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Abstract: Modern multiscale type segmentation methods are known to
detect multiple change-points with high statistical accuracy, while allow-
ing for fast computation. Underpinning (minimax) estimation theory has
been developed mainly for models that assume the signal as a piecewise
constant function. In this paper, for a large collection of multiscale seg-
mentation methods (including various existing procedures), such theory
will be extended to certain function classes beyond step functions in a
nonparametric regression setting. This extends the interpretation of such
methods on the one hand and on the other hand reveals these methods
as robust to deviation from piecewise constant functions. Our main find-
ing is the adaptation over nonlinear approximation classes for a universal
thresholding, which includes bounded variation functions, and (piecewise)
Hölder functions of smoothness order 0 < α ≤ 1 as special cases. From this
we derive statistical guarantees on feature detection in terms of jumps and
modes. Another key finding is that these multiscale segmentation methods
perform nearly (up to a log-factor) as well as the oracle piecewise con-
stant segmentation estimator (with known jump locations), and the best
piecewise constant approximants of the (unknown) true signal. Theoretical
findings are examined by various numerical simulations.
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1. Introduction

Throughout we assume that observations are given through the regression model

yni = f̄n
i + ξni , i = 0, . . . , n− 1, (1)

where

f̄n
i = n

∫
[i/n,(i+1)/n)

f0(x)dx , (2)

and ξn = (ξn0 , . . . , ξ
n
n−1) are independent (not necessarily i.i.d.) centered sub-

Gaussian random variables with scale parameter σ, that is,

E

[
euξ

n
i

]
≤ eu

2σ2/2, for every u ∈ R.
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For simplicity, the scale parameter σ in model (1) is assumed to be known.
In fact, if the noise distribution is known, say Gaussian, σ can be easily pre-
estimated

√
n-consistently from the data via local differences (see e.g. Müller and

Stadtmüller, 1987; Hall and Marron, 1990; Munk et al., 2005; Tecuapetla-Gómez
and Munk, 2017). For the general sub-Gaussian case, estimation of σ is not
obvious, but the missing knowledge of σ will actually not affect our asymptotic
results (cf. Remark 3), as only an upper bound of σ is needed.

In this paper we are concerned with potentially discontinuous signals f0 :
[0, 1) → R in (2). As a minimal condition, we always assume that the underly-
ing (unknown) signal f0 lies in D ≡ D([0, 1)), the space of càdlàg functions
on [0, 1), which are right-continuous and have left-sided limits (cf. Billings-
ley, 1999, Chapter 3). In (2), we embed for simplicity the sampling points
xi,n = i/n equidistantly in the unit interval. However, we stress that all our re-
sults can be transferred to more general domains (⊆ R) and sampling schemes,
also for random xi,n. For technical simplicity, we consider local averages f̄n

i in
model (1). The difference to point evaluation is asymptotically ignorable, since
limn→∞ n

∫
[x,x+1/n)

f(t)dt = f(x) for x ∈ [0, 1) and f ∈ D. In many applica-

tions, e.g., nuclear magnetic resonance spectroscopy (Spraul et al., 1994), the
local averages (a.k.a. data binning) are the typical measurements.

For the particular case that f is piecewise constant with a finite but unknown
number of jumps, model (1) has been of particular interest throughout the past
and is often referred to as change-point regression model. The related problem
of estimating the number, locations and sizes of change-points (i.e. its loca-
tions of discontinuity) has a long and rich history in the statistical literature.
Tukey (1961) already phrased the problem of segmenting a data sequence into
constant pieces as the “regressogram problem” and it occurs in a plenitude of
applications. From a risk minimization point of view it is well known that cer-
tain Bayesian estimators are (asymptotically) optimal (see e.g. Ibragimov and
Has’minskĭı (1981, Chapter VII) and Korostelev and Korosteleva (2011, Chap-
ter 5)); however, they are not easily accessible from a computational point of
view, particularly when it comes to multiple change-point recovery (Antoch and
Hušková, 2000). Therefore, recent years have witnessed a renaissance in change-
point inference motivated by several applications which require computationally
fast and statistically efficient finding of potentially many change-points in large
data sets, see e.g. Olshen et al. (2004), Siegmund (2013) and Behr, Holmes and
Munk (2018) for its relevance to cancer genetics, Chen and Zhang (2015) for
network analysis, Aue et al. (2014) for econometrics, and Hotz et al. (2013) for
electrophysiology, to name a few. A major challenge for statistical methodology
is the multiscale nature of these problems (i.e. change-points occur at differ-
ent e.g. temporal scales and their number can be potentially large) and the
large number of data points (a few millions or more), requiring computationally
efficient methods.

Such computationally efficient segmentation methods which provide at the
same hand certain statistical guarantees for their findings are either based on dy-
namic programming (Boysen et al., 2009; Killick, Fearnhead and Eckley, 2012;
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Frick, Munk and Sieling, 2014; Du, Kao and Kou, 2016; Li, Munk and Siel-
ing, 2016; Maidstone et al., 2016; Haynes, Eckley and Fearnhead, 2017), local
search (Scott and Knott, 1974; Olshen et al., 2004; Fryzlewicz, 2014; Fang, Li
and Siegmund, 2019) or convex optimization (Harchaoui and Lévy-Leduc, 2008;
Tibshirani and Wang, 2008; Harchaoui and Lévy-Leduc, 2010) resulting from a
convex �1 relaxation of the combinatorial �0 search problem of the best fitting
change-points.

Typically, the statistical justification for all the aforementioned methods is
given for models which assume that the underlying truth is a piecewise con-
stant function with a fixed but unknown number of changes. For extensions to
increasing number of changes of the truth (as the number of observations in-
creases), see e.g. Zhang and Siegmund (2012), Frick, Munk and Sieling (2014)
and Fryzlewicz (2014), or Cai, Jeng and Li (2012) under an additional sparsity
assumption. However, in general, nothing is known for such segmentation meth-
ods in the general nonparametric regression setting as in (1) when f is not a
piecewise constant function, e.g. a smooth function. Notable exceptions are the
jump-penalized least square estimator in Boysen et al. (2009), and the unbal-
anced Haar wavelets based estimator in Fryzlewicz (2007), for which the L2-risk
has been analyzed for functions which can be sufficiently fast approximated by
piecewise constant functions (in our notation this corresponds to functions in
the space Aγ

2 , see section 3.2 for the definition).
Intending to fill such a gap, we provide a comprehensive risk analysis for a

range of multiscale change-point methods when f in (1) is not a change-point
function a priori. To this end, we introduce in a first step a general class of
multiscale change-point segmentation (MCPS) methods, with scales specified by
general c-normal systems (adopted from Nemirovski (1985), see Definition 1),
unifying several previous methods. This includes particularly the simultane-
ous multiscale change-point estimator (SMUCE) by Frick, Munk and Sieling
(2014) which minimizes the number of change-points under a side constraint
that is based on a simultaneous multiple testing procedure on all scales (length
of subsequent observations). Further examples are estimators which are built on
different multiscale systems (Walther, 2010), or multiscale type penalties (Li,
Munk and Sieling, 2016). These methods can be viewed also as a natural mul-
tiscale extension of certain jump penalized estimators via convex duality (see
Boysen et al., 2009; Killick, Fearnhead and Eckley, 2012). Implemented by accel-
erated dynamic programming algorithms, these methods often have a runtime
O(n log n), and are found empirically promising in various applications (see e.g.
Hotz et al., 2013; Futschik et al., 2014; Behr and Munk, 2017; Killick, Fearnhead
and Eckley, 2012). In case that f in model (1) is a step function, the statistical
theory for these methods is well-understood meanwhile. For example, minimax
optimality of estimating the change-point locations and sizes has been shown,
which is based on exponential deviation bounds on the number, and the loca-
tions of change-points. Furthermore, these methods also obey optimal minimax
detection properties (in the sense of testing) of vanishing signals, and provide
simultaneous confidence statements for all unknown quantities (see Frick, Munk
and Sieling, 2014; Li, Munk and Sieling, 2016; Pein, Sieling and Munk, 2017).
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To complement the understanding of such methods, this work aims to ana-
lyze their behavior when the true regression function f0 is beyond a piecewise
constant function. To this end, we derive convergence rates for sequences of
piecewise constant functions with increasing number of changes (Theorem 1),
and for functions in certain approximation spaces (Theorem 2), well-known in
approximation theory, cf. DeVore and Lorentz (1993, Chapter 12), (see Sec-
tion 3). Further, we generalize the above mentioned results for quadratic risk
to general Lp-risk (0 < p < ∞). As a consequence, we obtain the minimax
optimal rates n−2/3·min{1/2,1/p} and n−2α/(2α+1) (up to a log-factor) in terms of
Lp-loss both almost surely and in expectation for the cases that f has bounded
variation (0 < p < ∞) (see Mammen and van de Geer, 1997), and that f is
(piecewise) Hölder continuous of order 0 < α ≤ 1 (0 < p ≤ 2), respectively.
Most importantly, the discussed MCPS methods are universal (i.e. indepen-
dent of the smoothness assumption of the unknown truth signal), as the only
tuning parameter η (which serves as a threshold, see Section 2 for further de-
tails) can be chosen as η 	

√
logn. We will show that for this choice, these

methods automatically adapt to the unknown “smoothness” of the underlying
function in an asymptotically optimal way, no matter whether it is piecewise
constant or it lies in the aforementioned function spaces. As an illustration,
we present the performance of SMUCE (Frick, Munk and Sieling, 2014) with
universal parameter choice η = 0.42

√
logn, on different signals in Figure 1. It

clearly shows that SMUCE, although designed to provide a piecewise constant
solution, successfully recovers the shape of all underlying signals no matter
whether they are locally constant or not, as suggested by our theoretical find-
ings.

Further, the developed theory allows us to derive statistical guarantees for fea-
ture detection, see Section 4. More precisely, we show for general (incl. piecewise
constant) signals in approximation spaces that the discussed methods recover
at least as many jumps and modes (or troughs) as the truth, as the sample size
tends to infinity (Theorem 3); This statement should be interpreted with the
built-in parsimony (i.e., minimization of number of jumps) of these methods,
which suggests that the number of artificial jumps and modes (or troughs) is
“minimal”. At the same hand, large increases (or decreases) of the discussed
estimators imply increases (or decreases) of the true signal with high confidence
(Theorem 4). In Figure 2, based on our theoretical finding, one can claim, for
example, that the two large jumps (marked by solid vertical lines) are signifi-
cant with confidence at least 90% (see Remark 8). In the particular case of step
signals, we further show the consistency in estimating the number of jumps,
and an error bound of the best known order (in terms of sample sizes) on the
estimation accuracy of change-point locations (Proposition 1).

Finally, we address the issue how to benchmark properly the investigated
methods. We show that the MCPS methods with a universal threshold per-
form nearly no worse than piecewise constant segmentation estimators whose
change-point locations are provided by an oracle. By considering such oracles, we
discover a saturation phenomenon (Theorem 5 and Example 2) for the class of
all piecewise constant segmentation estimators: only the suboptimal rate n−2/3
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Fig 1. Estimation by the multiscale change-point segmentation method SMUCE (Frick, Munk
and Sieling, 2014) for Blocks, Bumps, Heavisine, and Doppler signals (Donoho and John-
stone, 1994) with sample size n = 1,500, and signal-to-noise ratio ‖f‖L2/σ = 3.5.

is attainable for smoother functions in Hölder classes with smoothness order
α > 1. From a slightly different perspective, we show that the MCPS methods
perform nearly as well as the best (deterministic) piecewise constant approxi-
mant of the true signal with the same number of jumps or less (Proposition 2).

