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1. Introduction

Heteroskedasticity and autocorrelation robust tests in regression models sug-
gested in the literature (e.g., tests based on the covariance estimators in Newey
and West (1987, 1994), Andrews (1991), and Andrews and Monahan (1992), or
tests in Kiefer et al. (2000), Kiefer and Vogelsang (2002a,b, 2005)) often suffer
from substantial size distortions or power deficiencies. This has been repeatedly
documented in simulation studies, and has been explained analytically by the
theory developed in Preinerstorfer and Pötscher (2016) to a large extent. Given
a test for an affine restriction on the regression coefficient vector, the results
in Preinerstorfer and Pötscher (2016) provide several sufficient conditions that
imply size equal to one, or severe biasedness of the test (resulting in low power
in certain regions of the alternative). The central object in that theory is the
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set of possible covariance matrices of the regression errors, i.e., the covariance
model, and, in particular, its set of concentration spaces. Concentration spaces
are defined as the column spaces of all singular matrices belonging to the bound-
ary of the covariance model (cf. Definition 2.1 in Preinerstorfer and Pötscher
(2016)). In Preinerstorfer and Pötscher (2016) it was shown that the position
of the concentration spaces relative to the rejection region of the test often lets
one deduce whether size distortions or power problems occur. Loosely speaking,
if a concentration space lies in the “interior” of the rejection region, the test has
size equal to one, whereas if a concentration space lies in the “exterior” (the
“interior” of the complement) of the rejection region, the test is biased and has
nuisance-minimal power equal to zero.1 These interiority (exteriority) conditions
can be formulated in terms of test statistics and critical values, can be easily
checked in practice, and have been made explicit in Preinerstorfer and Pötscher
(2016) at different levels of generality concerning the test statistic and the co-
variance model (cf. their Corollary 5.17, Theorem 3.3, Theorem 3.12, Theorem
3.15, and Theorem 4.2 for more details).

Given a test statistic, the results of Preinerstorfer and Pötscher (2016) just
mentioned – if applicable – all lead to implications of the following type: (i) size
equals one for any choice of critical value (e.g., testing a zero restriction on the
mean of a stationary AR(1) time series falls under this case); or (ii) all critical
values smaller than a certain real number (depending on observable quantities
only) lead to a test with size one. While implication (i) certainly rules out the
existence of a size-controlling critical value, implication (ii) does not, because
it only makes a statement about a certain range of critical values. Hence, the
question when a size-controlling critical value actually exists has not sufficiently
been answered in Preinerstorfer and Pötscher (2016). Focusing exclusively on
size control, Pötscher and Preinerstorfer (2018) recently developed conditions
under which size can be controlled at any level.2 It turns out that these con-
ditions can, in general, not be formulated in terms of concentration spaces of
the covariance model alone. Rather, they are conditions involving a different,
but related, set J, say, of linear spaces obtained from the covariance model.
This set J consists of nontrivial projections of concentration spaces as well as
of spaces which might be regarded as “higher-order” concentration spaces (cf.
Section 5 and Appendix B.1 of Pötscher and Preinerstorfer (2018) for a de-
tailed discussion). Again, the conditions in Pötscher and Preinerstorfer (2018)
do not depend on unobservable quantities, and hence can be checked by the
practitioner. Pötscher and Preinerstorfer (2018) also provide algorithms for the
computation of size-controlling critical values, which are implemented in the
R-package acrt (Preinerstorfer (2016)).

1The situation is a bit more complex. For example, sometimes a modification of the rejec-
tion region, which leaves the rejection probabilities unchanged, is required in order to enforce
the interiority (exteriority) condition; see Theorem 5.7 in Preinerstorfer and Pötscher (2016).

2We note that, apart from the results mentioned before, Preinerstorfer and Pötscher (2016)
also contains results that ensure size control (and positive infimal power). The scope of these
results is, however, substantially more narrow than the scope of the results in Pötscher and
Preinerstorfer (2018).
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Summarizing we arrive at the following situation: Preinerstorfer and Pötscher
(2016) provide – inter alia – sufficient conditions for non-existence of size-
controlling critical values in terms of the set of concentration spaces of a co-
variance model, whereas Pötscher and Preinerstorfer (2018) provide sufficient
conditions for the existence of size-controlling critical values formulated in terms
of a different set of linear spaces derived from the covariance model. Combining
the results in Preinerstorfer and Pötscher (2016) and Pötscher and Preinerstor-
fer (2018) does in general not result in necessary and sufficient conditions for
the existence of size-controlling critical values. [This is partly due to the fact
that different sets of linear spaces associated with the covariance model are used
in these two papers.] Rather, there remains a range of problems for which the
existence of size-controlling critical values can be neither disproved by the re-
sults in Preinerstorfer and Pötscher (2016) nor proved by the results in Pötscher
and Preinerstorfer (2018).

In the present paper we close the “gap” between the negative results in
Preinerstorfer and Pötscher (2016) on the one hand, and the positive results
in Pötscher and Preinerstorfer (2018) on the other hand. We achieve this by
obtaining new negative results that are typically more general than the ones
in Preinerstorfer and Pötscher (2016). Instead of directly working with concen-
tration spaces of a given covariance model (as in Preinerstorfer and Pötscher
(2016)) our main strategy is essentially as follows: We first show that size prop-
erties of (invariant) tests are preserved when passing from the given covariance
model to a suitably constructed auxiliary covariance model which has the prop-
erty that the concentration spaces of this auxiliary covariance model coincide
with the set J of linear spaces derived from the initial covariance model (as
used in the results of Pötscher and Preinerstorfer (2018)). Then we apply re-
sults in Preinerstorfer and Pötscher (2016) to the concentration spaces of the
auxiliary covariance model to obtain a necessary condition for the existence
of size-controlling critical values. [This result is first formulated for arbitrary
covariance models, and is then further specialized to the case of stationary au-
tocorrelated errors.] The so-obtained new result now allows us to prove that the
conditions developed in Pötscher and Preinerstorfer (2018) for the possibility of
size control are not only sufficient, but are – under certain (weak) conditions on
the test statistic – also necessary. Additionally, we also study power properties
and provide conditions under which a critical value leading to size control will
lead to low power in certain regions of the alternative; we also discuss conditions
under which this is not so.

Obtaining results for the class of problems inaccessible by the results of Prein-
erstorfer and Pötscher (2016) and Pötscher and Preinerstorfer (2018) is not only
theoretically satisfying. It is also practically important as this class contains em-
pirically relevant testing problems: As a further contribution we thus apply our
results to the important problem of testing hypotheses on polynomial or cycli-
cal trends in stationary time series, the former being our main focus. Testing
for trends certainly is an important problem (not only) in economics, and has
received a great amount of attention in the literature. Using our new results we
can prove that many tests currently in use (e.g., conventional tests based on
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long-run-variance estimators, or more specialized tests as suggested in Vogel-
sang (1998) and Bunzel and Vogelsang (2005)) suffer from severe size problems
whenever the covariance model is not extremely small (that is, is large enough
to contain all covariance matrices of stationary autoregressive processes of order
two or a slight enlargement of that set, a weak condition that is satisfied by the
covariance models used in Vogelsang (1998) or Bunzel and Vogelsang (2005);
cf. also the last paragraph preceding Section 5.1.1). Furthermore, our results
show that this problem can not be resolved by increasing the critical values
used (as it is established that no size-controlling critical value exists).

The structure of the article is as follows: Section 2 introduces the framework
and some notation. In Section 3 we present results concerning size properties
of nonsphericity-corrected F-type tests. This is done on two levels of generality:
In Subsection 3.1 we present results for general covariance models, whereas in
Subsection 3.2 we present results for covariance models obtained from stationary
autocorrelated errors. In these two sections it is also shown that the conditions
for size control obtained in Theorems 3.2, 3.8, 6.5, 6.6 and in Corollary 5.6 of
Pötscher and Preinerstorfer (2018) are not only sufficient but are also necessary
in important scenarios. In Section 4 we present results concerning the power of
tests based on size-controlling critical values. Finally, in Section 5 we discuss
consequences of our results for testing restrictions on coefficients of polynomial
and cyclical regressors. All proofs as well as some auxiliary results are given in
the appendices.

2. Framework

2.1. The model and basic notation

Consider the linear regression model

Y = Xβ +U, (2.1)

where X is a (real) nonstochastic regressor (design) matrix of dimension n× k
and where β ∈ Rk denotes the unknown regression parameter vector. We always
assume rank(X) = k and 1 ≤ k < n. We furthermore assume that the n×1 dis-
turbance vector U = (u1, . . . ,un)

′ is normally distributed with mean zero and
unknown covariance matrix σ2Σ, where Σ varies in a prescribed (nonempty) set
C of symmetric and positive definite n × n matrices and where 0 < σ2 < ∞
holds (σ always denoting the positive square root).3 The set C will be referred
to as the covariance model. We shall always assume that C allows σ2 and Σ to
be uniquely determined from σ2Σ.4 [This entails virtually no loss of generality
and can always be achieved, e.g., by imposing some normalization assumption

3Since we are concerned with finite-sample results only, the elements of Y, X, and U (and
even the probability space supporting Y and U) may depend on sample size n, but this will
not be expressed in the notation. Furthermore, the obvious dependence of C on n will also not
be shown in the notation.

4That is, C has the property that Σ ∈ C implies δΣ /∈ C for every δ �= 1.



Size and power of HAR tests 3897

on the elements of C such as normalizing the first diagonal element of Σ or the
norm of Σ to one, etc.] The leading case will concern the situation where C

results from the assumption that the elements u1, . . . ,un of the n × 1 distur-
bance vector U are distributed like consecutive elements of a zero mean weakly
stationary Gaussian process with an unknown spectral density, but allowing for
more general covariance models is useful.

The linear model described in (2.1) together with the Gaussianity assumption
on U induces a collection of distributions on the Borel-sets of Rn, the sample
space of Y. Denoting a Gaussian probability measure with mean μ ∈ Rn and
(possibly singular) covariance matrix A by Pμ,A, the induced collection of dis-
tributions is then given by{

Pμ,σ2Σ : μ ∈ span(X), 0 < σ2 < ∞,Σ ∈ C
}
. (2.2)

Since every Σ ∈ C is positive definite by assumption, each element of the set in
the previous display is absolutely continuous with respect to (w.r.t.) Lebesgue
measure on Rn.

We shall consider the problem of testing a linear (better: affine) hypothesis
on the parameter vector β ∈ Rk, i.e., the problem of testing the null Rβ = r
against the alternative Rβ �= r, where R is a q × k matrix always of rank q ≥ 1
and r ∈ Rq. Set M = span(X). Define the affine space

M0 = {μ ∈ M : μ = Xβ and Rβ = r}

and let

M1 = {μ ∈ M : μ = Xβ and Rβ �= r} .

Adopting these definitions, the above testing problem can then be written more
precisely as

H0 : μ ∈ M0, 0 < σ2 < ∞, Σ ∈ C vs. H1 : μ ∈ M1, 0 < σ2 < ∞, Σ ∈ C. (2.3)

We also define Mlin
0 as the linear space parallel to M0, i.e., M

lin
0 = M0 − μ0

for some μ0 ∈ M0. Obviously, Mlin
0 does not depend on the choice of μ0 ∈ M0.

The previously introduced concepts and notation will be used throughout the
paper.

The assumption of Gaussianity is made mainly in order not to obscure the
structure of the problem by technicalities. Substantial generalizations away from
Gaussianity are possible exactly in the same way as the extensions discussed
in Section 5.5 of Preinerstorfer and Pötscher (2016); see also Appendix E of
Pötscher and Preinerstorfer (2018). The assumption of nonstochastic regressors
can be relaxed somewhat: If X is random and, e.g., independent of U, the
results of the paper apply after one conditions on X. For arguments supporting
conditional inference see, e.g., Robinson (1979).

We next collect some further terminology and notation used throughout the
paper. A (nonrandomized) test is the indicator function of a Borel-set W in
Rn, with W called the corresponding rejection region. The size of such a test
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(rejection region) is the supremum over all rejection probabilities under the null
hypothesis H0, i.e.,

sup
μ∈M0

sup
0<σ2<∞

sup
Σ∈C

Pμ,σ2Σ(W ).

Throughout the paper we let β̂X(y) = (X ′X)
−1

X ′y, where X is the design
matrix appearing in (2.1) and y ∈ Rn. The corresponding ordinary least squares

(OLS) residual vector is denoted by ûX(y) = y−Xβ̂X(y). If it is clear from the
context which design matrix is being used, we shall drop the subscript X from
β̂X(y) and ûX(y) and shall simply write β̂(y) and û(y). We use Pr as a generic
symbol for a probability measure. Lebesgue measure on the Borel-sets of Rn will
be denoted by λRn , whereas Lebesgue measure on an affine subspace A of Rn

(but viewed as a measure on the Borel-sets of Rn) will be denoted by λA, with
zero-dimensional Lebesgue measure being interpreted as point mass. The set of
real matrices of dimension l×m is denoted by Rl×m (all matrices in the paper
will be real matrices). Let B′ denote the transpose of a matrix B ∈ Rl×m and let
span(B) denote the subspace in Rl spanned by its columns. For a symmetric and
nonnegative definite matrix B we denote the unique symmetric and nonnegative
definite square root by B1/2. For a linear subspace L of Rn we let L⊥ denote its
orthogonal complement and we let ΠL denote the orthogonal projection onto
L. For an affine subspace A of Rn we denote by G(A) the group of all affine
transformations on Rn of the form y �→ δ(y − a) + a∗ where δ �= 0 and a as
well as a∗ belong to A. [If A is a linear space, G(A) consists precisely of all
transformations of the form y �→ δy + ā with δ �= 0 and ā ∈ A.] The j-th
standard basis vector in Rn is written as ej(n). Furthermore, we let N denote
the set of all positive integers. A sum (product, respectively) over an empty
index set is to be interpreted as 0 (1, respectively). Finally, for a subset A of a
topological space we denote by cl(A) the closure of A (w.r.t. the ambient space).

2.2. Classes of test statistics

The rejection regions we consider will be of the form W = {y ∈ Rn : T (y) ≥ C},
where the critical value C satisfies −∞ < C < ∞ and the test statistic T is a
Borel-measurable function from Rn to R. With the exception of Section 4, the
results in the present paper will concern the class of nonsphericity-corrected F-
type test statistics as defined in (28) of Section 5.4 in Preinerstorfer and Pötscher
(2016) that satisfy Assumption 5 in that reference. For the convenience of the
reader we recall the definition of this class of test statistics. We start with the
following assumption, which is Assumption 5 in Preinerstorfer and Pötscher
(2016):

Assumption 1. (i) Suppose we have estimators β̌ : Rn\N → Rk and Ω̌ :
Rn\N → Rq×q that are well-defined and continuous on Rn\N , where N is a
closed λRn -null set. Furthermore, Ω̌(y) is symmetric for every y ∈ Rn\N . (ii)
The set Rn\N is assumed to be invariant under the group G(M), i.e., y ∈ Rn\N
implies δy+Xη ∈ Rn\N for every δ �= 0 and every η ∈ Rk. (iii) The estimators
satisfy the equivariance properties β̌(δy +Xη) = δβ̌(y) + η and Ω̌(δy +Xη) =
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δ2Ω̌(y) for every y ∈ Rn\N , for every δ �= 0, and for every η ∈ Rk. (iv) Ω̌ is
λRn -almost everywhere nonsingular on Rn\N .

Nonsphericity-corrected F-type test statistics are now of the form

T (y) =

{
(Rβ̌(y)− r)′Ω̌−1(y)(Rβ̌(y)− r), y ∈ Rn\N∗,
0, y ∈ N∗,

(2.4)

where β̌, Ω̌, and N satisfy Assumption 1 and N∗ = N ∪
{
y ∈ Rn\N :

det Ω̌(y) = 0
}
. We recall from Lemmata 5.15 and F.1 in Preinerstorfer and

Pötscher (2016) that N∗ is then a closed λRn -null set that is invariant under
G(M), and that T is continuous on Rn\N∗ (and is obviously Borel-measurable
on Rn). Furthermore, T is G(M0)-invariant, i.e., T (δ(y−μ0)+μ′

0) = T (y) holds
for every y ∈ Rn, every δ �= 0, every μ0 ∈ M0, and for every μ′

0 ∈ M0.

Remark 2.1. (Important subclasses) (i) Classical autocorrelation robust test
statistics (e.g., those considered in Newey and West (1987), Andrews (1991) Sec-
tions 3-5, or in Kiefer et al. (2000), Kiefer and Vogelsang (2002a,b, 2005)) fall
into this class: More precisely, denoting such a test statistic by Tw as in Pötscher
and Preinerstorfer (2018), it follows that Tw is a nonsphericity-corrected F-type
test statistic with Assumption 1 above being satisfied, provided only Assump-
tions 1 and 2 of Pötscher and Preinerstorfer (2018) hold. Here β̌ is given by

the ordinary least squares estimator β̂, Ω̌ is given by Ω̂w defined in Section 3
of Pötscher and Preinerstorfer (2018), and N = ∅ holds (see Remark 5.17 in
Pötscher and Preinerstorfer (2018)). Furthermore, Ω̌ = Ω̂w is then nonnegative
definite on all of Rn (see Section 3.2 of Preinerstorfer and Pötscher (2016) or
Section 3 of Pötscher and Preinerstorfer (2018)). We also recall from Section 5.3
of Pötscher and Preinerstorfer (2018) that in this case the set N∗ can be shown
to be a finite union of proper linear subspaces of Rn.

(ii) Classical autocorrelation robust test statistics like Tw, but where the
weights are now allowed to depend on the data (e.g., through data-driven band-
width choice or through prewithening, etc.) as considered, e.g., in Andrews
(1991), Andrews and Monahan (1992), and Newey and West (1994), also fall
into the class of nonsphericity-corrected F-type tests under appropriate condi-
tions (with the set N now typically being nonempty), see Preinerstorfer (2017)
for details. The same is typically true for test statistics based on parametric
long-run variance estimators or test statistics based on feasible generalized least
squares (cf. Section 3.3 of Preinerstorfer and Pötscher (2016)).

(iii) A statement completely analogous to (i) above applies to the more gen-
eral class of test statistics TGQ discussed in Section 3.4B of Pötscher and Prein-
erstorfer (2018), provided Assumption 1 of Pötscher and Preinerstorfer (2018)
is traded for the assumption that the weighting matrix W∗

n appearing in the
definition of TGQ is positive definite (and Ω̌ is of course now as discussed in Sec-
tion 3.4B of Pötscher and Preinerstorfer (2018)); see Remark 5.17 in Pötscher
and Preinerstorfer (2018). Again, Ω̌ is then nonnegative definite on all of Rn

(see Section 3.2.1 of Preinerstorfer and Pötscher (2016)), N = ∅ holds, and N∗

is a finite union of proper linear subspaces of Rn (see Section 5.3 of Pötscher
and Preinerstorfer (2018)).
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(iv) The (weighted) Eicker-test statistic TE,W (cf. Eicker (1967)) as defined
on pp.410-411 of Pötscher and Preinerstorfer (2018) is also a nonsphericity-
corrected F-type test statistic with Assumption 1 above being satisfied, where
β̌ = β̂, Ω̌ = Ω̂E,W defined on p.411 of Pötscher and Preinerstorfer (2018), and
N = ∅ holds. Again, Ω̌ is nonnegative definite on all of Rn, and N∗ = span(X)
holds (see Sections 3 and 5.3 of Pötscher and Preinerstorfer (2018)). We note
that the classical (i.e., uncorrected) F-test statistic also falls into this class as it
coincides (up to a known constant) with TE,W in case W is the identity matrix.

