
Electronic Journal of Statistics
Vol. 13 (2019) 3985–4014
ISSN: 1935-7524
https://doi.org/10.1214/19-EJS1612

Efficient estimators for expectations in

nonlinear parametric regression models

with responses missing at random

Guorong Dai

Department of Statistics, Texas A&M University, College Station, TX, USA
e-mail: rondai@stat.tamu.edu

and

Ursula U. Müller

Department of Statistics, Texas A&M University, College Station, TX, USA
Department of Mathematics, University of Hamburg, Hamburg, Germany

e-mail: uschi@stat.tamu.edu

Abstract: We consider nonlinear regression models that are solely defined
by a parametric model for the regression function. The responses are as-
sumed to be missing at random, with the missingness depending on multiple
covariates. We propose estimators for expectations of a known function of
response and covariates. Our estimator is a nonparametric estimator cor-
rected for the regression function. We show that it is asymptotically efficient
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1. Introduction

In this article we study efficient estimation of expectations in a nonlinear re-
gression model that is defined solely by the conditional constraint

E(Y |X) = rϑ(X), ϑ ∈ Θ ⊂ R
p, (1.1)

and therefore also known as the conditional mean model. Here the regression
function rϑ is assumed to be known up to a parameter vector ϑ and X is a
d-dimensional random vector. The nonlinear regression model is an important
model for applications; see, for example, the books by Bates and Watts (1998
[1]) and Seber and Wild (1989 [18]).

In the literature it is quite common to introduce a third variable ε = Y −
rϑ(X), especially if the covariates X and errors ε can be assumed to be indepen-
dent; see, for example, Wang and Rao (2001 [22]), who study linear regression
with missing responses. We do not make the independence assumption: in many
situations, especially in applications in econometrics, model (1.1), which we
consider here, is more suitable because of its flexibility.

We are interested in the scenario when responses Y are possibly missing and
work with an indicator variable Z that is 1 if a response Y is observed and 0 if it
is missing. Our sample consists of independent copies (Xi, ZiYi, Zi), i = 1, ..., n,
of a base observation (X,ZY,Z). The indicator Z tells us if a zero response
is a numerical zero or a missing value. More specifically, we assume that the
responses are missing at random (MAR), i.e. the probability that Y is missing
depends only on the covariate vector X that is always observed,

P (Z = 1|X,Y ) = P (Z = 1|X) = π(X).

The MAR assumption is common in applications; see, for example, the book by
Little and Rubin [10]. It in particular implies that Z and Y are conditionally
independent given X.

Our goal is to efficiently estimate expectations E{h(X,Y )} of the joint distri-
bution in model (1.1), where h is some known square-integrable function. This
is a quite general problem: we basically estimate the entire joint distribution
of the vector (X,Y ). In the literature usually only estimation of the mean re-
sponse E(Y ) is considered; see, for example, Matloff (1981 [11]), Cheng (1994
[3]), Wang and Rao (2001, 2002 [22, 23]) and, for further references, Müller (2009
[12]). Other examples of such expectations are moments of Y or X, mixed mo-
ments, and probabilities involving X and Y such as P (X < Y ). Estimation
of E{h(X,Y )} is also considered in Müller (2009 [12]) in the more restrictive
nonlinear regression model with independent covariates and errors. That article
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exploits the independence assumption by writing E{h(X,Y )} as a convolution
integral, which can be estimated in a relatively straightforward way. Since the
distribution of the errors in our model depends on the covariates, our approach
is quite different.

An obvious approach to estimate E{h(X,Y )} in the missing data model with
MAR responses is to use the Horvitz-Thompson family of estimators

1

n

n∑
i=1

Zi

π̂(Xi)
h(Xi, Yi),

where π̂(·) is an estimator of the probability π(·) from above. Hirano, Imbens and
Ridder (2003 [8]) prove its root-n asymptotic normality in a binary treatment
model when π(x) is estimated by the series logit method. We will consider this
estimator in Section 4 and compare it with our method.

As in Müller, Schick and Wefelmeyer (2006 [15]), who discuss estimation of
expectations E{h(X,Y )} in a simple linear regression model, we use a nonpara-

metric estimator Ĥnp and improve it by adding a correction term Γ̂ that takes
the nonlinear structure into account,

Ĥ = Ĥnp − Γ̂, (1.2)

with Γ̂ defined in equation (2.1) in Section 2. Our nonparametric estimator Ĥnp

for the first part of (1.2) is a partially imputed estimator,

Ĥnp =
1

n

n∑
i=1

{Zih(Xi, Yi) + (1− Zi)χ̂(Xi)}, (1.3)

where χ̂(x) is the Nadaraya-Watson estimator of χ(x) = E{h(X,Y )|X = x},
similar to that used in Cheng (1994 [3]) (see Section 2.1 for details). Alterna-
tively one could, as in Cheng and Wei (1986 [4]) and Cheng (1990 [2]), use a
full imputation approach, which also replaces observed cases with estimators. In
the nonparametric model full imputation and partial imputation are asymptot-
ically equivalent (see Cheng, 1994 [3]), which is intuitively clear since the model
contains no structural information. For this article we prefer partial imputation,
for reasons of speed and simplicity.

We will show that the estimator proposed in this paper is efficient in the
sense of Hájek and Le Cam. The efficiency results imply asymptotic normality,
which is useful for constructing approximative confidence intervals for expecta-
tions E{h(X,Y )} of known square-integrable functions h(X,Y ). To the best of
our knowledge, our estimator is the first efficient estimator for E{h(X,Y )} in
the parametric MAR multiple regression model (1.1). Müller et al. (2006 [15])
propose an efficient estimator for univariate linear regression, but does not pro-
vide technical details. The results of this paper also apply to the usual model
with no missing data, i.e. when all indicators equal one and π(·) ≡ 1, so this is
covered as a special case.
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This paper is organized as follows. In the next section we provide a complete
and detailed derivation of the stochastic expansion of the nonparametric esti-
mator and of the correction term. Section 3 characterizes efficient estimators of
functionals of the joint distribution and gives the efficient influence function for
estimating E{h(X,Y )} in our model. The efficiency of our estimator is estab-
lished by showing that the expansion in Section 2 matches the efficient influence
function in Section 3. In Section 4 we explain how our estimator can be imple-
mented and compare it with other methods in various scenarios, using computer
simulations. The results are positive throughout and confirm the theoretically
proved optimality of our approach. In Section 5 we illustrate our approach by
means of a real data set. Some technical details can be found in the Appendix.

2. Expansion of the estimator

Our estimator Ĥ = Ĥnp − Γ̂ from (1.2) consists of the nonparametric estimator

Ĥnp from equation (1.3) and a correction term Γ̂, which has the form

Γ̂ =
1

n

n∑
i=1

Ziĝ(Xi)ε̂i. (2.1)

Here ĝ(x) is a consistent estimator of

g(x) =
ρh(x)

π(x)σ2(x)
,

uniformly in x on the support I of X, with ρh(x) = E{h(X,Y )ε|X = x}
and σ2(x) = E(ε2|X = x). The term Γ̂ incorporates the parametric regression
structure and is suggested by the canonical gradient, which characterizes the
influence function of an efficient estimator (see Section 3).

To estimate g(x) we can, for example, use a combination of Nadaraya-Watson
estimators introduced by Nadaraya and Watson (1964 [16, 24]). The residuals

ε̂i = Yi − rϑ̂(Xi) are based on an efficient estimator ϑ̂ of ϑ; see Müller and Van
Keilegom (2012 [13]) for an approach using estimating equations, and also for
an overview of related efficient methods.

All estimators in Γ̂, including ϑ̂, are complete case estimators since only
observations with Z = 1 are used; see Müller and Schick (2017 [14]) who show
that in the model with MAR responses complete case analysis is efficient for
estimating characteristics of the conditional distribution of Y given X. The
estimator Ĥnp from (1.3), on the contrary, is an imputation estimator. Hence
our estimator (1.2) is a combination of imputation and complete case analysis.

In the usual model with no missing data, the partially imputed estimator Ĥnp

for E{h(X,Y )} reduces to the empirical estimator. However, it is not efficient
unless we enhance it by correcting for the unknown parametric regression func-
tion using Γ̂ with all Zi = 1 (i = 1, . . . , n) and π ≡ 1, i.e. the efficient estimator
becomes

Ĥ =
1

n

n∑
i=1

h(Xi, Yi) +
1

n

n∑
i=1

ρ̂h(x)

σ̂2(x)
ε̂i.
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In the following, for convenience of notation, we will always use the lower case
letter c to represent a generic constant. The norm brackets ‖ · ‖ refer to the
Euclidean norm of a vector.

We will assume throughout that π(x) > 0, for all x in the support I of X, to
exclude the extreme case that no response is observed, that h(X,Y ) is square-
integrable and that E(ε2) is positive and finite. The covariate vector X and the
regression function need to satisfy the following conditions.

Assumption (X). The d-dimensional random vector X has a compact support
I and a density f that is bounded and bounded away from zero on I.
Assumption (R). The regression function τ �→ rτ (x) is differentiable at τ = ϑ
with a p-dimensional square-integrable gradient ṙϑ(x) that satisfies

sup
x∈I

‖ṙτ (x)− ṙϑ(x)‖ ≤ L ‖τ − ϑ‖ for some constant L ∈ R.

To construct an efficient estimator of E{h(X,Y )}, an efficient estimator of

ϑ, say ϑ̂, is needed. Efficient estimation of ϑ in models defined by conditional
constraints is discussed in Müller and Van Keilegom (2012 [13]). They show that

an efficient estimator ϑ̂ is characterized by the following expansion.