Besides such theoretical interest (cf. also Linton and Seo, 2014; Farcomeni,
2014), the study of these estimators in models beyond piecewise constant func-
tions is also of particular practical importance, since a piecewise constant func-
tion is actually known to be only an approximation of the underlying signal
in many applications. For example, in DNA copy number analysis, for which
the change-point regression model with locally constant signal is commonly
assumed (see e.g. Olshen et al., 2004; Lai et al., 2005), a periodic trend dis-
tortion with small amplitude (known as genomic waves) is well known to be
present (Diskin et al., 2008). Thus our work can be also regarded as examination
of the robustness of such segmentation methods against model misspecification.
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Fig 2. Feature detection by SMUCE with threshold η(0.1) by (7) (sample size n = 1, 000,
SNR = 5). The solid vertical lines mark significant jumps, while the dashed one marks an
insignificant jump; and the arrows at the bottom indicate significant increases and decreases;
with simultaneous confidence at least 90%. See Remark 8 in Section 4 for details.

We consider a piecewise constant estimator as robust, if it recovers the majority
of interesting features of the underlying true regression function with as small
number of jumps as possible. For instance, Figure 3 shows the performance of
SMUCE on a typical signal from DNA copy number analysis, where a locally
constant function is slightly perturbed, in cases of different noise levels. Visually,
SMUCE seems to recover the major features, and the recovered signal provides
a simple yet informative summary of the data, meanwhile staying close to the
true signal, which confirms our theoretical findings. We note that our viewpoint
here complements a recent work by Song, Banerjee and Kosorok (2016) who
considered a reverse scenario: a sequence of smooth functions approaches a step
function in the limit.

In summary, we show that a large class of multiscale change-point segmenta-
tion methods with a universal parameter choice are adaptively minimax optimal
(up a log-factor) for step signals (possibly with unbounded number of change-
points) and for (piecewise) smooth signals in certain approximation spaces (The-
orems 1 and 2) with respect to general Lp-risk. Building on this, we obtain
statistical guarantees on feature detection, such as recovery of the number of
discontinuities, or modes (Proposition 1 and Theorems 3 and 4), which explain
well-known empirical findings. Moreover, in the particular case of L2 distance,
we show oracle inequalities for such multiscale change-point segmentation meth-
ods in terms of both segmentation and approximation of the true signal (Theo-
rem 5 and Proposition 2).

The paper is organized as follows. In Section 2, we introduce a general class
of multiscale change-point segmentation methods, discuss examples and pro-
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Fig 3. Estimation by SMUCE with threshold η(0.1) for the signal in Olshen et al. (2004)
and Zhang and Siegmund (2007) with various signal-to-noise ratios ‖f‖L2/σ, cf. Section 6.

vide technical assumptions. We derive uniform bounds on the Lp-loss over step
functions with possibly increasing number of change-points and over certain
approximation spaces in Section 3, and present their implication on feature de-
tection in Section 4. Section 5 focuses on the oracle properties of multiscale
change-point segmentation methods from a segmentation and an approxima-
tion perspective, respectively. Our theoretical findings are investigated for finite
samples by a simulation study in Section 6. The paper ends with a conclusion
in Section 7. Technical proofs are collected in the appendix.

2. Multiscale change-point segmentation

To ease presentation, we introduce some notation. For x, y ∈ R, let

x ∧ y := min{x, y}, x ∨ y := max{x, y} and (x)+ := x ∨ 0.

Recall model (1) and let f now in S ≡ S([0, 1)), the space of right-continuous
step functions f on [0, 1) with a finite (but possibly unbounded) number of
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jumps, that is, for some k ∈ N

f =

k∑
i=0

ci1[τi,τi+1) with 0 = τ0 < . . . < τk+1 = 1, and ci �= ci+1 for all i. (3)

Here J(f) := {τ1, . . . , τk} denotes the set of change-points of f . By intervals we
always refer to those of the form [a, b), 0 ≤ a < b ≤ 1. In the following we in-
troduce a general class of multiscale change-point estimators comprising various
methods recently developed. To this end, we fix a system I of subintervals of
[0, 1) in the first step (cf. Definition 1). Given I, we introduce a general class of

multiscale change-point segmentation (MCPS) estimators f̂n (see Frick, Munk
and Sieling, 2014; Li, Munk and Sieling, 2016; Pein, Sieling and Munk, 2017) as
a solution to the (nonconvex) optimization problem

min
f∈S

#J(f) subject to TI(y
n; f) ≤ η. (4)

Here yn := {yni }n−1
i=0 is the observational vector, and η ∈ R is a threshold to

be defined later. As a convention, we consider in (4) only those candidate func-
tions f whose change-points lie on the grid {i/n}ni=0. The side constraint in (4)
is defined by a multiscale test statistic

TI(y
n; f) := max

I∈I
f≡cI on I

⎧⎨
⎩ 1√

n|I|

∣∣∣ ∑
i/n∈I

(yni − cI)
∣∣∣− sI

⎫⎬
⎭ , (5)

with sI ∈ R a scale penalty, which can be deterministic or random, and might
even depend on the candidate f and the data yn. The maximum in (4) is taken
over all intervals I ∈ I, on which the candidate function f is constant. We will
assume that η+sI ≥ 0 for all I ∈ I, see Definition 2. In this case, the constraint
in (4) is not empty, as it contains f =

∑n
i=0 y

n
i 1[i/n,(i+1)/n). Thus, the solution

to the optimization problem (4) always exists but might be non-unique, in which
case one could pick an arbitrary solution.

The side constraint in (4) originates from testing simultaneously the residuals
of a candidate f with values cI on the multiscale system I. In model (1) under a
Gaussian error, this combines all the local likelihood ratio tests whether the local
mean of f0 on I equals to a given cI for every I ∈ I. Hence, this provides a cri-
terion for testing the constancy of f0 on each of its segments in I (for a detailed
account see Frick, Munk and Sieling, 2014). The choice of the scale penalties sI
determines the estimator. It balances the detection power over different scales,
see Dümbgen and Spokoiny (2001), Walther (2010) and Frick, Munk and Siel-
ing (2014) for several choices, and Davies, Höhenrieder and Krämer (2012) for
the unpenalized estimators (i.e. sI ≡ 0) in a slightly different model. Thus, any
MCPS method amounts to search for the most parsimonious candidate over the
acceptance region of the multiple tests on the right hand side in (4) performed
over the system I. The threshold η in (4) provides a trade-off between data-fit
and parsimony, and can be chosen such that the truth f0 satisfies the side con-
straint with a pre-specified probability 1−β. To this end, η ≡ η(β) is chosen as
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the (1−β)-quantile of the distribution of TI(ξ
n; 0), which can be determined by

Monte-Carlo simulations or asymptotic considerations (Frick, Munk and Siel-
ing, 2014; Pein, Sieling and Munk, 2017). Then the choice of significance level
β provides an upper bound on the family-wise error rate of the aforementioned
multiple test. It immediately provides for f̂n a control of overestimating the
number of jumps #J(f0) of f0, i.e.

P

{
#J(f̂n) ≤ #J(f0)

}
≥ 1− β uniformly over all f0 ∈ S.

Also, with a different penalty, it is possible to control instead the false discovery
rate by means of local quantiles, see Li, Munk and Sieling (2016) for details. We
will see that for the asymptotic analysis of all these estimators it is sufficient
to work with a universal threshold η 	

√
logn in (4) (see Definition 2 and

Section 3).
The system I will be required to be truly multiscale, i.e. the MCPS methods

in (4) require the associated interval system I to contain different scales, the
richness of which can be characterized by the concept of normality.

Definition 1 (Nemirovski (1985)). A system I ≡ In of intervals is called
normal (or c-normal) for some constant c > 1, provided that it satisfies the
following requirements.

(i) For every interval I ⊆ [0, 1) with length |I| > c/n, there is an interval Ĩ
in I such that Ĩ ⊆ I and |Ĩ| ≥ c−1|I|.

(ii) The end-points of each interval in I lie on the grid {i/n : i = 0, . . . , n− 1}.
(iii) The system I contains all intervals [i/n, (i+ 1)/n), i = 0, . . . , n− 1.

Remark 1 (Normal systems). The requirement (i) in the above definition is
crucial, while (ii) and (iii) are of technical nature due to the discrete sampling
locations {i/n}n−1

i=0 and can be generalized. Examples of normal systems include
the highly redundant system I0 of all intervals whose end-points lie on the grid
{i/n}n−1

i=0 (suggested by e.g. Siegmund and Yakir, 2000; Dümbgen and Spokoiny,
2001; Frick, Munk and Sieling, 2014) of order O(n2), and less redundant but
still asymptotically efficient systems (Davies and Kovac, 2001; Walther, 2010;
Rivera and Walther, 2013), typically of order O(n log n). Remarkably, there are
even normal systems with cardinality of order O(n), such as the dyadic partition
system{[ i

n
�2−jn�, i+ 1

n
�2−jn�

)
: i = 0, . . . , 2j − 1, j = 0, . . . , �log2 n�

}
,

which can be shown to be 2-normal, see Grasmair, Li and Munk (2018). We
further stress that the choice of I in general poses no restriction on the change-
point locations of solutions to (4), which is in sharp contrast to the wavelet
thresholding approaches (e.g. Abramovich, Antoniadis and Pensky, 2007) and
the local/reverse segmentation approach by Chan and Chen (2017).

Definition 2 (Multiscale change-point segmentation estimator). Any estimator
satisfying (4) is denoted as a multiscale change-point segmentation (MCPS)
estimator, if
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(i) the interval system I is c-normal for some constant c > 1;
(ii) the scale penalties sI satisfy almost surely that

max
I∈I

|sI | ≤ δ
√
logn for some constant δ > 0.

(iii) the threshold η is chosen as

η = a
√
logn with a > δ + σ

√
2r0 + 4, (6)

for some fixed r0 ∈ (0,∞).

Remark 2 (Scale penalization). For sub-Gaussian error ξn

max
I∈I

1√
n|I|

∣∣∣ ∑
i/n∈I

ξni

∣∣∣
is at most of order

√
log n (see e.g. Shao, 1995, Theorem 1), so Definition 2 (ii) is

quite natural. In particular, Definition 2 (ii) includes many common scale penal-
ties. For instance, SMUCE (Frick, Munk and Sieling, 2014) and FDRSeg (Li,
Munk and Sieling, 2016) are special cases. More precisely, for SMUCE, it amounts
to select I = I0, the system of all possible intervals, and sI =

√
2 log(e/|I|),

and for FDRSeg, the same system I = I0 but a different scale penalty sI =√
2 log(e|I0|/|I|) with I0 being the constant segment, which contains I, of the

candidate solution. The case sI ≡ 0 is also included and has been suggested
by Davies, Höhenrieder and Krämer (2012).

Remark 3 (Choice of threshold η). Note that the choice of the only parameter
η in Definition 2 (iii) is completely independent of the unknown truth f0, while
it depends on the distribution of the noise ξn via the scale parameter σ. In fact,
it is also possible to choose η independent of ξn by η = bn

√
logn with bn → ∞

arbitrarily slow (e.g. bn = log logn); This will lead to a factor bn in front of the
convergence rates in later sections.