(v) Under the assumptions of Section 4 of Preinerstorfer and Pötscher (2016)
(including Assumption 3 in that reference), usual heteroskedasticity-robust test
statistics considered in the literature (see Long and Ervin (2000) for an overview)
also fall into the class of nonsphericity-corrected F-type test statistics with As-
sumption 1 being satisfied. Again, the matrix Ω̌ is then nonnegative definite
everywhere, N = ∅ holds, and N∗ is a finite union of proper linear subspaces of
Rn (the latter following from Lemma 4.1 in Preinerstorfer and Pötscher (2016)
combined with Lemma 5.18 of Pötscher and Preinerstorfer (2018)).

We shall also encounter cases where Ω̌(y) may not be nonnegative definite
for some values of y ∈ Rn\N . For these cases the following assumption, which is
Assumption 7 in Preinerstorfer and Pötscher (2016), will turn out to be useful.
For a discussion of this assumption see p. 314 of that reference.

Assumption 2. For every v ∈ Rq with v �= 0 we have

λRn

({
y ∈ Rn\N∗ : v′Ω̌−1(y)v = 0

})
= 0.

3. Results on the size of nonsphericity-corrected F-type test
statistics

3.1. A result for general covariance models

In this subsection we start with a negative result concerning size in a class of
nonsphericity-corrected F-type test statistics that is central to many of the re-
sults in the present paper. In particular, it allows us to show that the sufficient
conditions for size control obtained in Pötscher and Preinerstorfer (2018) are
often also necessary. The result complements negative results in Preinerstorfer
and Pötscher (2016) and is obtained by combining Lemmata A.1 and A.3 in
Appendix A with Corollary 5.17 of Preinerstorfer and Pötscher (2016). Its re-
lationship to negative results in Preinerstorfer and Pötscher (2016) is further
discussed in Appendix A.1. We recall the following definition from Pötscher and
Preinerstorfer (2018).

Definition 3.1. Given a linear subspace L of Rn with dim(L) < n and a
covariance model C, we let L(C) = {L(Σ) : Σ ∈ C}, where L(Σ) = ΠL⊥ΣΠL⊥/
‖ΠL⊥ΣΠL⊥‖. Furthermore, we define

J(L,C) =
{
span(Σ̄) : Σ̄ ∈ cl(L(C)), rank(Σ̄) < n− dim(L)

}
,
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where the closure is here understood w.r.t. Rn×n. [The symbol ‖·‖ here denotes
a norm on Rn×n. Note that J(L,C) does not depend on which norm is chosen.]

The space L figuring in this definition will always be an appropriately chosen
subspace related to invariance properties of the tests under consideration. A
leading case is when L = Mlin

0 . Loosely speaking, the linear spaces belonging to
J(L,C) are either (nontrivial) projections of concentration spaces of the covari-
ance model C (in the sense of Preinerstorfer and Pötscher (2016)) on L⊥, or are
what one could call “higher-order” concentration spaces. For a more detailed
discussion see Appendix B.1 of Pötscher and Preinerstorfer (2018).

Theorem 3.1. Let C be a covariance model. Let T be a nonsphericity-corrected
F-type test statistic of the form (2.4) based on β̌ and Ω̌ satisfying Assumption
1 with N = ∅. Furthermore, assume that Ω̌(y) is nonnegative definite for every
y ∈ Rn. If an S ∈ J(Mlin

0 ,C) satisfying S ⊆ span(X) exists, then

sup
Σ∈C

Pμ0,σ2Σ(T ≥ C) = 1 (3.1)

holds for every critical value C, −∞ < C < ∞, for every μ0 ∈ M0, and for
every σ2 ∈ (0,∞).

Remark 3.2. (Extensions) (i) As noted in Section 2.2, any T as in the theorem
is G(M0)-invariant. In some cases T and its associated set N∗ are additionally
invariant w.r.t. addition of elements from a linear space V ⊆ Rn. In such a case
L = span(Mlin

0 ∪ V) necessarily has dimension less than n − 1 < n, and the
variant of Theorem 3.1 where J(Mlin

0 ,C) is replaced by J(L,C) also holds.5

(ii) A result similar to Theorem 3.1, operating under a weaker condition than
S ⊆ span(X) for some S ∈ J(Mlin

0 ,C), is given in Theorem A.4 in Appendix
A. This result also allows for N �= ∅, but is restricted to the case where q, the
number of restrictions tested, is equal to 1 and where β̌ is the least squares
estimator in (2.1).

The preceding theorem can now be used to show that the conditions for size
control obtained in Corollary 5.6 (and Remark 5.8) of Pötscher and Preinerstor-
fer (2018) are not only sufficient, but are actually necessary, in some important
scenarios. This is formulated in the subsequent corollary; see also Remark 3.4
below. [We note that T in this corollary satisfies the assumptions of Corollary
5.6 of Pötscher and Preinerstorfer (2018) (with N† = N∗ and V = {0}) in view
of Lemma 5.16 in the same reference.]

Corollary 3.3. Let C be a covariance model. Let T be a nonsphericity-corrected
F-type test statistic of the form (2.4) based on β̌ and Ω̌ satisfying Assumption
1 with N = ∅. Furthermore, assume that Ω̌(y) is nonnegative definite for every
y ∈ Rn, and that N∗ = span(X). Then S � span(X) for every S ∈ J(Mlin

0 ,C)

5That dim(L) < n − 1 must hold is seen as follows: Suppose dim(L) ≥ n − 1. Then T is
λRn -almost everywhere constant (this is trivial if dim(L) = n and follows from Remark 5.14(i)
in Pötscher and Preinerstorfer (2018) in case dim(L) = n− 1). However, this contradicts Part
2 of Lemma 5.16 of Pötscher and Preinerstorfer (2018).
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is necessary and sufficient for size-controllability (at any significance level α ∈
(0, 1)), i.e., is necessary and sufficient for the fact that for every α ∈ (0, 1) there
exists a real number C(α) such that

sup
μ0∈M0

sup
0<σ2<∞

sup
Σ∈C

Pμ0,σ2Σ(T ≥ C(α)) ≤ α (3.2)

holds.6

Remark 3.4. (Special cases) (i) Corollary 3.3 applies, in particular, to the
(weighted) Eicker-test statistic TE,W in view of Remark 2.1(iv) above. Note
that N∗ = span(X) is here always satisfied. By Remark 2.1(iv), Corollary 3.3
also applies to the classical F-test statistic.

(ii) Next consider the classical autocorrelation robust test statistic Tw with
Assumptions 1 and 2 of Pötscher and Preinerstorfer (2018) being satisfied. Then
Corollary 3.3 also applies to Tw in view of Remark 2.1(i) above, provided N∗ =
span(X) holds. While the relation N∗ = span(X) need not always hold for Tw

(see the discussion in Section 5.3 of Pötscher and Preinerstorfer (2018)), it holds
for many combinations of restriction matrix R and design matrix X (in fact,
it holds generically in many universes of design matrices as a consequence of
Lemma A.3 in Appendix A of Pötscher and Preinerstorfer (2018)). Hence, for
such combinations of R and X, Corollary 3.3 applies to Tw.

(iii) For test statistics TGQ with positive definite weighting matrix W∗
n a

statement completely analogous to (ii) above holds in view of Remark 2.1(iii).
The same is true for heteroskedasticity-robust test statistics as discussed in
Remark 2.1(v).

Remark 3.5. While Theorem 3.1 applies to any combination of test statistic T
and covariance model C as long as they satisfy the assumptions of the theorem,
in a typical application the choice of the test statistic used will certainly be
dictated by properties of the covariance model C one maintains. For example,
in case C models stationary autocorrelated errors different test statistics will be
employed than in the case where C models heteroskedasticity.

3.2. Results for covariance models obtained from stationary
autocorrelated errors

We next specialize the results of the preceding section to the case of stationary
autocorrelated errors. i.e., to the case where the elements u1, . . . ,un of the n×1
disturbance vector U in model (2.1) are distributed like consecutive elements
of a zero mean weakly stationary Gaussian process with an unknown spectral
density, which is not almost everywhere equal to zero. Consequently, the covari-
ance matrix of the disturbance vector is positive definite and can be written as
σ2Σ(f) where

Σ(f) =

[∫ π

−π

e−ι(j−l)ωf(ω)dω

]n

j,l=1

,

6For conditions under which a smallest size-controlling critical value exists and when equal-
ity can be achieved in (3.2) see Pötscher and Preinerstorfer (2018), Section 5.2.
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with f varying in F, a prescribed (nonempty) family of normalized (that is,∫ π

−π
f(ω)dω = 1) spectral densities, and where 0 < σ2 < ∞ holds. Here

ι denotes the imaginary unit. We define the associated covariance model via
C(F) = {Σ(f) : f ∈ F}. Examples for the set F are (i) Fall, the set of all nor-
malized spectral densities, or (ii) FARMA(p,q), the set of all normalized spectral
densities corresponding to stationary autoregressive moving average models of
order at most (p, q), or (iii) the set of normalized spectral densities correspond-
ing to (stationary) fractional autoregressive moving average models, etc. We
shall write FAR(p) for FARMA(p,0).

We need to recall some more concepts and notation from Pötscher and Prein-
erstorfer (2018); for background see this reference. Let ω ∈ [0, π] and let s ≥ 0 be
an integer. Define En,s(ω) as the n× 2-dimensional matrix with j-th row equal
to (js cos(jω), js sin(jω)). Given a linear subspace L of Rn with dim(L) < n,
define for every ω ∈ [0, π]

ρ(ω,L) = min {s ∈ N ∪ {0} : span(En,s(ω)) � L} . (3.3)

As discussed in Section 3.1 of Pötscher and Preinerstorfer (2018), the set on the
r.h.s. of (3.3) is nonempty for every ω ∈ [0, π]. Thus ρ is well-defined and takes
values in N ∪ {0}. Furthermore, ρ(ω,L) > 0 holds at most for finitely many
ω ∈ [0, π] as shown in the same reference. We now define ω(L) as the vector
obtained by ordering the elements of {ω ∈ [0, π] : ρ(ω,L) > 0} from smallest to
largest, provided this set is nonempty, and we denote by p(L) the dimension of
this vector; furthermore, we set di(L) = ρ(ωi(L),L) for every i = 1, . . . , p(L),
where ωi(L) denotes the i-the coordinate of ω(L), and we write d(L) for the
vector with i-th coordinate equal to di(L). If the set {ω ∈ [0, π] : ρ(ω,L) >
0} is empty, we take ω(L) as well as d(L) as the 0-tuple and set p(L) = 0.
As in Pötscher and Preinerstorfer (2018), for d a natural number we define
κ(ω, d) = 2d for ω ∈ (0, π) and κ(ω, d) = d for ω ∈ {0, π}. Furthermore, we set
κ(ω(L), d(L)) =

∑
κ(ωi(L), di(L)) where the sum extends over i = 1, . . . , p(L),

with the convention that this sum is zero if p(L) = 0. For ease of notation we
shall often simply write ρ(γ) for ρ(γ,Mlin

0 ).

The subsequent theorem specializes Theorem 3.1 to the case where C = C(F).
For a definition of the collection S(F,L) of certain subsets of [0, π] figuring in
this theorem see Definition 6.4 of Pötscher and Preinerstorfer (2018).

Theorem 3.6. Let F be a nonempty set of normalized spectral densities, i.e.,
∅ �= F ⊆ Fall. Let T be a nonsphericity-corrected F-type test statistic of the
form (2.4) based on β̌ and Ω̌ satisfying Assumption 1 with N = ∅. Furthermore,
assume that Ω̌(y) is nonnegative definite for every y ∈ Rn. Suppose there exists
a linear subspace S of Rn that can be written as

S = span
(
Π(Mlin

0 )⊥
(
En,ρ(γ1)(γ1), . . . , En,ρ(γp)(γp)

))
for some Γ ∈ S(F,Mlin

0 ),

(3.4)
where the γi’s denote the elements of Γ and p = card(Γ), such that S satisfies
S ⊆ span(X) (or, equivalently, span(En,ρ(γ1)(γ1), . . . , En,ρ(γp)(γp)) ⊆ span(X)).
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Then dim(S) < n− dim(Mlin
0 ) holds. Furthermore,

sup
f∈F

Pμ0,σ2Σ(f)(T ≥ C) = 1

holds for every critical value C, −∞ < C < ∞, for every μ0 ∈ M0, and for
every σ2 ∈ (0,∞).

Remark 3.7. Suppose F in Theorem 3.6 has the property that γ ∈
⋃

S(F,Mlin
0 )

implies {γ} ∈ S(F,Mlin
0 ) (as is, e.g., the case if F ⊇ FAR(2), cf. Lemma 3.8

below). Then it is easy to see that the set Γ in the theorem can be chosen to be
a singleton.

This theorem is applicable to any nonempty set F of normalized spectral
densities. In case more is known about the richness of F, the sufficient condition
in the preceding result can sometimes be simplified substantially. Below we
present such a result making use of the subsequent lemma.

Lemma 3.8. Let F ⊆ Fall satisfy F ⊇ FAR(2) and let L be a linear subspace
of Rn with dim(L) < n. Let γ ∈ [0, π]. Then {γ} ∈ S(F,L) if and only if
κ(ω(L), d(L)) + κ(γ, 1) < n. And {γ} ∈ S(F,L) holds for every γ ∈ [0, π] if
and only if κ(ω(L), d(L)) + 2 < n. Furthermore, γ ∈

⋃
S(F,L) if and only if

{γ} ∈ S(F,L).
Remark 3.9. (i) A sufficient condition for κ(ω(L), d(L)) + κ(γ, 1) < n
(κ(ω(L), d(L))+2 < n, respectively) is given by dim(L)+κ(γ, 1) < n (dim(L)+
2 < n, respectively). This follows from κ(ω(L), d(L)) ≤ dim(L) established in
Lemma D.1 in Appendix D of Pötscher and Preinerstorfer (2018).

(ii) In the case L = Mlin
0 the latter two conditions become k−q+κ(γ, 1) < n

and k − q + 2 < n, respectively. Note that the condition k − q + κ(γ, 1) < n is
always satisfied for γ = 0 or γ = π (as then κ(γ, 1) = 1). For γ ∈ (0, π) this
condition coincides with k−q+2 < n, and is always satisfied except if k = n−1
and q = 1.

Armed with the preceding lemma we can now establish the following conse-
quence of Theorem 3.6 provided F is rich enough to encompass FAR(2), which
clearly is a very weak condition in the context of autocorrelation robust testing.7

Theorem 3.10. Let F ⊆ Fall satisfy F ⊇ FAR(2). Let T be a nonsphericity-

corrected F-type test statistic of the form (2.4) based on β̌ and Ω̌ satisfying As-
sumption 1 with N = ∅. Furthermore, assume that Ω̌(y) is nonnegative definite
for every y ∈ Rn. Suppose there exists a γ ∈ [0, π] such that span(En,ρ(γ)(γ)) ⊆
span(X). Then κ(ω(Mlin

0 ), d(Mlin
0 )) + κ(γ, 1) < n holds, and we have

sup
f∈F

Pμ0,σ2Σ(f)(T ≥ C) = 1 (3.5)

for every critical value C, −∞ < C < ∞, for every μ0 ∈ M0, and for every
σ2 ∈ (0,∞).

7Recall that a premise of autocorrelation robust testing is agnosticism about the correlation
structure of the error process.
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Remark 3.11. (Further comments on the necessity of the sufficient conditions
for size control in Pötscher and Preinerstorfer (2018)) (i) Suppose T is as in
Theorem 3.6, additionally satisfying N∗ = span(X). Theorem 3.6 then shows
that the sufficient conditions for size control given in Part 1 of Theorem 6.5 in
Pötscher and Preinerstorfer (2018) (or the equivalent formulation given in Part
2 of that theorem) is also necessary.

(ii) Suppose T is as in (i) and assume furthermore that F is as in Remark 3.7.
Then also the sufficient condition for size control “span(En,ρ(γ)(γ)) � span(X)

for every γ ∈
⋃
S(F,Mlin

0 )” mentioned in Part 2 of Theorem 6.5 of Pötscher
and Preinerstorfer (2018) is necessary. [This is seen as follows: Suppose not,
i.e., span(En,ρ(γ)(γ)) ⊆ span(X) holds for some γ ∈

⋃
S(F,Mlin

0 ). Now apply
Theorem 3.6 with Γ = {γ}, which is possible because of Remark 3.7, resulting
in size being equal to one, a contradiction.]

(iii) Suppose T is as in (i) and assume that F ⊆ Fall satisfies F ⊇ FAR(2).
Then F satisfies the property in Remark 3.7 in view of Lemma 3.8, and thus
(ii) above applies. In this situation even more is true in view of Theorem 3.10:
The further sufficient condition for size control “span(En,ρ(γ)(γ)) � span(X) for
every γ ∈ [0, π]” given in Part 2 of Theorem 6.5 of Pötscher and Preinerstorfer
(2018) is in fact also necessary.

(iv) The discussion in (i)-(iii) covers (weighted) Eicker-test statistics TE,W (in-
cluding the classical F-test statistic) as well as classical autocorrelation robust
test statistics Tw (the latter under Assumptions 1 and 2 of Pötscher and Prein-
erstorfer (2018) and if N∗ = span(X) holds); it also covers the test statistics
TGQ (provided the weighting matrix W∗

n is positive definite and N∗ = span(X)
holds). In particular, the discussion in (i)-(iii) thus applies to the sufficient condi-
tions given in Theorem 6.6 in Pötscher and Preinerstorfer (2018) and its variants
outlined in Remark 6.8 of that reference. Furthermore, it transpires from this
discussion that the sufficient conditions for size control provided in Theorem 3.8
of Pötscher and Preinerstorfer (2018) are actually necessary; and the same is
true for Theorem 3.2 in that reference (provided the set B given there coincides
with span(X)).8

The results so far have only concerned the size of nonsphericity-corrected
F-type test statistics for which the exceptional set N is empty and Ω̌ is nonneg-
ative definite everywhere. We now provide a result also for the case where this
condition is not met.9

Definition 3.2. Let Fext
AR(2) denote the set of all normalized spectral densities

of the form c1f + (2π)−1c2 with f ∈ FAR(2) and c1 + c2 = 1, c1 ≥ 0, c2 ≥ 0.

Obviously, FAR(2) ⊆ Fext
AR(2) ⊆ FARMA(2,2) holds. While the preceding re-

sult maintained that F contains FAR(2), the next result maintains the slightly
stronger condition that F ⊇ Fext

AR(2).

