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Abstract: We consider the problem of estimating an expected outcome
from a stochastic simulation model. Our goal is to develop a theoretical
framework on importance sampling for such estimation. By investigating
the variance of an importance sampling estimator, we propose a two-stage
procedure that involves a regression stage and a sampling stage to construct
the final estimator. We introduce a parametric and a nonparametric regres-
sion estimator in the first stage and study how the allocation between the
two stages affects the performance of the final estimator. We analyze the
variance reduction rates and derive oracle properties of both methods. We
evaluate the empirical performances of the methods using two numerical
examples and a case study on wind turbine reliability evaluation.
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1. Introduction

The 2011 Fisher lecture (Wu, 2015) features the landscape change in engineer-
ing, where computer simulation experiments are replacing physical experiments
thanks to the advance of modeling and computing technologies. An insight from
the lecture highlights that traditional principles for physical experiments do not
necessarily apply to virtual experiments on a computer. The virtual environ-
ment calls for new modeling and analysis frameworks distinguished from those
developed under the constraint of physical environment. In this context, this
study considers a new problem that emerged along with the recent development
of stochastic simulation-based engineering.

A concrete motivating problem of this study is estimating a system failure
probability based on stochastic simulations (although our methods are more
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generally applicable to the estimation of any expected outcome, as detailed
in the next section). A system configuration, X, is randomly sampled from a
known density p and passed on to a stochastic simulation model. The simulation
model, regarded as a stochastic black-box, produces V that follows an unknown
distribution depending on X. When V is greater than a threshold, say ξ, the
system fails. Thus, the goal is to estimate the probability P (V ≥ ξ) when X
is from the density p. Specifically, our case study uses the simulation model
that is designed to mimic the real system accurately. Thus, it takes roughly
1-min wall-clock time to simulate 10-min real operation of the system on a
computer commonly available nowadays. The engineering goal is estimating the
probability of system failure during 50-year operation, which is computationally
challenging even with U.S. national labs’ supercomputers (Manuel et al., 2013;
Graf et al., 2016).

Such computational challenges are commonly observed in engineering simu-
lations. Finite element simulations, which are used widely in various engineering
applications, can take hours of computing time to obtain a single data point (e.g.,
Qian et al., 2006). Despite the computational expense, highly accurate simula-
tions are cost-effective alternatives to physical experiments and used widely in
industry (e.g., Ford Motor Company’s crash simulation (Wang and Shan, 2007))
and in government (e.g., NASA’s rocket booster simulation (Gramacy and Lee,
2012)).

The overarching goal of this study is to propose a framework on analyzing
the problem of minimizing the necessary computational burden while maintain-
ing the same level of estimation accuracy. A flip-side of the same problem is
minimizing the estimation variance given fixed computational resource. Vari-
ance reduction techniques (VRTs) in the simulation literature aim to reduce
the variance of estimator in simulation experiments. Traditional VRTs are well
studied for the simulation model that outputs V given X in a deterministic fash-
ion, also known as the deterministic simulation model (see Chapter 9 of Kroese
et al. (2011) for survey of such VRTs), when the input X is sampled from a
known distribution. For stochastic simulation models, if their underlying pro-
cesses have known properties (e.g., Markovian), Glynn and Iglehart (1989) and
Heidelberger (1995) provide VRTs. For black-box stochastic simulation mod-
els, few studies (e.g., Choe et al., 2015; Graf et al., 2017) consider VRTs. The
research on VRTs for block-box stochastic simulations is still underdeveloped
despite the rapid growth of such simulations being used in real systems, for ex-
ample, chemical systems (Gillespie, 2001), biological systems (Henderson et al.,
2012), and engineering systems (Ankenman et al., 2010; Picheny et al., 2013;
Plumlee and Tuo, 2014).

Among VRTs, importance sampling (Kahn and Marshall, 1953) is known to
be one of the most effective methods and has been used widely in various ap-
plications such as communication systems (Heidelberger, 1995; Bucklew, 2004),
finance (Owen and Zhou, 2000; Glasserman and Li, 2005), insurance (Blanchet
and Lam, 2011), and reliability engineering (Au and Beck, 1999; Lawrence et al.,
2013; Choe et al., 2016) to name a few.

In the vast majority of literature, importance sampling takes a parametric
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form tailored to a problem at hand for both deterministic simulation model (e.g.
Lawrence et al., 2013) and stochastic counterpart (Choe et al., 2015). Nonpara-
metric approaches are also proposed for deterministic simulation models (Zhang,
1996; Neddermeyer, 2009). To the best of our knowledge, no nonparametric ap-
proach is developed for stochastic simulation models. This study particularly
considers the black-box stochastic simulation model whose output takes an un-
known stochastic relationship with the input.

In this paper, we focus on the theoretical aspects of importance sampling
with stochastic simulation models. We design two-stage sampling methods that
may perform as good as the best sampling method (also known as the oracle
property). The main contributions of this paper to the existing body of literature
are as follows:

• We introduce an importance sampling approach to estimate the expec-
tation of black-box stochastic simulation output and study the optimal
importance sampler (Section 2).

• We design a two-stage procedure that uses a parametric or a nonparamet-
ric regression estimator to approximate the optimal importance sampler
(Figure 1 and 2).

• We analyze the allocation of the resources in both stages (Theorem 3 and
7) and study the convergence of the two-stage procedure toward the oracle
importance sampler (Corollary 4 and 8).

• We conduct an extensive numerical study to evaluate empirical perfor-
mances of the two-stage importance samplers (Section 4.2.1 and 4.2.2).

• We apply our methods to a case study on wind turbine reliability evalua-
tion (Section 4.3) to validate our results.

This paper is organized as follows. In Section 2 we formulate the stochastic
simulation-based estimation problem and introduce a two-stage procedure to
estimate the expected simluation output. In Section 3 we study the theoretical
performance of the proposed procedure and derive the corresponding oracle
properties. In Section 4 we evaluate the empirical performance of our approach
using two numerical examples and a wind turbine simulator. We discuss our
result in Section 5.