Alternatively, as mentioned earlier, we recommend to choose

η = η(β) the (1− β)-quantile of TI(ξ
n; 0), (7)

with β = βn ∈ (0, 1), such that

P {TI(ξ
n; 0) > η(β)−O(1)} ≤ O(n−r0). (8)

By Shao’s theorem (Shao, 1995, Theorem 1), it then holds that

η(β) ≤ (δ + σ
√
2)
√

logn+O(1) ≤ (δ + 2σ)
√

logn (9)

for large enough n. To ease presentation, we will state and prove our theoretical
results for η given in (6), and emphasize that all the results also hold for η given
in (7), the proofs of which are essentially the same (thus omitted) but relying
on (8) and (9) instead. In addition, we note that a more refined analysis of η(β)
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is even possible, although not necessary for our purposes. For instance, in case
of no scale penalization, standard Gaussian noise and I = I0 consisting of all
intervals, it follows from Kabluchko (2007, Theorem 1.3) that

η(β) ∼
√
2 logn+

log logn+ log λ
4π − 2 log log(1/β)

2
√
2 log n

as n → ∞,

with constant λ ∈ (0,∞), see also Siegmund and Venkatraman (1995, Proposi-
tion 1) for approximation of η(β) for finite sample sizes.

3. Asymptotic error analysis

This section mainly provides convergence rates of the MCPS methods for the
model (1).

3.1. Convergence rates for step functions

We consider first locally constant change-point regression, i.e. the underlying
signal f0 ∈ S in model (1). We introduce the class of uniformly bounded piece-
wise constant functions, cf. (3), with up to k jumps

SL(k) :=
{
f ∈ S : #J(f) ≤ k, and ‖f‖L∞ ≤ L

}
,

for k ∈ N0 and L ∈ (0,∞). If the number of change-points is bounded, i.e. k
is known beforehand, the estimation problem is, roughly speaking, paramet-
ric, by interpreting change-point locations and function values as parameters.
A rather complete analysis of this situation is provided either from a Bayesian
viewpoint (see e.g. Ibragimov and Has’minskĭı, 1981; Hušková and Antoch, 2003,
Chapter VII) or from a likelihood viewpoint (see e.g. Yao and Au (1989); Braun,
Braun and Mueller (2000); Siegmund and Yakir (2000); Boysen et al. (2009)
and Korostelev and Korosteleva (2011, Chapter 5)). However, in order to un-
derstand the increasing difficulty of change-point estimation as the number of
change-points gets larger, i.e. the nonparametric nature of change-point regres-
sion, we allow now the number of change-points to increase as the number of
observations tends to infinity.

Theorem 1 (Adaptation I). Assume model (1). Let 0 < p < ∞, and kn ∈ N0

be such that kn = o(n) as n → ∞. Then:

(i) For any multiscale change-point segmentation estimator f̂n in Definition 2
with some r0 ∈ (0,∞), the following upper bound holds for each r ∈ (0, r0]

lim sup
n→∞

1√
logn

( n

kn + 1

)1/2∧ 1/p

sup
f0∈SL(kn)

E

[
‖f̂n − f0‖rLp

]1/r
< ∞.

The same result also holds almost surely if we drop the expectation E[·].
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(ii) If noise ξni in model (1) has a density ϕi,n such that for some constants
σ0 and z0

max
i,n

∫
ϕi,n(x) log

ϕi,n(x)

ϕi,n(x+ z)
dx ≤ z2

σ2
0

for |z| ≤ z0 (10)

then the following lower bound holds for each r ∈ (0,∞)

lim inf
n→∞

( n

kn + 1

)1/2∧ 1/p

inf
ĝn

sup
f0∈SL(kn)

E [‖ĝn − f0‖rLp ]
1/r

> 0,

where the infimum is taken over all estimators ĝn.

Proof. See Appendix A.1.

Remark 4.

(i) The condition (10) is a typical assumption for establishing lower bounds
(see e.g. Tsybakov, 2009, Section 2.5). If exp(−c1x

2) � ϕi,n(x) �
exp(−c2x

2) with constants c1, c2, then (10) holds for any z0 > 0, e.g. a
Gaussian density. Note that the universal threshold η in (6) is indepen-
dent of the truth f0 and the specific loss function ‖·‖Lp for 0 < p < ∞.
The restriction of r ≤ r0 is mainly due to control the r-th moment of the
noise, which is quite natural. In most cases, one is interested in r = 1 or
2, for which it is sufficient to set r0 = 2. Thus, Theorem 1 states that the
MCPS estimators are up to a log-factor adaptively minimax optimal over
sequences of classes SL(kn) for all possible kn and L.

(ii) Theorem 1 also reveals that the underlying difficulty in estimation of step
functions with respect to Lp-loss is actually determined by the number of
change-points. A common choice of kn is kn 	 nθ, 0 ≤ θ < 1, which in par-
ticular reproduces the convergence results in Li, Munk and Sieling (2016,
Theorem 3.4) but now under weaker assumptions (here no assumption on
the minimal segment length and the minimal jump size is made). It also
includes the case θ = 0, where, by convention, kn ≡ k is bounded.

(iii) Note further that the restriction p < ∞ in Theorem 1 is necessary and nat-
ural, because L∞-loss is not reasonable in change-point estimation prob-
lems (as no estimator can detect change-point locations at a rate faster
than O(1/n), see Chan and Walther, 2013, which leads to inconsistency of
any estimator with respect to L∞-loss).

(iv) In general, it is not clear whether the lower bound in Theorem 1 (ii) is
sharp or not. However, in the particular case that f0 ∈ SL(kn) is isotonic,
it has recently been shown that the minimax rate in terms of squared L2

risk is exactly of order n−1kn log log n, see Gao, Han and Zhang (2019).

3.2. Robustness to model misspecification

As discussed in Section 1, in practical applications, it often occurs that the
underlying signal f0 in model (1) is only approximately piecewise constant. To
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address this issue, we next consider the Lp-loss of the MCPS methods for more
general functions. In order to characterize the degree of model misspecification,
we adopt from nonlinear approximation theory (cf. DeVore and Lorentz, 1993;
DeVore, 1998) the approximation spaces as

Aγ
q :=

{
f ∈ D : sup

k∈N

kγΔq,k(f) < ∞
}
, for 0 < q ≤ ∞, 0 < γ < ∞,

where the approximation error Δq,k is defined as

Δq,k(f) := inf

{
‖f − g‖Lq : g ∈ S, #J(g) ≤ k

}
. (11)

Introduce the subclasses

Aγ
q,L :=

{
f ∈ D : sup

k≥1
kγΔq,k(f) ≤ L, and ‖f‖L∞ ≤ L

}
,

for 0 < q ≤ ∞, and 0 < γ,L < ∞. The best approximant in (11) exists, but
is in general non-unique, see e.g., DeVore and Lorentz (1993, Chapter 12). It
follows readily from definition that Aγ

q =
⋃

L>0 A
γ
q,L and that Aγ

q1,L
⊆ Aγ

q2,L

for all q1 ≥ q2. Note that Aγ
q is actually an interpolation space between Lq and

some Besov space (see Petrushev, 1988, Corollary 2.2). The order γ of these
spaces (or classes) reflects the speed of approximation of f by step functions as
the number of change-points increases. It is further known that if f lies in Aγ

q

for some γ > 1 and if f is piecewise continuous, then f is piecewise constant, see
Burchard and Hale (1975) (which is often referred to as a saturation result in
the approximation theory community). Thus, it is custom to consider Aγ

q with
0 < γ ≤ 1.

The rates of convergence for approximation classes are provided below.

Theorem 2 (Adaptation II). Let 0 < p < ∞, p ∨ 2 ≤ q ≤ ∞, and assume

that f̂n is an MCPS estimator in Definition 2 with some r0 ∈ (0,∞). Then, for
0 < r ≤ r0 and 0 < γ, L < ∞,

lim sup
n→∞

(logn)−
γ+(1/2−1/p)+

2γ+1 n
2γ

2γ+1 (1/2∧ 1/p) sup
f0∈Aγ

q,L

E

[
‖f̂n − f0‖rLp

]1/r
< ∞.

The same result also holds almost surely if we drop the expectation E[·].
Proof. See Appendix A.2.

Remark 5. Similar to Theorem 1, the above theorem shows that any MCPS
method automatically adapts to the smoothness of the approximation spaces,
in the sense that it has a faster rate for larger γ. Note that such convergence
rates in Lp-loss, 0 < p ≤ 2, are nearly (i.e. up to a log-factor) minimax optimal
over Aγ

q,L for every 0 < γ ≤ 1, 2 ≤ q ≤ ∞ and L > 0, since n−γ/(2γ+1) are

known to be minimax rates for a smaller class Hγ
L, see Example 1 (i) below.

We conjecture that the convergence rates in Theorem 2 are also nearly minimax
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optimal for Aγ
q,L with respect to Lp-loss when 2 < p ≤ q ≤ ∞, because this is

indeed the case for γ = 1, as shown later in Example 1 (ii).
Moreover, note that the convergence rates of the MCPS methods above gen-

eralize the rates reported in Boysen et al. (2009) for jump-penalized least square
estimators, and are faster than the rates reported in Fryzlewicz (2007) for the
unbalanced Haar wavelets based estimator, with the difference being in log-
factors.

Example 1. (i) (Piecewise) Hölder functions. For 0 < α ≤ 1 and L ∈ (0,∞),
we consider the Hölder function classes

Hα
L ≡ Hα

L([0, 1)) :=
{
f ∈ D : ‖f‖L∞ ≤ L, and

|f(x1)− f(x2)| ≤ L|x1 − x2|α for all x1, x2 ∈ [0, 1)
}
,

and the piecewise Hölder function classes with at most κ jumps, κ ∈ N0

Hα
κ,L ≡ Hα

κ,L([0, 1))

:=
{
f ∈ D : there is a partition {Ii}li=0, with l ≤ κ, of [0, 1)

such that f
∣∣
Ii
∈ Hα

L(Ii) for all possible i
}
.

Obviously, the latter one contains the former as a special case when κ = 0, that
is, Hα

0,L ≡ Hα
L . By considering step functions with segments of equal length, one

can easily show that Hα
L ⊆ Aα

q,L′ with finite L′ ≥ L and 0 < q ≤ ∞, and in a

similar way that Hα
κ,L ⊆ Aα

q,L′ with finite L′ ≥ L(κ+ 1)α+1/2 and 0 < q ≤ ∞.
It is known that the fastest possible rate over Hα

L , 0 < α ≤ 1, is of order
n−α/(2α+1) with respect to the Lp-loss, 0 < p < ∞, see e.g. Nemirovski (2000,
Theorem 3.1). Thus, as a consequence of Theorem 2, the MCPS methods are
simultaneously minimax optimal (up to a log-factor) over Aα

q,L, H
α
L and Hα

κ,L

for every κ ∈ N0, 0 < p ≤ 2 ≤ q ≤ ∞, 0 < α ≤ 1 and L ∈ (0,∞), that is,
adaptive to the smoothness order α of the underlying function. The difference
in convergence rates for Lp-loss, 2 < p < ∞, is mainly because Aα

q,L is strictly
larger than Hα

L , see the next example for α = 1.

(ii) Bounded variation functions. Recall that the (total) variation ‖·‖TV of a
function f is defined as

‖f‖TV := sup
{ m∑

i=0

|f(xi+1)− f(xi)| : 0 = x0 < · · · < xm+1 = 1, m ∈ N

}
.

We introduce the càdlàg bounded variation classes

BVL ≡ BVL([0, 1)) :=
{
f ∈ D : ‖f‖L∞ ≤ L, and ‖f‖TV ≤ L

}
for L ∈ (0,∞).