8Note that F = Fall in those two theorems.
9Theorem A.4 in Appendix A also allows for N �= ∅, but requires Ω̌(y) to be nonnegative

definite for every y ∈ Rn\N (implying that Ω̌ is nonnegative definite λRn -a.e.). This result
also contains further assumptions such as q = 1.
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Theorem 3.12. Let F ⊆ Fall satisfy F ⊇ Fext
AR(2). Let T be a nonsphericity-

corrected F-type test statistic of the form (2.4) based on β̌ and Ω̌ satisfying
Assumption 1. Furthermore, assume that Ω̌ also satisfies Assumption 2. Suppose
there exists a γ ∈ [0, π] such that span(En,ρ(γ)(γ)) ⊆ span(X). Then for every
critical value C, −∞ < C < ∞, for every μ0 ∈ M0, and for every σ2 ∈ (0,∞)
it holds that

P0,In(Ω̌ is nonnegative definite) ≤ K(γ) ≤ sup
f∈F

Pμ0,σ2Σ(f) (T ≥ C) , (3.6)

where K(γ) is defined by

K(γ) =

∫
Pr

(
ξ̄γ(x) ≥ 0

)
dP0,Iκ(γ,1)

(x)

with the random variable ξ̄γ(x) given by

ξ̄γ(x) = (Rβ̂X(Ēn,ρ(γ)(γ)x))
′Ω̌−1 (G)Rβ̂X(Ēn,ρ(γ)(γ)x)

on the event where {G ∈ Rn\N∗} and by ξ̄γ(x) = 0 otherwise. Here G is a stan-
dard normal n-vector, Ēn,ρ(γ)(γ) = En,ρ(γ)(γ) if γ ∈ (0, π) and Ēn,ρ(γ)(γ) de-

notes the first column of En,ρ(γ)(γ) otherwise. [Recall that β̂X(y) =
(X ′X)−1X ′y.]

The significance of the preceding theorem is that it provides a lower bound
for the size of a large class of nonsphericity-corrected F-type tests, including
those with N �= ∅ or with Ω̌ not necessarily nonnegative definite. In particular,
it shows that size can not be controlled at a given desired significance level α,
if α is below the threshold given by the lower bound in (3.6). Observe that
this threshold will typically be close to 1, at least if n is sufficiently large, since
(possibly after rescaling) Ω̌ will often approach a positive definite matrix as
n → ∞.

Remark 3.13. (i) There are at most finitely many γ satisfying the assump-
tion span(En,ρ(γ)(γ)) ⊆ span(X) in the preceding theorem. To see this note
that any such γ must coincide with a coordinate of ω(span(X)) (since triv-
ially span(En,0(γ)) ⊆ span(X) in case ρ(γ) = 0 by this assumption, and since
span(En,0(γ)) ⊆ Mlin

0 ⊆ span(X) in case ρ(γ) > 0), and that the dimension of
the vector ω(span(X)) is finite since ρ(ω, span(X)) > 0 can hold at most for
finitely many ω’s as discussed subsequent to (3.3).

(ii) If � denotes the (finite) set of γ’s that satisfy the assumption
span(En,ρ(γ)(γ)) ⊆ span(X) in the theorem, relation (3.6) in fact implies

P0,In(Ω̌ is nonnegative definite) ≤ min
γ∈�

K(γ)

≤ max
γ∈�

K(γ) ≤ sup
f∈F

Pμ0,σ2Σ(f) (T ≥ C) .

(iii) Similar to Theorem 3.10, Theorem 3.12 also delivers (3.5) in case Ω̌
is nonnegative definite λRn -almost everywhere. However, note that the latter
theorem imposes a stronger condition on the set F.
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Remark 3.14. (Extensions) Suppose T is as in Theorem 3.12. If T and its
associated set N∗ are not only G(M0)-invariant, but are additionally invariant
w.r.t. addition of elements from a linear space V ⊆ Rn, then the variant of
Theorem 3.12, where L = span(Mlin

0 ∪ V) replaces Mlin
0 and ρ(γ,L) replaces

ρ(γ), can be seen to hold.

Remark 3.15. Some results in this section are formulated for sets of spectral
densities F satisfying F ⊇ FAR(2) or F ⊇ Fext

AR(2), and thus for covariance models

C(F) satisfying C(F) ⊇ C(FAR(2)) or C(F) ⊇ C(Fext
AR(2)), respectively. Trivially,

these results also hold for any covariance model C (not necessarily of the form
C(F)) that satisfies C ⊇ C(FAR(2)) or C ⊇ C(Fext

AR(2)), respectively. This obser-
vation also applies to other results in this paper further below and will not be
repeated.

4. Results concerning power

We now show for a large class of test statistics, even larger than the class of
nonsphericity-corrected F-type test statistics, that – under certain conditions –
a choice of critical value leading to size less than one necessarily implies that
the test is severely biased and thus has bad power properties in certain regions
of the alternative hypothesis (cf. Part 3 of Theorem 5.7 and Remark 5.5(iii)
in Preinerstorfer and Pötscher (2016)). The relevant conditions essentially say
that a collection K as in the subsequent lemma can be found that is nonempty.
It should be noted, however, that there are important instances where (i) the
relevant conditions are not satisfied (that is, a nonempty K satisfying the prop-
erties required in the lemma does not exist) and (ii) small size and good power
properties coexist. For results in that direction see Theorems 3.7, 5.10, 5.12,
and 5.21 in Preinerstorfer and Pötscher (2016) as well as Proposition 5.2 and
Theorem 5.4 in Preinerstorfer (2017).

The subsequent lemma is a variant of Lemma 5.11 in Pötscher and Prein-
erstorfer (2018). Recall that H, defined in that lemma, certainly contains all
one-dimensional S ∈ J(L,C) (provided such elements exist).

Lemma 4.1. Let C be a covariance model. Assume that the test statistic T :
Rn → R is Borel-measurable and is continuous on the complement of a closed set
N†. Assume that T and N† are G(M0)-invariant, and are also invariant w.r.t.
addition of elements of a linear subspace V of Rn. Define L = span(Mlin

0 ∪ V)
and assume that dimL < n. Let H and C(S) be defined as in Lemma 5.11 of
Pötscher and Preinerstorfer (2018). Let K be a subset of H and define C∗(K) =
infS∈K C(S) and C∗(K) = supS∈K C(S), with the convention that C∗(K) = ∞
and C∗(K) = −∞ if K is empty. Suppose that K has the property that for every
S ∈ K the set N† is a λμ0+S-null set for some μ0 ∈ M0 (and hence for all
μ0 ∈ M0). Then the following holds:

1. For every C ∈ (−∞, C∗(K)), every μ0 ∈ M0, and every σ2 ∈ (0,∞) we
have

sup
Σ∈C

Pμ0,σ2Σ(T ≥ C) = 1.
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2. For every C ∈ (C∗(K),∞), every μ0 ∈ M0, and every σ2 ∈ (0,∞) we
have

inf
Σ∈C

Pμ0,σ2Σ(T ≥ C) = 0.

Part 1 of the lemma implies that the size of the test equals 1 if C < C∗(K).
Part 2 shows that the test is severely biased for C > C∗(K), which – in
view of the invariance properties of T (cf. Part 3 of Theorem 5.7 and Re-
mark 5.5(iii) in Preinerstorfer and Pötscher (2016)) – implies bad power prop-
erties such as (4.3) and (4.4) below. In particular, Part 2 implies that infi-
mal power is zero for such choices of C. [Needless to say, the lemma neither
implies that supΣ∈C Pμ0,σ2Σ(T ≥ C) is less than 1 for C > C∗(K) nor that
infΣ∈C Pμ0,σ2Σ(T ≥ C) is positive for C < C∗(K). For conditions implying that
size is less than 1 for appropriate choices of C see Pötscher and Preinerstorfer
(2018).] The computation of the constants C∗(K) and C∗(K) can sometimes be
simplified, see Lemma C.1 in Appendix C. Before proceeding, we want to note
that the preceding lemma also provides a negative size result (namely that the
test based on T has size equal to 1 for every C), if C∗(K) = ∞ holds for a
collection K satisfying the assumptions of that lemma.

The announced theorem is now as follows and builds on the preceding lemma.

Theorem 4.2. Let C be a covariance model. Assume that the test statistic T :
Rn → R is Borel-measurable and is continuous on the complement of a closed set
N†. Assume that T and N† are G(M0)-invariant, and are also invariant w.r.t.
addition of elements of a linear subspace V of Rn. Define L = span(Mlin

0 ∪ V)
and assume that dimL < n. Then the following hold:

1. Suppose there exist two elements S1 and S2 of H such that C(S1) �= C(S2).
Suppose further that for i = 1, 2 the set N† is a λμ0+Si-null set for some
μ0 ∈ M0 (and hence for all μ0 ∈ M0). Then for any critical value C,
−∞ < C < ∞, satisfying10

sup
μ0∈M0

sup
0<σ2<∞

sup
Σ∈C

Pμ0,σ2Σ(T ≥ C) < 1, (4.1)

we have
inf

μ0∈M0

inf
0<σ2<∞

inf
Σ∈C

Pμ0,σ2Σ(T ≥ C) = 0. (4.2)

2. Suppose there exists an element S of H such that N† is a λμ0+S-null set
for some μ0 ∈ M0 (and hence for all μ0 ∈ M0). Then (4.1) implies that
C ≥ C(S) must hold; furthermore, (4.1) implies (4.2), except possibly if
C = C(S) holds.

3. Suppose (4.2) holds for some C, −∞ < C < ∞. Then

inf
0<σ2<∞

inf
Σ∈C

Pμ1,σ2Σ(T ≥ C) = 0 (4.3)

10Because of G(M0)-invariance (cf. Remark 5.5(iii) in Preinerstorfer and Pötscher (2016)),
the left-hand side of (4.1) coincides with supΣ∈C Pμ0,σ2Σ(T ≥ C) for any μ0 ∈ M0 and any

σ2 ∈ (0,∞). Similarly, the left-hand side of (4.2) coincides with infΣ∈C Pμ0,σ2Σ(T ≥ C) for

any μ0 ∈ M0 and any σ2 ∈ (0,∞).
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for every μ1 ∈ M1, and

inf
μ1∈M1

inf
Σ∈C

Pμ1,σ2Σ(T ≥ C) = 0 (4.4)

for every σ2 ∈ (0,∞).

In the important special case where V = {0}, the assumptions on T and the
associated set N† in the second and third sentence of the preceding theorem are
satisfied, e.g., for nonsphericity-corrected F-type test statistics (under Assump-
tion 1), including the test statistics Tw, TGQ, and TE,W given in Section 2.2
above; see also Section 5.3 in Pötscher and Preinerstorfer (2018). Furthermore,
for the class of test statistics T such that Theorem 3.1 applies (and for which
N† = N∗ = span(X) holds), it can be shown that N† is a λμ0+S-null set for any
S ∈ H (in fact, for any S ∈ J(L,C)) provided (4.1) holds. These observations
lead to the following corollary.

Corollary 4.3. Let C be a covariance model and let T be a nonsphericity-
corrected F-type test statistic of the form (2.4) based on β̌ and Ω̌ satisfying
Assumption 1 with N = ∅. Furthermore, assume that Ω̌(y) is nonnegative defi-
nite for every y ∈ Rn and that N∗ = span(X).

1. Suppose there exist two elements S1 and S2 of H (where H is as in Theorem
4.2 with V = {0}) such that C(S1) �= C(S2). If a critical value C, −∞ <
C < ∞, satisfies (4.1), then it also satisfies (4.2); and thus it also satisfies
(4.3) and (4.4).

2. Suppose that H is nonempty (where H is as in Theorem 4.2 with V = {0})
but C(S) is the same for all S ∈ H. Then (4.1) implies that C ≥ C(S)
must hold; furthermore, (4.1) implies (4.2) (and thus (4.3) and (4.4)),
except possibly if C = C(S) holds.

Theorem 4.2 as well as the preceding corollary maintain conditions that, in
particular, require H to be nonempty. In view of Lemma 5.11 in Pötscher and
Preinerstorfer (2018), H is certainly nonempty if a one-dimensional S ∈ J(L,C)
exists. The following lemma shows that for C = C(F) with F ⊇ FAR(2) this is
indeed the case; in fact, for such C typically at least two such spaces exist.11

Lemma 4.4. Let F ⊆ Fall satisfy F ⊇ FAR(2). Let L be a linear subspace of

Rn satisfying dim(L) + 1 < n. Then, for γ ∈ {0, π}, span
(
ΠL⊥

(
En,ρ(γ,L)(γ)

))
belongs to J(L,C(F)) and is one-dimensional.

The preceding lemma continues to hold for any covariance model C ⊇
C(FAR(2)) in a trivial way, since J(L,C) ⊇ J(L,C(FAR(2))) then certainly holds.
Also note that the condition dim(L)+1 < n is always satisfied in the important
special case where L = Mlin

0 , since dim(Mlin
0 ) = k − q < n− 1.

11While the one-dimensional spaces given in the lemma typically will be different, it is not
established in the lemma that this is necessarily always the case.
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5. Consequences for testing hypotheses on deterministic trends

In this section we discuss important consequences of the results obtained so
far for testing restrictions on coefficients of polynomial and cyclical regressors
when the errors are stationary, more precisely, have a covariance model of the
form C(F). Such testing problems have, for obvious reasons, received a great
deal of attention in econometrics, and are relevant in many other fields such
as, e.g., climate or ecological research.12 In particular, we show that a large
class of nonsphericity-corrected F-type test statistics leads to unsatisfactory
test procedures in this context. In Subsection 5.1 we present results concerning
hypotheses on the coefficients of polynomial regressors. Results concerning tests
for hypotheses on the coefficients of cyclical regressors are briefly discussed in
Subsection 5.2.

5.1. Polynomial regressors

We consider here the case where one tests hypotheses that involve the coefficient
of a polynomial regressor as expressed in the subsequent assumption:

Assumption 3. Suppose that X = (F, X̃), where F is an n× kF -dimensional
matrix (1 ≤ kF ≤ k), the j-th column being given by (1j−1, . . . , nj−1)′, and
where X̃ is an n × (k − kF )-dimensional matrix such that X has rank k (here
X̃ is the empty matrix if kF = k). Furthermore, suppose that the restriction
matrix R has a nonzero column R·i for some i = 1, . . . , kF , i.e., the hypothesis
involves coefficients of the polynomial trend.

Under this assumption one obtains the subsequent theorem as a consequence
of Theorem 3.10.

Theorem 5.1. Let F ⊆ Fall satisfy F ⊇ FAR(2). Suppose that Assumption 3
holds. Let T be a nonsphericity-corrected F-type test statistic of the form (2.4)
based on β̌ and Ω̌ satisfying Assumption 1 with N = ∅. Furthermore, assume
that Ω̌(y) is nonnegative definite for every y ∈ Rn. Then

sup
f∈F

Pμ0,σ2Σ(f)(T ≥ C) = 1

holds for every critical value C, −∞ < C < ∞, for every μ0 ∈ M0, and for
every σ2 ∈ (0,∞).

The previous theorem relies in particular on the assumption that N = ∅
and that Ω̌ is nonnegative definite everywhere. While these two assumptions
may appear fairly natural and are widely satisfied, e.g., for the test statistics
Tw, TGQ, and TE,W as discussed in Remark 2.1, we shall see in Subsections
5.1.1 and 5.1.2 below that they are not satisfied by some tests suggested in the
literature. To obtain results also for tests that are not covered by the previous
theorem we can apply Theorem 3.12. The following result is then obtained.

12See, e.g., Bence (1995), who finds substantial undercoverage of confidence intervals de-
rived from several tests corrected for autocorrelation.
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Theorem 5.2. Let F ⊆ Fall satisfy F ⊇ Fext
AR(2). Suppose that Assumption 3

holds. Let T be a nonsphericity-corrected F-type test statistic of the form (2.4)
based on β̌ and Ω̌ satisfying Assumption 1. Furthermore, assume that Ω̌ also
satisfies Assumption 2. Then for every critical value C, −∞ < C < ∞, for
every μ0 ∈ M0, and for every σ2 ∈ (0,∞) it holds that

P0,In(Ω̌ is nonnegative definite) ≤ P0,In(R
′
·i0Ω̌

−1R·i0 ≥ 0)

≤ sup
f∈F

Pμ0,σ2Σ(f) (T ≥ C) , (5.1)

where R·i0 denotes the first nonzero column of R. [Note that Ω̌ is P0,In-almost
everywhere nonsingular in view of Assumption 1.]

Theorem 5.2 shows that under Assumption 3 a large class of nonsphericity-
corrected F-type tests, including cases with N �= ∅ or with N = ∅ but where Ω̌
is not necessarily nonnegative definite everywhere, typically have large size. In
particular, size can not be controlled at a given desired significance level α, if α
is below the lower bound in (5.1). Observe that this lower bound will typically
be close to 1, at least if n is sufficiently large.

Remark 5.3. (i) In the special case where Assumption 3 is satisfied with R·1 �=
0, Theorem 5.1 continues to hold even under the weaker assumption that only
F ⊇ FAR(1) holds.

13 This follows from Part 3 of Corollary 5.17 in Preinerstorfer
and Pötscher (2016) upon noting that Z = span(e+) is a concentration space
of C(F) by Lemma G.1 in the same reference, that Ω̌ vanishes on span(X) ⊇ Z
as a consequence of the assumption N = ∅ (see the discussion following (27)
in Preinerstorfer and Pötscher (2016)), and that Rβ̌(λe+) = λR·1 �= 0 for all
λ �= 0.14 Here e+ denotes the n× 1 vector of ones.

(ii) In the special case where Assumption 3 is satisfied with R·1 �= 0, also
Theorem 5.2 continues to hold under the weaker assumption that F ⊇ FAR(1)

holds, provided the identity matrix In appearing in (5.1) is replaced by the
nonsingular matrix Φ(0) = e+e

′
+ +D(0), where D(0) is the matrix D given in

Part 3 of Lemma G.1 in Preinerstorfer and Pötscher (2016). This follows from
Remark 5.14(iii) further below, upon noting that the situation considered here
can be viewed as a special case of the situation described in Remark 5.14(iii)
with ω = 0.

To illustrate the scope and applicability of Theorems 5.1 and 5.2 above (be-
yond the test statistics such as Tw, TGQ, and TE,W mentioned before), we shall
now apply them to some commonly used test statistics that have been de-
signed for testing polynomial trends. First, in Subsection 5.1.1, we shall derive
properties of conventional tests for polynomial trends. Such tests are based on
long-run-variance estimators and classical results due to Grenander (1954). In

13In fact, it holds more generally for any covariance model C that has span(e+) as a
concentration space in the sense of Preinerstorfer and Pötscher (2016).

14To see thatRβ̌(λe+) = λR·1, note that λe+ is of the formXγ with γ = λe1(k), since e+ is
the first column of X. The equivariance property of β̌ in Assumption 1 gives β̌(Xγ) = β̌(0)+γ
as well as β̌(0) = β̌(α0) = αβ̌(0) for every α �= 0. This implies β̌(0) = 0, and hence β̌(Xγ) = γ.
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Subsection 5.1.2 we shall discuss properties of tests that have been introduced
more recently by Vogelsang (1998) and Bunzel and Vogelsang (2005). While
our discussion of methods is certainly not exhaustive (for example, we do not
discuss tests in Harvey et al. (2007) or Perron and Yabu (2009), which have
been suggested only for the special case of testing a restriction on the slope in a
“linear trend plus noise model”), it should also serve the purpose of presenting
a general pattern how one can check the reliability of polynomial trend tests. It
might also help to avoid pitfalls in the construction of novel tests for polynomial
trends.