2. Importance sampling for the stochastic simulation model

A stochastic simulation model takes an input configuration value and then re-
turns a random number representing the outcome of this simulation result. The
input configuration determines the distribution of the (random) outcome. Thus,
the outcome of a stochastic simulation model can be represented by a random
variable V conditioned on the input configuration x and the CDF of V is

FV |config=x(v|x) = P (V ≤ v|config = x),

where config = x denotes choosing the configuration to be x. For simplicity, we
denotes the random variable V conditioned on config = x as V (x).
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In many scientific or engineering problems (e.g., Heidelberger, 1995; Au and
Beck, 2003; Bucklew, 2004; Graf et al., 2017), we assume the nature generates
the configuration from a known density p and we are interested in evaluating
the quantity

E = E(g(V (X))) =

∫
E(g(V )|config = x)p(x)dx, (1)

where g is a known function.

Example 1. A common example for equation (1) is the case when g(v) = v,
often considered in the literature on two-level nested simulation (Sun et al.,
2011), where the outer level generates a scenario (or configuration) according to
a known density p and conditioning on the scenario, the inner level simulates a
random outcome whose mean is of interest. Applications include decision theory
(Brennan et al., 2007), financial engineering (Staum, 2009), and queuing system
(Sun et al., 2011).

Example 2. Another example takes g(v) = 1(v ∈ Sξ) for some set Sξ param-
etrized by ξ. Specifically, Choe et al. (2015) considers a reliability evaluation
problem where V stands for an instability measurement of a system that fails
when V falls into Sξ = [ξ,∞). The goal is to estimate the failure probability
when the system is exposed to the nature. In the natural environment, the
configuration behaves like a random variable from a density p.

To estimate E , we can choose several configurations x1, · · · , xn and then run
the simulation to obtain realizations v1 = V (x1), · · · , vn = V (xn). However,
generating V from a given configuration x is often computationally expensive
for stochastic simulation models. Therefore, we would like to run the simulation
as few as possible. To put this constraint into consideration, we assume that
we run the simulation only n times but we are able to choose the configuration
for each simulation. We choose n configurations and evaluate the corresponding
value of V . Namely, we only have pairs (x1, V1), · · · , (xn, Vn), where each Vi is
a realization of the random variable V (xi). Such a constraint on the number of
simulations, n, is sometimes called a computational budget.

Under such situation, a natural question is: How do we choose the configura-
tions x1, · · · , xn? Here we use the idea from importance sampling – we choose
x1, · · · , xn from a density function q. In other words, we first sample X1, · · · , Xn

from q and then use xi = Xi as the configuration to run the i-th stochastic sim-
ulation. The density q is called sampling density. Note that each configuration
does not necessarily have to be from the same density function.

When we generateX1, · · · , Xn from q and then obtain V1, · · · , Vn accordingly,
a simple estimator of E is

Êq =
1

n

n∑
i=1

g(Vi)
p(Xi)

q(Xi)
. (2)

It is easy to see that Êq is an unbiased estimator under the assumption that



3390 Y.-C. Chen and Y. Choe

q(x) = 0 implies g(V (x))p(x) = 0 for all x, i.e.,

E

(
Êq
)
= E

when the support of q covers the support of g(V (x))p(x). We call this type of
estimator an importance sampling estimator. Throughout this paper, we will
focus on importance sampling estimators.

Using an importance sampling estimator (2), a key problem we want to ad-
dress is: what will be the optimal sampling density q∗ that minimizes the es-
timation error? Because the estimator (2) is unbiased, we only need to find
the minimal variance estimator. Thus, the above question is equivalent to: what
will be the optimal sampling density q∗ that minimizes the variance of Êq? The
following lemma provides an answer to the above questions:

Lemma 1. Assume X1, · · · , Xn are IID from a density function q. Let r†(x) =

E(g(V (X))|X = x) and r(x) = E(g2(V (X))|X = x). Then variance of Êq equals
to

Var
(
Êq
)
=

1

n

(
EXi∼q

(
r(Xi)

p2(Xi)

q2(Xi)

)
− E

2(r†(X∗))

)
≥ 1

n

(
E
2
(√

r(X∗)
)
− E

2(r†(X∗))
)

≡ 1

n
Vmin (3)

where X∗ is a random variable from the density p. The equality holds when we
choose q to be q(x) = q∗(x) ∝

√
E(g2(V (X))|X = x) ·p(x). Namely, the optimal

sampling density is q∗(x).

We call the quantity Vmin the oracle variance of the importance sampling.
It is the minimal variance that an importance sampler can achieve. A widely
studied special case in engineering is the deterministic simulation model where
Var(V |X = x) = 0 for all x, which implies Vmin = 0 for any nonnegative function
g(v) (e.g., Kahn and Marshall, 1953; Au and Beck, 1999; Kroese et al., 2011).
The density that leads to the oracle variance, q∗, is called the optimal sampling
density. This density is a modification from the natural configuration density p;
q∗ puts more weight on the regions with higher r(x) (e.g., higher probability of
system failure). As long as r and r† are uniformly bounded within the support
of p, the variance is finite.

However, we cannot directly generate configurations from q∗ because it in-
volves the unknown quantity r(x) = E(g2(V (X))|X = x). A remedy to this
problem is to apply a two-stage sampling. In the first stage, we generate part of
configurations and evaluate the corresponding values of V (x). Using the sample
in the first stage, we obtain a pilot estimator r̂ of r. In the second stage, we
generate configurations based on an estimate of q∗ using the pilot estimator r̂
and use the remaining computational budget to evaluate values of V (x). Finally,
we use samples from both stages to form the final estimator of E .
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Here is a useful insight in estimating r(x). Let Y be a random variable such
that Y = g2(V (X)). Then r(x) = E(g2(V (X))|X = x) = E(Y |X = x). Thus,
estimating r(x) is equivalent to estimating the regression function with the
observations (X1, Y1 = g2(V1)), · · · , (Xn, Yn = g2(Vn)) assuming we have n
observations.

Thus the two-stage procedure can be summarized as follows. We first generate
a size m sample

(X1, V1), · · · , (Xm, Vm)

where Xi, i = 1, · · · ,m, are from an initial sampling density q0. Then we trans-
form Vi into Yi = g2(Vi), which leads to a sample

(X1, Y1), · · · , (Xm, Ym).

