

K(t) {log f(x+ thj)}− dt

]
� 1

h1.5
j

exp

[
−0.5

∫
R

K(t) {log f(x+ thj)}− dt

]
×

[
log(1/hj) +

∫
R

K(t) {log f(x+ thj)}− dt

]
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� 1

h1.5
j

log(1/hj) +
1

h1.5
j

� 1

h1.5
j

log(1/hj),

where we have used the facts that
∫
R
K(t) {log f(x+ thj)}+ dt � log(1/hj) and

that for any x ≥ 0, x exp(−0.5x) < 1. Therefore, by Lemma 2 and viewing d on
h2a+1
j

| log hj |2aC
2
3Pn,j as the L2-distance on

ha+0.5
j

| log hj |aC3

√
Pn,j , we have

logN[]

(
ε,

h2a+1
j

| log hj |2a
C2

3Pn,j , d

)

= logN[]

(
ε,

ha+0.5
j

| log hj |a
C3

√
Pn,j , L2

)
� 1/ε1/a.

On the other hand, under d, every ε-length bracket of
h2a+1
j

| log hj |2aC
2
3Pn,j is a length

ε| log hj |a/(ha+0.5
j C3) bracket in Pn,j . Therefore,

logN[]

(
ε| log hj |a/(ha+0.5

j C3),Pn,j , d
)

= logN[]

(
ε,

h2a+1
j

| log hj |2a
C2

3Pn,j , d

)
� 1/ε1/a,

which immediately implies that

logN[] (ε,Pn,j , d) � | log hj |/{ε(ha+0.5
j )}1/a. (B.8)

For notational simplicity, we write Nj = N[](ε,Pn,j , d). Then for every j, there
exists a set of ε-brackets Bj = {[uij ,j , vij ,j ] : ij = 1, . . . , Nj} that covers Pn,j .
Let

B =

{[
pL(x,α), pU (x,α)

]
:

pL =
∑M

j=1 αjuij ,j(x), pU =
∑M

j=1 αjvij ,j(x)

for every j, ij ∈ {1, . . . , Nj}

}
.

Clearly, B covers γPn with ΠM
j=1Nj brackets.

Next we consider the minimum bracket length. Note that for any x, x′, y, y′ ≥
0, we have

{(x+ y)1/2 − (x′ + y′)1/2}2 ≤ (x1/2 − x′1/2)2 + (y1/2 − y′1/2)2.

Hence for any [pL(x,α), pU (x,α)] ∈ B,

d2(pL, pU ) ≤
M∑
j=1

d2(αjuij ,j , αjvij ,j) ≤
M∑
j=1

d2(uij ,j , vij ,j) ≤ Mε2.

This indicates that for every ε > 0,

logN[](ε, γPn, d) � logN[](
√
Mε, γPn, d) ≤

M∑
j=1

logNj �
M∑
j=1

| log hj |
ε1/ah

1+0.5/a
j

.
�
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With the help of Lemma 4, we set

φn(δ) = δ1−1/(2a)
M∑
j=1

| log hj |0.5h−0.5−0.25/a
j

×

⎛⎝1 +
1√

nδ1+1/(2a)

M∑
j=1

| log hj |0.5h−0.5−0.25/a
j

⎞⎠ .

Obviously, φn(δ)/δ
α with α = 1 is a decreasing function of δ. This verifies

Condition (b) of Lemma 1.
In Step 3, we check

Mn(p̂, p̃0) ≥ Mn(p̃0, p̃0) +Op(h). (B.9)

Let pn(x,α) =
∑M

j=1 αjN hjShjf0,j(x), where for j = 1, . . . ,M ,

Shjf0,j(x) =

⎧⎪⎪⎨⎪⎪⎩
chj ,jf0,j(c2), x ∈ [c2, c2 + Lhj ]
chj ,jf0,j(x), x ∈ [c1, c2]
chj ,jf0,j(c1), x ∈ [c1 − Lhj , c1]

0, otherwise

, (B.10)

where chj ,j is a constant such that
∫
R
Shjf0,j(x)dx = 1.

Note that Mn(p̃0, p̃0) = 0 and log(x) is concave. We have

Mn(p̂, p̃0)−Mn(p̃0, p̃0) =
1

n

n∑
i=1

log
p̂(Xi,αi) + p̃0(Xi,αi)

2p̃0(Xi,αi)

≥ 1

2n

n∑
i=1

{log p̂(Xi,αi)− log p̃0(Xi,αi)}

=
1

2n

n∑
i=1

{log p̂(Xi,αi)− log pn(Xi,αi)}

+
1

2n

n∑
i=1

{log pn(Xi,αi)− log p̃0(Xi,αi)}

≥ 1

2n

n∑
i=1

{log pn(Xi,αi)− log p̃0(Xi,αi)} ≡ In,

where the last “≥” follows from the fact that

n∑
i=1

{log p̂(Xi,αi)− log pn(Xi,αi)}

= ln(f̂1, . . . , f̂M )− ln(Sh1f0,1, . . . ,ShM
f0,M ) ≥ 0.