Elementary calculation, together with Jordan decomposition, implies that

BVL ⊆ A1
q,L′ for finite L′ ≥ L and 0 < q ≤ ∞.
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The best possible rate for BVL are of order n−2/3min{1/2,1/p} (see e.g. del Alamo,
Li and Munk, 2018). Then, Theorem 2 implies that the MCPS methods attain
the minimax optimal rate (up to a log-factor) over the bounded variation classes
BVL and A1

q,L for L ∈ (0,∞), with respect to Lp-loss, 0 < p < ∞.

All the examples above concern functions of smoothness order ≤ 1. For
smoother functions, say Hα

L with α > 1, which is defined as

Hα
L ≡ Hα([0, 1)) :=

{
f ∈ D : ‖f‖L∞ ≤ L, and

|f (
α�)(x1)− f (
α�)(x2)| ≤ L|x1 − x2|α−
α� for all x1, x2 ∈ [0, 1)
}
,

with �α� := max {k ∈ N : k < α}, it holds that Hα
L ⊆ A1

q but Hα
L �⊆ Aγ

q for any
γ > 1. Thus, by Theorem 2, we obtain that the MCPS estimators attain (up to a
log-factor) the rates of order n−1/3 for Hα

L with α > 1 in terms of L2-loss. Note
that such rates are suboptimal, but turn out to be the saturation barrier for
every piecewise constant segmentation estimator; As we will see in Example 2
in Section 5.1, piecewise constant segmentation estimators even with the oracle
choice of change-points cannot attain faster rates for functions of smoothness
order > 1.

In summary, in the particular case of L2-loss, we find that the MCPS methods
are minimax optimal (up to log factors) simultaneously over sequences of step
function classes SL(kn) (kn = o(n), 0 < L < ∞), and over approximation spaces
Aγ

q,L (0 < γ ≤ 1, 2 ≤ q ≤ ∞, 0 < L < ∞). This especially includes sequences

of step function classes SL(n
θ) (0 ≤ θ < 1, 0 < L < ∞), Hölder classes Hα

L and
Hα

κ,L (0 < α ≤ 1, κ ∈ N0, 0 < L < ∞), and bounded variation classes BVL

(0 < L < ∞).

4. Feature detection

The convergence rates in Theorems 1 and 2 not only reflect the average perfor-
mance in recovering the truth over its domain, but also, as a byproduct, lead to
further statistical justifications on detection of features, such as change-points,
modes and troughs.

Proposition 1. Assume model (1) and let the truth f0 ≡ fkn ∈ SL(kn) be
a sequence of step functions with up to kn jumps. By Δn and λn denote the
smallest jump size, and the smallest segment length of fkn , respectively. Let f̂n
be an MCPS method in Definition 2. If

lim
n→∞

kn logn

λnΔ2
nn

= 0,

then there is a constant C independent of fkn such that

lim
n→∞

P

{
#J(f̂n) = #J(fkn), d

(
J(f̂n); J(fkn)

)
≤ C

kn logn

Δ2
nn

}
= 1,

with d
(
J(f̂n); J(fkn)

)
:= maxτ∈J(fkn ) minτ̂∈J(f̂n)

|τ − τ̂ |.
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Proof. By Theorem 1 and Lin et al. (2016, Theorem 8) it holds almost surely

that d
(
J(f̂n); J(fkn)

)
≤ C1kn logn/(Δ

2
nn), so P

{
#J(f̂n) ≥ #J(fkn)

}
→ 1.

This, together with the fact that P
{
#J(f̂n) > #J(fkn)

}
≤ O(n−r) → 0

(see (18) in Appendix A.1) completes the proof.

Remark 6. Proposition 1 concerns step functions, and is a typical consistency
result in change-point literature (e.g. Boysen et al., 2009; Harchaoui and Lévy-
Leduc, 2010; Chan and Chen, 2017). It in particular applies to SMUCE (Frick,
Munk and Sieling, 2014) and FDRSeg (Li, Munk and Sieling, 2016), where the
same error rate on the accuracy of estimated change-points is reported, and is
of the fastest order known up to now (see also Fryzlewicz, 2014).

Assume now f ∈ D, an arbitrary (not necessarily piecewise constant) func-
tion. We consider a similar concept of change-points as for step functions. To
this end, we define, for any ε > 0, the set of ε-jump locations of f as

Jε(f) := {x : |f(x)− f(x− 0)| > ε} ,

and the smallest ε-jump size as Δε
f := min{|f(x) − f(x − 0)| : x ∈ Jε(f)}. By

Billingsley (1999, Lemma 1 in Section 12), the above concepts are well-defined,
and satisfy that #Jε(f) < ∞ and Δε

f ≥ ε > 0. Note that, in the particular case
of step functions f , we always have Jε(f) ⊆ J(f) and Δε

f ≥ Δf , with equality
holding for both if ε is smaller than the smallest jump size Δf of f . Moreover,
if there exist x0 < x1 < x2 ∈ [a, b) ⊆ [0, 1) such that f(x1) > f(x0) ∨ f(x2) or
f(x1) < f(x0) ∨ f(x2), we say that there is a mode or a trough of f on [a, b),
respectively. We further define the number of modes of f ∈ D as

#mode(f) :=
{
k : there exist x0 < x1 < · · · < x2k ∈ [0, 1) such that

f(x2i−1) > f(x2i−1) ∨ f(x2i) for each i = 1, . . . , k
}
,

and the number of troughs of f as #trough(f) := #mode(−f). In order to
investigate the shape of f , we introduce the local mean of f over an interval I
as mI(f) :=

∫
I
f(x)dx/|I|.

Theorem 3 (Feature recovery). Assume model (1) with the truth f0 ∈ Aγ
2,L

with γ, L ∈ (0,∞). Let f̂n be an MCPS method in Definition 2. Then:

(i) If #mode(f0) ∨#trough(f0) < ∞, then

lim
n→∞

P

{
#mode(f̂n) ≥ #mode(f0); #trough(f̂n) ≥ #trough(f0)

}
= 1;

(ii) There is a constant C independent of f0 such that for every ε > 0

lim
n→∞

P

{
d
(
J(f̂n), Jε(f0)

)
≤ C

(Δε
f0
)2

( log n
n

) 2γ
2γ+1

;

and #J(f̂n) ≥ #Jε(f0)

}
= 1.
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Proof. See Appendix A.3.

Remark 7. Since step functions lie in Aγ
2 for all γ > 0, Theorem 3 (ii) “for-

mally” reproduces Proposition 1 for the case that the step function f is fixed,
by letting γ tend to infinity.

The statistical justifications of Theorem 3 are of one-sided nature, in the
sense that an MCPS method f̂n reproduces the features of f0. Note that sta-
tistical guarantees for the reverse order are in general not possible, as long as
an arbitrary number of jumps/features on small scales cannot be excluded, see

e.g. Donoho (1988). However, the MCPS methods f̂n will not include too many
artificial features (e.g., jumps, modes or troughs), due to their parsimony nature
by construction, namely, minimization of the number of jumps, see (4). Further,

we can, to some extent, tell whether a feature reported by f̂n is genuine or false,
as follows.

Theorem 4 (Feature inference). Assume model (1) with the truth f0 ∈ D. Let

f̂n be an MCPS method in Definition 2 with interval system I and threshold
η = η(β), β ∈ (0, 1), in (7). Define rI = 2

(
η(β) + sI

)
/
√
n|I| for I ∈ I. Then

mI1(f̂n) > mI2(f̂n)+ rI1 + rI2 for some I1, I2 ∈ I where f̂n is constant, (12)

implies mI1(f0) > mI2(f0), simultaneously over all such pairs of I1 and I2, with
probability at least 1− β.

Proof. See Appendix A.3.

Remark 8. Theorem 4 states that large increases (or decreases) of MCPS
estimators imply increases (or decreases) of the true signal. This is actually a
finite-sample inference guarantee, and holds simultaneously for many intervals,
which thus provides inference guarantee on modes and troughs. In this way, we
can discern a collection of genuine features among all the detected features, with

controllable confidence. To be precise, let f̂n =
∑k̂

i=1 ĉi1[τ̂i−1, τ̂i) with 0 = τ̂0 <
· · · < τ̂k̂ = 1 and ĉi �= ĉi+1 be an MCPS estimator with threshold η(β).

(i) Increase or decrease. Let τ̂i+1/2 = (τ̂i + τ̂i+1)/2. Define

uR
i = min

I∈I, I⊆[τ̂i, τ̂i+1/2)
(ĉi+1 + rI), lRi = max

I∈I, I⊆[τ̂i, τ̂i+1/2)
(ĉi+1 − rI),

and uL
i = min

I∈I, I⊆[τ̂i−1/2, τ̂i)
(ĉi + rI), lLi = max

I∈I, I⊆[τ̂i−1/2, τ̂i)
(ĉi − rI).

Then, by Theorem 4, there is at least an increase (or a decrease) of f0
on interval [τ̂i−1/2, τ̂i+1/2) if uL

i < lRi (or if lLi > uR
i ) with confidence

level no less than 1 − β. Further, because of the simultaneous confidence
control, the inferred increases and decreases on non-overlapped intervals
[τ̂i−1/2, τ̂i+1/2) leads naturally to inference on modes and troughs.
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(ii) Change-point. Assume the true signal f0 is piecewise Lipschitz continuous,
namely, f0 ∈ H1

κ,L with κ ∈ N0 and L ∈ (0,∞), see Example 1 (i). If for
some ω and i such that τ̂i−1 ≤ τ̂i − ω ≤ τ̂i + ω ≤ τ̂i+1,∣∣∣m[τ̂i−ω, τ̂i)(f̂n)−m[τ̂i, τ̂i+ω)(f̂n)

∣∣∣ > r[τ̂i−ω, τ̂i) + r[τ̂i, τ̂i+ω) + ωL , (13)

then similar to Theorem 4 (ii), see Appendix A.3, we have∣∣m[τ̂i−ω, τ̂i)(f0)−m[τ̂i, τ̂i+ω)(f0)
∣∣ > ωL ,

with confidence level no less than 1−β. Note that if f0 ∈ H1
κ,L is Lipschitz

continuous on [τ̂i − ω, τ̂i + ω), then∣∣m[τ̂i−ω, τ̂i)(f0)−m[τ̂i, τ̂i+ω)(f0)
∣∣

≤ ω−1

∫
[τ̂i−ω, τ̂i)

|f0(x)− f0(x+ ω)|dx ≤ ωL .

Thus, condition (13) implies that there is at least a change-point of f0 in
[τ̂i−ω, τ̂i+ω) with confidence level no less than 1−β. That is, a significant
change-point in most cases leads to a true change-point.

See Figure 2 (in Section 1) for an illustration. The SMUCE has detected 3
change-points, 1 mode and 1 trough. By the method described above, we can
claim that the truth has at least 1 mode (in region [0.36, 0.88)), 1 trough (in
region [0.1, 0.63)) and 2 change-points (around 0.5 and 0.75, if we assume
f0 ∈ H1

κ,L with L ≤ 10; note that the smallest Lipschitz constant of f0 on
its continuous parts is 2π in this example), with probability at least 90%. Such
inference is nicely confirmed by the underlying truth.

5. Oracle properties

This section focuses on the oracle properties of MCPS methods. For simplicity,
we restrict ourselves to Aγ

2 and L2-topology.