Now we estimate the regression function r(x) by a regression estimator r̂(x)
and compute the corresponding estimator q̂∗ of the oracle sampling density q∗.
Finally, we generate the remaining data points

(Xm+1, Vm+1), · · · , (Xn, Vn)

from q̂∗ and pool both samples together to form the final estimator of the
quantity E . Because q̂∗ will tend to be closer to q∗ compared to the initial
sampling density q0, estimating E using the sample in the second stage is more
efficient (lower variance).

The sample size m in the first stage is a crucial quantity in our analysis.
The quantity m is called the allocation. When m is too small, the estimator of
q∗ is inaccurate, so that the overall estimation efficiency is suboptimal. When
m is too large, we only have a small budget for the second stage so that the
overall estimation efficiency is low as well. As a result, to balance the estimation
accuracy of q∗ and the size of efficient sample in the second stage, there will be
an optimal value of m depending on the total sample size n. In what follows
we propose two different models to estimate r and q∗ and analyze the optimal
value of the allocation m.

2.1. Parametric importance sampling

As in the regression analysis, a straightforward approach of estimating the re-
gression function is to assume a parametric model and estimate the correspond-
ing parameters. Namely, we assume r(x) = rθ(x) for some θ ∈ Θ and use the
first part of the sample to estimate θ.

To estimate rθ(x), we use a classical approach – the least square method :

θ̂m = argminθ∈Θ

m∑
i=1

‖Yi − rθ(Xi)‖2. (4)

Then the estimator r̂(x) = rθ̂m(x). Note that one can also assume a parametric
form for the distribution of Yi|Xi and then use a maximum likelihood estimator.
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Parametric Importance Sampling

(S1) We choose an initial sampling density q0 and generate the first part of
the sample (X1, V1), · · · , (Xm, Vm).

(S2) Transform (X1, V1), · · · , (Xm, Vm) into (X1, Y1), · · · , (Xm, Ym) using
Yi = g2(Vi).

(S3) Use the least square method (4) to obtain θ̂m and the estimator r
θ̂m

(x).

(S4) We then change the sampling density to q∗
θ̂m

and generate the remaining

sample
(Xm+1, Vm+1), · · · , (Xn, Vn),

where
q∗
θ̂m

(x) ∝
√

r
θ̂m

(x) · p(x).

(S5) The final estimator is

Ê
θ̂m

=
1

n

⎛⎝ m∑
i=1

g(Vi)
p(Xi)

q0(Xi)
+

n∑
i=m+1

g(Vi)
p(Xi)

q∗
θ̂m

(Xi)

⎞⎠ . (5)

Fig 1. Parametric importance sampling for the stochastic simulation model.

Using the estimator θ̂m, we can then estimate the regression function rθ̂m and
construct the estimated optimal sampling density

q∗
θ̂m

(x) ∝
√

rθ̂m(x) · p(x).

For the remaining (n−m) data points, we generate the configurations from q∗
θ̂m

,

run the simulation, and estimate E accordingly.
We summarize our Parametric Importance Sampling method in Figure 1.

Later in Section 3.1 we will derive the variance of this approach and show that
the optimal allocation is to choose m = O(n

2
3 ).

2.2. Nonparametric importance sampling

Now we consider estimating r(x) nonparametrically. For simplicity, we use the
kernel regression (Nadaraya, 1964; Watson, 1964). Note that other nonparamet-
ric regression approach, such as the local polynomial regression (Wasserman,
2006), also works. The kernel regression uses the estimator

r̂h(x) =

∑m
i=1 YiK

(
x−Xi

h

)∑m
i=1 K

(
x−Xi

h

) , (6)

whereK is a smooth function (known as the kernel function) such as a Gaussian,
and h > 0 is the smoothing bandwidth. Similar to the parametric approach, we
then use this estimator to construct an estimated optimal sampling density

q̂∗h(x) ∝
√

r̂h(x) · p(x),
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Nonparametric Importance Sampling

(S1) We choose an initial sampling density q0 and generate the first part of
the sample (X1, V1), · · · , (Xm, Vm).

(S2) Transform (X1, V1), · · · , (Xm, Vm) into (X1, Y1), · · · , (Xm, Ym) using
Yi = g2(Vi).

(S3) Based on (X1, V1), · · · , (Xm, Vm), use the nonparametric regression to
obtain the estimator r̂h and q̂∗h.

(S4) We then change the sampling density to q̂∗h to generate the remaining
sample

(Xm+1, Vm+1), · · · , (Xn, Vn),

where
q̂∗h(x) ∝

√
r̂h(x) · p(x).

(S5) The final estimator is

Êh =
1

n

⎛⎝ m∑
i=1

g(Vi)
p(Xi)

q0(Xi)
+

n∑
i=m+1

g(Vi)
p(Xi)

q̂∗h(Xi)

⎞⎠ . (7)

Fig 2. Nonparametric importance sampling for the stochastic simulation model.

generate the remaining data points from it, and construct the final estimator
using the procedure described previously.

Figure 2 summarizes the procedure of nonparametric importance sampling.
There are two tuning parameters we need to select: the smoothing bandwidth
h and the allocation size m. The smoothing bandwidth can be chosen by either
cross-validation or a reference rule. In Section 3.3, we will derive the optimal rate

for the smoothing bandwidth h = O

((
logm
m

) 1
d+4

)
and the optimal allocation

rate m = O

((
n

logn

) d+4
d+6

)
.

Remark. We may rewrite Êh = Ê1 + Ê2, where Ê1 =
∑m

i=1 g(Vi)
p(Xi)

q0(Xi)

n and Ê2 =∑n
i=m+1 g(Vi)

p(Xi)

q̂∗
h
(Xi)

n are the estimator constructed from the two samples. If we

know the variance of Ê1 and Ê2, then we can further reduce the variance of the
final estimator by doing a weighted combination Êα

h = αÊ1 + (1 − α)Ê2, with
α = Var(Ê2)

Var(Ê1)+Var(Ê2)
. One can easily show that Var(Êα

h ) < Var(Êh) an E(Êα
h ) = E

so Êα
h is a better estimator.

3. Theoretical analysis

Throughout our analysis, we assume that the natural configuration density p
has a compact support K ⊂ R

d and the support of the initial sampling density
q0 contains K.
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3.1. Parametric importance sampling

Assumptions.