Before we proceed to a discussion of properties of specific tests, we would
like to emphasize the following: in the present section we provide, for some
commonly used tests, results on their maximal rejection probability over

{Pμ0,σ2Σ(f) : f ∈ F}

for every μ0 ∈ M0 and every σ2 ∈ (0,∞). We establish these results under
the weak assumption that F contains at least FAR(2) or the slight enlargement
Fext
AR(2) ⊆ FARMA(2,2). The recent trend testing literature, cf. in particular Sec-

tion 3.1 in Vogelsang (1998) and Assumption 1 in Bunzel and Vogelsang (2005),
studies tests for models induced by all regression errors ut satisfying

ut = δut−1 +wt, t = 2, . . . , n, u1 = w1 (or u1 =
∑�τn�

j=0
δjw1−j).

Here δ ∈ (−1, 1] is an additional unknown parameter and wt is a weakly sta-
tionary linear process with martingale difference innovations that have uni-
formly bounded fourth moments and conditional variance 1, and with coeffi-
cients di for i ∈ N ∪ {0} satisfying

∑∞
i=0 di �= 0 and the summability condition∑∞

i=0 i|di| < ∞. Also the coefficients di are unknown parameters. Obviously,
the assumptions on the innovations are satisfied for an i.i.d. sequence of stan-
dard normal random variables. Hence, setting δ = 0 in the previous displayed
equation, we see that the model considered in Vogelsang (1998) or Bunzel and
Vogelsang (2005) contains, in particular,

{Pμ0,σ2Σ(f) : μ0 ∈ M0, σ
2 ∈ (0,∞), f ∈ FARMA(2,2)}.

As a consequence, any lower bound for size obtained in our context for sets F

required only to satisfy F ⊇ FAR(2) (or F ⊇ Fext
AR(2)) a fortiori provides a lower

bound for the size in the setting considered in Vogelsang (1998) and Bunzel and
Vogelsang (2005) (since FAR(2) ⊆ Fext

AR(2) ⊆ FARMA(2,2)).

5.1.1. Properties of conventional tests for hypotheses on polynomial trends

The structure of tests that have traditionally been used for testing restrictions
on coefficients of polynomial trends (i.e., when the design matrix X satisfies
Assumption 3, and in particular if kF = k) is motivated by results concerning
the asymptotic covariance matrix of the OLS estimator (and its efficiency) in
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regression models with stationary error processes and deterministic polynomial
time trends by Grenander (1954) (cf. also the discussion in Bunzel and Vogelsang
(2005) on p. 383). The corresponding test statistics are nonsphericity-corrected

F-type test statistics as in (2.4). They are based on the OLS estimator β̂(= β̂X)
and a covariance matrix estimator

Ω̌W(y) = ω̂W(y)R(X ′X)−1R′. (5.2)

Here the “long-run-variance estimator” ω̂W is of the form

ω̂W(y) = n−1û′(y)W(y)û(y), (5.3)

where W(y) is a symmetric, possibly data-dependent, n×n-dimensional matrix
that may not be well-defined on all of Rn.15 In many cases, however, W is
constant, i.e., does not depend on y, and is also positive definite. For example,
this is so in the leading case where the (i, j)-th element of W is of the form
κ(|i− j|/M) for some (deterministic) M > 0 (typically depending on n) and a
kernel function κ such as the Bartlett, Parzen, Quadratic-Spectral, or Daniell
kernel (positive definiteness does not hold, e.g., for the rectangular kernel with
M > 1). Note that in case W is given by a kernel κ the estimator ω̂W in the
previous display can be written in the more familiar form

ω̂W(y) =

n−1∑
i=−(n−1)

κ(|i|/M)γ̂i(y),

where γ̂i(y) = γ̂−i(y) = n−1
∑n

j=i+1 ûj(y)ûj−i(y) for i ≥ 0. For trend tests

based on the OLS estimator β̂ and a covariance estimator Ω̌W as in (5.2) we
shall first obtain two corollaries from Theorems 5.1 and 5.2 that cover the case
where W is constant.16 Further below we shall then address the case where W
is allowed to depend on y. Note that the assumptions on W in the subsequent
corollary are certainly met if W is constant, symmetric, and positive definite,
and hence are satisfied in the leading case mentioned before (provided M is
deterministic).

Corollary 5.4. Let F ⊆ Fall satisfy F ⊇ FAR(2) and suppose that Assump-
tion 3 holds. Suppose further that W is constant and symmetric, and that
Πspan(X)⊥WΠspan(X)⊥ is nonzero and nonnegative definite. Then β̌ = β̂ and

Ω̌ = Ω̌W satisfy Assumption 1 with N = ∅. Let T be of the form (2.4) with

β̌ = β̂, Ω̌ = Ω̌W , and N = ∅. Then
15The matrix W may depend on n, a dependence not shown in the notation. Furthermore,

assuming symmetry ofW entails no loss of generality, since given a long-run-variance-estimator
as in (5.3) and based on a non-symmetric weights matrix W∗, one can always pass to an
equivalent long-run-variance estimator by replacing W∗ with the symmetric matrix W =
(W∗ +W ′

∗)/2.
16The slightly more general case, where W is not constant in y (and is defined on all of Rn)

but W∗ := Πspan(X)⊥WΠspan(X)⊥ is so, can immediately be subsumed under the present

discussion, if one observes that ω̂W coincides with ω̂W∗ and W∗ is constant.
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sup
f∈F

Pμ0,σ2Σ(f)(T ≥ C) = 1

holds for every critical value C, −∞ < C < ∞, for every μ0 ∈ M0, and for
every σ2 ∈ (0,∞).

We next consider the case where the matrix Πspan(X)⊥WΠspan(X)⊥ is nonzero,
but not (necessarily) nonnegative definite, and thus the previous corollary is not
applicable. The subsequent corollary covers this case and is obtained under the
slightly stronger assumption that F ⊇ Fext

AR(2). [Note also that the case where
W is constant but Πspan(X)⊥WΠspan(X)⊥ is equal to zero is of no interest as it
leads to a long-run-variance estimator that vanishes identically.]

Corollary 5.5. Let F ⊆ Fall satisfy F ⊇ Fext
AR(2) and suppose that Assump-

tion 3 holds. Suppose further that W is constant and symmetric, and that
Πspan(X)⊥WΠspan(X)⊥ is nonzero. Then β̌ = β̂ and Ω̌ = Ω̌W satisfy Assumption

1 with N = ∅. Let T be of the form (2.4) with β̌ = β̂, Ω̌ = Ω̌W , and N = ∅.
Then

P0,In(ω̂W ≥ 0) ≤ sup
f∈F

Pμ0,σ2Σ(f)(T ≥ C) (5.4)

holds for every critical value C, −∞ < C < ∞, for every μ0 ∈ M0, and for
every σ2 ∈ (0,∞). Furthermore, for every 0 ≤ C < ∞ the lower bound in the
previous display is an upper bound for the maximal power of the test under i.i.d.
errors, i.e.,

sup
μ1∈M1

sup
0<σ2<∞

Pμ1,σ2In(T ≥ C) ≤ P0,In(ω̂W ≥ 0). (5.5)

The previous corollary shows that the size of the test is bounded from be-
low by the probability that the long-run-variance estimator ω̂W used in the
construction of the test statistic is nonnegative, where the probability is taken
under N(0, In)-distributed errors. For consistent long-run-variance estimators
this probability approaches 1 as sample size increases, and hence the size of
tests based on such estimators ω̂W will exceed any prescribed nominal signifi-
cance level α ∈ (0, 1) eventually. Additionally, it is shown in that corollary that
for nonnegative critical values (the standard in applications) the probability
P0,In(ω̂W ≥ 0) also provides an upper bound on the maximal power of the test
under i.i.d. errors. Thus, if the lower bound in (5.4) is small, and hence (5.4) does
not tell us much about size, the inequality in (5.5) shows that power must then
be small over a substantial subset of the parameter space (unless perhaps one
chooses a negative critical value). To get an idea of the magnitude of the lower
(upper) bound in (5.4) ((5.5)) in a special case, we computed P0,In(ω̂W ≥ 0)
numerically for the rectangular kernel, i.e., for Wij = 1(−1,1)((i − j)/M), for
the cases when Assumption 3 is satisfied with kF = k ∈ {1, 2, 3, 4, . . . , 10},
respectively, sample size n = 150, and bandwidth parameter M = bn for
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Fig 1. Numerical values of P0,In (ω̂W ≥ 0) for Wij = 1(−1,1)((i − j)/(bn)) as a function
of b. Sample size n = 150 and Assumption 3 holds with kF = k and for different values of
k ∈ {1, 2, 3, 4, . . . , 10}. The probabilities for k = 1 correspond to the function with the largest
value at the dashed vertical line, the probabilities for k = 2 correspond to the function with
the second largest value at the dashed vertical line, etc.

b ∈ {0.001, 0.002, . . . , 1}.17 The results are presented in Figure 1.18 For all values
of b and k the probability P0,In(ω̂W ≥ 0) is quite large, in particular is larger
than 1/4, and thus exceeds commonly used significance levels. Thus, as a conse-
quence of (5.4), one has strong size distortions regardless of the values of b and
C chosen if one decides to use a test based on the rectangular kernel. Together
with (5.5), Figure 1 also shows that for a large range of b’s the power under
i.i.d. errors of the corresponding tests (with nonnegative critical value C) can
nowhere exceed 0.8, no matter how strong the deviation from the null hypothesis
might be (and this bound even falls to 0.6 if the case kF = k = 1 is disregarded).
Note also that the probability P0,In(ω̂W ≥ 0) can be easily obtained numerically
in any other case, as it is the probability that a quadratic form in a standard
Gaussian random vector is nonnegative (for the actual computation we used the
algorithm by Davies (1980)).

The assumption of W being data-independent, i.e., constant as a function of
y ∈ Rn, in the previous two corollaries is not satisfied for the important class of

17For b ∈ {0.994, . . . , 1} the matrix W has all entries equal to one, implying that ω̂W
and thus Ω̌W are identically zero. This is an uninteresting case and falls outside the scope of
Corollary 5.5. [If one insists on using the corresponding test statistic T as defined in (2.4),
T is then identically zero, leading to a useless testing procedure.] Of course, for such values
of b the probability P0,In (ω̂W ≥ 0) equals one, explaining the sharp increase of the graph in
Figure 1 for b close to 1.

18The corresponding figure in early versions of this paper was incorrect due to a coding
error. Furthermore, to emphasize that the functions shown in the figure are step functions,
we now use a finer grid for b in the computation than in the early versions; and the vertical
connecting lines were added to facilitate readability. Additionally note that the case kF = k =
1 had not been considered in any previous version.
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long-run-variance estimators that incorporate prewhitening or data-dependent
bandwidth parameters (e.g., Andrews (1991), Andrews and Monahan (1992),
and Newey and West (1994)). An additional complication for such estimators is
that the corresponding weights matrix W(y), and thus also Ω̌W , are in general
not well-defined for every y ∈ Rn. Nevertheless, after a careful structural analysis
of such estimators (similar to the results obtained in Section 3.3 of Preinerstorfer
(2017)), one can typically show that the resulting test statistic satisfies the
assumptions of Theorem 5.2 above and thus one can obtain suitable versions
of the above corollaries tailored towards test statistics based on specific classes
of prewhitened long-run-variance estimators with data-dependent bandwidth
parameters. To make this more compelling, we provide in the following such
a result for a widely used procedure in that class. We consider a version of
the AR(1)-prewhitened long-run-variance estimator based on auxiliary AR(1)
models for bandwidth selection and the Quadratic-Spectral kernel as discussed
in Andrews and Monahan (1992). This is a long-run-variance estimator as in
(5.3), where the weights matrix is obtained as follows (the set where all involved
quantities are well-defined is given in (5.7) further below): Let

ρ̂(y) =

∑n
i=2 ûi(y)ûi−1(y)∑n−1

i=1 û2
i (y)

, (5.6)

and define v̂i(y) = ûi+1(y)−ρ̂(y)ûi(y) for i = 1, . . . , n−1, which one can write in
an obvious way as v̂(y) = A(ρ̂(y))û(y) with ρ �→ A(ρ) ∈ R(n−1)×n a continuous
function on R. Define the data-dependent bandwidth parameter MAM via

MAM(y) = 1.3221

(
n

4ρ̃2(y)

(1− ρ̃(y))4

)1/5

with ρ̃(y) =

∑n−1
i=2 v̂i(y)v̂i−1(y)∑n−2

i=1 v̂2i (y)
.

The long-run-variance estimator ω̂WAM is now obtained (granted the involved
expressions are well-defined) by choosing W in (5.3) equal to

WAM(y) = (1− ρ̂(y))−2A′(ρ̂(y)) [κQS(|i− j|/MAM(y))]
n−1
i,j=1 A(ρ̂(y)),

where [κQS(|i − j|/MAM(y))]n−1
i,j=1 is defined as In−1 in case MAM(y) = 0 holds

(cf., e.g., p. 821 in Andrews (1991) for a definition of the Quadratic-Spectral
kernel κQS). The corresponding covariance matrix estimator Ω̌WAM is then given
by plugging ω̂WAM into (5.2). The set where WAM (and hence Ω̌WAM) is well-
defined is easily seen to coincide with the set of all y ∈ Rn such that ρ̂(y) and
ρ̃(y) are both well-defined and are not equal to 1, i.e., with the set{

y ∈ Rn :

n−1∑
i=1

ûi(y)(ûi+1(y)− ûi(y)) �= 0,

n−2∑
i=1

v̂i(y)(v̂i+1(y)− v̂i(y)) �= 0

}
.

(5.7)
Define NAM as the complement of the set (5.7) in Rn. A result concerning size
properties of polynomial trend tests based on the long-run-variance estimator
ω̂WAM is now obtained by combining Theorem 5.2 above with results obtained
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in Lemma D.3 in Appendix D, showing, in particular, that β̂ and Ω̌WAM satisfy
Assumptions 1 with N = NAM, provided NAM �= Rn holds. Note that (i) the
condition NAM �= Rn only depends on properties of the design matrix X and
hence can be checked, and that (ii) in case NAM = Rn, the matrix Ω̌WAM is
nowhere well-defined, and tests based on this estimator hence break down in a
trivial way.

Corollary 5.6. Let F ⊆ Fall satisfy F ⊇ Fext
AR(2) and suppose Assumption 3

holds. Suppose further that NAM �= Rn. Then β̌ = β̂ and Ω̌ = Ω̌WAM satisfy

Assumption 1 with N = NAM. Let T be of the form (2.4) with β̌ = β̂, Ω̌ =
Ω̌WAM , and N = NAM. Then

sup
f∈F

Pμ0,σ2Σ(f)(T ≥ C) = 1

holds for every critical value C, −∞ < C < ∞, for every μ0 ∈ M0, and for
every σ2 ∈ (0,∞).

Remark 5.7. In the special case where Assumption 3 is satisfied with R·1 �= 0,
appropriate versions of Corollaries 5.4, 5.5, and 5.6 maintaining only F ⊇ FAR(1)

can be obtained by perusing Remark 5.3. We abstain from spelling out details.
A similar remark applies to Corollaries 5.8, 5.9, and 5.10 given in the next
subsection.

5.1.2. Properties of some recently suggested tests for hypotheses on polynomial
trends

In this subsection we discuss finite sample properties of classes of tests for poly-
nomial trends that have been suggested in Vogelsang (1998) and Bunzel and
Vogelsang (2005). We start with a discussion of the tests introduced in the for-
mer article. Vogelsang (1998) introduces two classes of tests for testing hypothe-
ses on trends, in particular polynomial trends. From Section 3.2 of Vogelsang
(1998) it is not difficult to see that these classes of test statistics (i.e., the classes
referred to as PSi

T and PSW i
T in that reference) are (possibly up to a constant

positive multiplicative factor that can be absorbed into the critical value) of the
form (2.4). More specifically, the test statistics in Vogelsang (1998) are based
on a combination of one of the two estimators

β̌V (y) = β̂V X(V y) = (X ′V ′V X)−1X ′V ′V y for V ∈ {A, In}, (5.8)

with a corresponding covariance estimator of the form

Ω̌Vo
c,U,i,V (y) = nj(V )s2A,X(y) exp(cJ i

n,U (y))R(X ′V ′V X)−1R′, (5.9)

for i ∈ {1, 2} and where j(V ) = 1 if V = A and j(V ) = −1 if V = In. Here A is
the n× n-dimensional matrix that has 0 above the main diagonal and 1 on and
below the main diagonal, c is a real number19, U is an n×m-dimensional matrix

19We here also allow for the value c = 0 in the formulation of the covariance estimators
because this turns out to be convenient in the proofs.
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(with m ≥ 1) such that (X,U) is of full column-rank k +m < n. [In Vogelsang
(1998) the column vectors of U correspond to polynomial trends of an order
exceeding the polynomial trends already contained in span(X).] Furthermore,

J1
n,U (y) = n−1β̂′

(X,U)(y)G
′
(
s2In,(X,U)(y)G((X,U)′(X,U))−1G′

)−1

Gβ̂(X,U)(y),

(5.10)
and J2

n,U (y) is defined as

n−1β̂′
A(X,U)(Ay)G

′
(
s2A,(X,U)(y)G((X,U)′A′A(X,U))−1G′

)−1

Gβ̂A(X,U)(Ay),

with G = (0, Im) ∈ Rm×(k+m), where we use the notation

s2D1,D2
(y) = n−1y′D′

1Πspan(D1D2)⊥D1y

for nonsingular D1 ∈ Rn×n and for D2 ∈ Rn×l of rank l ≤ n. It is obvious
from the above expressions that the covariance estimator Ω̌Vo

c,U,i,V is not well-
defined on all of Rn. However, it is also not difficult to see that the set where
such an estimator is well-defined coincides with Rn\ span(X,U), see the proof
of Lemma D.4 in Appendix D. We stress once more that the matrix U used in
the construction above is chosen in a particular way in Vogelsang (1998). We do
not impose such a restriction here, because it would unnecessarily complicate
the presentation of the result below, and because this restrictions is actually
not necessary for establishing the result. The following result now shows, in
particular, that the tests suggested in Vogelsang (1998) suffer from substantial
size distortions in case F ⊇ Fext

AR(2).

Corollary 5.8. Let F ⊆ Fall satisfy F ⊇ Fext
AR(2) and suppose Assumption 3

holds. Let V ∈ {A, In}, c ∈ R, i ∈ {1, 2}, and let U be an n × m-dimensional
matrix with m ≥ 1, k +m < n, such that (X,U) is of full column-rank. Then
β̌ = β̌V and Ω̌ = Ω̌Vo

c,U,i,V satisfy Assumption 1 with N = span(X,U). Let T be

of the form (2.4) with β̌ = β̌V , Ω̌ = Ω̌Vo
c,U,i,V , and N = span(X,U). Then

sup
f∈F

Pμ0,σ2Σ(f)(T ≥ C) = 1

holds for every critical value C, −∞ < C < ∞, for every μ0 ∈ M0, and for
every σ2 ∈ (0,∞).