5.1. Oracle segmentation

It is well-known that the crucial difficulty in change-point segmentation prob-
lems is to infer the locations of change-points; Once the change-point locations
are detected, the height of each segment can easily be determined via any rea-
sonable estimator, e.g. a maximum likelihood estimator, locally on each segment
(see e.g. Killick, Fearnhead and Eckley, 2012; Fryzlewicz, 2014). In line of this
thought, we define

Πn :=
{
(τ0, τ1, . . . , τk) : τ0 = 0 < τ1 < · · · < τk = 1, k ∈ N, and {nτi}ki=0 ⊆ N

}
.
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For each τ ≡ (τ0, . . . , τk) ∈ Πn, we introduce the piecewise constant segmenta-

tion estimator f̂τ,n, conditioned on τ , for model (1) as

f̂τ,n :=

k∑
i=1

ĉi1[τi−1,τi) with ĉi =
1

n(τi − τi−1)

∑
j∈[nτi−1,nτi)

ynj .

Theorem 5. Assume model (1), and sub-Gaussian noises satisfy E[(ξni )
2] 	 σ2

0,
i.e., for some constants c1, c2 it holds that c1σ

2
0 ≤ E[(ξni )

2] ≤ c2σ
2
0 for every

possible i and n. Let f̂n be an MCPS method in Definition 2. Then, there is a
constant C such that for every f0 in ∪γ>0Aγ

2 ∩ L∞

E[‖f̂n − f0‖2L2 ] ≤ C logn min
τ∈Πn

E[‖f̂τ,n − f0‖2L2 ] for sufficiently large n.

Proof. See Appendix A.4.

Remark 9. Theorem 5 states that the MCPS methods perform nearly (up to
a log-factor) as well as the piecewise constant segmentation estimator using an
oracle for the change-point locations.

We next consider a saturation phenomenon of piecewise constant segmenta-
tion estimators via a simple example.

Example 2. Assume model (1) with the truth f0(x) ≡ x and the noise ξni
being standard Gaussian. For simplicity, let n = 6m3 with m ∈ N. Elementary
calculation shows that

E[‖f̂τ∗,n − f0‖2L2 ] = min
τ∈Πn

E[‖f̂τ,n − f0‖2L2 ] =
62/3 + 6−1/3

12
n−2/3

and τ∗ =
(
0, 1/m, . . . , (m − 1)/m, 1

)
. Note that f0(x) ≡ x lies in every Hölder

class Hα
L with 0 < α < ∞ and L ≥ 1, and that the minimax optimal rates

in terms of squared L2-risk for Hα
L is of order n−2α/(2α+1). Thus, it indicates

that the piecewise segmentation estimator even with the oracle choice of change-
points saturates at smoothness order α = 1. This in turn explains why MCPS
methods cannot achieve faster rates for functions of smoothness order ≥ 1.

Note that such a saturation phenomenon for piecewise constant segmentation
estimators is by no means due to the discontinuity of the estimator. In fact, one
could discretize a smooth estimator (i.e., wavelet shrinkage estimators, Donoho
et al., 1995) on the sample grids {i/n}ni=0 into a piecewise constant one: the dis-
cretized version performs equally well as the original estimator in asymptotical
sense, since the discretization error vanishes faster than statistical estimation
error. In contrast, the underlying reason for the aforementioned saturation is
because piecewise constant segmentation estimators aim to segment data into
constant pieces with the best possible recovery of change-point locations, rather
than approximate the truth as well as possible. The purpose of segmentation
into constant pieces provides an easy interpretation of the data, but it turns
out to be less sufficient if the complete recovery of the function is the statistical
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task. To overcome this saturation barrier, one could smoothen each segment
based on detected change-point locations (see Boneva, Kendall and Stefanov,
1971). For instance, one could modify the MCPS estimators in (4) by consid-
ering polynomials or splines in each segment instead, which would lead to a
procedure that detects sharp changes and meanwhile fits smooth pieces. Alter-
natively, in a similar spirit as Abramovich, Antoniadis and Pensky (2007), one
could develop a two-step procedure: applying the MCPS estimators in the first
step to estimate change-points, and in the second step fitting smooth pieces
between change-points by spline or local polynomial estimators. The detailed
study is, however, beyond the scope of this paper, and will be part of our future
work.

5.2. Oracle approximant

Here we examine the performance of MCPS methods f̂n by comparing it with
the best piecewise constant approximants of f0 with up to #J(f̂n) jumps. By
means of compactness arguments and the convexity of L2-norm, we can define

fapp
k ∈ argmin

f∈S,#J(f)≤k

‖f0 − f‖L2 for k ∈ N, (14)

which always exists, but might be non-unique, as mentioned earlier in Sec-
tion 3.2.

Proposition 2. Assume model (1). Let f̂n be an MCPS method in Definition 2,

and K̂n := #J(f̂n). Then

lim
n→∞

sup
f0∈Aγ

2,L

P

{
‖f0 − fapp

K̂n
‖L2 ≥ C‖f0 − f̂n‖L2

}
= 1 for some constant C.

Proof. Following the proof of Theorem 2 in Appendix A.2, one can see that

lim
n→∞

P
{
An

}
= 1,

where the event An is defined as

An :=

{
K̂n ≤ kn, sup

f0∈Aγ
2,L

‖f0 − f̂n‖L2 ≤ C1

(
logn

n

) γ
2γ+1

}
,

with kn = C2(n/ log n)
1/(2γ+1). Note that there is a sequence of fn ∈ Aγ

2,L such

that ‖fn − fapp
kn

‖L2 ≥ C3k
−γ
n . Then, on the event An,

‖fn − fapp

K̂n
‖L2 ≥ ‖fn − fapp

kn
‖L2 ≥ C3k

−γ
n ≥ C4

(
logn

n

) γ
2γ+1

≥ C5‖fn − f̂n‖L2 .

As a consequence, we have

sup
f0∈Aγ

2,L

P

{
‖f0 − fapp

K̂n
‖L2 ≥ C5‖f0 − f̂n‖L2

}
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Fig 4. Performance of SMUCE f̂n with threshold η(0.1) as oracle approximants for the signal
in Olshen et al. (2004) and Zhang and Siegmund (2007). The bottom panel shows the best

approximant fapp

K̂n
, defined in (14), of the truth with up to K̂n jumps. Here SNR = 3 and

‖f − f̂n‖L2 = 1.3‖f − fapp

K̂n
‖L2 .

≥P

{
‖fn − fapp

K̂n
‖L2 ≥ C5‖fn − f̂n‖L2

}
≥P{An} → 1 as n → ∞,

which concludes the proof.

Remark 10. Proposition 2 indicates that f̂n performs almost (up to a constant)
as well as the best approximants fapp

K̂n
for “complicated” functions f0 in Aγ

2,L,

see Figure 4 for a visual illustration. For simpler functions f0 in Aγ
2,L, e.g.,

f0 is piecewise constant, note that ‖f0 − fapp

K̂n
‖L2 can be zero. Thus, in this

sense, the result in Proposition 2 cannot be improved by replacing supf0∈Aγ
2,L

by inff0∈Aγ
2,L

.

6. Simulation study

Note that in the optimization problem (4) for MCPS methods, we optimize only
over the local intervals, where the candidate function is constant, cf. (5). This
leads to independence of values of candidate function among different segments,
and thus ensures the structure of (4) to be a directed acyclic graph, which makes
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dynamic programming algorithms (cf. Bellman, 1957) applicable to such a prob-
lem, see also Korte and Vygen (2012, Chapter 7). Moreover, the computation
can be substantially accelerated by incorporating pruning ideas as e.g. recently
developed in Killick, Fearnhead and Eckley (2012), Frick, Munk and Sieling
(2014) and Li, Munk and Sieling (2016). As a consequence, the computational
complexity of MCPS methods can be even linear in terms of the number of
observations, in case that there are many change-points, see Frick, Munk and
Sieling (2014) and Li, Munk and Sieling (2016) for further details.

We now investigate the finite sample performance of MCPS methods from
the previously discussed perspectives. For brevity, we only consider a particular
MCPS method, SMUCE (Frick, Munk and Sieling, 2014), and stress that the
results are similar for other methods of type (4) (which are not shown here),
see e.g. Frick, Munk and Sieling (2014) and Li, Munk and Sieling (2016) for an
extensive simulation study. For SMUCE, we use the implementation of a pruned
dynamic program from the CRAN R-package “stepR”, select the system of all
intervals with dyadic lengths for the multiscale constraint, and choose η = η(β)
in (7) as the threshold, which is estimated by 10,000 Monte-Carlo simulations.
In what follows, the noise is assumed to be Gaussian with a known noise level
σ, and SNR denotes the signal-to-noise ratio ‖f‖L2/σ.

6.1. Stability

We first examine the stability of MCPS methods with respect to the significance
level β, i.e. to the threshold η. The test signal f0 (adopted from Olshen et al.,
2004; Zhang and Siegmund, 2007) has 6 change points at 138, 225, 242, 299, 308,
332, and its values on each segment are −0.18, 0.08, 1.07, −0.53, 0.16, −0.69,
−0.16, respectively. Figure 5 presents the behavior of SMUCE with threshold
η = η(β) for different choices of significance level β, on some specific data (see
Table 1 in Frick, Munk and Sieling (2014) for the performance over many random
repetitions). In fact, for the shown data, SMUCE detects the correct number
of change-points, and recovers the location and the height of each segment in
high accuracy, for the whole range of 0.06 ≤ β ≤ 0.94 (i.e. 0.47

√
logn ≥ η ≥

−0.04
√
logn). Only for smaller β (< 0.06, i.e. η > 0.47

√
logn), SMUCE tends

to underestimate the number of change-points (see the second panel of Figure 5
for example, where the missing change-point is marked by a vertical solid line),
while, for larger β (> 0.94, i.e. η < −0.04

√
log n), it is inclined to recover false

change points (as shown in the last panel of Figure 5). Note that in either
case the estimated locations and heights of the remaining segments (away from
the missing/spurious jumps) are fairly accurate. This reveals that SMUCE is
remarkably stable with respect to the choice of β (or η), in accordance with
Theorem 1, Remark 3 and Proposition 1.

6.2. Different noise levels

We next investigate the impact of the noise level (or equivalently SNR) on
MCPS methods. We consider the recovery of the Blocks signal (Donoho and
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Fig 5. Estimation of the step signal in Olshen et al. (2004) and Zhang and Siegmund (2007)
by SMUCE with η = η(β) for different β (sample size n = 497, and SNR = 1).

Johnstone, 1994) for different noise levels. The result for SMUCE at significance
level β = 0.1 is summarized in Figure 6 and Table 1. It shows that SMUCE
recovers the truth rather well, in terms of e.g. change-point locations and L2-
loss, for the low and medium noise levels (SNR = 2.5 or 2), while it tends to
miss one or two small scale features for the high noise level (SNR = 1.5).

6.3. Robustness and feature detection

In order to investigate the robustness of MCPS methods with respect to model
misspecification, we introduce a local trend component as in Olshen et al. (2004)
and Zhang and Siegmund (2007) to the test signal f0 in Section 6.1, which leads
to the model (with n = 497)

yni =
(
f̄n
i + 0.25b sin(aπi)

)
+ ξni , i = 0, . . . , n− 1. (15)

We consider two scenarios separately.

(i) Weak background waves. We simulate data for a = 0.025 and b = 0.3,
and apply SMUCE again with various choice of β, see Figure 7, with
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Fig 6. Blocks signal: SMUCE for various noise levels (sample size n = 1,023).

the average performance given in the top part of Table 2. It shows that
SMUCE captures all relevant features, e.g., change-points and modes, of
the piecewise constant part (cf. Figure 7) of the true signal, and is stable
with respect to the choice of β. This is in accordance with the previous
simulations and Theorems 3 and 5.