(P1) There exists an unique θ0 ∈ Θ such that r(x) = rθ0(x) and supx∈K
Var(Y1−

rθ0(X1)|X1 = x) ≤ σ2
max < ∞. The support of rθ(x) contains the support

of p(x) for every θ ∈ Θ and r(x) > 0 for all x ∈ K. Also, the PDF q0(x)
exists and has non-zero variance.

(P2) Let �(θ) = E‖Y1 − rθ(X1)‖2. The Hessian matrix H(θ) = ∇θ∇θ�(θ) is
positive definite at θ ∈ B(θ0, R0) for some R0 < ∞ and θ0 is the one in
(P1). Note that B(x, r) is a ball centered at x with radius r.

(P3) There exists a positive L0 < ∞ such that for any θ1, θ2 ∈ B(θ0, R0),

sup
x∈K

|rθ1(x)− rθ2(x)| ≤ L0 · ‖θ1 − θ2‖,

where θ0, R0 are defined in (P2).

(P1) means that the model is correctly specified – the regression function
can be parametrized in the parametric model we consider. (P2) is a common as-
sumption in the M-estimation theory (van der Vaart and Wellner, 1996; van der
Vaart, 2000) to derive the convergence rate. The extra assumption (P3) is a
mild assumption that converts the convergence rate of parameter estimation to
the convergence rate of function estimation. As long as rθ(x) is smooth within
an open set around θ0, (P3) holds.

The following theorem describes the estimation error when the parametric
family contains the true regression function.

Theorem 2. Assume (P1–3). The error rate for the estimator rθ̂m(x) is

sup
x∈K

‖rθ̂m(x)− r(x)‖ = OP

(√
1

m

)
.

Theorem 2 presents the error rate for estimating r(x) when the model is
correct. Based on this error rate, we can further derive the variance of the
parametric importance sampler in Figure 1.

Theorem 3. Assume (P1–3). Let Vq0 = EXi∼q0

(
r(Xi)

p2(Xi)
q20(Xi)

)
−E

2
(√

r(X∗)
)

be the excess variance from using q0 compared to q∗. The variance of the esti-
mator Êθ̂m is

Var
(
Êθ̂m
)
=

1

n
Vmin +

1

n2

(
m · Vq0 + (n−m) ·O

(√
1

m

))
.

Theorem 3 has three components. The first component Vmin is the oracle
variance we have mentioned previously. It is the minimal variance that can be
achieved by an importance sampling estimator. The second component 1

n2 ·m·Vq0

is the excess variance due to the initial sampling density. The third component
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1
n2 · (n−m) · O

(√
1
m

)
is the excess variance due to the error of the estimator

rθ̂m(x).
By optimizing m with respect to the second and third components, we obtain

the optimal rate of m as a function of sample size n:

m · Vq0 = (n−m) ·O
(√

1

m

)
=⇒ m

3
2 
 n

=⇒ m 
 n
2
3 ,

where the notation 
 means that the two quantities will be of the same order,
i.e., an 
 bn ⇔ limn→∞

an

bn
∈ (0,∞). Thus, the optimal allocation is to choose

m 
 n
2
3 , which leads to the following:

Corollary 4. Assume (P1–3). When m 
 n
2
3 , the variance of the estimator

Êθ̂m is

Var
(
Êθ̂m
)
=

1

n
Vmin

(
1 +O

(
n− 1

3

))
.

That is, if the model is correctly specified, the excess variance shrinks at rate

O
(
n− 1

3

)
under the optimal allocation.

Note that if we add conditions so that

q∗
θ̂m

(x)− q∗(x)

p(x)
= (θ̂m − θ∗) · C(x) + oP (‖θ̂m − θ∗‖2)

for some uniformly bounded function C(x), the variance in Theorem 3 can be
improved in the sense that the final term will be (n−m)O

(
1
m

)
, which leads to

the optimal allocation m 
 n
1
2 . This allocation rate is similar to Li et al. (2013)

although we are considering different scenarios. Li et al. (2013) considers mixture
importance sampling for a deterministic (as opposed to stochastic) simulation
model and study the optimal allocation, where the optimal mixing weight (of
each component) is unknown and has to be estimated using a pilot sample. In
our case, the parametric model is to approximate the regression function implied
by a stochastic simulation model.

The key assumption of the parametric method is (P1): the actual r(x) belongs
to the parametric family. However, if this assumption is violated, then the excess
variance in the parametric method will never shrink to 0.

Theorem 5. Assume (P2–3). If r(x) �= rθ(x) for all θ ∈ Θ, the variance of the
parametric estimator

Var
(
Êθ̂m
)
≥ 1

n
Vmin +

1

n
Vθ∗

where

Vθ∗ = inf
θ∈Θ

E

(
r(Xθ)

p2(Xθ)

q2θ(Xθ)

)
− E

2
(√

r(X∗)
)
> 0,
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Xθ ∼ qθ(x) ∝
√

rθ(x) · p(x).

The proof of this theorem is trivial, so we omit it. Theorem 5 proves that
when the model is incorrectly specified, there is an additional variance Vθ∗ that
never disappears. Thus, the variance of the parametric importance sampler will
not converge to the optimal variance. Later we will see that this implies that
the parametric importance sampler does not have the oracle inequalities when
the model is incorrectly specified.

3.2. Nonparametric importance sampling

In this section, we study the properties of the nonparametric importance sampler
in Figure 2. Similarly as the parametric importance sampler, we first derive the
convergence rate of estimating r(x), then derive a variance decomposition for

Var
(
Êh
)
, and finally study the optimal allocation.

Assumptions.

(N1) supx∈K
Var(Y1 − r(X1)|X1 = x) ≤ σ2

max < ∞ and r(x) > 0 for all x ∈ K.
(N2) For all x, the function r(x) has bounded second derivative and q0(x) has

bounded first derivative and supx∈K
q0(x) ≥ qmin > 0.

(K1) The kernel function K(x) is symmetric and∫
K(x)dx = 1,

∫
‖x‖2K(x)dx < ∞,

∫
K2(x)dx < ∞.

(K2) The collection of functions

K =

{
y �→ K

(
x− y

h

)
: x ∈ K, h > 0

}
,

is a VC-type class. i.e. there exists constants A, v and a constant envelope
b0 such that

sup
Q

N(K,L2(Q), b0ε) ≤
(
A

ε

)v

, (8)

where N(T, dT , ε) is the ε-covering number for a semi-metric set T with
metric dT and L2(Q) is the L2 norm with respect to the probability mea-
sure Q.