Next we turn to the tests introduced in Bunzel and Vogelsang (2005). We first
discuss tests introduced in that article with data-independent tuning parameters
and data-independent critical values: These tests are based on the OLS estimator
β̂ and two classes of covariance matrix estimators, both of which incorporate a
tuning parameter c ∈ R, and which are defined as

Ω̌BV,J
W,U,c(y) = ω̂W(y) exp(cJ1

n,U (y))R(X ′X)−1R′, (5.11)

where U is an n×m-dimensional matrix with m ≥ 1 such that (X,U) is of full
column-rank k+m < n (note that ω̂W and J1

n,U have been defined in (5.3) and
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(5.10) above), and

Ω̌BV
W,c(y) = ω̂W(y) exp

(
cn−2 û

′(y)A′Aû(y)

û′(y)û(y)

)
R(X ′X)−1R′ (5.12)

where A has been defined below (5.9). The subsequent result applies, in partic-
ular, if Wij = κ(|i − j|/M) where M > 0 is a (fixed) real number and κ is a
kernel function such that W is positive definite, including the recommendation
in Bunzel and Vogelsang (2005) to use the Daniell kernel. In that case, and more
generally whenever Πspan(X)⊥WΠspan(X)⊥ is nonzero and nonnegative definite
(with W constant20 and symmetric), the subsequent corollary shows that the
above mentioned tests in Bunzel and Vogelsang (2005) have size equal to one if
F ⊇ Fext

AR(2); in case Πspan(X)⊥WΠspan(X)⊥ is nonzero but not nonnegative defi-
nite, a lower bound on the size is obtained, which also provides an upper bound
for the power in the case of i.i.d. errors. A discussion similar to the discussion
following Corollary 5.5 also applies here (cf. also Figure 1).

Corollary 5.9. Let F ⊆ Fall satisfy F ⊇ Fext
AR(2) and suppose Assumption 3

holds. Suppose that W is constant and symmetric, that Πspan(X)⊥WΠspan(X)⊥

is nonzero, and that c ∈ R. Furthermore, for the statements that involve U ,
suppose U is an n × m-dimensional matrix with m ≥ 1 such that (X,U) is

of full column-rank k + m < n. Then, β̌ = β̂ and Ω̌ = Ω̌BV
W,c (β̌ = β̂ and Ω̌ =

Ω̌BV,J
W,U,c, respectively) satisfy Assumption 1 with N = span(X) (N = span(X,U),

respectively). Let T be of the form (2.4) with β̌ = β̂, Ω̌ = Ω̌BV
W,c, and N =

span(X), or with β̌ = β̂, Ω̌ = Ω̌BV,J
W,U,c, and N = span(X,U). Then

P0,In(ω̂W ≥ 0) ≤ sup
f∈F

Pμ0,σ2Σ(f)(T ≥ C)

holds for every critical value C, −∞ < C < ∞, for every μ0 ∈ M0, and for
every σ2 ∈ (0,∞). The lower bound equals 1 in case Πspan(X)⊥WΠspan(X)⊥ is
nonnegative definite. Furthermore, for every 0 ≤ C < ∞ the lower bound in the
previous display is an upper bound for the maximal power of the test under i.i.d.
errors, i.e.,

sup
μ1∈M1

sup
0<σ2<∞

Pμ1,σ2In(T ≥ C) ≤ P0,In(ω̂W ≥ 0). (5.13)

We shall now turn to the approach Bunzel and Vogelsang (2005) suggest for
practical applications. This approach is based on a data-driven selection of the
weights matrix W and of the tuning parameter c, and on a data-driven selection
of the critical value C. Their approach is as follows: Bunzel and Vogelsang
(2005) focus on ω̂W based on the Daniell kernel. More specifically, they set
Wij = κD(|i − j|/max(bn, 2)) (cf. Bunzel and Vogelsang (2005), Appendix B,
for a definition of the Daniell kernel). Recall that, regardless of the value of b, the
matrix with elements Wij = κD(|i− j|/max(bn, 2)) based on the Daniell kernel

20Cf. Footnote 16
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is positive definite. The authors recommend to choose b as a positive piecewise
constant function of ρ̂ (which has been defined in (5.6) above), more precisely,
for constants ai ∈ (0,∞), i = 0, . . . ,m′ (m′ ∈ N), and āi ∈ R, i = 1, . . . ,m′,
they suggest to use

bBV(y, a, ā) = a0 +

m′∑
i=1

ai1[āi,∞)(ρ̂(y)).

For a recommendation concerning the choice of these constants see Bunzel and
Vogelsang (2005), p. 388. Furthermore, Bunzel and Vogelsang (2005) suggest to
choose their data-driven critical value C and a data-driven tuning parameter c as
a polynomial function of bBV(y, a, ā), respectively. More precisely, for constants
h0, . . . , hm′′ ∈ R (m′′ ∈ N, hm′′ �= 0) and p0, . . . , pm′′′ ∈ R (m′′′ ∈ N, pm′′′ �= 0)
they suggest to use

CBV(y, h) =

m′′∑
i=0

hi(bBV(y, a, ā))
i and cBV(y, p) =

m′′′∑
i=0

pi(bBV(y, a, ā))
i.

Then they set

WBV(y) = [κD(|i− j|/max(bBV(y, a, ā)n, 2))]
n
i,j=1 ,

and define, in correspondence with (5.11) and (5.12), the covariance estimators

Ω̌BV,J
U,a,ā,h,p(y) = ω̂WBV(y) exp

(
cBV(y, p)J

1
n,U (y)

)
R(X ′X)−1R′

and

Ω̌BV
a,ā,h,p(y) = ω̂WBV(y) exp

(
cBV(y, p)n

−2 û
′(y)A′Aû(y)

û′(y)û(y)

)
R(X ′X)−1R′.

The vectors of (constant) tuning parameters a = (a0, . . . , am′)′, ā =
(ā1, . . . , ām′)′, h = (h0, . . . , hm′′)′, and p = (p0, . . . , pm′′′)′ this approach is based
on are tabulated in Bunzel and Vogelsang (2005) for certain cases, and need to
be obtained numerically, following the rationale in Bunzel and Vogelsang (2005),
for the cases not tabulated in that paper. Furthermore, the data-driven tuning
parameters bBV and cBV as well as the data-driven critical value CBV are well-
defined for a given y ∈ Rn if and only if ρ̂(y) is well-defined, i.e., these quantities
are well-defined on the complement of the closed set

Ñ :=

{
y ∈ Rn :

n−1∑
i=1

û2
i (y) = 0

}
. (5.14)

Clearly, span(X) is contained in Ñ . Hence, it is not difficult to see that the

estimator Ω̌BV
a,ā,h,p is well-defined on Rn\Ñ and that the estimator Ω̌BV,J

U,a,ā,h,p

is well-defined on Rn\(span(X,U) ∪ Ñ). In fact, under Assumption 3 we have
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that Ñ = span(X) (see the proof of the subsequent corollary). Consequently,
under Assumption 3, the estimator Ω̌BV

a,ā,h,p is well defined on Rn\ span(X) and

Ω̌BV,J
U,a,ā,h,p is well-defined on Rn\ span(X,U). [In order that the data-driven criti-

cal value is also defined for every y, we set CBV(y, h) equal to an arbitrary value
(0, say) on the null-set Ñ . Of course, the choice of assignment on this null-set
is inconsequential for the result below.]

The following corollary shows that the tests for hypotheses concerning poly-
nomial trends based on data-driven tuning parameters and a data-driven crit-
ical value as suggested in Bunzel and Vogelsang (2005) have size one in case
F ⊇ Fext

AR(2). The proof of this is based on a similar approach as used in the
proof of Corollary 5.9 above, but has to deal with the fact that the choice of the
tuning parameters and the critical value is data-driven, and hence is more in-
volved. In particular, it turns out that in order for Assumption 1 to be satisfied
for the covariance estimators used here, one has to work with null-sets NBV,U

and NBV that are larger than span(X,U) and span(X), respectively.

Corollary 5.10. Let F ⊆ Fall satisfy F ⊇ Fext
AR(2) and suppose Assumption 3

holds. Let ai ∈ (0,∞) for i = 0, . . . ,m′ (m′ ∈ N), āi ∈ R for i = 1, . . . ,m′, hi ∈
R for i = 0, . . . ,m′′ with hm′′ �= 0 and m′′ ∈ N, and pi ∈ R for i = 0, . . . ,m′′′

with pm′′′ �= 0 and m′′′ ∈ N. Furthermore, for the statements that involve U ,
suppose U is an n × m-dimensional matrix with m ≥ 1 such that (X,U) is of

full column-rank k +m < n. Then, β̌ = β̂ and Ω̌ = Ω̌BV
a,ā,h,p satisfy Assumption

1 with N = NBV (defined in Lemma D.6 in Appendix D), and β̌ = β̂ and

Ω̌ = Ω̌BV,J
U,a,ā,h,p satisfy Assumption 1 with N = NBV,U (defined in Lemma D.6).

Let T be of the form (2.4) with β̌ = β̂, Ω̌ = Ω̌BV
a,ā,h,p, and N = NBV, or with

β̌ = β̂, Ω̌ = Ω̌BV,J
U,a,ā,h,p, and N = NBV,U . Then

sup
f∈F

Pμ0,σ2Σ(f)({y ∈ Rn : T (y) ≥ CBV(y, h)}) = 1

holds for every μ0 ∈ M0 and for every σ2 ∈ (0,∞).

Remark 5.11. Alternatively one can consider T ∗, where

T ∗(y) = (Rβ̂(y)− r)′
(
Ω̌BV

a,ā,h,p(y)
)−1

(Rβ̂(y)− r)

for all y ∈ Rn\ span(X) such that Ω̌BV
a,ā,h,p(y) is nonsingular, and where T ∗(y) =

0 else, (and we can similarly define a test statistic T ∗∗ with Ω̌BV,J
U,a,ā,h,p and

span(X,U) in place of Ω̌BV
a,ā,h,p and span(X), respectively). While T ∗ and T ∗∗

are well-defined test statistics, we are not guaranteed that β̂ and Ω̌BV
a,ā,h,p (β̂

and Ω̌BV,J
U,a,ā,h,p, respectively) satisfy Assumption 1 with N = span(X) (N =

span(X,U), respectively). However, T ∗ as well as T ∗∗ differ from the correspond-
ing test statistics considered in the preceding corollary at most on a null-set,
hence the conclusions of the corollary carry over to T ∗ and T ∗∗.
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5.2. Cyclical trends

We here consider briefly the case when one tests hypotheses concerning a cyclical
trend, i.e., when the following assumption is satisfied:

Assumption 4. Suppose that X = (En,0(ω), X̃) for some ω ∈ (0, π) where X̃

is an n × (k − 2)-dimensional matrix such that X has rank k (here X̃ is the
empty matrix if k = 2). Furthermore, suppose that the restriction matrix R has
a nonzero column R·i for some i = 1, 2, i.e., the hypothesis involves coefficients
of the cyclical component.

Under this assumption we obtain the subsequent theorem from Theorem 3.10.

Theorem 5.12. Let F ⊆ Fall satisfy F ⊇ FAR(2) and suppose Assumption 4
holds. Let T be a nonsphericity-corrected F-type test statistic of the form (2.4)
based on β̌ and Ω̌ satisfying Assumption 1 with N = ∅. Furthermore, assume
that Ω̌(y) is nonnegative definite for every y ∈ Rn. Then

sup
f∈F

Pμ0,σ2Σ(f)(T ≥ C) = 1

holds for every critical value C, −∞ < C < ∞, for every μ0 ∈ M0, and for
every σ2 ∈ (0,∞).

Under a slightly stronger condition on F, the following theorem is applicable
in case the assumption that N = ∅ or the nonnegative definiteness assumption
on Ω̌ in the previous theorem are violated.

Theorem 5.13. Let F ⊆ Fall satisfy F ⊇ Fext
AR(2). Suppose Assumption 4 holds.

Let T be a nonsphericity-corrected F-type test statistic of the form (2.4) based
on β̌ and Ω̌ satisfying Assumption 1. Furthermore, assume that Ω̌ also satisfies
Assumption 2. Then for every critical value C, −∞ < C < ∞, for every μ0 ∈
M0, and for every σ2 ∈ (0,∞) it holds that

P0,In(Ω̌ is nonnegative definite) ≤ K(ω) ≤ sup
f∈F

Pμ0,σ2Σ(f) (T ≥ C) ,

where K(ω) is defined in Theorem 3.12.

Using these results, one can now obtain similar results as in Subsection 5.1.2
concerning the tests developed in Vogelsang (1998) and Bunzel and Vogelsang
(2005) under Assumption 4. Due to space constraints, however, we do not spell
out the details.

Remark 5.14. (The cases ω = 0 or ω = π) (i) In case ω = 0 (or ω = π)
consider Assumption 4 with the understanding that X = (Ēn,0(ω), X̃), that X̃
is now n × (k − 1)-dimensional, and that R·1 �= 0, where Ēn,0(ω) denotes the
first column of En,0(ω). Then Theorems 5.12 and 5.13 continue to hold with this
interpretation of Assumption 4. Also note that the case ω = 0 can be subsumed
under the results of Subsection 5.1 by setting kF = 1.
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(ii) In case ω = 0 (or ω = π), Theorem 5.12 (with the before mentioned
interpretation of Assumption 4) in fact continues to hold under the weaker
assumption that F ⊇ FAR(1).

21 This follows from Part 3 of Corollary 5.17 in
Preinerstorfer and Pötscher (2016) upon noting that Z = span(Ēn,0(ω)) is a
concentration space of the covariance model C(F), that Ω̌ vanishes on span(X) ⊇
Z as a consequence of the assumption N = ∅ (see the discussion following (27)
in Preinerstorfer and Pötscher (2016)), and that Rβ̌(z) �= 0 for every z ∈ Z
with z �= 0.22

(iii) In case ω = 0 (or ω = π), Theorem 5.13 (with the before mentioned
interpretation of Assumption 4) also continues to hold under the weaker as-
sumption that F ⊇ FAR(1) if ξ̄ω(x) in the definition of K(ω) is now replaced by

ξ̆ω(x) defined as

(Rβ̂X(Ēn,0(ω)x))
′Ω̌−1

(((
Ēn,0(ω)Ēn,0(ω)

′)1/2 +D(ω)1/2
)
G

)
Rβ̂X(Ēn,0(ω)x)

= x2R′
·1Ω̌

−1
(((

Ēn,0(ω)Ēn,0(ω)
′)1/2 +D(ω)1/2

)
G

)
R·1

on the event where {((Ēn,0(ω)Ēn,0(ω)
′)1/2 + D(ω)1/2)G ∈ Rn\N∗} and by

ξ̆ω(x) = 0 otherwise, and if the distribution P0,In appearing in the lower bound
is replaced by P0,Φ(ω) where Φ(ω) = Ēn,0(ω)Ēn,0(ω)

′ + D(ω) is nonsingular.

Note that then K(ω) reduces to P0,Φ(ω)(R
′
·1Ω̌

−1R·1 ≥ 0). Here D(0) is the
matrix D given in Part 3 and D(π) is the matrix D given in Part 4 of Lemma
G.1 in Preinerstorfer and Pötscher (2016). This can be proved by making use
of Theorem 5.19 and Lemma G.1 in Preinerstorfer and Pötscher (2016).

Appendix A: Proofs and auxiliary results for Section 3.1

Lemma A.1. Let C be a covariance model and let L be a linear subspace of
Rn with dim(L) = l < n. Let C	 =

{
Σ	 : Σ ∈ C

}
and C
 =

{
Σ
 : Σ ∈ C

}
, where

Σ	 = L(Σ)+λl+1(L(Σ))ΠL and where Σ
 = L(Σ)+ΠL; here λl+1(L(Σ)) denotes
the (l + 1)-th eigenvalue of L(Σ) counting (with multiplicity) from smallest to
largest. Then C	 and C
 are covariance models. Furthermore, the collection of
concentration spaces of C	 coincides with J(L,C), and the collection of concen-
tration spaces of C
 coincides with the collection {S + L : S ∈ J(L,C)}.

Proof. 1. That C	 and C
 are covariance models is obvious since the elements
of these two collections are clearly symmetric and positive definite matrices (as
λl+1(L(Σ)) > 0 by construction).

2. Suppose S ∈ J(L,C). Then S = span(Σ̄) for some Σ̄ ∈ cl(L(C)) with
rank(Σ̄) < n− l. In particular, Σ̄ is the limit of L(Σm) for a sequence Σm ∈ C.
But then Σ	

m = L(Σm) + λl+1(L(Σm))ΠL belongs to C	 and converges to Σ̄
for m → ∞, since λl+1(L(Σm)) converges to λl+1(Σ̄), which equals zero as a

21In fact, it holds even more generally for any covariance model C that has span(Ēn,0(ω))
as a concentration space.

22This is proved similarly as in Footnote 14.
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consequence of rank(Σ̄) < n − l. This shows that span(Σ̄), and hence S, is a
concentration space of C	. Conversely, suppose Z is a concentration space of C	.
Then Z = span(Σ̆) for some singular matrix that is the limit of some sequence
Σ	

m ∈ C	. In particular, Σ	
m = L(Σm)+λl+1(L(Σm))ΠL holds for some sequence

Σm ∈ C. Since the matrices L(Σm) reside in the unit sphere in Rn×n, we have
convergence of L(Σmi) to a limit Σ̄ ∈ Rn×n along an appropriate subsequence
mi; in particular, Σ̄ ∈ cl(L(C)) follows. Furthermore, we conclude that Σ	

mi

converges to Σ̄+λl+1(Σ̄)ΠL, and hence obtain the equality Σ̆ = Σ̄+λl+1(Σ̄)ΠL.
Since Σ̄ is certainly symmetric and nonnegative definite, we have that λl+1(Σ̄) ≥
0. Note that Σ̄x = 0 for every x ∈ L by construction of Σ̄. Hence rank(Σ̄) ≤ n−l
must hold. If rank(Σ̄) = n− l would hold we would have λl+1(Σ̄) > 0, implying
that Σ̄+λl+1(Σ̄)ΠL is nonsingular, contradicting singularity of Σ̆. Consequently,
rank(Σ̄) < n− l and λl+1(Σ̄) = 0 must hold, implying that S = span(Σ̄) belongs
to J(L,C) and that Σ̆ = Σ̄ holds. But this shows Z = S ∈ J(L,C).

3. Suppose S ∈ J(L,C). Then S = span(Σ̄) for some Σ̄ ∈ cl(L(C)) with
rank(Σ̄) < n − l. In particular, Σ̄ is the limit of L(Σm) for a sequence Σm ∈
C. But then Σ


m = L(Σm) + ΠL belongs to C
 and converges to Σ̄ + ΠL for
m → ∞. Now Σ̄ + ΠL is singular since rank(Σ̄) < n − l. Hence, span(Σ̄ + ΠL)
is a concentration space of C
 and span(Σ̄ + ΠL) = span(Σ̄) + L = S + L
clearly holds. This proves one direction. Conversely, suppose Z is a concentration
space of C
. Then Z = span(Σ̆) for some singular matrix that is the limit of
some sequence Σ


m ∈ C
, where Σ

m = L(Σm) + ΠL for some Σm ∈ C. By the

same compactness argument as before, we have L(Σmi) → Σ̄ implying that
Σ̄ ∈ cl(L(C)). Furthermore, we immediately arrive at Σ̆ = Σ̄ + ΠL. As before it
follows that rank(Σ̄) < n− l must hold and hence that S = span(Σ̄) ∈ J(L,C).
But then Z = span(Σ̆) = span(Σ̄ + ΠL) = span(Σ̄) + L holds, implying the
result. �

Remark A.2. (i) By construction J(L,C) = J(L,C	) = J(L,C
). Furthermore,
all three collections coincide with the collection of all concentration spaces of C	

(the union over which is J(C	) in the notation of Preinerstorfer and Pötscher
(2016)).