(ii) Strong background waves. When the scale b of the background wave be-
comes larger, i.e., the fluctuation is stronger, SMUCE captures the fluctu-
ation by including additional change-points according to Theorems 2, 3, 5
and Proposition 2. Figure 8, as well as Table 2, illustrates the performance
of SMUCE with β = 0.1 for the signal in (15) with b = 1.0 and b = 1.2

Table 1

Performance of SMUCE (β = 0.1) on the Blocks signal (n = 1, 023, cf. Figure 6) for
various noise levels over 100 random repetitions.

SNR
Counts of #J(f̂n)−#J(f0) Average of

≤ −2 −1 0 ≥ 1 n · d(J(f̂n), J(f0)) ‖f̂n − f0‖L2/‖f0‖L2

2.5 0 1 99 0 1 0.046
2 0 16 84 0 4.2 0.071
1.5 2 71 27 0 15 0.12
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Fig 7. Estimation of the signal in (15) (a = 0.025, b = 0.3) by SMUCE with η = η(β) for
different β (SNR = 1).

under different noise levels. It can be seen that SMUCE recovers the shape
and modes of the whole true signal (which has 8 modes in total).

We stress, moreover, that by Theorem 4 it is possible to screen whether the
recovered features are genuine or not with pre-specified confidence level β. This
can be done by the procedure detailed in Remark 8. From Table 2, we observe
that nearly all the recovered features are genuine when the noise level is low
(e.g., SNR = 2.5), while only large features are guaranteed to be there for the
medium and high noise levels (e.g., SNR = 2 or 1.5), with probability at least
90%. This is mainly due to the built-in parsimony of the method, namely, the
minimization of number of change-points, see (4).

6.4. Empirical convergence rates

Finally, we empirically explore how well the finite sample risk is approximated
by our asymptotic analysis. The test signals are the Blocks and the Heavisine
from Donoho and Johnstone (1994). Note that the Blocks signal is a piecewise
constant function with a fixed number of change-points, so the convergence rates
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Fig 8. Estimation of the signal in (15) with a = 0.025 and b = 1 or 1.2 by SMUCE for
various noise levels.

Table 2

Average performance of SMUCE (β = 0.1) on the signal in (15) (a = 0.025, cf. Figures 7
and 8) over 100 random repetitions. The number of inferred modes is computed according to

the procedure in Remark 8.

b SNR #J(f̂n)−#J(f0) #mode(f̂n) # inferred modes ‖f̂n−f0‖L2/‖f0‖L2

0.3
2.5 0.51 2.2 2.1 0.17
2 0.14 2 2 0.17
1.5 −0.09 1.9 1.5 0.21

1
2.5 9.1 6 5.5 0.27
2 8.5 5.8 3.7 0.31
1.5 4.8 3.5 1.7 0.45

1.2
2.5 9.2 6 5.8 0.3
2 8.9 5.9 4.9 0.32
1.5 6.3 4.4 2.1 0.45

in L2-risk is of order n−1/2 (up to a log-factor) by Theorem 1. For the Heavisine
signal, the convergence rate is of order n−1/3 (up to a log-factor), since it lies
in H1

1,L and BVL for some L, see Theorem 2 and Example 1. Although the
Heavisine also lies in Hα

1,L, α ≥ 1, this will not lead to a faster rate for the
MCPS methods due to the saturation phenomenon, see Example 2.

In Figure 9, we display the average of L2-loss of SMUCE with significance
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Fig 9. Convergence rates of SMUCE averaged over 100 random repetitions (SNR = 2.5).

level β = 0.1 for a range of sample sizes from 1,023 to 10,230. Note that both axes
are in log-scale, so the slopes reflect the order of rates. By linear regression, the
estimated order of rates are n−0.48 and n−0.29 for the Blocks and the Heavisine,
respectively. There is only a little difference to the optimal order of rates, which
are indicated by the slopes of dashed lines. It is partially due to the log-factors.
Thus, this confirms our theoretical findings in Theorems 1 and 2.

7. Conclusion

In this paper we focus on the convergence analysis for MCPS methods, a gen-
eral family of change-point estimators based on the combination of variational
estimation and multiple testing over different scales, in a nonparametric regres-
sion setting with special emphasis on step functions while allowing for various
distortions. We found that the estimation difficulty for a step function is mainly
determined by its number of jumps, and shown that the MCPS methods attain
the nearly optimal convergence rates for step functions with asymptotically
bounded or even increasing number of jumps. As a robustness study, we also
examined the convergence behavior of these methods for more general func-
tions, which are viewed as distorted jump functions. Such distortion is precisely
characterized by certain approximation spaces. In particular, we have derived
nearly optimal convergence rates for MCPS methods in case that the regression
function is either a (piecewise) Hölder function or a bounded variation function.
Remarkably, these methods automatically adapt to the unknown smoothness for
all aforementioned function classes, as the only tuning parameter can be selected
in a universal way. The convergence rates also provide statistical justification
with respect to the detection of features, such as change-points and modes (or

troughs). In addition, the MCPS methods f̂n are shown perform nearly as well
as the oracle piecewise constant segmentation estimators, and the best piece-
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wise constant (oracle) approximants of the truth with less or the same number

of jumps as f̂n.
The MCPS methods, however, cannot attain faster rates for functions of

stronger smoothness than above, which is indeed a common saturation shared
by all piecewise constant segment estimators. This can be improved by con-
sidering piecewise polynomial or spline estimators (see e.g. Spokoiny, 1998;
Abramovich, Antoniadis and Pensky, 2007), but the proper combination with
multiscale methodology needs further investigation (see the rejoinder by Frick,
Munk and Sieling, 2014, for a first attempt). Alternatively, certain smoothness
penalty can be employed instead of the number of jumps in the formulation of
MCPS, see e.g. Grasmair, Li and Munk (2018), where the nearly optimal rates
are shown for higher order Sobolev/Besov classes. In addition, extension of our
results to models with general errors beyond sub-Gaussian, such as heavy tailed
distributions (see e.g. Han and Wellner, 2019), and stationery Gaussian pro-
cesses (see e.g. Schwartzman, Gavrilov and Adler, 2011), would be interesting
for future research.

Appendix A: Proofs

A.1. Proof of Theorem 1

Part (i): We structure the proof into three steps. We shift the change-points of
the truth f0 to their nearest points in the grid {0, 1/n, . . . , (n − 1)/n}, while
keeping the heights of segments unchanged, and denote the resulting function
by f̃0. Then #J(f̃0) ≤ kn and

‖f0 − f̃0‖Lp ≤ 2‖f‖L∞

(
kn
2n

)1/p

≤ 2L

(
kn
2n

)1/p

. (16)

a) Good noise case. Assume that f̃0 lies in the multiscale constraint, i.e.,

TI(y
n; f̃0) ≤ η = a

√
logn.

By (4), it holds that #J(f̂n) ≤ #J(f̃0) ≤ kn. Let intervals {Ii}mi=0 be the

partition of [0, 1) by J(f̂n) ∪ J(f̃0) with m ≤ 2kn. Then

‖f̂n − f̃0‖pLp =

m∑
i=0

|θ̂i − θi|p|Ii| with f̂n|Ii ≡ θ̂i and f̃0|Ii ≡ θi.

If |Ii| > c/n, then by c-normality of I, there is Ĩi ∈ I such that Ĩi ⊆ Ii and
|Ĩi| ≥ |Ii|/c. It follows that

∣∣Ĩi∣∣1/2
∣∣∣∣θ − 1

n|Ĩi|
∑

j/n∈Ĩi

ynj

∣∣∣∣ ≤ (a+ δ)

√
log n

n
for θ = θi or θ̂i.
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By a triangular inequality and |Ĩi| ≥ |Ii|/c, we obtain

|Ii|1/2|θ̂i − θi| ≤ 2(a+ δ)

√
c log n

n
.

If |Ii| ≤ c/n, by Definition 1, we have [i0/n, (i0 + 1)/n) ⊆ Ii for some i0. Then

|θ̂i − θi| ≤ |θ̂i − yni0 |+ |yni0 − θi| ≤ 2(a+ δ)
√

logn .

Thus, by combining these two situations, we obtain

‖f̂n−f̃0‖pLp ≤
∑

i:|Ii|>c/n

|Ii|
(
2(a+ δ)

√
c logn

n|Ii|

)p

+
∑

i:|Ii|≤c/n

c

n

(
2(a+ δ)

√
logn

)p
.

Note that for 0 < p < 2, by the Hölder’s inequality,

∑
i:|Ii|>c/n

|Ii|
(
2(a+ δ)

√
c log n

n|Ii|

)p

=
∑

i:|Ii|>c/n

|Ii|1−p/2

(
2(a+ δ)2

c logn

n

)p/2

≤
( ∑
i:|Ii|>c/n

|Ii|
)1−p/2

( ∑
i:|Ii|>c/n

4(a+ δ)2
c logn

n

)p/2

≤
(
4(2kn + 1)(a+ δ)2

c logn

n

)p/2

,

and for 2 ≤ p < ∞,

∑
i:|Ii|>c/n

|Ii|
(
2(a+ δ)

√
c logn

n|Ii|

)p

≤
∑

i:|Ii|>c/n

(
4(a+ δ)2

c logn

n

)p/2 ( c
n

)1−p/2

≤ (2kn + 1)c

n

(
4(a+ δ)2logn

)p/2
.

Since kn = o(n), we have for large enough n

‖f̂n − f̃0‖pLp ≤
((

(2kn + 1)c

n

)p/2∧ 1

+
(2kn + 1)c

n

)(
4(a+ δ)2log n

)p/2

≤ 2

(
(2kn + 1)c

n

)p/2∧ 1 (
4(a+ δ)2logn

)p/2
.

Then, together with (16), for large enough n,

‖f̂n − f0‖rLp ≤ 2(r−1)+
(
‖f̂n − f̃0‖rLp + ‖f̃0 − f0‖rLp

)
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≤ 2r(1+1/p)

(
(2kn + 1)c

n

)r/2∧ r/p (
4(a+ δ)2logn

)r/2
. (17)

b) Almost sure convergence. For each I ∈ I, note that (n|I|)−1/2
∑

i/n∈I ξ
n
i is

again sub-Gaussian with scale parameter σ, so

P

{
1√
n|I|

∣∣∣ ∑
i/n∈I

ξni

∣∣∣ > x

}
≤ 2 exp(−x2/2σ2)

for any x > 0. Note that, on every I ∈ I where f̃0 is constant,

1√
n|I|

∣∣∣∣∣∣
∑
i/n∈I

(
f̄n
i − f̃0(

i

n
)

)∣∣∣∣∣∣ ≤
4L√
n|I|

≤ 4L ,

with f̄n
i in (1). Then, by the Boole’s inequality, it holds that for large enough n

P

{
TI(y

n; f̃0) > a
√
log n

}

≤P

⎧⎨
⎩max

I∈I

1√
n|I|

∣∣∣ ∑
i/n∈I

ξni

∣∣∣ > (a− δ)
√

logn− 4L

⎫⎬
⎭

≤ 2 exp

(
− (a− δ)2 logn

2σ2
(1 + o(1))

)
n2

2

=n− (a−δ)2

2σ2 (1+o(1))+2 ≤ n−r, (18)

where the last equality is due to (6) and r ≤ r0. This and (17) imply the almost
sure convergence assertion.
c) Convergence in expectation. It follows from (17) that for large enough n

E

[
‖f̂n − f0‖rLp

]
= E

[
‖f̂n − f0‖rLp ; TI(y

n; f̃0) ≤ a
√
logn

]
+ E

[
‖f̂n − f0‖rLp ; TI(y

n; f̃0) > a
√
logn

]

≤ 2r(1+1/p)

(
(2kn + 1)c

n

)r/2∧ r/p (
4(a+ δ)2logn

)r/2
+ E

[
‖f̂n − f0‖rLp ; TI(y

n; f̃0) > a
√
logn

]
.