(N1) and (N2) are common assumptions for nonparametric regression; see,
e.g., Wasserman (2006) and Györfi et al. (2006). (K1) is a standard condition on
kernel function (Wasserman, 2006; Scott, 2015). (K2) regularizes the complexity
of kernel functions so that we have a uniform bound on the stochastic variation.
This assumption was first proposed in Giné and Guillou (2002) and Einmahl
and Mason (2005) and later was used in various studies such as Genovese et al.
(2014); Chen et al. (2015b, 2017).

Based on the above assumptions, the uniform convergence rate of the kernel
estimator r̂h(x) is given by the following.
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Theorem 6. Assume (N1–2), (K1–2). The error rate of the kernel estimator
r̂h(x) is

sup
x∈K

‖r̂h(x)− r(x)‖ = O(h2) +OP

(√
logm

mhd

)
.

The error in Theorem 6 can be decomposed into two parts: the bias partO(h2)

and the stochastic variation OP

(√
logm
mhd

)
(which is related to the variance).

In many nonparametric studies, similar bounds appear for density estimation;
see, e.g., Giné and Guillou (2002); Einmahl and Mason (2005); Genovese et al.
(2014); Chen et al. (2015b, 2016).

By Theorem 6, the optimal bandwidth h∗ 

(

logm
m

) 1
d+4

leads to the optimal

error rate

r̂h∗(x)− r(x) = OP

((
logm

m

) 2
d+4

)
. (9)

Under such an optimal error rate, we again obtain the variance decomposition
for the nonparametric importance sampler.

Theorem 7. Assume (N1–2), (K1–2). Let Vq0 = EXi∼q0

(
r(Xi)

p2(Xi)
q20(Xi)

)
−

E
2
(√

r(X∗)
)
be the excess variance from using q0 compared to q∗. The variance

of the estimator Êh∗ under the optimal smoothing bandwidth is

Var
(
Êh∗

)
=

1

n
Vmin +

1

n2

(
m · Vq0 + (n−m) ·O

((
logm

m

) 2
d+4

))
.

Similar to Theorem 3, the variance in Theorem 7 has three components: the
oracle variance Vmin, the excess variance due to the initial sampling density
1
n2 ·m · Vq0 , and the excess variance from the estimator r̂h∗(x).

To obtain the rate of the optimal allocation, we equate the two excess vari-
ances:

m · Vq0 = (n−m) ·O
((

logm

m

) 2
d+4

)

=⇒ m ·
(

m

logm

) 2
d+4


 n

=⇒ m 

(

n

logn

) d+4
d+6

(ignoring the log log n and multi-logarithm terms).

This choice of m yields the following variance reduction rate.
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Corollary 8. Assume (N1–2), (K1–2). When m 

(

n
logn

) d+4
d+6

, and h∗ 
(
logm
m

) 1
d+4

, the variance of the estimator Êh∗ is

Var
(
Êh∗

)
=

1

n
Vmin +O

(
1

n2
· n · log 2

d+4 n ·
(

n

logn

) d+4
d+6×

−2
d+4

)

=
1

n
Vmin

⎛⎝1 +O

⎛⎝( log(4d+20)/(d+4) n

n

) 2
d+6

⎞⎠⎞⎠
=

1

n
Vmin

⎛⎝1 +O

⎛⎝( log5 n
n

) 2
d+6

⎞⎠⎞⎠
Note that in the last equality in Corollary 8, we use the fact that an =

O(log(4d+20)/(d+4) n) implies an = O(log5 n) to simplify the expression. Corol-
lary 8 shows that under the optimal allocation, the excess variance in the non-

parametric importance sampler shrinks at rate O

((
log5 n

n

) 2
d+6

)
. When the di-

mension is small, say d = 1 or d = 2, the nonparametric method has an ex-

cess variance at rate O

((
log5 n

n

) 2
7

)
and O

((
log5 n

n

) 1
4

)
, which are just slightly

slower than the rate of the parametric importance sampler under correct model

(the rate is O
(
n− 1

3

)
by Corollary 4).

Although the parametric method enjoys a fast convergence rate, it depends
on a very restrictive assumption: the model has to be correctly specified. This
assumption is generally not true in most applications. Thus, even if the non-
parametric importance sampler has a slower variance reduction rate, the non-
parametric approach still has its own merit in applicability.

There is a limitation in the nonparametric approach – the curse of dimension-
ality. When d is not small, the convergence rate is very slow. So the nonpara-
metric approach may not be applied to scenarios with more than 4 variables. In
this situation, even if the parametric model does not converge to the optimal
sampler, it may still be a preferred approach. The parametric model will con-
verge to the best possible result under the mis-specified model as long as the
the conditions of Theorem 2 hold.

Remark 1. Note that the nonparametric rate can be improved if the regression
function is very smooth and we use a higher order kernel (Wasserman, 2006).
When the regression function is in β-Hölder class with β > 2, we can boost

convergence rate in Theorem 7 to O

((
logm
m

) β
d+2β

)
and under the optimal

allocation, the variance of nonparametric importance sampler will be

1

n
Vmin

⎛⎝1 +O

⎛⎝( logd+2.5β n

n

) β
d+3β

⎞⎠⎞⎠ .
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When β → ∞, the variance of nonparametric importance sampler becomes
1
nVmin

(
1 +O

(
n−1/3

))
(ignoring the logn term), which recovers the parametric

rate in Corollary 4.

3.3. Oracle properties

In Lemma 1, we see that the oracle sampler Êq∗ has the minimal variance. Let

G =

{
f :

∫
f(x)dx = 1, f(x) = 0 ⇒ g(V (x))p(x) = 0 ∀x

}
be the collection of density functions that leads to an unbiased importance
sampler and let

Ξ =
{
Êq : q ∈ G

}
be the collection of all possible unbiased importance samplers. Because all im-
portance samplers from G is unbiased, any estimator Ê ∈ Ξ satisfies

E

∥∥∥Ê − E
∥∥∥2 = Var

(
Ê
)

(10)

so the oracle sampler Êq∗ satisfies

E

∥∥∥Êq∗ − E
∥∥∥2 = Var

(
Êq∗
)
= inf

Ê∈Ξ
Var
(
Ê
)
= inf

Ê∈Ξ
E

∥∥∥Ê − E
∥∥∥2 . (11)

Because of equation (11), Êq∗ is called the oracle for Ξ with respect to the mean
square error in nonparametric theory; see, e.g., page 60–61 in Tsybakov (2009).