Therefore, to show (B.9), we need only to verify that In = Op(h), which is valid
because of Lemma 5 below and Chebyshev’s inequality.
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Lemma 5. Assume Conditions 1–3. We have

E0

{
log

pn(X,α)

p̃0(X,α)

}
= O(h), (B.11)

V ar0

{
log

pn(X,α)

p̃0(X,α)

}
= O(h2), (B.12)

where V ar0 means that the variance is taken under γ(α)p̃0(x,α).

Proof. In the proof, we need the approximation of log(pn/p̃0). Note that

log(pn/p̃0) = log

(
pn − p̃0

p̃0
+ 1

)
.

By Condition 3, we have that for x ∈ [c1, c2] and α ∈ Sγ ,∣∣∣∣pn(x,α)− p̃0(x,α)

p̃0(x,α)

∣∣∣∣ �

∣∣∣∣∣∣
M∑
j=1

αi,j{N hjShjf0,j(x)− f0j(x)}

∣∣∣∣∣∣
≤

M∑
j=1

∣∣N hjShjf0,j(x)− f0,j(x)
∣∣ . (B.13)

Applying Condition 3 again, we further note that

sup
x∈[c1,c2]

|N hjShjf0,j(x)− f0,j(x)| = O(hj) = O(h), (B.14)

where the last step follows from Condition 0. Hence

sup
x∈[c1,c2], α

∣∣∣∣pn(x,α)− p̃0(x,α)

p̃0(x,α)

∣∣∣∣ = O(h). (B.15)

Applying the second-order Taylor expansion and using (B.15), we get

log(pn/p̃0) =
pn(x,α)− p̃0(x,α)

p̃0(x,α)
+R(x,α), (B.16)

where the remaining term R(x, α) satisfies

sup
x∈[c1,c2], α

|R(x,α)| = O(h2). (B.17)

We now prove (B.11). Combining (B.16) and (B.17), we have∣∣∣∣E0

{
log

pn(X,α)

p̃0(X,α)

}∣∣∣∣ ≤ E0

∣∣∣∣pn(X,α)− p̃0(X,α)

p̃0(X,α)

∣∣∣∣+O(h2)

�
M∑
j=1

E0|N hjShjf0,j(X)− f0,j(X)|+O(h2) = O(h),



4064 T. Yu et al.

where we have used (B.13) in the second step and (B.14)–(B.17) in the third
step.

Finally, we show (B.12). Note that

V ar0

(
log

pn(X,α)

p̃0(X,α)

)
≤ E0 log

2

{
pn(X,α)

p̃0(X,α)

}
. (B.18)

Combining (B.15)–(B.17) and (B.18), we further get that

V ar0

(
log

pn(X,α)

p̃0(X,α)

)
≤ E0

[{
pn(X,α)− p̃0(X,α)

p̃0(X,α)

}2
]
+O(h3) = O(h2).

�
We have finished verifying Conditions (a)–(b) in Lemma 1. Recall that

φn(δ) = δ1−1/(2a)
M∑
j=1

| log hj |0.5h−0.5−0.25/a
j

×

⎛⎝1 +
1√

nδ1+1/(2a)

M∑
j=1

| log hj |0.5h−0.5−0.25/a
j

⎞⎠
and Mn(p̂, p̃0) ≥ Mn(p̃0, p̃0) +Op(h). Applying Lemma 1, we have d(γp̂, γp̃0) =
Op(r

−1
n ) with rn satisfying r2nφn(1/rn) ≤

√
n and r−2

n = Op(h) for every a > 0.
Note that r2nφn(1/rn) ≤

√
n is equivalent to

r2n(r
−1
n )1−1/(2a)

M∑
j=1

| log hj |0.5h−0.5−0.25/a
j �

√
n,

which implies that

rn �

⎛⎝n0.5
M∑
j=1

| log hj |−0.5h
0.5+0.25/a
j

⎞⎠1/(1+1/(2a))

.

Set

r−1
n = Op(h

0.5) +Op

⎛⎝ M∑
j=1

| log hj |0.5/(1+1/(2a))

n0.5/(1+1/(2a))h0.5
j

⎞⎠ .

With Condition 0, we get

d(γp̂, γp̃0) = OP (r
−1
n ) = Op(h

0.5) +Op

(
| log h|0.5/(1+1/(2a))

n0.5/(1+1/(2a))h0.5

)
.

Note that

Op

(
| log h|0.5/(1+1/(2a))

n0.5/(1+1/(2a))h0.5

)
= Op

(
h

1
8a2+4a | log h| a

2a+1

(nh)
1

8a2+4a

)
·Op

(
1

n0.5−0.5/(2a)h0.5

)
.
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With Condition 1, for any arbitrarily small ϑ > 0, we can find a sufficiently
large a such that

Op

(
| log h|0.5/(1+1/(2a))

n0.5/(1+1/(2a))h0.5

)
= Op(n

−0.5+ϑh−0.5)

and hence

d(γp̂, γp̃0) = Op(h
0.5) +Op(n

−0.5+ϑh−0.5),

which completes the proof of this theorem. �

B.3. Proof of Theorem 5

In this section, we mainly establish the consistency of
∫
R
|N hj f̂j(x)− f0,j(x)|dx

as claimed in Theorem 5 by using the consistency result for d(γp̂, γp̃0) in The-
orem 4. We need the following lemma.