Assumption (T). The estimator ϑ̂ of ϑ satisfies

ϑ̂− ϑ =
1

n
I−1

n∑
i=1

Ziṙϑ(Xi)σ
−2(Xi)εi + op(n

−1/2),

with I = E{Zṙϑ(X)ṙϑ(X)�σ−2(X)}, which is assumed to be invertible.

An example of an efficient estimator is provided by Müller and Van Keilegom
(2012 [13]), who propose using

ϑ̂ = argmin
θ

∥∥ n∑
i=1

Ziṙθ(Xi)σ̂
−2(Xi){Yi − rθ(Xi)}

∥∥,
where σ̂2(x) is a consistent estimator of σ2(x) uniformly in x ∈ I, for example,
the Nadaraya-Watson estimator. Under the conditions of their Theorem 2.1, the
solution ϑ̂ of the above estimating equation satisfies Assumption (T).

In the next two subsections we will expand the partially imputed estimator
Ĥnp of equation (1.3) and derive the expansion of the correction term Γ̂ intro-

duced in (2.1). Combining the two parts gives the expansion of Ĥ = Ĥnp − Γ̂,
which is stated in Corollary 2.1 at the end of this section.

2.1. Expansion of the nonparametric estimator

Consider the nonparametric partial imputation estimator introduced in (1.3),
which imputes only the incomplete cases, as in Cheng (1994 [3]). We pro-
pose estimating the conditional expectation χ(x) = E{h(X,Y )|X = x} by
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the Nadaraya-Watson estimator

χ̂(x) =

∑n
j=1 Kb(Xj , x)Zjh(Xj , Yj)∑n

j=1 Kb(Xj , x)Zj

with Kb(u, x) = b−dK(b−1(u − x), x), where K(·, x) is a kernel function with
integrated boundary correction, i.e. the form of the kernel is different for interior
and boundary points x. The letter b = bn denotes a bandwidth sequence which
tends to zero as n increases. By using boundary kernels we assume that we know
the support of I, which is a rather strong assumption. For practical applications
we recommend estimating I using extreme values; see also Remark 2.1.

To derive the expansion of the partially imputed estimator (1.3) we stipulate
the following assumption on the kernel K.

Assumption (K). The kernel K : Rd ×R
d → R is a function that satisfies the

following properties.

(i) The kernel K is bounded and∫
Rd

∣∣sq11 ...sqdd K(s, x)
∣∣ds < ∞

for x ∈ I and any non-negative integers q1, q2, ..., qd satisfying q1+...+qd =
d+ 1, where s1, ..., sd are the components of s.

(ii) Denote the region Sb(x) = {b−1(y − x) : y ∈ I}. Then∫
Sb(x)

K(s, x)ds = 1 and

∫
Sb(x)

sl11 ...s
ld
d K(s, x)ds = 0

for x ∈ I and non-negative integers l1, l2, ..., ld satisfying 0 < l1+ ...+ ld <
d+ 1.

(iii) K(s, x) is differentiable with respect to s. For some constants η, ζ and ν >
1, ‖∂K(s, x)/∂s‖ ≤ η, and ‖∂K(s, x)/∂s‖ ≤ η‖s‖−ν for any s satisfying
‖s‖ ≥ ζ.

Note that assumption (K) is necessary because we consider a scenario with
a covariate vector X. This is in contrast to Cheng (1994 [3]), who considers the
nonparametric model with univariate covariates X. Cheng uses Theorem 1 of
[5] to derive the expansion of his version of Ĥnp. The theorem requires a non-
negative kernel function, so it cannot be applied to our multivariate scenario,
which requires using higher order kernels. For the construction of such kernels
we can use results from Simonoff (1996 [19]); see Remark 2.1 at the end of this
subsection for details.

For the ease of derivation we will further assume that π(x) and σ2(x) are
bounded away from zero on I. In the second conclusion of Lemma 2.1 below
we will show that

∑n
j=1 Kb(Xj , x)Zj/n converges to π(x)f(x) in probability,

uniformly in x. It follows that

{
inf
x∈I

∣∣∣ 1
n

n∑
j=1

ZjKb(Xj , x)
∣∣∣}−1

< ∞ (2.2)
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with probability tending to one. Hence we can assume, without loss of generality,
that the denominator in the Nadaraya-Watson estimator χ̂(·) is bounded away
from zero on I. Finally we need the following two conditions.

Assumption (B). The bandwidth b = bn satisfies nb2d(logn)−2 → ∞ and
nb2(d+1) → 0 as n → ∞.

Assumption (D). The functions χ, π and f are d + 1 times continuously
differentiable on I.

Lemma 2.1 below facilitates the derivation of the asymptotic linearity of Ĥnp

in Theorem 2.1.

Lemma 2.1. Let (X1, V1), . . . , (Xn, Vn) be i.i.d. copies of a base observation
(X,V ), where X satisfies Assumption (X) and V is a q-dimensional random
vector. For some function g(x, v) : Rd×R

q → R, set m(x) = E{g(X,V )|X = x}.
Suppose further that the distribution of (X,V ) has a joint density and that
Assumptions (K), (B) and (D) are satisfied.

1. If m(x) is d+ 1 times continuously differentiable on I, then

sup
x∈I

∣∣E{g(X,V )Kb(X,x)} − f(x)m(x)
∣∣ = op(n

−1/2).

2. Further, if E{g2(X,V )} is finite, then

sup
x∈I

∣∣∣ 1
n

n∑
i=1

g(Xi, Vi)Kb(Xi, x)− f(x)m(x)
∣∣∣ = op(n

−1/4).

The vector X is our covariate vector from Assumption (X), whereas V is
an arbitrary random vector, so the results can be used at various points of the
proof. We will, for example, use Lemma 2.1 with Z in place of g(X,V ). The
proof is given in the Appendix.

Theorem 2.1. Suppose Assumptions (X), (K), (B) and (D) are satisfied. Then

the nonparametric estimator Ĥnp given in (1.3) has the expansion

Ĥnp =
1

n

n∑
i=1

[
χ(Xi) +

Zi

π(Xi)
{h(Xi, Yi)− χ(Xi)}

]
+ op(n

−1/2).

Proof. To prove this theorem we write Ĥnp = A+B1, where

A =
1

n

n∑
i=1

[χ(Xi) + Zi{h(Xi, Yi)− χ(Xi)}], (2.3)

B1 =
1

n

n∑
i=1

(1− Zi){χ̂(Xi)− χ(Xi)}.

We will show thatB1 and the termB3 given below are asymptotically equivalent.
This will be established using Assumptions (X), (K), (B) and (D) and Lemma
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2.1. Then we show that the leading term of Ĥnp stated in the theorem is an
approximation of A+B3.

We first introduce

B2 =
1

n

n∑
i=1

(1− Zi){φ(Xi)− φ̃(Xi)}

with

φ(Xi) =
n−1

∑n
j=1 ZjKb(Xj , Xi)h(Xj , Yj)

π(Xi)f(Xi)
,

φ̃(Xi) =
n−1

∑n
j=1 ZjKb(Xj , Xi)χ(Xi)

π(Xi)f(Xi)
.

Then we define B3 as the conditional expectation of B2 given the completely
observed cases “B”, i.e.

B3 = E(B2|B).
Formally B stands for the subset {(Xj , Yj , Zj), j = 1, . . . , n : Zj = 1}. A fairly
straightforward but lengthy calculation yields the asymptotic equivalence of B1

and B3,
n1/2|B1 −B3| = op(1). (2.4)

The detailed proof of (2.4) is provided in the Appendix. It remains to examine
B3 more closely. Assume that (Xp, Yp, Zp) does not belong to the set of complete
observations B. We have

B3 = E(B2|B)

= E
[ 1
n

n∑
i=1

(1− Zi)
n−1

∑n
j=1 ZjKb(Xj , Xi){h(Xj , Yj)− χ(Xi)}

π(Xi)f(Xi)

∣∣∣B]

= E
[
{1− π(Xp)}

n−1
∑n

j=1 ZjKb(Xj , Xp){h(Xj , Yj)− χ(Xp)}
π(Xp)f(Xp)

∣∣∣B]

=
1

n

n∑
j=1

ZjE
[
{1− π(Xp)}

Kb(Xj , Xp){h(Xj , Yj)− χ(Xp)}
π(Xp)f(Xp)

∣∣∣B]

=
1

n

n∑
j=1

Zjh(Xj , Yj)E
[{1− π(Xp)}Kb(Xj , Xp)

π(Xp)f(Xp)

∣∣∣Xj

]

− 1

n

n∑
j=1

ZjE
[{1− π(Xp)}Kb(Xj , Xp)χ(Xp)

π(Xp)f(Xp)

∣∣∣Xj

]

=
1

n

n∑
j=1

Zjh(Xj , Yj)
1− π(Xj)

π(Xj)
− 1

n

n∑
j=1

Zjχ(Xj)
1− π(Xj)

π(Xj)
+ oP (n

−1/2)

=
1

n

n∑
j=1

Zj{h(Xj , Yj)− χ(Xj)}
1− π(Xj)

π(Xj)
+ oP (n

−1/2).
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The last but one step follows from the first conclusion in Lemma 2.1. This
combined with (2.3) and (2.4) gives the expansion provided in the theorem:

Ĥnp = A+B1

= A+B3 + op(n
−1/2)

=
1

n

n∑
i=1

[
χ(Xi) +

Zi

π(Xi)
{h(Xi, Yi)− χ(Xi)}

]
+ op(n

−1/2).