(ii) The sum S+L is an orthogonal sum and hence S is uniquely determined.

(iii) The map Σ �→ Σ	 is surjective from C to C	 by definition, and the
analogous statement holds for the map Σ �→ Σ
. But these maps need not be
injective.

Lemma A.3. Let C be a covariance model and let L be a linear subspace of
Rn with dim(L) < n. Furthermore, let W ⊆ Rn be a rejection region of a test,
which is G(a + L)-invariant for some a ∈ Rn. Then for every σ, 0 < σ < ∞,
and every Σ ∈ C we have

Pa,σ2Σ(W ) = Pa,σ2L(Σ)(W ) = Pa,σ2Σ�(W ) = Pa,σ2Σ�(W ).

Furthermore, these probabilities do not depend on σ and they are unaffected if
a is replaced by an arbitrary element of a+ L.
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Proof. The first claim is essentially proved by the argument establishing (B.1)
in Appendix B of Pötscher and Preinerstorfer (2018). The second claim is an
immediate consequence of the assumed invariance (cf. also Proposition 5.4 in
Preinerstorfer and Pötscher (2016)). �

Proof of Theorem 3.1. By monotonicity w.r.t. C we may assume C > 0. Note
that dim(Mlin

0 ) = k − q < n by our general model assumptions. Since T is
G(M0)-invariant by Lemma 5.16 in Preinerstorfer and Pötscher (2016), the pre-
ceding Lemma A.3, applied with L = Mlin

0 and a = μ0, hence shows that it
suffices to prove the theorem with C replaced by C	. By Lemma A.1, also applied
with L = Mlin

0 , the space S appearing in the formulation of the theorem is a
concentration space of C	. We now apply Part 3 of Corollary 5.17 of Preiner-
storfer and Pötscher (2016) to the linear model (2.1) considered in the present
paper, but with C replaced by C	. All assumptions of that result, except for
the assumption that Ω̌(z) = 0 and Rβ̌(z) �= 0 simultaneously hold λS -almost
everywhere, are easily seen to be satisfied. We verify the remaining assumption
now as follows: The discussion following (27) in Section 5.4 of Preinerstorfer and
Pötscher (2016) shows that in case N = ∅ (which is assumed here) Ω̌(z) = 0
holds for every z ∈ span(X), and thus for every z ∈ S (since S ⊆ span(X)
has been assumed). Hence, Ω̌(z) = 0 λS-almost everywhere follows (note that
λS(Rn\S) = 0 trivially holds). Furthermore, Assumption 1 together with N = ∅
imply that β̌(Xγ) = β̌(ε ·0+Xγ) = εβ̌(0)+γ for every γ ∈ Rk and every ε �= 0,
which of course implies β̌(Xγ) = γ for every γ ∈ Rk. Since we have assumed
S ⊆ span(X), it follows on the one hand that for every z ∈ S we have Rβ̌(z) = 0
if and only if z ∈ Mlin

0 . On the other hand, by construction S ⊆ (Mlin
0 )⊥ holds,

showing that Rβ̌(z) �= 0 must hold for all nonzero z ∈ S in view of the fact
that S ⊆ span(X) has been assumed. Since S can not be zero-dimensional in
view of its definition (cf. the discussion in Pötscher and Preinerstorfer (2018)
following Definition 5.1), λS({0}) = 0 follows, which completes the proof (since
λS(Rn\S) = 0 trivially holds). �

Proof of Corollary 3.3. Necessity follows immediately from Theorem 3.1. For
sufficiency we apply Corollary 5.6 in Pötscher and Preinerstorfer (2018) with
V = {0}, i.e., with L = Mlin

0 : Observe that dim(L) = k − q < n holds, and
that T and N† = N∗ satisfy the assumptions of this corollary in view of Lemma
5.16 in the same reference. Since N∗ = span(X) is assumed, the condition
S � span(X) for every S ∈ J(Mlin

0 ,C) implies μ0 + S � N∗ = N† for every
μ0 ∈ M0 (as span(X) is obviously invariant under addition of elements μ0 ∈ M0)
and for every S ∈ J(Mlin

0 ,C). An application of Corollary 5.6 in Pötscher and
Preinerstorfer (2018) now delivers (3.2). �

Theorem A.4. Let C be a covariance model. Let T be a nonsphericity-corrected
F-type test statistic of the form (2.4) based on β̌ and Ω̌ satisfying Assumption 1.

Assume further that q = 1, that β̌ = β̂X , and that Ω̌(y) is nonnegative definite
for every y ∈ Rn\N . Suppose there exists an S ∈ J(Mlin

0 ,C) with the property
that s ∈ Rn\N and s ∈ N∗ hold for λS-almost all s ∈ S. Furthermore, assume
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that S is not orthogonal to span(X). Then (3.1) holds for every critical value
C, −∞ < C < ∞, for every μ0 ∈ M0, and for every σ2 ∈ (0,∞).

Proof. The proof proceeds as the proof of Theorem 3.1 up to the point where
Part 3 of Corollary 5.17 of Preinerstorfer and Pötscher (2016) is applied to the
linear model (2.1), but with C replaced by C	. Here now all assumptions of
this result in Preinerstorfer and Pötscher (2016) are easily seen to be satisfied,
except for (i) Ω̌(s) = 0 λS -almost everywhere, and (ii) Rβ̌(s) �= 0 λS -almost
everywhere. Since s ∈ N∗ holds for λS -almost all s ∈ S by assumption, we have
that Ω̌(s) is singular for λS -almost all s ∈ S. But this implies Ω̌(s) = 0 for λS -
almost all s ∈ S since q = 1 has been assumed. Since trivially λS(Rn\S) = 0,
this verifies (i). We turn to (ii): Let s ∈ S. Note that then s ∈ (Mlin

0 )⊥ by
construction of S. But then

Πspan(X)s = s−Π(span(X))⊥s

belongs to (Mlin
0 )⊥ since Π(span(X))⊥s ∈ (span(X))⊥ ⊆ (Mlin

0 )⊥. Now,

Rβ̌(s) = Rβ̂X(s) = Rβ̂X(Π(span(X))⊥s) +Rβ̂X(Πspan(X)s)

= R(X ′X)−1X ′Π(span(X))⊥s+Rβ̂X(Πspan(X)s) = Rβ̂X(Πspan(X)s).

Hence, Rβ̌(s) = 0 if and only if Rβ̂X(Πspan(X)s) = 0, which in turn is equivalent

to Πspan(X)s ∈ Mlin
0 (since Πspan(X)s ∈ span(X)). But since Πspan(X)s also

belongs to (Mlin
0 )⊥ as shown before, we conclude that Rβ̌(s) = 0 holds if and

only if Πspan(X)s = 0. As a consequence,{
s ∈ S : Rβ̌(s) = 0

}
=

{
s ∈ S : Πspan(X)s = 0

}
= S ∩ ker(Πspan(X)).

This is a proper linear subspace of S except in case S ⊆ ker(Πspan(X)), which,
however, is impossible by the assumption that S is not orthogonal to span(X).
Hence, Rβ̌(s) = 0 only occurs on a proper linear subspace of S, and hence on a
subset of S that has λS-measure zero. Since trivially λS(Rn\S) = 0, this proves
(ii) and completes the proof. �

A.1. Some comments on Lemmata A.1 and A.3

Lemmata A.1 and A.3 allow one to derive results regarding the rejection proba-
bilities under a covariance model C by working with a different, though related,
covariance model C	. [By Lemma A.1 this related covariance model has the prop-
erty that its concentration spaces in the sense of Preinerstorfer and Pötscher
(2016) are precisely given by the elements S of J(L,C).] A case in point is The-
orem 3.1 in Section 3.1, which provides a “size one” result for the covariance
model C, and which has been derived by applying Part 3 of Corollary 5.17 in
Preinerstorfer and Pötscher (2016) to the covariance model C	, after an appeal
to the aforementioned lemmata. In a similar vein, one can combine other results
of Preinerstorfer and Pötscher (2016) with these lemmata, but we do not spell
this out here. Often this will lead to improvements over what one obtains from a
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direct application of the respective result of Preinerstorfer and Pötscher (2016)
to the covariance model C. We illustrate this in the following by comparing the
result in Theorem 3.1 with what one gets if instead one works with the origi-
nally given C and directly applies Part 3 of Corollary 5.17 in Preinerstorfer and
Pötscher (2016) to C.

Suppose C and T are as in Theorem 3.1 (again with N = ∅ and nonnegative
definiteness of Ω̌(y) for every y ∈ Rn). Applying Part 3 of Corollary 5.17 in
Preinerstorfer and Pötscher (2016) to the originally given covariance model C
allows one to obtain the following result: If a concentration space Z of C exists
that satisfies Z ⊆ span(X) and Z � Mlin

0 , then (3.1) holds (for every C, every
μ0 ∈ M0, and every σ2 ∈ (0,∞)). [To see this note that by Corollary 5.17 in
Preinerstorfer and Pötscher (2016) one only has to verify that Ω̌(z) = 0 and
Rβ̌(z) �= 0 hold λZ -almost everywhere. The argument for Ω̌(z) = 0 λZ -a.e. is
identical to the corresponding argument given in the proof of Theorem 3.1. For
the second claim a similar argument as in the proof of Theorem 3.1 shows that
for z ∈ Z we have Rβ̌(z) = 0 if and only if z ∈ Mlin

0 . In other words, Rβ̌(z) = 0
for z ∈ Z only occurs when z ∈ Z∩Mlin

0 , which is a λZ -null set, since Z � Mlin
0 .]

We now show that Theorem 3.1 is indeed at least as good a result as the
result obtained in the preceding paragraph. For this it suffices to show that
a concentration space Z of C satisfying Z ⊆ span(X) and Z � Mlin

0 gives
rise to an element S ∈ J(Mlin

0 ,C) satisfying the assumptions of Theorem 3.1:
To see this, set S = Π(Mlin

0 )⊥Z and observe that S ∈ J(Mlin
0 ,C) by Part 1

of Lemma B.3 in Appendix B.1 of Pötscher and Preinerstorfer (2018) (since
Π(Mlin

0 )⊥Z �= {0} in view of Z � Mlin
0 , and since Π(Mlin

0 )⊥Z �= (Mlin
0 )⊥ in view

of Z ⊆ span(X), Mlin
0 ⊆ span(X), and rank(X) < n). Furthermore, observe

that S ⊆ span(X) must also hold, since Z ⊆ span(X) and Mlin
0 ⊆ span(X).

Theorem 3.1 will sometimes actually give a strictly better result for the fol-
lowing reason (at least for covariance models C that are bounded, an essen-
tially costfree assumption in view of Remark 5.1(ii) in Pötscher and Preiner-
storfer (2018)): Concentration spaces Z of C, that satisfy Z ⊆ span(X) but
also Z ⊆ Mlin

0 , can not be used in a direct application of Part 3 of Corollary
5.17 in Preinerstorfer and Pötscher (2016) since such spaces do not satisfy the
relevant assumptions (note that Rβ̌(z) = 0 for all z ∈ Z holds for such spaces
Z); hence they do not help in establishing a result of the form (3.1) via a direct
application of Part 3 of Corollary 5.17 in Preinerstorfer and Pötscher (2016).
Nevertheless, such concentration spaces can have associated with them spaces
S ∈ J(Mlin

0 ,C) in the way as described in Part 2 of Lemma B.3 in Appendix
B.1 of Pötscher and Preinerstorfer (2018), that then may allow one to establish
(3.1) via an application of Theorem 3.1 (provided the condition S ⊆ span(X)
can be shown to hold).

Appendix B: Proofs and auxiliary results for Section 3.2

Proof of Theorem 3.6. First, that S ⊆ span(X) is equivalent to A ⊆ span(X)
where A := span(En,ρ(γ1)(γ1), . . . , En,ρ(γp)(γp)) is obvious since any element of
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A is the sum of an element of S and an element of Mlin
0 ⊆ span(X). Second,

S ⊆ span(X), Mlin
0 ⊆ span(X), and the fact that S is certainly orthogonal to

Mlin
0 imply dim(S)+dim(Mlin

0 ) ≤ dim(span(X)) = k. Since we always maintain
k < n we can conclude that dim(S) < n− dim(Mlin

0 ) must hold. This together
with Proposition 6.1 of Pötscher and Preinerstorfer (2018) now shows that the
linear subspace S figuring in the theorem belongs to J(Mlin

0 ,C(F)) as clearly
dim(Mlin

0 ) = k − q < n holds. An application of Theorem 3.1 with C = C(F)
then completes the proof. �
Proof of Lemma 3.8. If {γ} ∈ S(F,L) holds, the definition of S(F,L) (Def-
inition 6.4 in Pötscher and Preinerstorfer (2018)) immediately implies that
κ(ω(L), d(L)) + κ(γ, 1) < n must hold. To prove the converse, we first claim
that there exists a sequence of spectral densities fm in F so that the sequence
of spectral measures mgm defined by their spectral densities

gm(ν) = |Δω(L),d(L)(e
ιν)|2fm(ν)/

∫ π

−π

|Δω(L),d(L)(e
ιν)|2fm(ν)dν

converges weakly to a spectral measure m that satisfies supp(m) ∩ [0, π] = {γ}.
Here Δω(L),d(L) is a certain differencing operator given in Definition 6.3 of
Pötscher and Preinerstorfer (2018) and supp(m) denotes the support of m.
To prove this claim, let ρm ∈ (0, 1) converge to 1 as m → ∞, and let ξj
for j ∈ N be a sequence in [0, π]\{0, ω1(L), . . . , ωp(L)(L), π}, where ω(L) =
(ω1(L), . . . , ωp(L)(L)), that converges to γ as j → ∞. Now for every fixed j ∈ N
the sequence of spectral measures mhm,j with spectral density

hm,j(ν) = (2π)−1 (1− ρ2m)((1 + ρ2m)2 − 4ρ2m cos2(ξj))

1 + ρ2m

×
∣∣1− ρme−ιξje−ιν

∣∣−2 ∣∣1− ρmeιξje−ιν
∣∣−2

converges weakly to (δ−ξj+δξj )/2 asm → ∞ (cf., e.g., the argument given in the
proof of Lemma G.2 in Preinerstorfer and Pötscher (2016)). Note that hm,j ∈
FAR(2) and thus hm,j ∈ F. Since ξj /∈ {ω1(L), . . . , ωp(L)}, we can conclude that
the map ν �→ Δω(L),d(L)(e

ιν) does not vanish on {−ξj , ξj}. It follows that the
spectral measures mgm,j with spectral densities

gm,j(ν) = |Δω(L),d(L)(e
ιν)|2hm,j(ν)/

∫ π

−π

|Δω(L),d(L)(e
ιν)|2hm,j(ν)dν

also converge weakly to (δ−ξj +δξj )/2, for fixed j and for m → ∞. Since (δ−ξj +
δξj )/2 certainly converges weakly to (δ−γ+δγ)/2 as j → ∞, a standard diagonal
argument now delivers a sequence fm = hm,j(m) as required above, for j(m) a
suitable subsequence of j. Together with the condition κ(ω(L), d(L))+κ(γ, 1) <
n we see that {γ} ∈ S(F,L) follows. This proves the first claim. The second claim
is a trivial consequence of the first claim, since κ(γ, 1) = 1 for γ = 0, π and
κ(γ, 1) = 2 for γ ∈ (0, π). The third claim is seen as follows: If {γ} ∈ S(F,L),
then certainly γ ∈

⋃
S(F,L). Conversely, let γ ∈

⋃
S(F,L). Then γ ∈ Γ for
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some Γ ∈ S(F,L). By definition of S(F,L), see Definition 6.4 in Pötscher and
Preinerstorfer (2018), we have∑

γ′∈Γ
κ(γ′, 1) < n− κ(ω(L), d(L)),

implying that κ(γ, 1) < n−κ(ω(L), d(L)) holds. But then {γ} ∈ S(F,L) follows
from the already established first claim. �
Proof of Theorem 3.10. Since span(En,ρ(γ)(γ)) ⊆ span(X) but we have

span(En,ρ(γ)(γ)) � Mlin
0 ⊆ span(X) in view of the definition of ρ(γ), it eas-

ily follows that

κ(ω(Mlin
0 ), d(Mlin

0 )) + κ(γ, 1) ≤ κ(ω(span(X)), d(span(X)))

must hold. The r.h.s. of the above inequality is now not larger than k in view of
Lemma D.1 in Appendix D of Pötscher and Preinerstorfer (2018). As we always
maintain k < n, the first claim follows. Because of the claim just established and
since F ⊇ FAR(2), we conclude from Lemma 3.8 that {γ} ∈ S(F,Mlin

0 ) (note that

dim(Mlin
0 ) = k−q < n always holds). Set S = span(Π(Mlin

0 )⊥En,ρ(γ)(γ)) and ob-

serve that S satisfies all the conditions of Theorem 3.6 (recall that S ⊆ span(X)
if and only if span(En,ρ(γ)(γ)) ⊆ span(X) holds as noted in that theorem). An
application of Theorem 3.6 then establishes (3.5). �
Lemma B.1. For every γ ∈ [0, π] and every c > 0 there exists a sequence
hm ∈ Fext

AR(2) and a sequence σ2
m of positive real numbers such that (as m → ∞)

σ2
mΠ(Mlin

0 )⊥Σ(hm)Π(Mlin
0 )⊥ → Π(Mlin

0 )⊥

(
En,ρ(γ)(γ)E

′
n,ρ(γ)(γ) + cIn

)
Π(Mlin

0 )⊥ .

(B.1)

Proof. Let γ ∈ [0, π] and c > 0 be given. For ease of notation we set L = Mlin
0

in the remainder of the proof. We can use the argument in the proof of Lemma
3.8 to obtain a sequence of spectral densities fm in FAR(2) so that the sequence
mgm with spectral density given by

gm(ν) = |Δω(L),d(L)(e
ιν)|2fm(ν)/

∫ π

−π

|Δω(L),d(L)(e
ιν)|2fm(ν)dν

converges weakly to the spectral measure (δ−γ + δγ)/2. Now, set em :=∫ π

−π
|Δω(L),d(L)(e

ιν)|2fm(ν)dν, which is a sequence of positive real numbers
(since Δω(L),d(L) is a polynomial and fm is nonzero a.e.). By Lemma D.2 in
Appendix D of Pötscher and Preinerstorfer (2018) we have

e−1
m ΠL⊥Σ(fm)ΠL⊥

= e−1
m ΠL⊥Hn(ω(L), d(L))Σ(Δω(L),d(L) �mfm , n− κ(ω(L), d(L)))

×H ′
n(ω(L), d(L))ΠL⊥

= ΠL⊥Hn(ω(L), d(L))Σ(mgm , n− κ(ω(L), d(L)))H ′
n(ω(L), d(L))ΠL⊥
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→ ΠL⊥Hn(ω(L), d(L))En−κ(ω(L),d(L)),0(γ)E
′
n−κ(ω(L),d(L)),0(γ)

×H ′
n(ω(L), d(L))ΠL⊥

as m → ∞, where the convergence is due to weak convergence of mgm to
(δ−γ + δγ)/2; see Appendix D and Definition C.3 in Appendix C of Pötscher
and Preinerstorfer (2018) for a definition of Hn, Σ(·, ·), as well as �. Lemma D.3
in Appendix D of the same reference now shows that the limit in the preceding
display can be written as

aΠL⊥En,ρ(γ)(γ)E
′
n,ρ(γ)(γ)ΠL⊥

for some positive real number a = a(γ). Now set σ2
m = e−1

m

(
a−1 + cem

)
and set

hm =
(
a−1fm + (2π)−1cem

)
/

(
a−1 + cem

)
.