Lemma 6. Assume Condition 4. For any p(x,α) =
∑M

j=1 αjN hjfj(x) ∈ Pn,
we have ∫

R

|N hjfj(x)− f0,j(x)|dx � d(γp, γp̃0).

Proof. With Oj , j = 1, . . . ,M and α0,j given in Condition 4, we have

M∑
j=1

∫
R

{√
p(x,α0,j)−

√
p̃0(x,α0,j)

}2

dx

�
M∑
j=1

∫ ∫
α∈Oj ;x∈R

(√
p(x,α)−

√
p̃0(x,α)

)2

γ(α)dxdα

≤ d2(γp, γp̃0),

which indicates that for every j = 1, . . . ,M ,∫
R

{√
p(x,α0,j)−

√
p̃0(x,α0,j)

}2

dx � d2(γp, γp̃0). (B.19)

Next we show that
∫
R
|N hjfj(x) − f0,j(x)|dx can be bounded by a linear

combination of the left-hand side of (B.19). We need some notation. Let A =
(α0,1, . . . ,α0,M ) be an M ×M invertible matrix and write

A−1 =
(
aj,k

)
j=1,...,M ; k=1,...,M

.

Then N hjfj(x) =
∑M

k=1 aj,kp(x,α0,k), f0,j(x) =
∑M

k=1 aj,kp̃0(x,α0,k). There-
fore, ∫

R

|N hjfj(x)− f0,j(x)|dx ≤
M∑
j=1

|aj,k|
∫
R

|p(x,α0,k)− p̃0(x,α0,k)|dx
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≤
M∑
j=1

|aj,k|
√∫

R

{√
p(x,α0,j)−

√
p̃0(x,α0,j)

}2

dx

×
√∫

R

{√
p(x,α0,j) +

√
p̃0(x,α0,j)

}2

dx (B.20)

≤
M∑
j=1

|aj,k|d(γp, γp̃0)
√

2

∫
R

{p(x,α0,j) + p̃0(x,α0,j)} dx � d(γp, γp̃0),

(B.21)

where from (B.20) to (B.21), we use (B.19) and the fact that (a+b)2 ≤ 2(a2+b2);
to derive the last “�”, we have applied Lemma 3; specifically,∫

R

p(x,α0,j) =

M∑
j=1

α0,j

∫
R

N hjfj(x)dx ≤
M∑
j=1

α0,j = 1,

and likewise
∫
R
p̃0(x,α0,j) ≤ 1. �

Combining Theorem 4 and Lemma 6, we can immediately conclude the con-
sistency of

∫
R
|N hj f̂j(x)− f0,j(x)|dx. That is, for any ϑ > 0, we have∫

R

|N hj f̂j(x)− f0,j(x)|dx = Op(h
0.5) +Op(n

−0.5+ϑh−0.5), (B.22)

which completes our proof of Theorem 5. �

B.4. Proof of Theorem 6

In this section, we prove Theorem 6, which establishes the L1 consistency of
f̂j(x), j = 1, . . . ,M . Recall that

f̂j(x) =

∑n
i=1 ŵi,jKhj (x−Xi)∑n

i=1 ŵi,j
(B.23)

with ŵi,j =
αi,jN hj

f̂j(Xi)

p̂(Xi,αi)
and p̂(x,α) =

∑M
k=1 αkN hk

f̂k(x). We investigate

the asymptotic properties of the numerator and denominator of (B.23) sepa-

rately, and then establish the consistency of f̂j(x).
Based on Condition 3, we can find a c > 0, such that infx∈Sx,α p̃0(x,α) > 2c.

Denote I1(x) = I1,1(x)− I1,2(x) + I1,3(x), and I2 = 1
n

∑n
i=1 ŵi,j , where

I1,1(x) =
1

n

n∑
i=1

Khj (x−Xi)
αi,jN hj f̂j(Xi)

p̂(Xi,αi)
I{p̂(Xi, αi) ≤ c}; (B.24)

I1,2(x) =
1

n

n∑
i=1

Khj (x−Xi)
αi,jN hj f̂j(Xi)

c
I{p̂(Xi,αi) ≤ c}; (B.25)
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I1,3(x) =
1

n

n∑
i=1

Khj (x−Xi)
αi,jN hj f̂j(Xi)

p̂(Xi,αi)
I{p̂(Xi,αi) > c}

+
1

n

n∑
i=1

Khj (x−Xi)
αi,jN hj f̂j(Xi)

c
I{p̂(Xi,αi) ≤ c}

=
1

n

n∑
i=1

Khj (x−Xi)
αi,jN hj f̂j(Xi)

p̂(Xi,αi)I{p̂(Xi,αi) > c}+ cI{p̂(Xi,αi) ≤ c} ;

(B.26)

With straightforward manipulation, we note that f̂j(x) given in (B.23) can be
decomposed as follows:

f̂j(x) =
I1(x)

I2
=

I1,1(x)− I1,2(x) + I1,3(x)

I2
. (B.27)

Next we study the asymptotic behaviour of I1,1(x), I1,2(x), and I1,3(x), sep-
arately. Studying I2 is similar but easier. We first consider I1,3(x).