This completes the proof.

Remark 2.1. To specify a kernel that satisfies Assumption (K), we can ex-
tend the construction of second order boundary kernels in Section 3.3.1 of Si-
monoff (1996 [19]) to higher order boundary kernels. Consider, for example,
the case d = 2 and X = (X1, X2)

�, s = (s1, s2)
� and x = (x1, x2)

�. Based
on four different univariate bounded functions Li(·), i = 1, . . . , 4, which satisfy∫
|s1|3|Li(s1)|ds1 < ∞, |∂Li(s1)/∂s1| < η, and |∂Li(s1)/∂s1| < η|s1|ν for any

s1 satisfying |s1| > ζ, with some constants η, ζ and ν > 1, we first calculate
second order kernels

T1(s1, x1) =
�
(1)
2 (x1)L1(s1)− �

(1)
1 (x1)L2(s1)

�
(1)
2 (x1)�

(0)
1 (x1)− �

(1)
1 (x1)�

(0)
2 (x1)

,

T2(s1, x1) =
�
(1)
4 (x1)L3(s1)− �

(1)
3 (x1)L4(s1)

�
(1)
4 (x1)�

(0)
3 (x1)− �

(1)
3 (x1)�

(0)
4 (x1)

,

with �
(j)
i (x1) =

∫
Sb,1(x1)

sj1Li(s1)ds1 and Sb,1(x1) = {b−1(y1 − x1) : y1 ∈ I1},
where I1 denotes the support of X1. Then the linear combination of T1(s1, x1)
and T2(s1, x1),

K1(s1, x1) =
t
(2)
2 (x1)T1(s1, x1)− t

(2)
1 (x1)T2(s1, x1)

t
(2)
2 (x1)− t

(2)
1 (x1)

,

with t
(j)
i (x1) =

∫
Sb,1(x1)

sj1Ti(s1, x1)ds1, is a univariate third order boundary ker-

nel for X1. A third order boundary kernel K2(s2, x2) for X2 can be constructed
analogously. By taking the product we obtain the desired bivariate third order
boundary kernel K(s, x) = K1(s1, x1)K2(s2, x2) for X.

The construction of general multivariate higher order boundary kernels is
done analogously. For j = 2, 3 . . . , d, we first calculate univariate j-th order
boundary kernels T1 and T2, and then a univariate (j + 1)-th order boundary
kernel as the linear combination given above. The product of j such univariate
(j+1)-th order boundary kernels yields a multivariate (j+1)-th order boundary
kernel K.

A multivariate (d+ 1)-th order boundary kernel constructed in this way will
satisfy Assumption (K). If the boundary of the support I is unknown, it can
be estimated using extreme values, i.e. (min1≤i≤n{Xi1}, . . . ,min1≤i≤n{Xid})�
and (max1≤i≤n{Xi1}, . . . ,max1≤i≤n{Xid})�.
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2.2. Expansion of the correction term

To expand the additive correction

Γ̂ =
1

n

n∑
i=1

Ziĝ(Xi)ε̂i,

the following assumption is required:

Assumption (S). The function ρh(X) = E{h(X,Y )ε|X} is square-integrable.

Under Assumption (R) on the regression function and Assumption (S) we

expand the nonlinear correction Γ̂ in the next theorem. Remember that g(x) =
ρh(x)/{π(x)σ2(x)}.
Theorem 2.2. Suppose that Assumptions (X), (R), (T) and (S) hold and that
ĝ(x) is a consistent estimator of g(x), uniformly in x ∈ I. Then the nonlinear

correction Γ̂ =
∑n

i=1 Ziĝ(Xi)ε̂i/n has the expansion

Γ̂ =
1

n

n∑
i=1

Ziεi
σ2(Xi)

{ρh(Xi)

π(Xi)
− ṙϑ(Xi)

�I−1Δ
}
+ op(n

−1/2)

with Δ = E{Zṙϑ(X)g(X)} = E{ṙϑ(X)h(X,Y )σ−2(X)ε}.
Proof. Consider Γ =

∑n
i=1 Zig(Xi)ε̂i/n. We begin with an auxiliary result. A

first order Taylor expansion, using Assumption (R), yields

n∑
i=1

[g(Xi){rτ (Xi)− rϑ(Xi)− ṙϑ(Xi)
�(τ − ϑ)}]2

=

n∑
i=1

g2(Xi)
[ ∫ 1

0

{ṙϑ+u(τ−ϑ)(Xi)− ṙϑ(Xi)}�(τ − ϑ) du
]2

≤ ‖τ − ϑ‖2
n∑

i=1

g2(Xi)

∫ 1

0

‖ṙϑ+u(τ−ϑ)(Xi)− ṙϑ(Xi)‖2 du

≤ ‖τ − ϑ‖4
n∑

i=1

g2(Xi)L
2.

This combined with the square integrability of ρh(X), Assumption (S), guaran-
tees for any constant c that

sup
‖τ−ϑ‖≤cn−1/2

n∑
i=1

{g(Xi)[rτ (Xi)− rϑ(Xi)− ṙϑ(Xi)(τ − ϑ)]}2 = op(1). (2.5)

We now approximate Γ by
∑n

i=1 Zig(Xi)ε
∗
i /n, where ε∗i = εi − ṙϑ(Xi)

�(ϑ̂− ϑ).
We have∣∣∣ 1

n

n∑
i=1

Zig(Xi)(ε̂i − ε∗i )
∣∣∣ ≤ 1

n

n∑
i=1

Zi|g(Xi)(ε̂i − ε∗i )|
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≤ 1

n

{
n

n∑
i=1

Zig
2(Xi)(ε̂i − ε∗i )

2
}1/2

= n−1/2
{ n∑

i=1

Zig
2(Xi)(ε̂i − ε∗i )

2
}1/2

. (2.6)

The second relation uses the Cauchy-Schwarz inequality. Now apply (2.5) to
obtain

n∑
i=1

Zig
2(Xi)(ε̂i − ε∗i )

2 =

n∑
i=1

Zig
2(Xi)[ε̂i − {εi − ṙϑ(Xi)

�(ϑ̂− ϑ)}]2

≤
n∑

i=1

g2(Xi){rϑ̂(Xi)− rϑ(Xi)− ṙϑ(Xi)
�(ϑ̂− ϑ)}2 = op(1). (2.7)

This combined with (2.6) gives

1

n

n∑
i=1

Zig(Xi)ε̂i

=
1

n

n∑
i=1

Zig(Xi)ε
∗
i + op(n

−1/2)

=
1

n

n∑
i=1

Zig(Xi)εi −
1

n

n∑
i=1

Zig(Xi)ṙ
�
ϑ (Xi)(ϑ̂− ϑ) + op(n

−1/2)

=
1

n

n∑
i=1

Zig(Xi)εi − E{Zg(X)ṙϑ(X)�}(ϑ̂− ϑ) + op(n
−1/2)

=
1

n

n∑
i=1

Zig(Xi)εi −
1

n
E{Zg(X)ṙϑ(X)�}I−1

n∑
i=1

Ziσ
−2(Xi)ṙϑ(Xi)εi

+ op(n
−1/2)

=
1

n

n∑
i=1

Ziεi
σ2(Xi)

{ρh(Xi)

π(Xi)
− ṙϑ(Xi)

�I−1Δ
}
+ op(n

−1/2). (2.8)

Here we use the law of large numbers in the third step and the fourth equation
uses the asymptotic linearity of ϑ̂ stated in Assumption (T). This gives the
influence function of the correction term, which involves the unknown quantity
g(x) = ρh(x)/{π(x)σ2(x)}. Replacing g(x) by a uniformly consistent estimator
ĝ(x) does not change the asymptotic expansion because

∣∣∣n−1
n∑

i=1

Zi

{
g(Xi)− ĝ(Xi)

}
ε̂i

∣∣∣ = op(n
−1/2). (2.9)

We verify (2.9) in the Appendix. This completes the proof.
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A common estimator of g(x) is ĝ(x) = ρ̂h(x)/{σ̂2(x)π̂(x)} with ρ̂h(x), σ̂
2(x)

and π̂(x) being Nadaraya-Watson estimators of ρh(x), σ
2(x) and π(x), respec-

tively. The Nadaraya-Watson estimator is uniformly consistent when X has a
compact support. In Section 4 we will use this estimator for our simulation
study, and also show more details.

We conclude the section with the final expansion of our estimator Ĥ = Ĥnp−
Γ̂. The result follows directly from the statements in Theorems 2.1 and 2.2 on
Ĥnp and Γ̂. We therefore formulate the result as a corollary.

Corollary 2.1. Write Δ = E{ṙϑ(X)h(X,Y )σ−2(X)ε} as in Theorem 2.2 and
let the assumptions of that theorem be satisfied. Suppose that Assumptions (K),

(B), (X) and (D) from Section 2.1 hold true. Then the estimator Ĥ = Ĥnp − Γ̂
from equation (1.2) has the expansion

n1/2[Ĥ − E{h(X,Y )}]

= n−1/2
n∑

i=1

[
χ(Xi)− E{h(X,Y )}+ Zi

π(Xi)
{h(Xi, Yi)− χ(Xi)}

− Ziεi
σ2(Xi)

{ρh(Xi)

π(Xi)
− ṙϑ(Xi)

�I−1Δ
}]

+ op(n
−1/2).