We say Ê† ∈ Ξ satisfies the oracle inequalities if

E

∥∥∥Ê† − E
∥∥∥2

inf Ê∈Ξ E

∥∥∥Ê − E
∥∥∥2 =

E

∥∥∥Ê† − E
∥∥∥2

E

∥∥∥Êq∗ − E
∥∥∥2 = 1 + o(1). (12)

Note that the estimators in the above expressions are all based on a size n
sample and we do not include the subscript n to abbreviation. In nonparametric
theory, an estimator with the oracle inequalities implies that the estimator is
asymptotically as good as the optimal estimator.

The crude Monte Carlo sampler Êp (which samples only from the natural
configuration density p (Kroese et al., 2011)) obviously does not satisfy the
oracle inequalities because

E

∥∥∥Êp − E
∥∥∥2

inf Ê∈Ξ E

∥∥∥Ê − E
∥∥∥2 =

Var
(
Êp
)

Var
(
Êq∗
) =

Vmin + Vp

Vmin
= 1 +

Vp

Vmin
> 1,

where Vp = E(r(X∗))− E
2
(√

r(X∗)
)
> 0.
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The parametric importance sampler Êθ̂m satisfies the oracle inequalities when
the model is correctly specified (i.e. r(x) = rθ(x) for some θ ∈ Θ). To see this,
recall Corollary 4 and equation (10):

E

∥∥∥Êθ̂m − E
∥∥∥2

inf Ê∈Ξ E

∥∥∥Ê − E
∥∥∥2 =

Var
(
Êθ̂m
)

Var
(
Êq∗
) = 1 +O

(
n− 1

3

)
= 1 + o(1).

However, when the model is incorrect, Theorem 5 proves that Êθ̂m does not
have the oracle inequalities:

E

∥∥∥Êθ̂m − E
∥∥∥2

inf Ê∈Ξ E

∥∥∥Ê − E
∥∥∥2 =

Var
(
Êθ̂m
)

Var
(
Êq∗
) = 1 +

Vθ∗

Vmin
> 1.

The nonparametric importance sampler has a good advantage that it satisfies
the oracle inequalities in most cases. By Corollary 8 and equation (10),

E

∥∥∥Êh∗ − E
∥∥∥2

inf Ê∈Ξ E

∥∥∥Ê − E
∥∥∥2 =

Var
(
Êh∗

)
Var
(
Êq∗
) = 1 +O

((
logn

n

) 2
d+6

)
= 1 + o(1).

Thus, without any further information about the structure of r(x), we recom-
mend to use the nonparametric importance sampler since it behaves asymptot-
ically as good as the oracle (optimal) importance sampler.

Remark 2. How we obtain the oracle property is very different from the classical
approach. Many estimators with oracle properties are constructed by minimizing
an estimated risk (Tsybakov, 2009). That is, for a collection of estimators, the
risk of each of them is estimated and the one that minimizes the (estimated) risk
is chosen. When the risk is consistently estimated uniformly for all estimators,
this procedure leads to an estimator with the oracle property. However, in our
case, we do not consider any risk estimator nor do we choose an estimator from
many possible candidates, but we still obtain the oracle property.

4. Empirical analysis

To evaluate the empirical performances of the importance samplers, this section
presents an implementation guideline, a numerical study, and a case study.

4.1. Implementation guideline

To implement parametric or nonparametric importance sampling, we can follow
the procedure in Figure 1 or Figure 2, respectively. In practice, n is typically
determined based on the available computational budget. We can choose m ac-
cording to the optimal allocation rate, m 
 n

2
3 in Corollary 4 for parametric
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importance sampler, or m 

(

n
logn

) d+4
d+6

in Corollary 8 for nonparametric im-

portance sampler. In the range of experiments we present below, any choice of
multiplicative constant between two and six results in similar empirical perfor-
mances of the importance samplers.

In the first stage, we can simply choose the natural configuration density
p as the initial sampling density q0 to maintain the same error rate as the
crude Monte Carlo sampler. In the second stage, once we build a regression
model r̂(x) for the unknown conditional expectation r(x) = E(g2(V (X))|X =
x), we can exactly sample from q(x) ∝

√
r̂(x) · p(x) using the acceptance-

rejection method (Kroese et al., 2011, p.59) by using p(x) as the proposal (or
envelope) density and finding an upper bound on

√
r̂(x). The upper bound can

be computed numerically or even known from physical/engineering knowledge
of the system (e.g., the simulation output V can take up to a certain value due
to a physical/engineering limit, or r(x) is a probability). As an alternative to
the acceptance-rejection method, Markov chain Monte Carlo methods can be
used as well.

Also, for an importance sampling estimator (e.g., in (5) or (7)), the nor-
malization constant of q(x) can be calculated to a desired level of accuracy,
independent of n, by using a numerical integration such as quadrature for low-
dimensional x and Monte Carlo integration for high-dimensional x. Thus, we
can ensure that estimation of the normalization constant will not affect the
asymptotic optimality and empirical performance of the importance sampling
estimator. If desired, one can avoid calculating the normalization constant by
using a self-normalized importance sampling estimator at the expense of bias.
More in-depth discussion of this trade-off is made by Owen (2018).

Note that in practice, the computational costs of the acceptance-rejection
method and the numerical integration are negligible (a matter of hours, if not
minutes) compared to running high-fidelity simulation models such as those
discussed in Section 1 and the simulation model in our case study. For example,
a simulation experiment can take days (if not weeks) even with a supercomputer
(Manuel et al., 2013; Graf et al., 2016).

4.2. Numerical study

Our numerical study considers two examples, one with normal distributions
for X and V |X and the other with exponential distributions for X and V |X.
Motivated by our case study, we estimate the probability E = P (V > ξ) =
E(g(V (X))) for g(V ) = 1(V > ξ) and a pre-specified ξ > 0. As a baseline, we
set ξ such that P (V > ξ) is equal to 0.5 (unless specified otherwise) regardless
of the input configuration dimension d because it is known that the perfor-
mance of importance sampler often depends on the probability being estimated
(Heidelberger, 1995; Kroese et al., 2011).