Observe that hm ∈ Fext
AR(2) holds. But then

σ2
mΠL⊥Σ(hm)ΠL⊥ = a−1e−1

m ΠL⊥Σ(fm)ΠL⊥ + cΠL⊥

obtains, implying (B.1). �
Proof of Theorem 3.12. It suffices to prove the result for C > 0, which we hence-
forth assume. For ease of notation we set L = Mlin

0 in the remainder of the proof.
Let γ ∈ [0, π] satisfy span(En,ρ(γ)(γ)) ⊆ span(X). Observe that for μ0 ∈ M0,
0 < τ2 < ∞, and h ∈ Fext

AR(2) it holds that

Pμ0,τ2Σ(h)(T ≥ C) = Pμ0,τ2ΠL⊥Σ(h)ΠL⊥ (T ≥ C)

= Pμ0,τ2[ΠL⊥Σ(h)ΠL⊥+ΠL](T ≥ C). (B.2)

This follows from G(M0)-invariance of T and is proved in the same way as is
relation (B.1) in Appendix B of Pötscher and Preinerstorfer (2018). Let now
c > 0 and fix μ0 ∈ M0, 0 < σ2 < ∞. By Lemma B.1 there exists a sequence
hm ∈ Fext

AR(2) and a sequence σ2
m of positive real numbers such that

σ2
mΠL⊥Σ(hm)ΠL⊥ +ΠL → ΠL⊥

(
En,ρ(γ)(γ)E

′
n,ρ(γ)(γ) + cIn

)
ΠL⊥ +ΠL,

where the limit matrix is obviously nonsingular. Consequently,

Pμ0,σ2
m[ΠL⊥Σ(hm)ΠL⊥+ΠL] → Pμ0,ΠL⊥En,ρ(γ)(γ)E

′
n,ρ(γ)

(γ)ΠL⊥+cΠL⊥+ΠL

for m → ∞ in total variation norm (by an application of Scheffé’s Lemma). By
G(M0)-invariance of T we also have

Pμ0,σ2Σ(hm)(T ≥ C) = Pμ0,σ2
mΣ(hm)(T ≥ C),

cf. Remark 5.5(iii) in Preinerstorfer and Pötscher (2016). Using (B.2), the pre-
ceding displays now imply that

Pμ0,σ2Σ(hm)(T ≥ C) = Pμ0,σ2
m[ΠL⊥Σ(hm)ΠL⊥+ΠL](T ≥ C)
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→ Pμ0,ΠL⊥En,ρ(γ)(γ)E
′
n,ρ(γ)

(γ)ΠL⊥+cΠL⊥+ΠL(T ≥ C).

The limit in the preceding display coincides – using again G(M0)-invariance of
T similarly as in (B.2) – with

P
μ0,σ2

[
En,ρ(γ)(γ)E

′
n,ρ(γ)

(γ)+cIn
](T ≥ C).

Since F ⊇ Fext
AR(2) has been assumed and since c > 0 was arbitrary in the

above discussion, it follows that supf∈F Pμ0,σ2Σ(f) (T ≥ C) is not smaller than
supΣ∈C(γ) Pμ0,σ2Σ(T ≥ C) where C(γ) denotes the auxiliary covariance model

C(γ) = {En,ρ(γ)(γ)E
′
n,ρ(γ)(γ) + cIn : c > 0}.

To prove the right-most inequality in (3.6) it hence suffices to verify that for
every μ0 ∈ M0 and every 0 < σ2 < ∞ it holds that

K(γ) ≤ sup
Σ∈C(γ)

Pμ0,σ2Σ(T ≥ C). (B.3)

To this end, we shall use Theorem 5.19 of Preinerstorfer and Pötscher (2016)
applied to the linear model (2.1) together with the covariance model C(γ). Let
cm be a sequence of positive real numbers satisfying cm → 0, and consider the
corresponding sequence Σm = En,ρ(γ)(γ)E

′
n,ρ(γ)(γ) + cmIn in C(γ). Obviously

Σm → En,ρ(γ)(γ)E
′
n,ρ(γ)(γ) =: Σ̄ and span(Σ̄) = span(En,ρ(γ)(γ)) is κ(γ, 1)-

dimensional. Note that κ(γ, 1) is positive and that the n×n-matrix Σ̄ is singular
because the assumption span(En,ρ(γ)(γ)) ⊆ span(X) implies κ(γ, 1) ≤ k < n.
Next, observe that

Πspan(Σ̄)⊥ΣmΠspan(Σ̄)⊥ = Πspan(En,ρ(γ)(γ))⊥ΣmΠspan(En,ρ(γ)(γ))⊥ = cmΠspan(Σ̄)⊥ ,

and that
Πspan(Σ̄)⊥ΣmΠspan(Σ̄) = 0.

Hence the additional assumption on Σm appearing in Theorem 5.19 of Preiner-
storfer and Pötscher (2016) is satisfied with sm = cm and D = Πspan(En,ρ(γ)(γ))⊥ .

Note also that span(Σ̄) ⊆ M = span(X) holds by our assumption on γ. Further-
more, since span(Σ̄) = span(En,ρ(γ)(γ)) is not contained in L = Mlin

0 in view of
the definition of ρ(γ), it follows that there exists a z ∈ span(Σ̄) so that z /∈ L.
As both spaces are linear it even follows that z /∈ L is true for λspan(Σ̄)-almost all

z ∈ span(Σ̄). In view of span(Σ̄) ⊆ span(X), this implies that Rβ̂(z) �= 0 holds
λspan(Σ̄)-almost everywhere. Thus Theorem 5.19 of Preinerstorfer and Pötscher

(2016) is applicable, and delivers (setting Z = Ēn,ρ(γ)(γ) in that theorem) the
claim (B.3), upon observing that in the definition of ξ̄(γ) in Theorem 5.19 of
Preinerstorfer and Pötscher (2016) and in the event following that definition
given in Theorem 5.19 of Preinerstorfer and Pötscher (2016) one can replace
Σ̄1/2 by Πspan(Σ̄) due to span(Σ̄) ⊆ M, due to the equivariance property of Ω̌
expressed in Assumption 1, and due to G(M)-invariance of N∗ (and noting that
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in the case considered here Πspan(Σ̄) + D1/2 translates into In). It remains to
show the left-most inequality in (3.6). But this is obvious upon noting that the
event where Ω̌(G) is nonnegative definite is contained in the event

{
ξ̄γ(x) ≥ 0

}
for every x. �

Appendix C: Proofs for Section 4

Proof of Lemma 4.1. In view of G(M0)-invariance of T we may set σ2 = 1. In
case K is empty there is nothing to prove. Hence assume K �= ∅. To prove Part 1,
observe that then C∗(K) > −∞. Choose C ∈ (−∞, C∗(K)). Since C < C∗(K),
there exists an S ∈ K with C < C(S) ≤ C∗(K). Now repeat, with obvious
modifications, the arguments in the proof of Part 2 of Lemma 5.11 of Pötscher
and Preinerstorfer (2018) that establish (25) in that reference. To prove Part
2, observe that C∗(K) < ∞, and choose C ∈ (C∗(K),∞). Then there exists an
S ∈ K with C∗(K) ≤ C(S) < C. Now repeat, with obvious modifications, the
arguments in the proof of Part 3 of Lemma 5.11 of Pötscher and Preinerstorfer
(2018). �

Lemma C.1. Suppose the assumptions of Lemma 4.1 are satisfied and suppose
that G is a subset of K with the property that for any S ∈ K there is an element
S ′ ∈ G such that S ′ ⊆ S or S ′ ⊇ S holds. Then C∗(K) = C∗(G) and C∗(K) =
C∗(G).

Proof. If K is empty, so is G, and there is nothing to prove. Hence, assume that
K is nonempty. Then also G is nonempty. The claim will follow if we can show
that for S1 ⊆ S2, S1 ∈ K, S2 ∈ K, we have C(S1) = C(S2). To this end fix
μ0 ∈ M0 arbitrary. Since S1 ∈ K ⊆ H, we then have that T (μ0 + s) = C(S1)
for λμ0+S1 -almost all s ∈ S1. Since also λμ0+S1(N

†) = 0 is assumed in Lemma
4.1, we can find an element s1 ∈ S1 such that μ0 + s1 /∈ N† and such that
T (μ0 + s1) = C(S1). Since S2 ∈ K ⊆ H, the set

A = {μ0 + s : s ∈ S2, T (μ0 + s) = C(S2)}

is the complement in μ0 + S2 of an λμ0+S2-null set. Hence, it intersects each
neighborhood of μ0 + s1 ∈ μ0 + S1 ⊆ μ0 + S2, the neighborhood being relative
to μ0+S2. Thus we may choose a sequence μ0+ s(m) ∈ A, such that μ0+ s(m)
converges to μ0 + s1 for m → ∞. Since μ0 + s1 /∈ N†, it is a continuity point of
T . Consequently, T (μ0 + s(m)) converges to T (μ0 + s1) = C(S1) for m → ∞.
But T (μ0 + s(m)) = C(S2) by the definition of A, showing that C(S1) = C(S2)
must hold. �

Remark C.2. An example of such a collection G is provided by the set of all
minimal (maximal) elements of K w.r.t. inclusion. Note that this set is well-
defined as K is a collection of linear subspaces of Rn.

Proof of Theorem 4.2. 1. Applying Part 1 of Lemma 4.1 with K = {S1,S2}
shows that C satisfying (4.1) must also satisfy C ∈ [C∗(K),∞). Since C(S1) �=
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C(S2) by assumption, it follows that C∗(K) < C∗(K). Hence, we arrive at
C > C∗(K), which in view of Part 2 of Lemma 4.1 implies (4.2).

2. The same reasoning, but now with K = {S}, where S is as in the theo-
rem, yields C ≥ C(S)(= C∗(K) = C∗(K)). Furthermore, note that C > C(S)
obviously implies C > C∗(K) and thus (4.2) follows from Part 2 of Lemma 4.1.

3. From G(M0)-invariance of T (cf. Footnote 10) we know that (4.2) implies

inf
Σ∈C

Pμ0,σ2Σ(T ≥ C) = 0 (C.1)

for every μ0 ∈ M0 and every σ2, 0 < σ2 < ∞. Since G(M0)-invariance of T
implies G({μ0})-almost invariance of T for every μ0 ∈ M0, (4.3) now follows
from (C.1) together with Part 3 of Theorem 5.7 in Preinerstorfer and Pötscher
(2016).23 Finally, (4.4) follows immediately from (C.1) by noting that for every
Σ ∈ C and every σ2 ∈ (0,∞) the measures Pμ1,σ2Σ converge to Pμ0,σ2Σ in the
total variation distance when μ1 converges to μ0 (cf. the proof of Theorem 5.7,
Part 2, in Preinerstorfer and Pötscher (2016)). �
Proof of Corollary 4.3. Set V = {0}. The assumptions on T and on N† = N∗

in the second and third sentence of Theorem 4.2 are satisfied in view of Lemma
5.16 in Pötscher and Preinerstorfer (2018). The assumption on the dimension of
L := Mlin

0 is also satisfied since we always maintain k < n. If (4.1) holds for a
given C, Theorem 3.1 implies that any S ∈ J(Mlin

0 ,C) must satisfy S � span(X);
and thus S � N∗, since N∗ = span(X) is assumed in the corollary. Since N∗ is
G(M)-invariant (see Section 2.2), we also have μ0+S � N∗ for every μ0 ∈ M0.
As μ0 + S and N∗ are affine subspaces of Rn, this implies λμ0+S(N

∗) = 0
for every μ0 ∈ M0. Since N† coincides with N∗ for the class of test statistics
considered, we obtain that N† is a λμ0+S-null set for every μ0 ∈ M0 and for
every S ∈ J(Mlin

0 ,C), and thus a fortiori for every S ∈ H. We now see that
Part 1 (Part 2, respectively) follows from the corresponding parts of Theorem
4.2 together with Part 3 of that theorem. �
Proof of Lemma 4.4. Because of the assumption that F contains FAR(2) and
that dim(L) + 1 < n, Lemma 3.8 implies (cf. Remark 3.9(i)) that {γ} ∈ S(F,L)
for every γ ∈ {0, π} (recall that κ(γ, 1) = 1 for these γ’s). Furthermore, the
dimension of

S := span
(
ΠL⊥

(
En,ρ(γ,L)(γ)

))
is 1 (since the dimension of span(En,ρ(γ,L)(γ)) is 1 for γ ∈ {0, π} and since
En,ρ(γ,L)(γ) � L in view of the definition of ρ(γ,L)). Therefore the dimension
of S is smaller than n−dim(L), and it follows from Proposition 6.1 in Pötscher
and Preinerstorfer (2018) that S ∈ J(L,C(F)). �

Appendix D: Auxiliary results and proofs for Section 5

Proof of Theorem 5.1. We first show that span(En,ρ(0)(0)) ⊆ span(X) is satis-
fied: For any i = 1, . . . , kF with R·i �= 0, the i-th column of F does not belong

23We note that the assumption in Theorem 5.7 of Preinerstorfer and Pötscher (2016) that
Z is a concentration space is nowhere used in Part 3 of that theorem and its proof.
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to Mlin
0 . Observe that the i-th column of F spans span(En,i−1(0)). Hence ρ(0)

must satisfy 0 ≤ ρ(0) ≤ kF − 1. But then clearly span(En,ρ(0)(0)) ⊆ span(F ) ⊆
span(X). All the other assumptions being obviously satisfied, Theorem 3.10
completes the proof. �
Proof of Theorem 5.2. We apply Theorem 3.12. It suffices to verify that γ = 0
satisfies the assumption span(En,ρ(γ)(γ)) ⊆ span(X) in that theorem. But this
can be established exactly in the same way as in the proof of Theorem 5.1. It
remains to verify that K(0) = P0,In(R

′
·i0Ω̌

−1R·i0 ≥ 0): Recall that κ(0, 1) = 1,
and note that

ξ̄0(x) = x2ξ̄0(1) for every x ∈ R.

This is trivial on the event {G ∈ N∗}. On the complement of this event, it follows

from Ēn,ρ(0)(0) being n × 1-dimensional, and by using that β̂X(Ēn,ρ(0)(0)x) =

xβ̂X(Ēn,ρ(0)(0)) holds for every x ∈ R. From the equation in the previous dis-
play, we now obtain K(0) = Pr(ξ̄0(1) ≥ 0). To prove the statement, we thus

need to show that Rβ̂X(Ēn,ρ(0)(0)) coincides with R·i0 , the first nonzero col-
umn of R. From a similar reasoning as in the proof of Theorem 5.1, we see that
Ēn,i(0) = F·(i+1) holds for i = 0, . . . , ρ(0). Hence, β̂X(Ēn,ρ(0)(0)) = eρ(0)+1(k)
holds. Furthermore, from the definition of ρ(0), it follows that the first ρ(0)
columns of R are zero, and that the (ρ(0) + 1)-th column of R is nonzero. The
statement follows. �
Lemma D.1. Let H ∈ Rn×n be nonsingular and define β̌(y) = β̂HX(Hy) =
(X ′H ′HX)−1X ′H ′Hy. Let ν : Rn\N ′ → R, for N ′ a subset of Rn, and set

Ω̌(y) = ν(y)R(X ′H ′HX)−1R′ for every y /∈ N ′.

Suppose that the following holds:
(a) N ′ is closed and λRn(N ′) = 0,
(b) δy +Xη ∈ Rn\N ′ and ν(δy +Xη) = δ2ν(y) holds for every y ∈ Rn\N ′,

every δ �= 0, and every η ∈ Rk,
(c) ν is continuous on Rn\N ′,
(d) ν is λRn-almost everywhere nonzero on Rn\N ′.
Then β̌ and Ω̌ satisfy Assumption 1 with N = N ′, and Ω̌ satisfies Assumption

2. Furthermore, if ν is nonnegative (positive) everywhere on Rn\N ′, then Ω̌ is
nonnegative (positive) definite everywhere on Rn\N ′.

Proof. Obviously β̌ is well-defined and continuous on all of Rn, and thus also
when restricted to Rn\N ′. Furthermore, Ω̌ is clearly well-defined and symmet-
ric on Rn\N ′, and is continuous on Rn\N ′ in view of (c). Since N ′ is a closed
λRn -null set by (a), we have verified Part (i) of Assumption 1 with N = N ′.
Part (ii) of this assumption is contained in (b). That β̌ satisfies the required
equivariance property in Part (iii) of Assumption 1 is obvious. That Ω̌ satisfies
the required equivariance property in that assumption follows immediately from
(b), completing the verification of Part (iii) of Assumption 1. Part (iv) in that
assumption follows from (d) together with R(X ′H ′HX)−1R′ being positive def-
inite. The same argument also shows that Ω̌ satisfies Assumption 2. The final
statement is trivial. �
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Lemma D.2. Suppose W is constant and symmetric, and assume that
Πspan(X)⊥WΠspan(X)⊥ is nonzero. Then the estimators β̂ and Ω̌W satisfy As-

sumption 1 with N = ∅, and Ω̌W satisfies Assumption 2. If, additionally,
Πspan(X)⊥WΠspan(X)⊥ is nonnegative definite, then Ω̌W(y) is nonnegative defi-
nite for every y ∈ Rn.