B.4.1. Asymptotic property of I1,3(x)

We need some preparation, and we first define some notation. Let

gj,0(y,α) =
αjf0,j(y)

p̃0(y,α)
, ĝj,c(y,α) =

αjN hj f̂j(y)

p̂(y,α)I{p̂(y,α) > c}+ cI{p̂(y,α) ≤ c} .
(B.28)

Then we can write

I1,3(x) = I1,3,1(x) + I1,3,2(x), (B.29)

where

I1,3,1(x) = Pn

[
Khj (X − x) · {ĝj,c(X,α)− gj,0(X,α)}

]
,

I1,3,2(x) = Pn

{
Khj (X − x) · gj,0(X,α)

}
,

with “Pn” operated on (X,α). Next we define two classes of functions:

• Fc,j =
{

αjfj(y)
p(y,α)I{p(y,α)>c}+cI{p(y,α)≤c} : p(y,α)=

∑M
k=1 αkfk(y), fk ∈ Pn,k

}
,

where for k = 1, . . . ,M

Pn,k =

{
N hk

f : f =

∑n
i=1 wi,kKhk

(y −Xi)∑n
i=1 wi,k

; 0 ≤ wi,k ≤ 1

}
;

• F̃c,j = {|gj,c − gj,0| : gj,c ∈ Fc,j}.

Clearly, ĝj,c(y,α) ∈ Fc,j , |ĝj,c(y,α)− gj,0(y,α)| ∈ F̃c,j .
The following lemma calculates the bracketing numbers of these function

classes, and will be helpful to establish the asymptotic properties for I1,3(x).
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Lemma 7. Let P0 denote the probability measure under the true joint distribu-
tion γ(α)p̃0(x,α) of (X,α). For every ε > 0,

(a) for an arbitrary positive integer a, logN[]

(
ε,Fc,j , L2(P0)

)
�

∑M
k=1

| log hk|
ε1/ah

1+1/a
k

;

(b) for an arbitrary positive integer a, logN[]

(
ε, F̃c,j , L2(P0)

)
�

∑M
k=1

| log hk|
ε1/ah

1+1/a
k

.

In the above, “�” are up to universal constants depending on the upper bound
of K(·), a, c, and M .

Proof. For part (a), using the same strategy as in the proof of (B.8) in Lemma
4, we can verify that for k = 1, . . . ,M ,

logN[]

(
ε,Pn,k, L2(P0)

)
� | log hk|

ε1/ah
1+1/a
k

.

For notational convenience, we write Nk = N[]

(
ε,Pn,k, L2(P0)

)
. Then for every

k = 1, . . . ,M , there exists a set of ε-brackets Bk = {[uik,k, vik,k] : ik = 1, . . . , Nk}
that covers Pn,k. We consider

B̃j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
[gL(y,α), gU (y,α)] :

gL(y,α) =
αjuij ,j

pU
; gU (y,α) =

αjvij ,j

pL
;

pU = p̃UI{p̃U > c}+ cI{p̃U ≤ c};
p̃U =

∑M
k=1 αkvik,k;

pL = p̃LI{p̃L > c}+ cI{p̃L ≤ c};
p̃L =

∑M
k=1 αkuik,k;

for every ik = 1, . . . , Nk and k = 1, . . . ,M

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
,

which contains ΠM
k=1Nk pairs of functions.

We now verify that B̃j covers Fc,j . Recall that for every k = 1, . . . ,M , Bk

covers Pn,k. Then for every

gj,c(y,α) =
αjfj(y)

p(y,α)I{p(y,α) > c}+ cI{p(y,α) ≤ c} ∈ Fc,j ,

there exist (i1, . . . , iM ), where 1 ≤ ik ≤ Nk for every k = 1, . . . ,M , such that
uik,k ≤ fk ≤ vik,k, which implies that

(i) αjuij ,j ≤ αjfj ≤ αjvij ,j ; and further

(ii) p̃L ≤ p ≤ p̃U , where p̃L =
∑M

k=1 αkuik,k and p̃U =
∑M

k=1 αkvik,k.

With the fact that for any two functions g1 and g2, g1 ≤ g2 implies g1I{g1 >
c}+ cI{g1 ≤ c} ≤ g2I{g2 > c}+ cI{g2 ≤ c}, (i) and (ii) above lead to

(iii) pL ≤ pI{p > c}+ cI{p ≤ c} ≤ pU , where pL = p̃LI{p̃L > c}+ cI{p̃L > c}
and pU = p̃UI{p̃U > c}+ cI{p̃U ≤ c}.