We vary the total sample size n = 1000, 2000, 4000, 8000 and the input con-
figuration dimension d = 1, 2, 4 to see their impacts on the mean squared error
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(MSE)

MSE =
1

nMC

nMC∑
i=1

∥∥∥Êi − E
∥∥∥2 ,

where Êi is an estimate of the ith replication and the total number of Monte
Carlo replications, nMC , is set as 10,000 to obtain reliable results. We use high-
performance computing (Lenovo NextScale E5-2680 v4, total 112 cores with 1TB
RAM) for our simulation experiments, and they take several weeks in total. The
R scripts for the experiments are available as a supplementary material.

We consider two parametric importance samplers, one with a correct model
of

r(x) = E(g2(V (X))|X = x) = E(1(V (X) > ξ)|X = x) = P (V > ξ | X = x)

and the other with an incorrect model, and a nonparametric importance sam-
pler. To build the parametric models of r(x), we use the sample of size m =⌈
2n

2
3

⌉
. For the nonparametric model, we use m =

⌈
6
(

n
logn

) d+4
d+6

⌉
.

To sample from the importance sampling density q(x) ∝
√

r̂(x) · p(x) using
the acceptance-rejection method, we use p(x) as the envelope density because
p(x) ≥

√
r̂(x)p(x) in the examples: We sample x from p(x) and accept x with

the probability
√
r̂(x). To compute the normalizing constant of q(x), we use

Monte Carlo integration. Since we know the true r(x), which is unknown in
practice, in the examples, we calculate the true E = P (V > ξ) and Vmin using
Monte Carlo integration and use them to calculate MSEs and demonstrate how
empirical results conform to the theoretical predictions made in Section 3.

4.2.1. Example 1: normal-normal data generating model

As a modification of an example in Ackley (1987), we use the data generating
model where the d-dimensional input vector X = (X(1), . . . , X(d))′ follows a
multivariate normal distribution with zero mean and identity covariance matrix,
and the output V at X follows N(μ(X), 1) with

μ(X) = 20

(
1− exp

(
−0.2

√
1

d
‖X‖2

))

+

(
exp (1)− exp

(
1

d

d∑
i=1

cos(2πX(i))

))
.

Thus, we have

r(x) = P (V > ξ | X = x) = 1− Φ(ξ − μ(x)),

where Φ(·) is the CDF of a standard normal distribution. As parametric models
of r(x), we consider two models:
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(i) Correct model: We use rθ(x) = 1− Φ(ξ − μ̂(x)), where

μ̂(x) = 20

⎛⎝θ0 − exp

⎛⎝−0.2

√√√√1

d

d∑
i=1

θ2i (x
(i))2

⎞⎠⎞⎠
+

(
θ0 exp (1)− exp

(
1

d

d∑
i=1

θi cos(2πx
(i))

))
,

such that rθ(x) = r(x) for some θ = (θ0, . . . , θd)
′ ∈ Θ. For fitting with a

least square method, the initial parameters are set at the correct values,
i.e., θ̂0 = . . . = θ̂d = 1, in the implementation.

(ii) Incorrect model: We use the logistic regression model rθ(x) =(
1 + eθ0+θ1x

(1)+...+θdx
(d)
)−1

such that rθ(x) �= r(x) for all θ ∈ Θ. For

least square fitting, the initial parameters are set at θ̂0 = . . . = θ̂d = 0.

As a nonparametric model of r(x), we use the kernel regression model r̂h(x) with
the Gaussian kernel and the smoothing bandwidth h chosen by cross-validation.

Figures 3(a)–3(c) show how nMSE varies as n increases for d = 1, 2, 4. For the

correct parametric model, nVar
(
Êθ̂m
)
is predicted to be Vmin

(
1 +O

(
n− 1

3

))
by Corollary 4. Recalling that MSE is equal to the variance of an importance
sampler, because of its unbiasedness, we see that nMSE approaches Vmin as n in-
creases, with roughly the same rate regardless of d. For the incorrect parametric
model, as foreseen by Theorem 5, nMSE fails to approach Vmin as n increases,

because nVar
(
Êθ̂m
)
≥ Vmin(1+O(1)). As anticipated by Corollary 8, nMSE for

the nonparametric model approaches Vmin as n increases, with an apparently

slower rate for larger d, because nVar
(
Êh∗

)
= Vmin

(
1 +O

((
logn
n

) 2
d+6

))
.

Figure 3(d) shows nMSE against d for fixed n = 8000. Regardless of d, nMSE
of the correct parametric importance sampler stays close to Vmin. In contrast,
nMSE for the incorrect parametric importance sampler essentially remains the
same as d varies in this example, although this observation cannot be taken
as a general pattern because the input configuration dimension d impacts how
incorrect the model is. While the nonparametric importance sampler performs
almost as well as the correct parametric importance sampler when d = 1, the
performance gap widens as d increases since n is fixed.

If X was sampled only from the natural configuration density p instead of
an importance sampling density q in the estimator in (2), then this simple
baseline approach, commonly called crude Monte Carlo (CMC) (Kroese et al.,
2011), results in the estimator having the theoretical nMSE of 0.25 (= P (V >
ξ)(1−P (V > ξ)). In this example, the incorrect parametric importance sampler
essentially does not improve over the baseline.

As d increases, Vmin approaches the baseline nMSE of 0.25 in Figure 3(d).
This increasing inefficiency of optimal importance sampling with respect to d
is regarded as peculiar to this example, because Vmin in (3) depends on d only
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Fig 3. For the normal-normal data generating model, we compare the three importance sam-
plers in terms of their scaled estimation error, nMSE, against the total sample size n for the
input dimension d = 1 in (a), d = 2 in (b), and d = 4 in (c). While fixing n = 8000, d is
varied in (d). An error bar represents the 95% confidence interval based on the Monte Carlo
error with 10,000 replications.

through g(V (X)). Thus, this observation should not be interpreted as a mani-
festation of curse of dimensionality known in the importance sampling literature
(e.g., Au and Beck, 2003), which may occur when the approximation of optimal
density q∗ becomes harder as d increases. In contrast, it is known that the op-
timal importance sampler theoretically attains Vmin of zero regardless of d for
deterministic simulation models with any nonnegative function g(v) (Kahn and
Marshall, 1953).