Proof. We verify (a)-(d) in Lemma D.1 for H = In, ν = ω̂W , and N ′ = ∅. Obvi-
ously (a) is satisfied, and (c) follows immediately from the constancy assumption
on W , since ν = ω̂W can clearly be written as a quadratic form in y. Concern-
ing (d), note that ω̂W(y) = 0 is equivalent to y′Πspan(X)⊥WΠspan(X)⊥y = 0.
In view of the constancy assumption on W , the subset of Rn on which ω̂W
vanishes is the zero set of a multivariate polynomial, in fact of a quadratic
form, on Rn. Since the (constant) matrix Πspan(X)⊥WΠspan(X)⊥ is symmetric
and nonzero, the polynomial under consideration does not vanish everywhere
on Rn, implying that the zero set is a λRn -null set. This completes the verifi-
cation of (d). That (b) is satisfied follows immediately from ν(y) = ω̂W(y) =
n−1y′Πspan(X)⊥WΠspan(X)⊥y, the constancy of W , and from Πspan(X)⊥(δy +

Xη) = δΠspan(X)⊥(y) for every δ ∈ R, every y ∈ Rn and every η ∈ Rk. Now
apply Lemma D.1. Note that the final statement concerning nonnegative defi-
niteness follows from the last part of Lemma D.1, since nonnegative definiteness
of Πspan(X)⊥WΠspan(X)⊥ obviously implies nonnegativity of ω̂W on Rn. �

Proof of Corollary 5.4. The statement follows upon combining Lemma D.2 with
Theorem 5.1. �

Proof of Corollary 5.5. The first part of the corollary follows upon combining
Lemma D.2 with Theorem 5.2 noting that Ω̌W(z) is nonnegative definite if and
only if ω̂W(z) ≥ 0. For the second statement, note that R(X ′X)−1R′ is positive
definite, and hence

{T ≥ 0} = {ω̂W ≥ 0} ∪ {Rβ̂ = r},

from which it follows (note that {y : Rβ̂(y) = r} is an affine subspace of Rn

that does not coincide with Rn, and is hence a λRn -null set) that Pμ,σ2In(T ≥ 0)
coincides with Pμ,σ2In(ω̂W ≥ 0). For C ≥ 0 we then have (using monotonicity
w.r.t. C)

sup
μ∈M1

sup
0<σ2<∞

Pμ,σ2In(T ≥ C) ≤ sup
μ∈M1

sup
0<σ2<∞

Pμ,σ2In(ω̂W ≥ 0). (D.1)

But from the equivariance property ω̂W(δy + Xη) = δ2ω̂W(y) for δ �= 0, y ∈
Rn and η ∈ Rk, which was established in the proof of Lemma D.2, it follows
straightforwardly that Pμ,σ2In(ω̂W ≥ 0) = P0,In(ω̂W ≥ 0) holds for every μ ∈ M

and every 0 < σ < ∞. This completes the proof. �

Lemma D.3. If NAM �= Rn, then the estimators β̂ and Ω̌WAM satisfy Assump-
tion 1 with N = NAM, and Ω̌WAM satisfies Assumption 2; furthermore Ω̌WAM(z)
is positive definite for every z ∈ Rn\NAM.
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Proof. Observe that ρ̂, ρ̃, MAM, WAM, and ω̂WAM are well-defined on Rn\NAM.
We next verify (a)-(d) in Lemma D.1 forH = In, ν = ω̂WAM , andN ′ = NAM. We
start with (a): Using arguments as in the proof of Lemma 3.9 in Preinerstorfer
(2017), or in the proof of Lemma B.1 in Preinerstorfer and Pötscher (2016), it
is not difficult to verify that NAM is an algebraic set. We leave the details to the
reader. This, and the assumption NAM �= Rn, implies that NAM is a closed λRn -
null set. To verify (c) in Lemma D.1 it suffices to establish continuity of WAM

on Rn\NAM, since û(y) is certainly continuous on Rn. To achieve this note that,
since ρ̂ is obviously continuous on Rn\NAM, since ρ̂(y) �= 1 for y ∈ Rn\NAM, and
since A(·) is continuous on R, it suffices to verify that [κQS(|i− j|/MAM)]n−1

i,j=1 is
continuous on Rn\NAM. Now,MAM is certainly continuous on Rn\NAM and κQS

is continuous on R. Hence, [κQS(|i−j|/MAM)]n−1
i,j=1 is easily seen to be continuous

at every y ∈ Rn\NAM that satisfies MAM(y) �= 0. For y ∈ Rn\NAM satisfying
MAM(y) = 0 continuity of [κQS(|i − j|/MAM)]n−1

i,j=1 follows from continuity of
MAM on Rn\NAM together with κQS(x) → 0 as |x| → ∞, κQS(0) = 1, and
the convention [κQS(|i − j|/MAM(y))]n−1

i,j=1 = In−1 for y so that MAM(y) = 0.
That (b) in Lemma D.1 holds is easily seen to follow from û(δy +Xη) = δû(y)
for every δ ∈ R, every y ∈ Rn and every η ∈ Rk, which in particular implies
ρ̂(δy +Xη) = ρ̂(y) and ρ̃(δy +Xη) = ρ̃(y) for every δ �= 0, every y ∈ Rn\NAM

and every η ∈ Rk. Finally, note that (d) in Lemma D.1 is satisfied, because
ω̂WAM(y) > 0 holds if y ∈ Rn\NAM. The latter follows from the well-known

fact that [κQS(|i− j|/MAM(y))]
n−1
i,j=1 is positive definite in case MAM(y) is well-

defined (recall that this matrix is defined as In−1 in case MAM(y) = 0), together
with the observation that y ∈ Rn\NAM implies A(ρ̂(y))û(y) = v̂(y) �= 0. Now
apply Lemma D.1. Note that the just established fact, that ω̂WAM(y) > 0 holds
if y ∈ Rn\NAM, also shows that the last part of Lemma D.1 applies, and hence
shows that Ω̌WAM(y) is positive definite for every y ∈ Rn\NAM. �

Proof of Corollary 5.6. This follows upon combining Lemma D.3 and Theorem
5.2, noting that the lower bound obtained via Theorem 5.2 equals 1 due to
nonnegative definiteness of Ω̌WAM(y) for every y ∈ Rn\NAM, which is the com-
plement of a λRn -null set. �

Lemma D.4. Let V ∈ {A, In}, c ∈ R, let i ∈ {1, 2}, and let U be an n ×m-
dimensional matrix with m ≥ 1 such that (X,U) is of full column-rank k +
m < n. Then the estimators β̌V and Ω̌Vo

c,U,i,V satisfy Assumption 1 with N =

span(X,U), and Ω̌Vo
c,U,i,V also satisfies Assumption 2; furthermore Ω̌Vo

c,U,i,V is
positive definite on Rn\ span(X,U).

Proof. We verify (a)-(d) in Lemma D.1 for H = V (which is invertible), ν =
nj(V )s2A,X exp(cJ i

n,U ), and N ′ = span(X,U). By assumption, k + m < n,
hence span(X,U) is a closed λRn -null set, showing that (a) in Lemma D.1 is
satisfied. Next, note that s2A,X , s2In,(X,U), and s2A,(X,U) are well-defined and

continuous on Rn; and that J1
n,U and J2

n,U are well-defined and continuous

on the set where s2In,(X,U) and s2A,(X,U) are nonzero, respectively. Obviously,

s2In,(X,U)(y) = 0 if and only if y ∈ span(X,U). Similarly, s2A,(X,U)(y) = 0 if
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and only if Ay ∈ span(A(X,U)), or equivalently, y ∈ span(X,U). Hence (c) in
Lemma D.1 follows. For (b) note first that obviously δy+Xη /∈ span(X,U) holds
for every y /∈ span(X,U), every δ �= 0 and every η ∈ Rk. Second, concerning
the equivariance property of ν, we note that for every y ∈ Rn, every δ ∈ R, and
every η ∈ Rk

s2A,X(δy +Xη) = δ2s2A,X(y) (D.2)

s2In,(X,U)(δy +Xη) = δ2s2In,(X,U)(y) (D.3)

s2A,(X,U)(δy +Xη) = δ2s2A,(X,U)(y). (D.4)

From Equations (D.2)-(D.4) we hence see that the required equivariance prop-
erty follows if we can show that

J i
n,U (δy +Xη) = J i

n,U (y) for every y ∈ Rn\ span(X,U), every δ �= 0,

and every η ∈ Rk.
(D.5)

To see this let y ∈ Rn\ span(X,U), δ �= 0, and η ∈ Rk. We consider first

the case where i = 1. Note that Gβ̂(X,U)(δy + Xη) = δGβ̂(X,U)(y), and re-
call from (D.3) that s2In,(X,U)(δy + Xη) = δ2s2In,(X,U)(y) > 0 (positivity fol-

lowing from y /∈ span(X,U)), showing that J1
n,U (δy + Xη) = J1

n,U (y). For

i = 2, note that Gβ̂A(X,U)(A(δy + Xη)) = δGβ̂A(X,U)(Ay), and recall from
(D.4) that s2A,(X,U)(δy + Xη) = δ2s2A,(X,U)(y) > 0 (positivity following from

y /∈ span(X,U)), showing that J2
n,U (δy+Xη) = J2

n,U (y). This verifies the state-
ment in (D.5) and thus (b). Concerning (d) (and the final claim in the lemma)
note that for y /∈ span(X,U) it holds that s2A,X(y) exp(cJ i

n,U (y)) > 0. �
Proof of Corollary 5.8. This follows upon combining Lemma D.4 and Theo-
rem 5.2, noting that the lower bound obtained via Theorem 5.2 equals 1 due
to nonnegative definiteness of Ω̌Vo

c,U,i,V on the complement of the λRn -null set
span(X,U). �
Lemma D.5. Suppose that W is constant and symmetric, that
Πspan(X)⊥WΠspan(X)⊥ is nonzero, and that c ∈ R. Then the following holds:

1. If U is an n × m-dimensional matrix with m ≥ 1 such that (X,U) is of

full column-rank k+m < n, then the estimators β̂ and Ω̌BV,J
W,U,c satisfy As-

sumption 1 with N = span(X,U), and Ω̌BV,J
W,U,c satisfies Assumption 2. If,

additionally, Πspan(X)⊥WΠspan(X)⊥ is nonnegative definite, then Ω̌BV,J
W,U,c

is nonnegative definite on Rn\ span(X,U).

2. The estimators β̂ and Ω̌BV
W,c satisfy Assumption 1 with N = span(X),

and Ω̌BV
W,c satisfies Assumption 2. If, additionally, Πspan(X)⊥WΠspan(X)⊥

is nonnegative definite, then Ω̌BV
W,c is nonnegative definite on Rn\ span(X).

Proof. 1. We verify (a)-(d) in Lemma D.1 for H = In, ν = ω̂W exp(cJ1
n,U ),

and N ′ = span(X,U). That (a) holds follows from the same argument as in
the proof of Lemma D.4. That (c) holds, follows from continuity of ω̂W on
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Rn (cf. the proof of Lemma D.2), together with continuity of exp(cJ1
n,U ) on the

complement of span(X,U) (cf. the proof of Lemma D.4). The first part of (b) was
established in the proof of Lemma D.4. The second part of (b) follows from the
corresponding equivariance property of ω̂W , which was verified in the proof of
Lemma D.2, together with the invariance property in Equation (D.5) established
in the proof of Lemma D.4. Part (d) follows from ω̂W(y) �= 0 for λRn -almost
every y ∈ Rn (cf. the proof of Lemma D.2) together with exp(cJ1

n,U (y)) > 0 for
every y /∈ span(X,U). The final claim follows from the final statement in Lemma
D.1 since (cf. the proof of Lemma D.2) ω̂W(y) ≥ 0 holds for every y ∈ Rn in
case Πspan(X)⊥WΠspan(X)⊥ is nonnegative definite.

2. The proof is very similar to the proof of the first part. It follows along the
same lines observing that the function defined via

y �→ û′(y)A′Aû′(y)

û′(y)û′(y)

is well-defined and continuous on Rn\ span(X), and is G(M)-invariant. We skip
the details. �
Proof of Corollary 5.9. Noting that

P0,In(Ω̌ is nonnegative definite) = P0,In(ω̂W ≥ 0)

in our present context, the first part follows upon combining Lemma D.5 and
Theorem 5.2 (the statement concerning the lower bound being 1 if
Πspan(X)⊥WΠspan(X)⊥ is nonnegative definite follows from nonnegative definite-

ness of Ω̌BV,J
W,U,c, or of Ω̌

BV
W,c, respectively, on the complement of λRn -null sets in

that case). For the last part of the corollary, we can apply a similar argument
as the one that was given to verify the analogous statement in Corollary 5.5:
Note that now {T ≥ 0} = {ω̂W ≥ 0} ∪ {Rβ̂ = r} ∪ N , where N = span(X,U)

if T is based on Ω̌BV,J
W,U,c, and N = span(X) if T is based on Ω̌BV

W,c. In both cases

N ∪ {Rβ̂ = r} is a λRn-null set, and we see that (D.1) holds also in the situa-
tion of the present lemma. The remainder of the proof is now analogous to the
argument given at the end of the proof of Corollary 5.5. �
Lemma D.6. Let ai ∈ (0,∞) for i = 0, . . . ,m′ (m′ ∈ N), āi ∈ R for i =
1, . . . ,m′, hi ∈ R for i = 0, . . . ,m′′ (m′′ ∈ N) with hm′′ �= 0, and pi ∈ R for i =
0, . . . ,m′′′ (m′′′ ∈ N) with pm′′′ �= 0. Suppose further that en(n) /∈ span(X)⊥.
Then, Ñ = span(X) (where Ñ has been defined in (5.14)), and the following
holds:

1. If U is an n × m-dimensional matrix with m ≥ 1 such that (X,U) is

of full column-rank k + m < n, then the estimators β̂ and Ω̌BV,J
U,a,ā,h,p

satisfy Assumption 1 with N = NBV,U , where NBV,U = span(X,U) ∪
{y ∈ Rn\ span(X,U) : ρ̂(y) ∈ {ā1, . . . , ām′}} in case ρ̂ attains at least two
different values on Rn\ span(X), and NBV,U = span(X,U) else. Further-

more, Ω̌BV,J
U,a,ā,h,p satisfies Assumption 2, and Ω̌BV,J

U,a,ā,h,p(y) is positive defi-
nite for every y ∈ Rn\NBV,U (in fact, for y ∈ Rn\ span(X,U)).
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2. The estimators β̂ and Ω̌BV
a,ā,h,p satisfy Assumption 1 with N = NBV, where

NBV = span(X) ∪ {y ∈ Rn\ span(X) : ρ̂(y) ∈ {ā1, . . . , ām′}} in case ρ̂ at-
tains at least two different values on Rn\ span(X), and NBV = span(X)
else. Furthermore, Ω̌BV

a,ā,h,p satisfies Assumption 2, and Ω̌BV
a,ā,h,p(y) is pos-

itive definite for every y ∈ Rn\NBV (in fact, for y ∈ Rn\ span(X)).

Proof. The assumption en(n) /∈ span(X)⊥ implies non-existence of a y ∈
Rn\ span(X) so that

∑n−1
i=1 û2

i (y) = 0, showing that ρ̂ is well-defined everywhere

on Rn\ span(X), i.e., that Ñ = span(X). We consider two cases: First, assume
that the design matrix X is such that ρ̂ = ρ holds everywhere on Rn\ span(X)
for some fixed ρ ∈ R. Then, the statements in 1. and 2., except for the positive
definiteness claims, follow from Lemma D.5, because bBV(., a, A) and cBV(., p)
are then constant equal to b and c, say, respectively, on Rn\ span(X) and thus

Ω̌BV,J
U,a,ā,h,p(y) = Ω̌BV,J

W,U,c(y) holds for every y /∈ span(X,U), and Ω̌BV
a,ā,h,p(y) =

Ω̌BV
W,c(y) holds for every y /∈ span(X) where the matrix W = (Wij) = (κD(|i −

j|/max(bn, 2))). Observe here that W is constant in y, is symmetric, and is
positive definite. The positive definiteness claims in 1. and 2. finally follow since
ω̂W(y) > 0 holds for y ∈ Rn\ span(X) in view of positive definiteness of W .

Next, we consider the case whereX is such that ρ̂ attains at least two different
values on Rn\ span(X). We start with the statement in 1.: First of all, NBV,U is
easily seen to be G(M)-invariant (because ρ̂ : Rn\ span(X) → R is so). Second,
we can rewrite

NBV,U =

m′⋃
i=1

{
y ∈ Rn :

n∑
i=2

ûi(y)ûi−1(y)− āi

n−1∑
i=1

û2
i (y) = 0

}
∪ span(X,U).

From that we see that NBV,U is a finite union of algebraic sets, and hence an
algebraic set. Thus, NBV,U is closed. Since we also work under the hypothesis
that ρ̂ attains at least two different values on Rn\ span(X), we can conclude
that {

y ∈ Rn :

n∑
i=2

ûi(y)ûi−1(y)− āi

n−1∑
i=1

û2
i (y) = 0

}
�= Rn

holds for every i = 1, . . . ,m′. It follows that the algebraic set in the previous
display is a λRn -null set for every i = 1, . . . ,m′. Hence NBV,U is a closed λRn -null
set as span(X,U) �= Rn. To prove the statements of 1., we now verify (a)-(d) in
Lemma D.1 for H = In, ν(.) = ω̂WBV(.) exp(cBV(., p)J

1
n,U (.)), and N ′ = NBV,U .

We have already verified (a). Furthermore, note that bBV(., a, ā) is continuous
on Rn\NBV,U . As a consequence, cBV(., p), and WBV(.), and thus ω̂WBV are
continuous on Rn\NBV,U . We already know from the proof of Lemma D.4 that
J1
n,U is continuous on the complement of span(X,U) ⊆ NBV,U . It thus follows

that y �→ ω̂WBV(y) exp(cBV(y, p)J
1
n,U (y)) is continuous on Rn\NBV,U . Hence, we

have verified (c) in Lemma D.1. To verify (b) we recall from above that NBV,U is
G(M)-invariant. Furthermore, the required equivariance property in (b) holds
as a consequence of G(M)-invariance of ρ̂ and J1

n,U (cf. (D.5)), and hence of
cBV(., p) and WBV(.) on Rn\NBV,U , together with û(δy + Xη) = δû(y) for
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every δ �= 0, y ∈ Rn and η ∈ Rk. That ν(y) = ω̂WBV(y) exp(cBV(y, p)J
1
n,U (y)) is

even positive on Rn\NBV,U follows because WBV(y) is a positive definite matrix

for every y ∈ Rn\Ñ and Ñ = span(X) holds. This implies (d) in Lemma D.1,
and also the sufficient condition for positive definiteness in the same lemma.
The statements in 2. for the case where ρ̂ attains at least two different values
on Rn\ span(X) are almost identical, and we skip the details. �

Proof of Corollary 5.10. From Assumption 3 it follows that the last row of X is
not equal to zero, i.e., en(n) /∈ span(X)⊥ must hold. Hence, all assumptions of
Lemma D.6 are satisfied. Combining this lemma with Theorem 5.2 proves the
claims with CBV(y, h) replaced by an arbitrary constant critical value C (noting
that the lower bound obtained via Theorem 5.2 equals 1 due to nonnegative
definiteness of Ω̌BV,J

U,a,ā,h,p (Ω̌BV
a,ā,h,p, respectively) on the complement of the λRn -

null set NBV,U (NBV, respectively)). But now we observe that y �→ CBV(y, h)
is well-defined on Rn (recall the convention preceding Corollary 5.10), and by
construction takes on only finitely many real numbers C1 < . . . < Cl, say. Hence,
for every f ∈ F, every μ0 ∈ M0, every σ2 ∈ (0,∞) we can conclude that

Pμ0,σ2Σ(f)({y ∈ Rn : T (y) ≥ CBV(y, h)}) ≥ Pμ0,σ2Σ(f)({y ∈ Rn : T (y) ≥ Cl}).

Now apply what has been established before with C = Cl. This completes the
proof. �

Proof of Theorem 5.12. For any i = 1, 2 with R·i �= 0, the i-th column of
En,0(ω) does not belong to Mlin

0 . Hence span(En,0(ω)) � Mlin
0 , implying that

ρ(ω) must be zero. However, span(En,0(ω) ⊆ span(X) clearly holds. All the
other assumptions being obviously satisfied, Theorem 3.10 completes the
proof. �

Proof of Theorem 5.13. We apply Theorem 3.12. It suffices to verify that γ = ω
satisfies the assumption span(En,ρ(γ)(γ)) ⊆ span(X) in that theorem. But this
can be established exactly in the same way as in the proof of Theorem 5.12. �
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