(i) and (iii) imply that gL ≤ gj,c ≤ gU , where gL =
αjuij ,j

pU
, gU =

αjvij ,j

pL
. Hence

[gL, gU ] is a bracket in B̃j and we have verified that B̃j covers Fc,j .
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We need to calculate the sizes of the brackets in B̃j under L2(P0). To this

end, we consider an arbitrary [gL, gU ] ∈ B̃j . Noting that |pU − pL| ≤ |p̃U − p̃L|,
0 ≤ αj ≤ 1, 0 ≤ αjuij ,j ≤ pL, and pU ≥ pL ≥ c > 0, we have

|gU − gL| ≤ αj

pL

∣∣∣vij ,j−uij ,j

∣∣∣+ αjuij ,j

pUpL

∣∣∣pU − pL

∣∣∣ ≤ |vij ,j − uij ,j |
c

+
|pU − pL|

c

≤
|vij ,j − uij ,j |

c
+

|p̃U − p̃L|
c

≤ 1

c

M∑
k=1

|vik,k − uik,k|,

which immediately leads to∫
Sγ

∫
R

|gU (x,α)− gL(x,α)|2γ(α)p̃0(x,α)dxdα

�
M∑
k=1

∫
Sγ

∫
R

|uik,k − vik,k|2γ(α)p̃0(x,α)dxdα � ε2,

where the last “�” is because for every k = 1, . . . ,M , [uik,k, vik,k] is an ε-bracket

in Bk under L2(P0). This together with the facts that B̃j covers Fc,j and B̃j

contains ΠM
k=1Nk brackets completes our proof of part (a) in this Lemma.

For part (b), let Fc,j,0 = {gj,c − gj,0 : gj,c ∈ Fc,j}. It is straightforward to
check that

logN[]

(
ε,Fc,j,0, L2(P0)

)
�

M∑
k=1

| log hk|
ε1/ah

1+1/a
k

. (B.30)

On the other hand, let |f | be an arbitrary function in F̃c,j with f ∈ Fc,j,0. Let
[gL, gU ] be the ε-bracket in Fc,j,0 such that gL ≤ f ≤ gU . By noting that for
any y and α, we must have

g+L + g−U ≤ |f | ≤ g+U + g−L (B.31)

we get ∣∣g+U + g−L − g+L − g−U
∣∣ ≤ |g−L − g−U |+ |g+U − g+L | ≤ 2|gU − gL|. (B.32)

(B.31) and (B.32) imply that every ε-bracket under L2(P0) in Fc,j,0 leads to a

2ε-bracket under L2(P0) in F̃c,j . This together with (B.30) completes our proof
of part (b) in this lemma. �

With the lemma above, we study the asymptotic properties for I1,3 given in
(B.29). We will consider I1,3,1(x) and I1,3,2(x) separately. First, we show that

∫
R

|I1,3,1(x)|dx = Op

(
M∑
k=1

√
| log hk|

n0.5h
0.5+0.5/a
k

)
+ d(γp̂, γp̃0). (B.33)
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To this end, note that∫
R

|I1,3,1(x)|dx ≤ Pn

{∫
R

Khj (X − x)dx · |ĝj,c(X,α)− gj,0(X,α)|
}

= Pn {|ĝj,c(X,α)− gj,0(X,α)|} , (B.34)

where Pn is operated on (X,α). Note that |ĝj,c(y,α) − gj,0(y,α)| ∈ F̃c,j , and

for any function f ∈ F̃c,j , we have P{f2(X,α)} ≤ 4, supy,α |f(y,α)| ≤ 2, which
incorporated with Lemma 3.4.2 in VM leads to

E0‖G‖F̃c,j
� J̃[]

(
2, F̃c,j , L2(P0)

)⎧⎨⎩1 +
J̃[]

(
2, F̃c,j , L2(P0)

)
√
n · 4 · 2

⎫⎬⎭ . (B.35)

By part (b) of Lemma 7, we have

J̃[]

(
2, F̃c,j , L2(P0)

)
�

∫ 2

0

√√√√1 +

M∑
k=1

| log hk|
ε1/ah

1+1/a
k

dε �
M∑
k=1

√
| log hk|

h
0.5+0.5/a
k

,

which together with (B.35) and Condition 1 leads to

E0‖G‖F̃c,j
�

M∑
k=1

√
| log hk|

h
0.5+0.5/a
k

.

This together with Chebyshev’s inequality implies

‖G‖F̃c,j
= Op

(
M∑
k=1

√
| log hk|

h
0.5+0.5/a
k

)
,

and hence

Pn {|ĝj,c(X,α)− gj,0(X,α)|} − P {|ĝj,c(X,α)− gj,0(X,α)|}

= Op

(
M∑
k=1

√
| log hk|

n0.5h
0.5+0.5/a
k

)
, (B.36)

which together with the convergence result of P {|ĝj,c(X,α)− gj,0(X,α)|} in
the following lemma implies the result in (B.33).