3. Efficiency

In this section we calculate the canonical gradient of E{h(X,Y )}, which charac-
terizes the influence function of an efficient estimator of that expectation. The
efficiency of our estimator will be established by showing that the canonical
gradient equals the influence function obtained in Section 2. We will use results
from Müller et al. (2006 [15]) and Müller (2009 [12]) about the canonical gra-
dient, and also from Schick (1993 [17]) about the tangent space in nonlinear
regression.

Essential for the derivation of canonical gradients is the notion of tangent
space: a canonical gradient is characterized as an orthogonal projection of a
gradient onto the tangent space, which is the closed linear span of the set of
all perturbations of the joint distribution P (dx, dy, dz) within the model. The
distribution P depends on the marginal distribution G(dx) of X, the conditional
probability π(x) of Z = 1 given X = x and the conditional distribution Q(x, dy)
of Y given X = x. Müller et al. (2006 [15]), who also considers regression
models with MAR responses, were the first to describe the tangent space for
general differentiable functionals κ(G,Q, π) in this model. They write the joint
distribution in the form

P (dx, dy, dz) = G(dx)Bπ(x){zQ(x, dy) + (1− z)δ0(dy)},

where Bp = pδ1 + (1− p)δ0 denote the Bernoulli distribution with parameter p
and δt the Dirac measure at t. To specify the tangent space we assume that G,
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Q and π are Hellinger differentiable:

Gnu(dx)
.
= G(dx){1 + n−1/2u(x)},

Qnv(x, dy)
.
= Q(x, dy){1 + n−1/2v(x, y)},

Bπnw(x)(dz)
.
= Bπ(x)(dz)[1 + n−1/2{z − π(x)w(x)}],

(3.1)

where
.
= means ignoring op(n

−1/2) items. Since the perturbed distributions are
probability distributions, the Hellinger derivative u belongs to

L2,0(G) =
{
u ∈ L2(G) :

∫
udG = 0

}
,

v belongs to

V0 =
{
v ∈ L2(M) :

∫
v(x, y)Q(x, dy) = 0

}
,

with M(dx, dy) = Q(x, dy)G(dx), and w belongs to

W =
{
w ∈ L2(Gπ) : Gπ(dx) = π(x){1− π(x)}G(dx)

}
.

The tangent space is the orthogonal sum

{u(X) : u ∈ U} ⊕ {Zv(X,Y ) : v ∈ V } ⊕ {{Z − π(X)}w(X) : w ∈ W}.

As in Müller et al. (2006 [15]), we have no structural assumptions on G and
π. This means that we have no further restrictions on the perturbations u and
w and can therefore take U = L2,0(G) and W = L2(Gπ). We must, however,
take the regression structure into account, i.e. the space V is the subset of V0

to which v is now restricted. In the following we assume that the subspaces U ,
V and W are closed and linear.

The canonical gradient g∗ is an element of the tangent space and has the
form

g∗(X,ZY,Z) = u∗(X) + Zv∗(X,Y ) + {Z − π(X)}w∗(X), (3.2)

where u∗(X), Zv∗(X) and {Z − π(X)}w∗(X) are projections of the gradient
(that characterizes the differentiable functional) onto the three orthogonal sub-
spaces of the tangent space.

For full details of the results we have just summarized, see pages 352–355
in Müller et al. (2006 [15]). There they provide a detailed characterization of
efficient estimators in the model with MAR responses and then specialize them
to four specific models for the conditional distribution Q. In the current paper
we have Q(x, dy) = f{y − rϑ(x)|x}dy, where f(·|x) denotes the conditional
density of the (conditional mean zero) error distribution given X = x. In order
to find V we introduce perturbations of the parameter ϑ and the conditional
error density. The exact form of V is only relevant for the derivation of v∗ and
is therefore located in the Appendix; see Section A.4 for details. The derivation
of u∗ and w∗ is given in the proof of Theorem 3.1 below. In that theorem we
provide the explicit representation of the canonical gradient of E{h(X,Y )}. The
efficiency of our estimator is formulated subsequently in Corollary 3.1
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Theorem 3.1. Let the vector Δ and the matrix I be defined as in Section 2, i.e.
Δ = E{ṙϑ(X)h(X,Y )σ−2(X)ε} and I = E{Zṙϑ(X)ṙϑ(X)�σ−2(X)}. Suppose
Assumptions (R), (S) and the Hellinger differentiability assumption (3.1) are
satisfied. Further assume that the conditional density of ε given x, f(·|x), has a
finite Fisher information I and that I is invertible. Then the canonical gradient
of the functional E{h(X,Y )} is

g∗(X,ZY,Z) = χ(X)− E{h(X,Y )}+ Z

π(X)
{h(X,Y )− χ(X)}

− Zε

σ2(X)

{ρh(X)

π(X)
− ṙϑ(X)�I−1Δ

}
.

Proof. Müller et al. (2006 [15]) and Müller (2009 [12]) show that the canonical
gradient g∗(X,ZY,Z) from (3.2), now specifically for the functional E{h(X,Y )},
is determined by

E{u∗(X)u(X)}+ E{Zv∗(X,Y )v(X,Y )}
+ E[{Z − π(X)}2w∗(X)w(X)] = E[h(X,Y ){u(X) + v(X,Y )}]

(3.3)

for all u ∈ U , v ∈ V and w ∈ W . Here we use the fact that the canonical
gradient of E{h(X,Y )} is a projection of a gradient of E{h(X,Y )} onto the
tangent space. To determine the specific form of g∗ we set u = 0 and v = 0 in
(3.3), which gives

w∗ = 0. (3.4)

Then, setting v = 0 in (3.3) yields that u∗(X) is the projection of h(X,Y )
onto U :

u∗(X) = E{h(X,Y )|X} − E{h(X,Y )} = χ(X)− E{h(X,Y )}. (3.5)

In order to find v∗ we must take the parametric model structure into account,
i.e. the special form of the subset V ⊂ V0. The derivation of V and v∗ is quite
elaborate and therefore given in Section A.4 of the Appendix where we prove

v∗(X,Y ) =
ε

σ2(X)
ṙϑ(X)�I−1Δ+

1

π(X)

{
h(X,Y )− χ(X)− ερh(X)

σ2(X)

}
. (3.6)

Combining equations (3.2), (3.4), (3.5) and (3.6) yields the canonical gradient
of E{h(X,Y )} given in the theorem.

It follows from Corollary 2.1 that our estimator is asymptotically linear, and
from Theorem 3.1 that the influence function given in Corollary 2.1 equals the
canonical gradient g∗ from Theorem 3.1. Hence our estimator is efficient in the
sense of the Hájek and Le Cam theory, which implies asymptotic normality. We
formulate this as a corollary.

Corollary 3.1. Let the assumptions of Corollary 2.1 and Theorem 3.1 be sat-
isfied. Then the estimator Ĥ = Ĥnp − Γ̂ introduced in equation (1.2) is asymp-
totically efficient. In particular it is asymptotically normally distributed with
variance E{g∗(X,ZY,Z)2}, with g∗(X,ZY,Z) specified in Theorem 3.1 above.
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4. Simulations

4.1. Linear and nonlinear regression with one covariate

To illustrate the results of the previous sections, we conduct a simulation study
comparing various estimators for E(Y ), E(Y 2), E(XY ) and E{X exp(XY )};
see Tables 1-4. In each case we consider two regression functions, rϑ(x) = ϑx and
rϑ(x) = cos(ϑx) with ϑ = 2, and two variance functions, namely a linear variance
function σ2(x) = 0.6 − 0.5x and a parabolic variance function σ2(x) = (x −
0.4)2 +0.1. The covariate X is generated from a uniform distribution on [−1, 1]
and the error variable η in ε = σ(X)η from a standard normal distribution. In
all scenarios we use the logistic distribution function π(x) = 1/{1 + exp(−x)}
for the conditional probability, so that about half of the simulated responses are
missing. In this section we use, for simplicity, only ordinary kernels instead of
the boundary kernels discussed in Remark 2.1.

To evaluate the performance of our asymptotically optimal estimator when
sample sizes are small we simulate the mean squared errors (MSE) of Ĥϑ and

Ĥϑ̂. Here Ĥϑ denotes the version of our estimator Ĥ from (1.2) that uses the true

values of σ2(x), π(x) and ϑ in the correction term, whereas Ĥϑ̂ uses estimators
for those quantities. For the calculation of

ϑ̂ = argmin
θ

∣∣∣ n∑
i=1

Ziσ̂
−2(Xi)ṙθ(Xi){Yi − rθ(Xi)}

∣∣∣
we use a consistent nonparametric estimator for σ2(x), namely

σ̂2(x) =

∑n
i=1 ZiKb1(x−Xi){Yi − rϑ̂0

(Xi)}2∑n
i=1 ZiKb1(x−Xi)

,

where Kb1(·) is a Gaussian kernel with bandwidth b1 and ϑ̂0 is the ordinary
least squares estimator (or some other consistent estimator of ϑ). In the model

with a linear regression function ϑ̂ and ϑ̂0 have a closed form, while for the
cosine function we use the nls function in R to obtain them. Our nonparametric
estimator for π(x) is

π̂(x) =

∑n
i=1 ZiKb2(x−Xi)∑n
i=1 Kb2(x−Xi)

, (4.1)

where Kb2(·) is a Gaussian kernel with bandwidth b2; ρ̂h(x) is a plug-in esti-
mator for ρh(x) = E{h(X,Y )ε|X = x}. For our choices of h it will involve the

estimators σ̂2(x) and ϑ̂ just described; see below for more details. The nonpara-

metric part Ĥnp of our estimator Ĥ is the partially imputed estimator (1.3).
It is based on a Nadaraya-Watson estimator for the conditional expectation
χ(x) = E{h(X,Y )|X = x}, with a Gaussian kernel Kb3(·) with bandwidth b3.