We next show the second term above asymptotically vanishes faster.

E

[
‖f̂n − f0‖rLp ; TI(y

n; f̃0) > a
√
log n

]

=

∫ 2np/2

0

P

{
‖f̂n − f0‖pLp ≥ u; TI(y

n; f̃0) > a
√
log n

} r

p
ur/p−1du

+

∫ ∞

2np/2

P

{
‖f̂n − f0‖pLp ≥ u; TI(y

n; f̃0) > a
√

logn
} r

p
ur/p−1du
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≤2r/pnr/2
P

{
TI(y

n; f̃0) > a
√
logn

}
+

∫ ∞

2np/2

P

{
‖f̂n − f0‖pLp ≥ u

} r

p
ur/p−1du

≤2r/pn−r/2 +

∫ ∞

2np/2

P

{
‖f̂n − f0‖pLp ≥ u

} r

p
ur/p−1du, (19)

where the last inequality is due to (18). Define functions g : [0, 1) → R and
h : [0, 1) → R as

g :=
n−1∑
i=0

yni 1[i/n,(i+1)/n). and h :=
n−1∑
i=0

f̄n
i 1[i/n,(i+1)/n).

Let ξn := {ξni }n−1
i=0 and s := (2r − p)+. Then,

‖f̂n − f0‖pLp ≤3(p−1)+
(
‖f̂n − g‖pLp + ‖g − h‖pLp + ‖h− f0‖pLp

)
≤3(p−1)+

(
(a+ δ)p(logn)

p/2
+ n−1‖ξn‖p
p + (2L)p

)
≤3(p−1)+

(
(a+ δ)p(logn)

p/2
+ n−p/(p+s)‖ξn‖p
p+s + (2L)p

)
.

Thus, for large enough n, i.e. if np/2 ≥ 3(p−1)+
(
(a+ δ)p(logn)

p/2
+ (2L)p

)
,

∫ ∞

2np/2

P

{
‖f̂n − f0‖pLp ≥ u

} r

p
ur/p−1du

≤
∫ ∞

2np/2

P

{
3(p−1)+

(
(a+ δ)p(log n)

p/2
+ n−p/(p+s)‖ξn‖p
p+s + (2L)p

)
≥ u

}
× r

p
ur/p−1du

≤
∫ ∞

np/2

P

{
3(p−1)+

(
(a+ δ)p(logn)

p/2
+n−p/(p+s)‖ξn‖p
p+s+(2L)p

)
≥u+ np/2

}
× r

p
(2u)r/p−1du

≤
∫ ∞

np/2

P

{
3(1+s/p)(p−1)+

1

n

n−1∑
i=0

|ξni |p+s ≥ u1+s/p

}
r

p
(2u)r/p−1du

≤2r/p−13(1+s/p)(p−1)+E

[
1

n

n−1∑
i=0

|ξni |p+s

]∫ ∞

np/2

r

p
u−(s−r)/p−2du = O(n−r/2),

where the last inequality holds by the fact s ≥ 2r − p and

E[|ξni |p+s] ≤ (p+ s)2(p+s)/2σp+sΓ
(p+ s

2

)
= O(1) for each i .

Thus, by (19) it holds that

E

[
‖f̂n − f0‖rLp ; TI(y

n; f̃0) > a
√
logn

]
=O(n−r/2)
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=o
((

n−1(kn + 1)
)r/p∧ r/2

(logn)r/2
)
.

This concludes the assertion in expectation.

Part (ii): The lower bound can be proven similarly as Li, Munk and Sieling
(2016, Theorem 3.4), by means of standard arguments based on testing many
hypotheses (pioneered by Ibragimov and Has’minskĭı, 1977; Has’minskĭı, 1978).
More precisely, we consider two collections of hypotheses

{2kn+2∑
i=1

(−1)iz̃0
2

1[ i−1
2kn+2+ci−1,

i
2kn+2+ci)

: ci = ±σ2
0 log 2

32nz̃20
, c0 = c2kn+2 = 0

}

⊆ SL(kn)

with z̃0 := z0 ∧ L, and

{kn+1∑
i=1

(−1)iL+ ci
2

1[ i−1
kn+1 ,

i
kn+1 )

: ci = ±σ0

4

√
kn log 2

2n

}
⊆ SL(kn).

Elementary calculation together with Fano’s lemma (cf. Tsybakov, 2009, Corol-
lary 2.6) concludes the proof.

A.2. Proof of Theorem 2

The idea behind is that we first approximate the truth f0 by a step function
fkn with O(kn) jumps, and then treat fkn as the underlying “true” signal in
model (1) (with additional approximation error). In this way, it allows us to
employ similar techniques as in the proof of Theorem 1. To be rigorous, we give
a detailed proof as follows.

Since Aγ
q1,L

⊆ Aγ
q2,L

for q1 ≥ q2, it is sufficient to consider q = p ∨ 2 < ∞.

a) Good noise case. Assume that the observations yn = {yni }n−1
i=0 from model (1)

are close to the truth f0 in the sense that the event

Gn :=

⎧⎨
⎩yn : max

I∈I

1√
n|I|

∣∣∣ ∑
i/n∈I

(
yni − f̄n

i

)∣∣∣− sI ≤ a0
√

logn

⎫⎬
⎭ (20)

holds with a0 = δ + σ
√
2r0 + 4. Now let

kn :=
⌈( 4L

a− a0

)2/(2γ+1)( n

logn

)1/(2γ+1)⌉
.

Since f0 ∈ Aγ
q,L, for every n there is a step function f̃kn ∈ S such that

#J(f̃kn) ≤ kn, ‖f̃kn‖L∞ ≤ L, and ‖f0 − f̃kn‖Lq ≤ Lk−γ
n ,
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by means of compactness argument. Based on the continuity of

x �→
∫
[0,x)

|f0(t)− f̃kn(t)|2dt,

one can find τ0 = 0 < τ1 < · · · < τkn = 1 satisfying∫
[τi−1,τi)

|f0(t)− f̃kn(t)|2dt =
1

kn
‖f0 − f̃kn‖2L2 for each i .

Let {Ĩi}
i=0 be the partition of [0, 1) by J(f̃kn)∪ {τ1, . . . , τkn−1}. Then � ≤ 2kn.
Fix εn > 0 such that εn/2 is smaller than the smallest jump size of f̃kn and

εn ≤ Lk
−γ−1/2
n . Define a step function f̆kn : [0, 1) → R as

f̆kn(x) = f̃kn(x) + (−1)iεn for x ∈ Ĩi .

Then J(f̆kn) = J(f̃kn) ∪ {τ1, . . . , τkn−1} and

‖f0 − f̆kn‖Lq ≤ ‖f0 − f̃kn‖Lq + ‖f̃kn − f̆kn‖Lq ≤ 2Lk−γ
n , and

‖(f0 − f̆kn)1Ĩi
‖L2 ≤ ‖(f0 − f̃kn)1Ĩi

‖L2 + ‖(f̃kn − f̆kn)1Ĩi
‖L2 ≤ 2Lk−γ−1/2

n ,

for every i = 0, . . . , �. Moving each change-point of f̆kn to the closest point
in {0, 1/n, . . . , (n− 1)/n} but leaving the heights of segments unchanged, we

obtain a step function fkn such that #J(fkn) ≤ #J(f̆kn) ≤ 2kn and

‖f0 − fkn‖Lq ≤ ‖f0 − f̆kn‖Lq + ‖f̆kn − fkn‖Lq ≤ 2Lk−γ
n + 4L

(
kn
n

)1/q

.

Note that ‖fkn‖L∞ = ‖f̆kn‖∞ ≤ L+ εn ≤ 2L. Then

‖(f0 − fkn)1I‖L2 ≤ ‖(f0 − f̆kn)1I‖L2 + ‖(f̆kn − fkn)1I‖L2

≤ 2Lk−γ−1/2
n + 3Ln−1/2 + 4Ln−1/2

= 2Lk−γ−1/2
n + 7Ln−1/2

for every segment I of fkn . Thus, for sufficiently large n

TI(y
n; fkn)

≤ max
I∈I

fkn≡cI on I

1√
n|I|

∣∣ ∑
i/n∈I

(f̄n
i − cI)

∣∣+max
I∈I

1√
n|I|

∣∣ ∑
i/n∈I

(yni − f̄n
i )
∣∣− sI

≤ max
I∈I

fkn≡cI on I

√
n

|I|

∫
I

|f0(t)− fkn(t)|dt+ a0
√
log n

≤ max
I∈I

fkn≡cI on I

√
n‖(f0 − fkn)1I‖L2 + a0

√
logn

≤ 2n1/2k−γ−1/2
n L+ 7L+ a0

√
logn ≤ η = a

√
logn.



Multiscale change-point segmentation 3287

That is, fkn lies in the constraint of (4). Thus, #J(f̂n) ≤ #J(fkn) ≤ 2kn. Then,
with the same argument as in the proof of Theorem 1 for (17), we obtain

‖f̂n − fkn‖rLp ≤ 2r(1+1/p)

(
(2kn + 1)c

n

)r/2∧ r/p (
4(a+ δ)2logn

)r/2
.

Then, as n → ∞

‖f̂n − f0‖rLp ≤ 2(r−1)+
(
‖f̂n − fkn‖rLp + ‖fkn − f0‖rLp

)
≤ O

(
(log n)r/2

(
n−1kn

)r/p∧ r/2
)

= O
(
(log n)

γ+(1/2−1/p)+
2γ+1 n− 2γ

2γ+1 (1/2∧ 1/p)

)
. (21)

b) Rates of convergence. As in (18), we have

P {Gc
n} ≤ P

⎧⎨
⎩max

I∈I

1√
n|I|

∣∣∣ ∑
i/n∈I

ξni

∣∣∣ > (a0 − δ)
√

logn

⎫⎬
⎭

≤ 2 exp

(
− (a0 − δ)2 logn

2σ2

)
n2

2

= n− (a0−δ)2

2σ2 +2 = n−r0 ≤ n−r .

This together with (21) implies the rate of almost sure convergence.
As in part (i) c) of the proof of Theorem 1, we drive from (21) that

E

[
‖f̂n − f0‖rLp

]
=E

[
‖f̂n − f0‖rLp ;Gn

]
+ E

[
‖f̂n − f0‖rLp ;Gc

n

]
≤E

[
‖f̂n − f0‖rLp ;Gn

]
+ 2r/pnr/2

P {Gc
n}

+

∫ ∞

2np/2

P

{
‖f̂n − f0‖pLp ≥ u

} r

p
ur/p−1du

≤O
(
(logn)

γ+(1/2−1/p)+
2γ+1 n− 2γ

2γ+1 (1/2∧ 1/p)
)
+O

(
n−r/2

)
=O

(
(logn)

γ+(1/2−1/p)+
2γ+1 n− 2γ

2γ+1 (1/2∧ 1/p)
)
,

as n → ∞, which shows the rate of convergence in expectation.