Lemma 8. Recall gj,0(y,α) and ĝj,c(y,α) defined by (B.28). We have

P {|ĝj,c(y,α)− gj,0(y,α)|} � d(γp̂, γp̃0). (B.37)

Proof. With straightforward manipulation, we can write

ĝj,c(y,α) =
αjN hj f̂j(y)

p̂(y,α)
I{p̂(y,α) > c}+

αjN hj f̂j(y)

c
I{p̂(y,α) ≤ c}.
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Therefore

P {|ĝj,c(X,α)− gj,0(X,α)|} ≤ I1,3,1,1 + I1,3,1,2 + I1,3,1,3, (B.38)

where

I1,3,1,1 =

∫
R

∫
Sγ

∣∣∣∣∣αjN hj f̂j(y)

p̂(y,α)
− αjf0,j(y)

p̃0(y,α)

∣∣∣∣∣ I{p̂(y,α) > c}γ(α)p̃0(y,α)dαdy;

I1,3,1,2 =

∫
R

∫
Sγ

αjN hj f̂j(y)

c
I{p̂(y,α) ≤ c}γ(α)p̃0(y,α)dαdy;

I1,3,1,3 =

∫
R

∫
Sγ

αjf0,j(y)

p̃0(y,α)
I{p̂(y,α) ≤ c}γ(α)p̃0(y,α)dαdy.

We first consider I1,3,1,1:

I1,3,1,1

≤
∫
R

∫
Sγ

αj

p̂(y,α)

∣∣∣N hj f̂j(y)− f0,j(y)
∣∣∣ I{p̂(y,α) > c}γ(α)p̃0(y,α)dαdy

+

∫
R

∫
Sγ

αjf0,j(y)

p̂(y,α)p̃0(y,α)
|p̂(y,α)− p̃0(y,α)| I{p̂(y,α) > c}γ(α)p̃0(y,α)dαdy

�
∫
R

∣∣∣N hj f̂j(y)− f0,j(y)
∣∣∣ dy + ∫

R

∫
Sγ

|p̂(y,α)− p̃0(y,α)|γ(α)dαdy

�
∫
R

∣∣∣N hj f̂j(y)− f0,j(y)
∣∣∣ dy + M∑

k=1

∫
R

∣∣∣N hk
f̂k(y)− f0,k(y)

∣∣∣ dy � d(γp̂, γp̃0),

(B.39)

where for the last “�”, we have applied Lemma 6.
Next, we consider I1,3,1,2 and I1,3,1,3 together. It can be seen that

I1,3,1,2 � I1,3,1,4 and I1,3,1,3 � I1,3,1,4, (B.40)

where I1,3,1,4 =
∫
R

∫
Sγ

I{p̂(y,α) ≤ c}γ(α)p̃0(y,α)dαdy. Recalling that

infy∈Sx,α p̃0(y,α) > 2c, we have

I1,3,1,4

≤
∫
R

∫
Sγ

I{|p̃0(y,α)− p̂(y,α)| > c}γ(α)p̃0(y,α)dαdy

≤
∫
R

∫
Sγ

I{|p̃0(x,α)− p̂(y,α)| > c} |p̃0(y,α)− p̂(y,α)|
c

γ(α)p̃0(y,α)dαdy

�
∫
R

∫
Sγ

|p̃0(y,α)− p̂(y,α)|γ(α)p̃0(y,α)dαdy � d(γp̂, γp̃0). (B.41)

Combining (B.38), (B.39), (B.40), and (B.41), we conclude (B.37). �
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Second, we verify that

sup
x∈S∗

x

∣∣∣∣∣I1,3,2(x)−
∫
R

Khj (y − x)f0,j(y)dy

∫
Sγ

αjγ(α)dα

∣∣∣∣∣
= Op

(
M∑
k=1

1

n0.5h
0.5+0.5/a
k

)
(B.42)

and

sup
x/∈S∗

x

∣∣∣∣∣I1,3,2(x)−
∫
R

Khj (y − x)f0,j(y)dy

∫
Sγ

αjγ(α)dα

∣∣∣∣∣ = 0, (B.43)

where S∗
x = [c1 −Δ, c2 +Δ] with Δ > 0 being an arbitrarily small constant.

Recall the definition of I1,3,2(x) in (B.29):

I1,3,2(x) = Pn

{
Khj (X − x) · gj,0(X,α)

}
(B.44)

where gj,0(y,α) =
αjf0,j(y)
p̃0(y,α) . (B.43) follows directly from the definition.

We now consider the proof of (B.42). For every n, we consider the class of
functions of (y,α):

FK,j = {Khj (y − x) · gj,0(y,α) : indexed by x ∈ S∗
x}.

Then, we can readily check that for every x ∈ S∗
x,

P
[
{Khj (X − x) · gj,0(X,α)}2

]
�1/hj and sup

y,α
|Khj (y − x)·gj,0(y,α)| � 1/hj ,

which incorporated with Lemma 3.4.2 in VM leads to

EP0‖Gn‖PFK,j

� J̃[]

(
1/

√
hj ,FK,j , L2(P0)

)⎧⎨⎩1 +
J̃[]

(
1/

√
hj ,FK,j , L2(P0)

)
√
n/hj

1

hj

⎫⎬⎭ . (B.45)

Applying Theorem 2.7.11 of VM, we can check that for every ε > 0,

N[]

(
ε,FK,j , L2(P0)

)
� 1

h2
jε
.