We also compare Ĥϑ and Ĥϑ̂ with the simple Horvitz-Thompson type es-
timator S = n−1

∑n
i=1{Zih(Xi, Yi)/π(Xi)} (based on the true π(x)), and the
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nonparametric estimator Ĥnp without the nonlinear correction. For each setting
simulations with sample sizes n = 50, 100 and 200 are conducted based on 5, 000
repetitions. The nls routine does not always converge for the cosine regression
function. We therefore list the MSEs of Ĥϑ̂ only for sample sizes n = 100 and
n = 200 for that scenario.

For estimators involving kernel estimation we use leave-one-out cross valida-
tion to select the bandwidth. For example, to obtain the bandwidth b1 of σ̂2(x),
we first calculate, for each complete observation (Xj , Yj),

σ̃2
jb =

n∑
i=1
i �=j

ZiKb(Xj −Xi){Yi − rϑ̂0
(Xi)}2

/ n∑
i=1
i �=j

ZiKb(Xj −Xi),

for bandwidths b from a candidate set G. Then b1 is obtained as

b1 = argmin
b∈G

n∑
i=1

Zi[σ̃
2
ib − {Yi − rϑ̂0

(Xi)}2]2.

For the case h(x, y) = y, for example, we used the set G = {0.1, 0.2, ...0.5} for

b1 and also for b2. The bandwidth b3 for the nonparametric part Ĥnp has the
form b3 = an−2/5, which is indicated to have optimal convergence rate by Cheng
(1994 [3]). We chose a = 0.5, 0.6, . . . , 0.9 to determine b3.

Table 1

Simulated MSEs of estimators of E(Y )

rϑ(X) = ϑX (ϑ = 2) rϑ(X) = cos(ϑX) (ϑ = 2)

σ2(X) n Ĥϑ Ĥ
ϑ̂

Ĥnp S Ĥϑ Ĥ
ϑ̂

Ĥnp S

50 0.0341 0.0319 0.0634 0.0941 0.0102 – 0.0390 0.0426
(a) 100 0.0152 0.0144 0.0291 0.0443 0.0037 0.0071 0.0179 0.0215

200 0.0070 0.0067 0.0144 0.0229 0.0015 0.0031 0.0085 0.0104
50 0.0353 0.0323 0.0655 0.0968 0.0112 – 0.0411 0.0451

(b) 100 0.0157 0.0146 0.0308 0.0462 0.0041 0.0082 0.0195 0.0233
200 0.0072 0.0068 0.0151 0.0236 0.0016 0.0035 0.0092 0.0112

The entries in both the left and the right panels are the simulated mean squared
errors of estimators of the mean response. The first two columns of each panel
show the MSEs of the two versions Ĥϑ and Ĥ

ϑ̂
of the efficient estimator. The

third and fourth columns list the results for the nonparametric estimator Ĥnp (no
correction) and the simple estimator S. The variance functions are (a) σ2(X) =
0.6− 0.5X and (b) σ2(X) = (X − 0.4)2 + 0.1.

The simulated mean squared errors for estimating the mean response are
given in Table 1. In this case ρh(x) = E{h(X,Y )ε|X = x} = E{Y ε|X = x} =
σ2(x). In each row of Table 1 the efficient estimator outperforms the nonpara-
metric estimator without the nonlinear correction, while the simple estimator is
inferior to any of its competitors. In the linear regression model the two versions
Ĥϑ and Ĥϑ̂ of the efficient estimator differ slightly, in contrast to the cosine re-
gression model, where the difference is quite large. This is because the estimator
of the slope in the linear regression model is better than that of the frequency
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parameter in the model with the cosine regression function. The MSEs for differ-
ent sample sizes confirm the root-n convergence rate of the efficient estimator,
as stated in Corollary 2.1.

Table 2

Simulated MSEs of estimators of E(Y 2)

rϑ(X) = ϑX (ϑ = 2) rϑ(X) = cos(ϑX) (ϑ = 2)

σ2(X) n Ĥϑ Ĥ
ϑ̂

Ĥnp S Ĥϑ Ĥ
ϑ̂

Ĥnp S

50 0.1235 0.1725 0.2755 0.4206 0.0626 – 0.1065 0.1267
(a) 100 0.0545 0.0818 0.1394 0.2099 0.0285 0.0275 0.0493 0.0630

200 0.0247 0.0381 0.0660 0.1029 0.0134 0.0133 0.0234 0.0307
50 0.1973 0.2484 0.4135 0.6012 0.0924 – 0.1207 0.1520

(b) 100 0.0891 0.1180 0.2130 0.3060 0.0456 0.0448 0.0592 0.0786
200 0.0402 0.0544 0.1010 0.1475 0.0215 0.0214 0.0281 0.0375

The entries are mean squared errors as in Table 1, now with h(x, y) = y2. The
variance functions are again (a) σ2(X) = 0.6 − 0.5X and (b) σ2(X) = (X −
0.4)2 + 0.1.

Table 2 displays the simulation results for the same scenario as in Table 1,
but now the second moment of the response is estimated. The efficient estimator
again outperforms both the nonparametric estimator and the simple estimator.
In our scenario with normal errors we have ρh(x) = 2rϑ(x)σ

2(x) with rϑ(x) = ϑx
and rϑ(x) = cos(ϑx). In both regression models it makes little difference whether
true values or estimators are used.

Table 3

Simulated MSEs of estimators of E(XY )

rϑ(X) = ϑX (ϑ = 2) rϑ(X) = cos(ϑX) (ϑ = 2)

σ2(X) n Ĥϑ Ĥ
ϑ̂

Ĥnp S Ĥϑ Ĥ
ϑ̂

Ĥnp S

50 0.0120 0.0147 0.0215 0.0402 0.0034 – 0.0136 0.0131
(a) 100 0.0050 0.0068 0.0105 0.0203 0.0013 0.0009 0.0065 0.0068

200 0.0022 0.0030 0.0048 0.0099 0.0005 0.0004 0.0031 0.0032
50 0.0131 0.0159 0.0268 0.0456 0.0044 – 0.0186 0.0187

(b) 100 0.0055 0.0073 0.0134 0.0231 0.0017 0.0011 0.0093 0.0096
200 0.0023 0.0032 0.0062 0.0113 0.0007 0.0004 0.0044 0.0046

We consider the same scenario as in Tables 1 and 2, now with h(x, y) = xy.

The MSEs for estimating E(XY ) are given in Table 3. In both regression
models ρh(x) = xσ2(x). The first two columns of the left panel (linear regression)
indicate that estimating σ2(x), π(x) and ϑ increases the MSE slightly. The MSEs
in the corresponding columns in the right panel (cosine regression) appear to
be similar. The results in Table 3 again confirm the superiority of the efficient
estimator as well as the convergence rate.

The results for E{X exp(XY )} are listed in Table 4. Straightforward cal-
culations yield ρh(x) = σ2(x)x2 exp[{ϑ + σ2(x)/2}x2]. The efficient estimator
clearly outperforms the competing estimators. As in the previous tables we see
that the two estimators Ĥϑ and Ĥϑ̂ based on true values and on estimates
perform similarly.
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Table 4

Simulated MSEs of estimators of E{X exp(XY )}
rϑ(X) = ϑX (ϑ = 2) rϑ(X) = cos(ϑX) (ϑ = 2)

σ2(X) n Ĥϑ Ĥ
ϑ̂

Ĥnp S Ĥϑ Ĥ
ϑ̂

Ĥnp S

50 0.5273 0.4491 0.7517 1.2958 0.0286 – 0.0415 0.0727
(a) 100 0.2442 0.2164 0.3693 0.6207 0.0136 0.0144 0.0210 0.0350

200 0.1289 0.1197 0.2161 0.3420 0.0072 0.0075 0.0122 0.0191
50 2.2743 1.9389 3.0689 5.0159 0.1148 – 0.1566 0.2547

(b) 100 0.9657 0.8976 1.3701 2.2641 0.0491 0.0504 0.0706 0.1166
200 0.4589 0.4624 0.7310 1.4083 0.0238 0.0264 0.0383 0.0710

In this table h(x, y) = x exp(xy); the scenario is the same as in Tables 1-3.

The influence function of the efficient estimator in Corollary 2.1 contains a
non-negligible part that comes from the difference n1/2(ϑ̂ − ϑ). This part is

missing if we replace ϑ̂ by ϑ, which explains why in some cases, e.g. the upper
left panel in Table 4, Ĥϑ̂ outperforms Ĥϑ. However, estimating σ2(x) and π(x)
adds uncertainty, especially if n is not very large, so that in other cases, for
example in the right panel in Table 4, the MSE of Ĥϑ̂ is larger than that of Ĥϑ.