A.3. Feature detection

The proofs of Theorems 3 and 4 rely on the following lemma.

Lemma 1. Under model (1) with the truth f0 ∈ D, let f̂n be an MCPS method
in Definition 2 with interval system I, and Jn be an arbitrary collection of
(possibly random) intervals.
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(i) If f0 ∈ Aγ
2,L for some finite γ, L > 0, then

lim
n→∞

P

{
max

{
|I|1/2|mI(f̂n)−mI(f0)| : I ∈ Jn

}
≤C

( log n
n

)γ/(2γ+1)
}

= 1,

where C is a constant independent of f0.
(ii) If Jn ⊆ I, and on each I ∈ Jn we have f̂n is constant, then

P

{
|I|1/2|mI(f̂n)−mI(f0)| ≤

2(η + sI)

n1/2
for all I ∈ Jn

}
≥ P {TI(ξ

n; 0) ≤ η} ,

where the right hand side converges to 1 as n → ∞.

Proof. Part (i): Note that for each I ∈ Jn,

|I|1/2|mI(f̂n)−mI(f0)| ≤
1

|I|1/2
∫
I

|f̂n(x)− f0(x)|dx

≤ 1

|I|1/2
|I|1/2

(∫
I

|f̂n(x)− f0(x)|2
)1/2

≤ ‖f̂n − f0‖L2 .

Then, the assertion follows from Theorem 2.

Part (ii): Assume TI(ξ
n; 0) ≤ η. Recall f̄n

i in (1). Then,

TI

(
yn;

n−1∑
i=0

f̄n
i 1[i/n,(i+1)/n)

)
≤ η.

Since TI(y
n; f̂n) ≤ η by definition, we obtain for either g = f0 or g = f̂n

|I|1/2
∣∣∣mI(g)−

1

n|I|
∑

j/n∈I

ynj

∣∣∣ ≤ sI + η for any I ∈ Jn ⊆ I .

Then, by a triangular inequality, |I|1/2
∣∣mI(f̂n)−mI(f0)

∣∣ ≤ 2(sI +η). It implies

{TI(ξ
n; 0) ≤ η} ⊆

{
|I|1/2|mI(f̂n)−mI(f0)| ≤

2(η + sI)

n1/2
for all I ∈ Jn

}
,

which shows the assertion. By (18), it holds that limn→∞ P {TI(ξ
n; 0)} = 1.

Proof of Theorem 3. Part (i): We consider only the case of modes, since the
case of troughs follows if we replace f0 by −f0. By definition of modes and the
right continuity of f0, we can select Jn as a fixed collection of intervals that
capture the modes of f0. That is, Jn := {I0, I1, . . . , I2k} with k = #mode(f0)
such that I0 < I1 < · · · < I2k and mI2i−1(f0) > mI2i−2(f0) ∨mI2i(f0) for each
i = 1, . . . , k. By Lemma 1 (i), we have

P

{
max

{
|I|1/2|mI(f̂n)−mI(f)| : I ∈ Jn

}
→ 0

}
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≥ lim sup
n→∞

P

{
max

{
|I|1/2|mI(f̂n)−mI(f)| : I ∈ Jn

}
≤ C

( logn
n

)γ/(2γ+1)
}

= 1.

It implies mI2i−1(f̂n) > mI2i−2(f̂n)∨mI2i(f̂n), i = 1, . . . , k, for sufficiently large
n, which shows the assertion.

Part (ii): Now we set Jn :=
{
[x, x+ λε

n), [x− λε
n, x) : x ∈ Jε(f0)

}
with

λε
n := min

{
d
(
J(f̂n), Jε(f0)

)
, δn

}
for some positive δn → 0 arbitrarily slow. For x ∈ Jε(f0), note that f̂n is constant

on [x − λε
n, x + λε

n), since d
(
J(f̂n), Jε(f0)

)
≥ λε

n. This in particular implies

m[x−λε
n,x)

(f̂n) = m[x,x+λε
n)
(f̂n). Moreover, as λε

n → 0, from the definition of
Δε

f0
and f0 ∈ D it follows for sufficiently large n

∣∣m[x−λε
n,x)

(f0)−m[x,x+λε
n)
(f0)

∣∣ ≥ 1

2
Δε

f0 for all x ∈ Jε(f0). (22)

We claim that for each x ∈ Jε(f0) there exists Ix = [x, x+λε
n) or [x−λε

n, x) such

that |mIx(f0) −mIx(f̂n)| ≥ Δε
f0
/4. Otherwise, if |mIx(f0) −mIx(f̂n)| < Δε

f0
/4

holds for both Ix = [x, x+ λε
n) and [x− λε

n, x), then it leads to∣∣m[x−λε
n,x)

(f0)−m[x,x+λε
n)
(f0)

∣∣ < Δε
f0/2 ,

which contradicts with (22). Thus, by Lemma 1 (i), it holds, as n → ∞,

P

{
Δε

f0

4
≤|mIx(f0)−mIx(f̂n)|≤

C√
λε
n

( logn
n

)γ/(2γ+1)

for all x ∈ Jε(f0)

}
→ 1.

It implies λε
n ≤ 16C2(Δε

f0
)−2(logn/n)2γ/(2γ+1) almost surely, as n → ∞. By

letting δn → 0 slower than (logn/n)2γ/(2γ+1), we obtain

lim
n→∞

P

{
d
(
J(f̂n), Jε(f0)

)
≤ 16C2

(Δε
f0
)2

( logn
n

)2γ/(2γ+1)
}

= 1,

and then limn→∞ P
{
#J(f̂n) ≥ #Jε(f0)

}
= 1. Thus, the assertion holds.

Proof of Theorem 4. By Lemma 1 (ii), we have

P

{
|Ii|1/2|mIi(f̂n)−mIi(f0)| ≤

2(η + sIi)

n1/2
for i = 1, 2

}
≥ P {TI(ξ

n; 0) ≤ η(β)} ≥ 1− β.

Note that |Ii|1/2|mIi(f̂n)−mIi(f0)| ≤
2(η+sIi )

n1/2 for i = 1, 2 and (12) imply

mI1(f0)−mI2(f0)
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≥ mI1(f̂n)−mI2(f̂n)−
2∑

i=1

|mIi(f̂n)−mIi(f0)|

>
2
(
η(β) + sI1

)
√
n|I1|

+
2
(
η(β) + sI2

)
√
n|I2|

−
2∑

i=1

|mIi(f̂n)−mIi(f0)| ≥ 0.

This concludes the proof.

Remark 11. From the proof above, one can easily see that if mI1(f̂n) −
mI2(f̂n) > rI1 + rI2 + θ for some θ ∈ R, then it holds with probability ≥ 1− β
that mI1(f0)−mI2(f0) > θ.

A.4. Proof of Theorem 5

For simplicity, we assume that the noises ξni have homogeneous variance σ2
0 ,

since for the general case it is obvious to modify the following proof accordingly.
For every τ ≡ (τ0, τ1, . . . , τk) ∈ Πn, we define #τ := k, and by elementary
calculation obtain

E[‖f̂τ,n − f0‖2L2 ] = ‖sτ − f0‖2L2 +
#τ

n
σ2
0

where sτ is the best L2-approximant of f with change-points specified by τ .
Define τ∗ ≡ τ∗(n) ∈ Πn such that E[‖f̂τ∗,n− f0‖2L2 ] = minτ∈Πn E[‖f̂τ,n− f0‖2L2 ].
Now we claim that there exists a constant C satisfying

‖sτ∗ − f0‖2L2 ≤ C
#τ∗
n

σ2
0 for sufficiently large n. (23)

To prove the claim (23), we, anticipating contradiction, assume that

lim sup
n→∞

n‖sτ∗ − f0‖2L2

#τ∗σ2
0

= ∞.

One can choose m ≡ m(n) such that lim supn→∞ n‖sτ∗ − f0‖2L2(m#τ∗σ
2
0)

−1 =
∞, and limn→∞ m = ∞. Define υ∗ as ‖sυ∗ − f0‖L2 = minυ∈Uτ∗,m‖sυ − f0‖L2

with

Uτ∗,m :=
{
υ ∈ Πn : υ ≡ (0, υ1

1 , . . . , υ
1
m ≡ τ1∗ , . . . , υ

k
1 , . . . , υ

k
m ≡ τk∗ )

}
,

where τ∗ ≡ (0, τ1∗ , . . . , τ
k
∗ ). It follows from m → ∞ and f0 ∈ Aγ

2 ∩ L∞ for some
γ that ‖sυ∗ − f0‖L2/‖sτ∗ − f0‖L2 → 0. Then we obtain

lim sup
n→∞

E[‖f̂τ∗,n − f0‖2L2 ]

E[‖f̂υ∗,n − f0‖2L2 ]
≥ lim sup

n→∞

‖sτ∗ − f0‖2L2

‖sυ∗ − f0‖2L2 +m#τ∗σ2
0/n

= ∞,

which contradicts the definition of τ∗.
Denote L := ‖f0‖L∞ . Similar to part a) in the proof of Theorem 2, one can

construct a step function s̃τ∗ , by adding another #τ∗ change-points to sτ∗ and
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later shifting all the change-points to the grid points i/n, such that #J(s̃τ∗) ≤
2(#τ∗− 1), ‖s̃τ∗ − f0‖2L2 ≤ 2‖sτ∗ − f0‖2L2 +2n−1#τ∗L

2, and ‖(s̃τ∗ − f0)1I‖2L2 ≤
2(#τ∗)

−1‖sτ∗ − f0‖2L2 + 2n−1L2 for each segment I of s̃τ∗ .
Assume now the “good noise” case, namely, event Gn in (20) holds true. Then

we have for sufficiently large n,

TI(y
n; s̃τ∗)

≤ max
I∈I

s̃τ∗≡cI on I

1√
n|I|

∣∣ ∑
i/n∈I

(f̄n
i − cI)

∣∣+max
I∈I

1√
n|I|

∣∣ ∑
i/n∈I

(yni − f̄n
i )
∣∣− sI

≤ max
I∈I

s̃τ∗≡cI on I

√
n‖(f0 − s̃τ∗)1I‖L2 + a0

√
log n

≤
√
2n(#τ∗)−1‖sτ∗ − f0‖2L2 + 2L2 + a0

√
logn

≤
√
2Cσ2

0 + 2L2 + a0
√

logn ≤ a
√
logn,

where C is the constant in (23), and f̄n
i in (1). Again following similar lines of

part a) in the proof of Theorem 2, one can obtain

‖f̂n − s̃τ∗‖2L2 ≤ 32(a+ δ)2c logn
#τ∗
n

(1 + o(1)).

It further follows that

‖f̂n − f0‖2L2 ≤ 2‖f0 − s̃τ∗‖2L2 + 2‖f̂n − s̃τ∗‖2L2

≤ 4‖sτ∗ − f0‖2L2 + 4L2 τ∗
n

+ 64(a+ δ)2c logn
#τ∗
n

(1 + o(1)).

Thus, under event Gn, we obtain for large enough n

‖f̂n − f0‖2L2 ≤ C̃ logn
(
‖sτ∗ − f0‖2L2 +

#τ∗
n

σ2
0

)
≤ C̃ log nE[‖f̂τ∗,n − f0‖2L2 ],

where C̃ is a constant independent of f0.
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Harchaoui, Z. and Lévy-Leduc, C. (2010). Multiple change-point estima-
tion with a total variation penalty. J. Amer. Statist. Assoc. 105 1480–1493.
MR2796565
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