Hence
J̃[]

(
1/

√
hj ,FK,j , L2(P0)

)
� h−b

j h
−0.5(1−b/2)
j ,

for any arbitrary 0 < b < 1. Setting b = 2/(3a), we have

J̃[]

(
1/

√
hj ,FK,j , L2(P0)

)
� h

−0.5−0.5/a
j ,
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which together with (B.45) leads to E0‖Gn‖FK,j
� 1

h
0.5+0.5/a
j

. This together with

Chebyshev’s inequality immediately implies

sup
x∈S∗

x

∣∣Pn

{
Khj (X − x) · gj,0(X,α)

}
− P

{
Khj (X − x) · gj,0(X,α)

}∣∣
= Op

(
1

n0.5h
0.5+0.5/a
j

)
= Op

(
M∑
k=1

1

n0.5h
0.5+0.5/a
k

)
. (B.46)

Furthermore, it can be checked that

P
{
Khj (X − x) · gj,0(X,α)

}
=

∫
R

Khj (y − x)f0,j(y)dy

∫
Sγ

αjγ(α)dα,

which together with (B.44) and (B.46) leads to (B.42).
Combining (B.33), (B.42), and (B.43) with (B.29), we conclude that∫

R

∣∣∣∣∣I1,3(x)−
∫
R

Khj (y − x)f0,j(y)dy

∫
Sγ

αjγ(α)dα

∣∣∣∣∣ dx
= Op

(
M∑
k=1

√
| log hk|

n0.5h
0.5+0.5/a
k

)
+ d(γp̂, γp̃0). (B.47)

B.4.2. Asymptotic properties of I1,1(x) and I1,2(x)

We proceed to consider the consistency of I1,1(x) and I1,2(x). Note that they
are respectively defined in (B.24) and (B.25). Recall that

I1,1(x) =
1

n

n∑
i=1

Khj (x−Xi)
αi,jN hj f̂j(Xi)

p̂(Xi,αi)
I{p̂(Xi, αi) ≤ c} ≤ I1,4(x), (B.48)

I1,2(x) =
1

n

n∑
i=1

Khj (x−Xi)
αi,jN hj f̂j(Xi)

c
I{p̂(Xi,αi) ≤ c} ≤ I1,4(x), (B.49)

where

0 ≤ I1,4(x) =
1

n

n∑
i=1

Khj (x−Xi)I{p̂(Xi, αi) ≤ c}.

Recalling that infx∈Sx,α p̃0(x,α) > 2c, we have

0 ≤
∫
R

I1,4(x)dx =
1

n

n∑
i=1

I{p̂(Xi, αi) ≤ c}

≤ 1

n

n∑
i=1

I{p̃0(Xi,α)− p̂(Xi,α) > c}

≤ 1

nc

n∑
i=1

I{p̃0(Xi,α)− p̂(Xi,α) > c} {p̃0(Xi,α)− p̂(Xi,α)}
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� 1

n

n∑
i=1

I{p̃0(Xi,α)− p̂(Xi,α) > 0} {p̃0(Xi,α)− p̂(Xi,α)} . (B.50)

Let ĝp(y,α) = p̃0(y,α)− p̂(y,α). Then

0 ≤ I1,4(x) ≤ Pn [ĝp(X,α)I{ĝp(X,α) > 0}] . (B.51)

Define

Fp,I =
{
{p̃0(y,α)− p(y,α)} I{p̃0(y,α)− p(y,α) > 0} : p ∈ Pn

}
,

where we refer to (B.3) for the definition of Pn. Clearly

ĝp(y,α)I{ĝp(y,α) > 0} ∈ Fp,I .

In the lemma below, we establish the ε-bracketing number of Fp,I under L2(P0).

Lemma 9. For arbitrary ε > 0 and a positive integer a, we have

logN[]

(
ε,Fp,I , L2(P0)

)
�

M∑
k=1

| log hk|
ε1/ah

1+1/a
k

.

Proof. Using exactly the same procedure as in Lemma 4, we have

logN[]

(
ε,Pn, L2(P0)

)
�

M∑
k=1

| log hk|
ε1/ah

1+1/a
k

.

Let
Bp,I =

{
[gL,i, gU,i], i = 1, . . . , N[]

(
ε,Pn,0, L2(P0)

)}
be the set of ε-brackets for Pn. We consider

B̃p,I =
{
[g̃L,i, g̃U,i], i = 1, . . . , N[]

(
ε,Pn,0, L2(P0)

)}
,

with

g̃L,i = (p̃0 − gU,i)I{p̃0 − gU,i > 0} and g̃U,i = (p̃0 − gL,i)I{gL,i > 0}.