4.2. Linear regression with two covariates

Finally we consider a bivariate covariate vector X = (X1, X2)
� and a linear

regression function rϑ(x) = ϑ1x1 + ϑ2x2 with ϑ1 = 1 and ϑ2 = 2. We modify
the scenario of the previous section as follows: the variance function σ2(x) =
σ2(x1, x2) is set to be 2.1− 0.5(x1 + x2) or (x1 + x2 − 0.8)2 + 0.1, and π(x) =
1/[1+exp{−(x1+x2)}]. In order to generate correlated covariatesX1, X2 we first
sample auxiliary random variables W,X ′

1 and X ′
2 independently: W is generated

from a uniform distribution on [−0.5, 0.5], and X ′
1 and X ′

2 are generated from
a uniform distribution on [−1, 1]. Then we take X1 = X ′

1 + W and X2 =
X ′

2 +W . Our final estimator is based on kernel estimators. For example, σ̂2(x)
now involves a product of two Gaussian-based kernels of order 4 (Wand and
Schucany, 1990 [21]), i.e. K(x) = (3 − x2)Φ(x)/2, where Φ(·) is the standard
Gaussian density function, both using the same bandwidth, to estimate the
unknown conditional expectations. Table 5 shows the simulated mean squared
errors of estimators of the mean response in the bivariate regression model. In
this case ρh(x) = E{h(X,Y )ε|X = x} = σ2(x). Again our efficient estimator
outperforms the competing estimators and confirms our theoretical results. The
efficient estimator that uses estimates σ̂2(x), π̂(x) and ϑ̂ is better than the

estimator Ĥϑ, which uses the true values.

5. An example

In this section we apply our method to a data set of 2139 HIV positive patients
from a clinical trial (Hammer et al., 1996 [6]). The data are freely accessible in
the R package speff2trial.
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Table 5

Simulated MSEs of estimators of E(Y )

σ2(X) n Ĥϑ Ĥ
ϑ̂

Ĥnp S

50 0.1081 0.0963 0.2022 0.2991
2.1− 0.5(X1 +X2) 100 0.0514 0.0444 0.1013 0.1529

200 0.0247 0.0214 0.0507 0.0759
50 0.1263 0.1054 0.1876 0.3338

(X1 +X2 − 0.8)2 + 0.1 100 0.0617 0.0514 0.1020 0.1738
200 0.0297 0.0248 0.0550 0.0861

The entries are simulated mean squared errors of estimators of the mean response,
here for the scenario with the bivariate linear regression function rϑ(X) = ϑ1X1+
ϑ2X2 (ϑ1 = 1, ϑ2 = 2) described in Section 4.2.

In the trial patients were randomly assigned to four antiretroviral therapies:
(i) zidovudine (ZDV) monotherapy, (ii) ZDV + didanosine (DDI), (iii) ZDV +
zalcitabine, and (iv) DDI monotherapy. We want to compare the ZDVmonother-
apy (i) with the alternative group of therapies (ii)-(iv), and estimate the mean
number of CD4 cells in both groups, i.e. the number of white blood cells that
fight the infection. An increasing CD4 count indicates that the HIV treatment
is more effective.

We are interested in the difference between the mean CD4 counts (Y ) in the
monotherapy group and the mean CD4 counts in the alternative therapy group
at 96±5 weeks post therapy. There are six covariates: X(1), age; X(2), weight;
X(3), CD4 counts at baseline; X(4), CD4 counts at 20±5 weeks; X(5), CD8
(immune cells) counts at baseline; X(6), CD8 counts at 20±5 weeks. Because of
deaths and dropouts, 39% of the responses in the monotherapy group and 37% of
the responses of the combined therapy group are missing, while all covariates are
observed for all patients. Let Z again denote the missingness indicator (which
is 1 if Y is observed and 0 if it is missing). As indicated by Hu et al. (2010 [9])
and Tang et al. (2018 [20]), who consider the same data set, it is reasonable to
asume that the conditional expectation of the response given the covariates can
be modelled using linear regression, and that the response is missing at random.
The variable selection results in Tang et al. (2018 [20]) suggest that only X(3),
X(4) and X(6) actually affect Y . We therefore assume E(Y |X) = ϑ�X, with a
covariate vector X = (1, X(3), X(4), X(6))� and a regression parameter ϑ ∈ R

4.

We apply our method to the two groups of data separately and construct the
efficient estimator for the mean response μ(0) in the monotherapy group and
the mean response μ(1) in the combined therapy group. Then we calculate the
difference between the means, μ(1) − μ(0). For the construction of the efficient
estimator see Section 4.1.

For comparison we also consider the three estimators for the mean difference
μ(1) − μ(0) in Section 7 of Hu et al. (2010 [9]): inverse probability weighting
estimation (IPW), augmented inverse probability weighting estimation (AIPW),
and semiparametric dimension reduction estimation (SDR). Besides the linear
regression model between Y and X, Hu et al. additionally assume a parametric
logistic model for the probablity of missingness, i.e. logit{π(X)} = γ�X for some
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parameter γ (which is technically a different statistical model). For the term
π(X) in the nonlinear correction term of our efficient estimator, we therefore
use the nonparametric estimator (4.1) and a parametric estimator for the logistic
model, both based on (X(3), X(4), X(6))�.

Table 6

Estimates of the mean difference μ(1) − μ(0).

Point estimator Standard error 95% confidence interval
IPW 58.19 10.33 [37.94, 78.44]
AIPW 61.91 8.83 [44.60, 79.22]
SDR 62.42 9.02 [44.74, 80.10]
EENP 63.75 9.07 [45.98, 81.52]
EEP 63.40 9.08 [45.60, 81.20]

IPW, inverse probability weighting estimation; AIPW, augmented inverse prob-
ability weighting estimation; SDR, semiparametric dimension reduction estima-
tion; EENP, efficient estimator with the nonparametric estimator for the prob-
ability of missingness; EEP, a version of the efficient estimator with the logistic
model for the probability of missingness.

The point estimators, standard errors and 95% confidence intervals of various
methods are given in Table 6. The results of the IPW, AIPW and SDR are
taken from Hu et al. (2010 [9]) for comparison. The standard errors of the two
versions of the efficient estimator (EENP and EEP in Table 6) are obtained
using the bootstrap based on 500 repetitions. The point estimators, standard
errors and confidence intervals of our method are close to those of the AIPW and
SDR, which both attain an efficiency bound if E(Y |X) and π(X) are correctly
specified, as discussed in Section 3 of Hu et al. (2010 [9]). However, our method
is efficient without specifying an auxiliary parametric model for π(X). From
Table 6 we can see that the results of the EENP and the EEP are very close.

Appendix A

A.1. Proof of Lemma 2.1

Let f2 denote the joint density of (X,V ) and f(·|x) the conditional density of
V given X = x. For the proof of part (1) we write μ(x) = E{g(X,V )Kb(X,x)}
and, using substitution, obtain

μ(x) =

∫
I

∫
Rq

g(u, v)b−dK
(
b−1(u− x), x

)
f2(u, v)dvdu

=

∫
Sb(x)

∫
Rq

g(bs+ x, v)K(s, x)f2(bs+ x, v)dvds

=

∫
Sb(x)

K(s, x)f(bs+ x)

∫
Rq

g(bs+ x, v)f(v|bs+ x)dvds

=

∫
Sb(x)

K(s, x)f(bs+ x)m(bs+ x)ds.
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A Taylor expansion gives that for s = (s1, . . . , sd)
� ∈ Sb(x),

f(bs+ x)m(bs+ x) =
∑
|α|≤d

Dα{f(x)m(x)}
α!

(bs)α +
∑

|α|=d+1

Rα(x, s)(bs)
α,

where α = (α1, . . . , αd) ∈ N
d, |α| =

∑d
i=1 αi, α! =

∏d
i=1 αi!, (bs)

α = b|α|sα =

b|α|
∏d

i=1 s
αi

i and

Dα{f(x)m(x)} =
∂|α|{f(x)m(x)}
∂xα1

1 . . . ∂xαd

d

.

For example, if x = (x1, x2)
� and s = (s1, s2)

� are two-dimensional vectors, we
have ∑

|α|=2

Dα{f(x)m(x)}
α!

(bs)α

=
∂2f(x)m(x)

∂x2
1

(bs1)
2

2
+

∂2f(x)m(x)

∂x2
2

(bs2)
2

2
+

∂2f(x)m(x)

∂x1∂x2
b2s1s2.

Since f(x) and m(x) are d+ 1 times continuously differentiable on I, the term
in the remainder is

Rα(x, s) =
|α|
α!

∫ 1

0

(1− t)|α|−1Dα{f(x+ tbs)m(x+ tbs)}dt.

When |α| = d+ 1, it follows that

∣∣Rα(x, s)
∣∣ ≤ 1

α!
sup

|β|=d+1

sup
w∈I

∣∣Dβ{f(w)m(w)}
∣∣ ≤ c (A.1)

with β ∈ R
d, because f(x) and m(x) are d+1 times continuously differentiable

on I. By Assumption (K) (ii) we have

μ(x) = f(x)m(x) + bd+1

∫
Sb(x)

K(s, x)
∑

|α|=d+1

Rα(x, s)s
αds,

which implies that

sup
x∈I

|μ(x)− f(x)m(x)|

≤ sup
x∈I

{
bd+1

∫
Sb(x)

∣∣K(s, x)
∣∣ ∑
|α|=d+1

(∣∣Rα(x, s)
∣∣|sα|)ds}

≤ cbd+1 sup
x∈I

{ ∑
|α|=d+1

∫ ∣∣K(s, x)sα
∣∣ds} = Op(b

d+1),

where the second step holds true because of (A.1) and the last step because of
Assumption (K) (i). Therefore, by Assumption (B), we have

sup
x∈I

|μ(x)− f(x)m(x)| = op(n
−1/2). (A.2)
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We now prove part (2). Analogously as in the derivation of Theorem 2 in
Hansen (2008 [7]), where Y in the original proof is replaced by g(X,V ), we have

sup
x∈I

∣∣∣ 1
n

n∑
i=1

g(Xi, Vi)Kb(Xi, x)− μ(x)
∣∣∣ = Op

(( logn

nbd

)1/2)
= op(n

−1/4). (A.3)

The assumptions of that theorem are satisfied:

1. Assumptions 1 and 3 in Hansen (2008 [7]) hold true by Assumption (K)(i)
and (K)(iii), respectively;

2. we have independent observations, so conditions (2), (4), (7) and (10) in
[7] are not needed, and (11) in that article simplifies to θ = 1;

3. condition (5) in [7] is satisfied by Assumption (X), and inspecting the
proofs of Theorems 1 and 2 in [7] reveals that condition (3) and (6) in
that article can be replaced by the assumption that g(X,Y ) is square
integrable for independent data;

4. equation (12) in [7] is met by Assumption (B); equation (13) in that article
is satisfied since the support I in (A.3) is compact.

Combining (A.2) and (A.3) gives the desired statement,

sup
x∈I

∣∣∣ 1
n

n∑
i=1

g(Xi, Vi)Kb(Xi, x)− f(x)m(x)
∣∣∣ = op(n

−1/4).

A.2. Proof of equation (2.4) (Theorem 2.1)

We can write B1 in the form

B1 =
1

n

n∑
i=1

(1− Zi)

∑n
j=1 ZjKb(Xj , Xi){h(Xj , Yj)− χ(Xi)}∑n

j=1 ZjKb(Xj , Xi)
.

By the second conclusion of Lemma 2.1 we have

J1 = sup
x∈I

∣∣∣ 1
n

n∑
j=1

ZjKb(Xj , x){h(Xj , Yj)− χ(x)}
∣∣∣ = op(n

−1/4),

J2 = sup
x∈I

∣∣∣ 1
n

n∑
j=1

ZjKb(Xj , x)− π(x)f(x)
∣∣∣ = op(n

−1/4),

and therefore

|B2 −B1| ≤
1

n

n∑
i=1

(1− Zi)
|n−1

∑n
j=1 ZjKb(Xj , Xi){h(Xj , Yj)− χ(Xi)}|

π(Xi)f(Xi)|n−1
∑n

j=1 ZjKb(Xj , Xi)|

×
∣∣∣ 1
n

n∑
j=1

ZjKb(Xj , Xi)− π(Xi)f(Xi)
∣∣∣



Efficient estimators in nonlinear regression 4007

≤ J1J2
1

n

n∑
i=1

1− Zi

π(Xi)f(Xi)|n−1
∑n

j=1 ZjKb(Xj , Xi)|

≤ op(n
−1/2)

{
inf
x∈I

π(x)f(x)
}−1

{
inf
x∈I

∣∣∣ 1
n

n∑
j=1

ZjKb(Xj , x)
∣∣∣}−1

,

where the two items are both bounded away from zero by Assumption (X) and
(2.2). This shows

|B2 −B1| = op(n
−1/2).

In the following we assume that (Xp, Yp, Zp) and (Xq, Yq, Zq) are two different
observations which do not belong to the set of complete observations B. Consider

B2
3 = E2(B2|B)
= E2

[
(1− Zp){φ(Xp)− φ̃(Xp)}|B

]
= E

[
(1− Zp){φ(Xp)− φ̃(Xp)}|B

]
E

[
(1− Zq){φ(Xq)− φ̃(Xq)}|B

]
= E

[
(1− Zp){φ(Xp)− φ̃(Xp)}(1− Zq){φ(Xq)− φ̃(Xq)}|B

]
,

where the last equality holds because φ(Xp) and φ(Xq) are conditionally inde-
pendent given B. Then

E(B2
3) = E

[
(1− Z1)(1− Z2){φ(X1)− φ̃(X1)} {φ(X2)− φ̃(X2)}

]
.

This combined with

E(B2
2) =

1

n2
E

([ n∑
i=1

(1− Zi){φ(Xi)− φ̃(Xi)}
]2)

=
1

n
E

[
(1− Z){φ(X)− φ̃(X)}2

]
+

n− 1

n
E

[
(1− Z1)(1− Z2){φ(X1)− φ̃(X1)} {φ(X2)− φ̃(X2)}

]
yields

E(B2
2)− E(B2

3) = n−1E
[
(1− Z){φ(X)− φ̃(X)}2

]
− n−1E(B2

3). (A.4)

Further we obtain

E[{φ(X)− φ̃(X)}2]

= E
([ 1

n

∑n
j=1 ZjKb(Xj , X){h(Xj , Yj)− χ(X)}

π(X)f(X)

]2)

≤ c

n2
E

([ n∑
j=1

ZjKb(Xj , X){h(Xj , Yj)− χ(X)}
]2)

=
c

n2
E

[ n∑
j=1

ZjK
2
b (Xj , X){h(Xj , Yj)− χ(X)}2

]
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+
c

n2
E

[ n∑
i �=j

ZiZjKb(Xi, X)Kb(Xj , X){h(Xi, Yi)− χ(X)}{h(Xj , Yj)− χ(X)}
]

= T1 + T2

with

T1 = c/nE[Z1K
2
b (X1, X){h(X1, Y1)− χ(X)}2]

T2 = c(n− 1)/n

× E[Z1Z2Kb(X1, X)Kb(X2, X){h(X1, Y1)− χ(X)}{h(X2, Y2)− χ(X)}].
For T1 we have

T1 ≤ c/nE[{h(X1, Y1)− χ(X)}2]
= c/n [E{h2(X1, Y1)}+ E{χ2(X)} − 2E{h(X1, Y1)χ(X)}]
= c/n [E{h2(X1, Y1)} − E2{h(X1, Y1)}+ E{χ2(X)} − E2{χ(X)}]
= c/n {Var[h(X,Y )] + Var[χ(X)]} → 0 (n → ∞).

In the third step we used

E{h(X1, Y1)χ(X)} = E{h(X1, Y1)}E{χ(X)} = E2{h(X1, Y1)} = E2{χ(X)},
and in the last statement that the variances are finite by assumption.

The second term T2 computes to

T2 = c(n− 1)/nE(E[Z1Z2Kb(X1, X)Kb(X2, X){h(X1, Y1)− χ(X)}
× {h(X2, Y2)−χ(X)}|X])

= c(n− 1)/nE(E2[Z1Kb(X1, X){h(X1, Y1)− χ(X)}|X])

≤ c sup
x∈I

E2[Kb(X1, x){h(X1, Y1)− χ(x)}]

= c
(
sup
x∈I

∣∣E[Kb(X1, x){h(X1, Y1)− χ(x)}]
∣∣)2 → 0 (n → ∞).

The last step follows from the first conclusion of Lemma 2.1. Hence we have

E[{φ(X)− φ̃(X)}2] = T1 + T2 → 0 (n → ∞).

This combined with (A.4) yields

nE{(B2 −B3)
2} = n{E(B2

2)− 2E(B2B3) + E(B2
3)}

= n{E(B2
2)− 2E{E(B2B3|B)}+ E(B2

3)}
= n{E(B2

2)− 2E{B3E(B2|B)}+ E(B2
3)}

= n{E(B2
2)− E(B2

3)}
= E[(1− Z){φ(X)− φ̃(X)}2]− E(B2

3)

≤ E[{φ(X)− φ̃(X)}2] −→ 0.

Now use E(B2−B3) = 0 and Chebyshev’s inequality to obtain n1/2|B2−B3| =
op(1). This and n1/2|B1 −B2| = op(1) finally give

n1/2|B1 −B3| = op(1).
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A.3. Proof of equation (2.9) (Theorem 2.2)

We will use similar arguments as in the first part of the proof of the theorem,
in particular we write again ε∗i = εi − ṙϑ(Xi)

�(ϑ̂ − ϑ). Using this notation,
equation (2.9) becomes

∣∣∣n−1
n∑

i=1

Zi

{
g(Xi)− ĝ(Xi)

}
ε̂i

∣∣∣
=

∣∣∣n−1
n∑

i=1

Zi

{
g(Xi)− ĝ(Xi)

}
{(ε̂i − ε∗i )− ṙϑ(Xi)

�(ϑ̂− ϑ) + εi}
∣∣∣ = op(n

−1/2).

We treat the three parts separately. As in the proof of (2.6), we obtain for the
first part

∣∣∣n−1
n∑

i=1

Zi

{
g(Xi)− ĝ(Xi)

}
(ε̂i − ε∗i )

∣∣∣
≤ n−1

n∑
i=1

∣∣{g(Xi)− ĝ(Xi)
}
(ε̂i − ε∗i )

∣∣
≤ n−1

{
n

n∑
i=1

{
g(Xi)− ĝ(Xi)

}2
(ε̂i − ε∗i )

2
}1/2

= n−1/2 sup
x∈I

{
g(x)− ĝ(x)

}2
{ n∑

i=1

(ε̂i − ε∗i )
2
}1/2

= op(n
−1/2). (A.5)

In the last step we use the arguments following (2.7) with g(·) ≡ 1, and the fact
that ĝ(x) is a consistent estimator of g(x). The second part computes to

∣∣∣n−1
n∑

i=1

Zi

{
g(Xi)− ĝ(Xi)

}
ṙϑ(Xi)

�(ϑ̂− ϑ)
∣∣∣

≤ n−1‖ϑ̂− ϑ‖
n∑

i=1

∣∣g(Xi)− ĝ(Xi)
∣∣‖ṙϑ(Xi)‖

≤ n−1 sup
x∈I

∣∣g(x)− ĝ(x)
∣∣‖ϑ̂− ϑ‖

n∑
i=1

‖ṙϑ(Xi)‖

= op(n
−1/2) (A.6)

where the last step uses Assumptions (R) and (T) as well as the uniform con-
sistency of ĝ(x).