For any arbitrary functions g1, g2, if g1 ≤ g2, then g1I{g1 > 0} ≤ g2I{g2 > 0}.
Hence we conclude that B̃p,I covers Fp,I . Furthermore, it is straightforward to
check that 0 ≤ g̃U,i − g̃L,i ≤ (p̃0 − gL,i)− (p̃0 − gU,i) = gU,i − gL,i. Therefore, we
have

logN[]

(
ε,Fp,I , L2(P0)

)
≤ logN[]

(
ε,Pn, L2(P0)

)
�

M∑
k=1

| log hk|
ε1/ah

1+1/a
k

,

which completes our proof of this lemma. �
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We continue with our analysis of the asymptotic property for I1,4(x). Since
p̃0 is bounded, Fp,I is uniformly bounded. For any function f ∈ Fp,I , we have
P{f2(X,α)} � 1 and supy,α |f(y,α)| � 1, which incorporated with Lemma
3.4.2 in VM leads to

EP0‖Gn‖Fp,I
� J̃[]

(
1,Fp,I , L2(P0)

)⎧⎨⎩1 +
J̃[]

(
1,Fp,I , L2(P0)

)
√
n

⎫⎬⎭ . (B.52)

Applying Lemma 9, we have

J̃[] (1,Fp,I , L2(P0)) �
∫ 1

0

√√√√1 +

M∑
k=1

| log hk|
ε1/ah

1+1/a
k

dε �
M∑
k=1

√
| log hk|

h
0.5+0.5/a
k

,

which together with (B.52) leads to

EP0‖Gn‖Fp,I
�

M∑
k=1

√
| log hk|

h
0.5+0.5/a
k

.

This together with Chebyshev’s inequality immediately implies that

Pn [ĝp(X,α)I{ĝp(X,α) > 0}]− P [ĝp(X,α)I{ĝp(X,α) > 0}]

= Op

(
M∑
k=1

√
| log hk|

n0.5h
0.5+0.5/a
k

)
. (B.53)

It remains to examine P [ĝp(X,α)I{ĝp(X,α) > 0}]. In fact

P [ĝp(X,α)I{ĝp(X,α) > 0}]

=

∫
R

∫
Sγ

I{p̃0(y,α)− p̂(y,α) > 0} {p̃0(y,α)− p̂(y,α)} γ(α)p̃0(y,α)dαdy

≤
∫
R

∫
Sγ

|p̃0(y,α)− p̂(y,α)|γ(α)p̃0(y,α)dαdy � d(γp̂, γp̃0). (B.54)

Now, we combine (B.48), (B.49), (B.51), (B.53), and (B.54) to give∫
R

I1,1(x)dx ≤
∫
R

I1,4(x)dx � d(γp̂, γp̃0) +Op

(
M∑
k=1

√
| log hk|

n0.5h
0.5+0.5/a
k

)
; (B.55)

∫
R

I1,2(x)dx ≤
∫
R

I1,4(x)dx � d(γp̂, γp̃0) +Op

(
M∑
k=1

√
| log hk|

n0.5h
0.5+0.5/a
k

)
. (B.56)

B.4.3. Asymptotic property of I2

With procedures that are similar to but easier than the above, we can show that∣∣∣∣∣I2 −
∫
α∈Sγ

αjγ(α)dα

∣∣∣∣∣ � d(γp̂, γp̃0) +Op

(
M∑
k=1

√
| log hk|

n0.5h
0.5+0.5/a
k

)
. (B.57)
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B.4.4. Summary

We now prove Theorem 6. Recall the decomposition of f̂j(x) in (B.27). We then
have∫

R

|f̂j(x)− f0,j(x)|dx

≤ 1

I2

{∫
R

I1,1(x)dx+

∫
R

I1,2(x)dx+

∫
R

|I1,3(x)− I2f0,j(x)|dx
}

≤ d(γp̂, γp̃0) +Op

(
M∑
k=1

√
| log hk|

n0.5h
0.5+0.5/a
k

)
+OP (1)

∫
R

|I1,3(x)− I2f0,j(x)|dx

≤ OP (1)

∫
R

∣∣∣∣∫
R

Khj (u− x)f0,j(u)du− f0,j(x)

∣∣∣∣ dx∫
αjγ(α)dα

+ d(γp̂, γp̃0) +Op

(
M∑
k=1

√
| log hk|

n0.5h
0.5+0.5/a
k

)
, (B.58)

where in the second “≤” we have used (B.55)–(B.57) and in the third “≤” we
have used (B.47) and (B.57).

Given Conditions 0, 2, and 3, it can be checked that∫
R

∣∣∣∣∫
R

Khj (u− x)f0,j(u)du− f0,j(x)

∣∣∣∣ dx = O(hj) = O(h), (B.59)

and

Op

(
M∑
k=1

√
| log hk|

n0.5h
0.5+0.5/a
k

)
= Op

( √
| log h|

n0.5h0.5+0.5/a

)

= Op

(
1

n0.5−1/ah0.5

)
·Op

(
h0.5/a

√
| log h|

(nh)1/a

)
.

With Condition 1, for any arbitrarily small ϑ > 0, we can choose a large enough
a such that

Op

(
M∑
k=1

√
| log hk|

n0.5h
0.5+0.5/a
k

)
= Op(n

−0.5+ϑh−0.5). (B.60)

Combining (B.58)–(B.60) and Theorem 4, we complete the proof of Theorem
6. �
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