Finally we show

n−1
n∑

i=1

Zi

{
ĝ(Xi)− g(Xi)

}
εi = op(n

−1/2). (A.7)
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In equation (2.8) in the first part of proof of Theorem 2.2 we have seen that
n−1

∑n
i=1 Zig(Xi)εi is part of the approximation and therefore has the order

Op(n
−1/2). The term on the left-hand side of (A.7) is approximately condition-

ally centered (given Xi). Since ĝ(x)−g(x) is asympotically negligible, we obtain
the desired order op(n

−1/2).

Combining (A.5), (A.6) and (A.7) gives the desired statement

∣∣∣n−1
n∑

i=1

Zi

{
g(Xi)− ĝ(Xi)

}
ε̂i

∣∣∣ = op(n
−1/2).

To prove that the term in (A.7) is exactly conditionally centered, we propose
using leave-one-out estimators ρ̃(Xi), σ̃

2(Xi) and π̃(Xi) to estimate ĝ(Xi) (i =
1, . . . , n), i.e.

ĝ(Xi) =
ρ̃(Xi)

σ̃2(Xi)π̃(Xi)
.

Choose, for example,

σ̃2(Xi) =

∑n
j=1,j �=i ZjKb(Xi −Xj){Yj − rϑ̃i

(Xj)}2∑n
j=1,j �=i ZjKb(Xi −Xj)

,

where ϑ̃i is some consistent estimator of ϑ that does not use (Xi, Yi) if that pair
is observed. The other two leave-one-out estimator are defined similarly. Thanks
to this construction ĝ(Xi) is independent of Yi and Zi conditional on Xi, and
we obtain (suppressing the subscript i)

E
{
Z(ĝ(X)− g(X))ε

}
= E

{
Zĝ(X)ε

}
= E

{
E{Zĝ(X)ε|X}

}
= E

{
π(X)E{ĝ(X)|X}E{ε|X}

}
= 0.

A.4. Proof of equation (3.6) (Theorem 3.1)

To specify the tangent space V concerning the conditional distribution we intro-
duce perturbations s and t of the two parameters f(·|x) and ϑ. Write F (·|x) for
the conditional distribution function of f(·|x) and assume that f(·|x) has finite
Fisher information for location, E�2(ε|x) < ∞, where �(·|x) = −f ′(·|x)/f(·|x)
is the score function. The perturbed conditional distribution is

Qnv(x, dy) = Qnsa(x, dy) = fns{y − rϑna(x)|x}dy

with ϑna = ϑ+ n−1/2a, a ∈ R
d, fns(y|x) = f(y|x){1+ n−1/2s(x, y)} and s ∈ S,

where

S =
{
s ∈ L2(F ) :

∫
s(x, y)f(y|x)dy = 0,

∫
ys(x, y)f(y|x)dy = 0

}
.
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Here S is determined by two constraints: the perturbed error conditional density
fns(·|x) must integrate to one,

∫
fns(y|x)dy = 1, and must be centered at zero,∫

yfns(y|x)dy = 0. As in Schick (1993 [17]), Section 3, we have

fns{y − rϑna(x)|x}
= f{y − rϑna(x)|x}[1 + n−1/2s{x, y − rϑna(x)}]
.
= [f{y − rϑ(x)|x} − n−1/2f ′{y − rϑ(x)|x}ṙϑ(x)�a][1 + n−1/2s{x, y − rϑ(x)}]
.
= f{y − rϑ(x)|x}

(
1 + n−1/2

[
s{x, y − rϑ(x)} −

f ′{y − rϑ(x)|x}
f{y − rϑ(x)|x}

ṙϑ(x)
�a

])
= f{y − rϑ(x)|x}(1 + n−1/2[s{x, y − rϑ(x)}+ �{y − rϑ(x)|x}ṙϑ(x)�a]).

Therefore the subspace V of V0 is

V =
{
s{x, y − rϑ(x)}+ �{y − rϑ(x)|x}ṙϑ(x)�a : s ∈ S, a ∈ R

d
}
.

Setting Ṽ = {v(X,Y ) : v ∈ V } and writing v ∈ Ṽ as a sum of three terms, we
obtain

v(X,Y ) = s(X, ε) + �(ε|X)ṙϑ(X)�a

= s(X, ε) +
{
�(ε|X)− ε

σ2(X)

}
ṙϑ(X)�a+

ε

σ2(X)
ṙϑ(X)�a.

The third term is obviously an element of

V1 = {σ−2(X)ṙϑ(X)�aε : a ∈ R
d}.

It is easy to check that the first two terms (and their sum) belong to

V2 = {t(X,Y ) : t ∈ S}

and that V1 and V2 are orthogonal. Hence we can write Ṽ as an orthogonal sum,
Ṽ = V1 ⊕ V2. To specify v∗ in the canonical gradient formula (3.2), we use this
presentation and write

v∗(X,Y ) = σ−2(X)ṙϑ(X)�a∗ε+ t∗(X,Y ),

v(X,Y ) = σ−2(X)ṙϑ(X)�aε+ t(X,Y ),
(A.8)

where a∗, a ∈ R
d and t∗, t ∈ S. Setting u = 0 and w = 0 in equation (3.3), we

obtain

E[Z{σ−2(X)ṙϑ(X)�a∗ε+ t∗}{σ−2(X)ṙϑ(X)�aε+ t}]
= E[h(X,Y ){σ−2(X)ṙϑ(X)�aε+ t}].

(A.9)

Set t = 0 in (A.9) and use E{Zσ−2(X)ṙϑ(X)�aεt∗} = 0, which holds since
t∗ ∈ S. Then (A.9) becomes

E{Zσ−4(X)ṙϑ(X)�a∗ṙϑ(X)�aε2} = E{h(X,Y )σ−2(X)ṙϑ(X)�aε},



4012 G. Dai and U. U. Müller

and, since the equation must be satisfied for arbitrary vectors a,

a�∗ E{Zσ−4(X)ε2ṙϑ(X)ṙϑ(X)�} = E{h(X,Y )σ−2(X)εṙϑ(X)�}.

The term on the left-hand side computes to

a�∗ E{Zσ−4(X)ε2ṙϑ(X)ṙϑ(X)�} = a�∗ E[E{Zσ−4(X)ε2ṙϑ(X)ṙϑ(X)�|X}]
= a�∗ E{Zσ−2(X)ṙϑ(X)ṙϑ(X)�},

and, assuming E{Zσ−2(X)ṙϑ(X)ṙϑ(X)�} is invertible, we obtain

a∗ = [E{Zσ−2(X)ṙϑ(X)ṙϑ(X)�}]−1E{h(X,Y )σ−2(X)εṙϑ(X)} = I−1Δ,

with I and Δ as in Theorem 2.2 and Corollary 2.1. Now set a = 0 in (A.9) and
use

E{Zσ−2(X)ṙϑ(X)�a∗εt} = E[E{Zσ−2(X)ṙϑ(X)�a∗εt|X}]
= E{σ−2(X)ṙϑ(X)�a∗π(X)E(εt|X)} = 0

to obtain

E(Zt∗t) = E{h(X,Y )t}.

Writing this as an iterated expectation,

E{E(Zt∗t|X)} = E{π(X)E(t∗t|X)} = E[E{h(X,Y )t|X}], (A.10)

we see that h(X,Y )/π(X) is a candidate for t∗(X,Y ). Since t∗ must be in S we
choose a suitably modified version, namely

t∗(X,Y ) =
1

π(X)
[h(X,Y )− E{h(X,Y )|X} − E{h(X,Y )ε|X}σ−2(X)ε]

=
1

π(X)

{
h(X,Y )− χ(X)− ερh(X)

σ2(X)

}
(A.11)

with ρh(x) = E{h(X,Y )ε|X = x}. Now plug a∗ and t∗ into the formula for v∗
in (A.8) to obtain formula (3.6).

To verify (A.11) formally, we show that t∗ satisfies characterization (A.10)
and that t∗ is in V2 = {t(X,Y ) : t ∈ S}. To prove the first part we consider
t = t(X,Y ) ∈ V2, that is, by definition of S, E(t|X) = 0 and E(tε|X) = 0. Then

E(Zt∗t|X)

= E
([
h(X,Y )− E{h(X,Y )|X} − E{h(X,Y )ε|X}σ−2(X)ε

]
t|X

)
= E{h(X,Y )t} − E{h(X,Y )|X}E(t|X)− E{h(X,Y )ε|X}σ−2(X)E(tε|X)

= E{h(X,Y )t},
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which shows that t∗ satisfies (A.10). The second part, t∗ = t∗(X,Y ) ∈ V2,
follows from

E(t∗|X) =
1

π(X)
[E{h(X,Y )|X} − E{h(X,Y )|X}

− E{h(X,Y )ε|X}σ−2(X)E(ε|X)] = 0

and

E(t∗ε|X) =
1

π(X)

[
E{h(X,Y )ε|X} − E{h(X,Y )|X}E(ε|X)

− E{h(X,Y )ε|X}σ−2(X)E(ε2|X)
]

=
1

π(X)

[
E{h(X,Y )ε|X} − E{h(X,Y )ε|X}

]
= 0.
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