We also vary the estimand E = P (V > ξ) = 0.005, 0.05, 0.5 to examine its
impact on the performance of the importance samplers, while fixing n = 8000
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Fig 4. For the normal-normal data generating model, we compare the three importance
samplers by varying the estimand (or the probability being estimated) E = P (V > ξ) =
0.005, 0.05, 0.5 while fixing the total sample size n = 8000 and the input dimension d = 1. We
examine the normalized root mean squared error (i.e., RMSE/E) in (a) and computational
saving against CMC in (b). The computational saving is defined as (n(CMC) − n)/n(CMC),

where n(CMC) = E(1− E)/(Standard error)2 is the theoretical sample size required for CMC
to attain the same standard error as the importance sampler. The experiment results are
averaged across 10,000 Monte Carlo replications. For the nonparametric importance sampler
when E = 0.05, one estimate (out of 10,000) of E is observed to be greater than one and thus
excluded in the analysis.

and d = 1. The initial sampling density q0 is set as the uniform distribution on
(−5, 5) to broadly cover the support where rare events of interest can happen.
Figure 4(a) suggests that as the estimand decreases by a factor of 10 (i.e., 0.5,
0.05, 0.005), the normalized root mean squared error (i.e.

√
MSE/E) increases

more slowly for the correct parametric and nonparametric importance samplers
than the incorrect parametric importance sampler. Figure 4(b) shows the well-
known phenomenon in the literature that importance samplers save more against
CMC as the estimand is the probability of a rarer event. The savings of the
correct parametric and nonparametric importance samplers quickly go over 90%
as E decreases to 0.005.

4.2.2. Example 2: exponential–exponential data generating model

Here, we consider a data generating model where both X and V |X follow ex-
ponential distributions that have heavier tails than normal distributions and
allow analytical calculations of key objects of interest such as the estimand E ,
the conditional expectation r(x) = E(g2(V (X))|X = x), the optimal sampling
density q∗(x), and the oracle variance Vmin.
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Let X = (X(1), . . . , X(d))′ be a vector of d independent exponential random
variables with the identical mean 1/λ > 0 so that the natural configuration
density

p(x) = λde−λ(x(1)+...+x(d)).

Given a configuration X, let V follow an exponential distribution with a mean
1/
(
X(1) + . . .+X(d)

)
. In our simulation experiment, we fix λ = 1.

With the given data generating model, we can analytically calculate

E = P (V > ξ) =

(
λ

ξ + λ

)d

,

r(x) = E(g2(V (X))|X = x) = P (V > ξ | X = x) = e−ξ(x(1)+...+x(d)),

and
q∗(x) ∝

√
r(x) · p(x) ∝ e−(

ξ
2+λ)(x(1)+...+x(d)),

which implies that q∗ is the joint density of d independent exponential random
variables with the identical mean 1/ (ξ/2 + λ). We determine

ξ =
λ

[P (V > ξ)]
(1/d)

− λ

by plugging P (V > ξ) = 0.5. We also know

r†(x) = E(g(V (X))|X = x) = P (V > ξ | X = x)

and calculate

Vmin = E
2
(√

r(X)
)
− E

2(r†(X))

=

(
λ

ξ/2 + λ

)2d

−
(

λ

ξ + λ

)2d

.

Similar to the normal-normal example, we consider two parametric models
of r(x):

(i) Correct model: We use rθ(x) = eθ0+θ1x
(1)+...+θdx

(d)

. For least square fit-

ting, the initial parameters are set at θ̂0 = . . . = θ̂d = 0. We set rθ̂(x) = 1
if rθ̂(x) > 1.

(ii) Incorrect model: We use the logistic regression model, rθ(x) =(
1 + eθ0+θ1x

(1)+...+θdx
(d)
)−1

, with the initial parameters θ̂0 = . . . = θ̂d = 0

for least square fitting.

As a nonparametric model, we use the kernel regression model r̂h(x) as in the
normal-normal example.

Figure 5(a) plots nMSE versus n for d = 1 with respect to the three im-
portance samplers. The behaviors of correct and incorrect parametric impor-
tance samplers echo what we see in the normal-normal example. In contrast,
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Fig 5. For the exponential-exponential data generating model, we compare the three impor-
tance samplers in terms of nMSE against n for d = 1 in (a), where an error bar represents
the 95% confidence interval based on the Monte Carlo error with 10,000 replications. In (b),
the Tukey box plots are drawn based on the 10,000 nonparametric estimates for each n. The
ends of the whiskers represent the most extreme data points which are not exceeding 1.5 times
the interquartile range from the box.

the nonparametric importance sampler behaves irregularly (note that nMSE in
Figure 5(a) is calculated after discarding the nonparametric estimates exceed-
ing one). Figure 5(b) shows the Tukey box plots of the nonparametric estimates
over different n. The interquartile range (i.e., box height) decreases as n in-
creases (note that the interquartile range of estimates may be comparable to
the square root of MSE, but not directly to nMSE in Figure 5(a)). The mag-
nitudes of outliers (e.g., estimates greater than one, presented as numbers at
the top of Figure 5(b) for each n) suggest that the sampling distribution of the
nonparametric estimator might be heavy-tailed for this example.

We calculate effective sample sizes (ESSs) as diagnostic tools of importance
sampler performance, where a too small ESS compared to n is interpreted as
a sign that the importance sampling is unreliable. An ESS widely used in the
importance sampling literature (Kong, 1992; Elvira et al., 2018) is

ÊSS =
(
∑n

i=1 wi)
2∑n

i=1 w
2
i

, (13)

where wi is the likelihood ratio or importance weight for Xi. In the first stage
(i = 1, . . . ,m), both parametric and nonparametric importance samplers have

wi =
p(Xi)
q0(Xi)

. In the second stage (i = m+ 1, . . . , n), the parametric importance

sampler has wi =
p(Xi)

q∗
θ̂m

(Xi)
and the nonparametric importance sampler has wi =

p(Xi)
q̂∗h(Xi)

. While ÊSS in (13) can be conveniently used for any simulation model or
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Fig 6. For the exponential-exponential data generating model, we compare the three impor-

tance samplers in terms of their effective sample size (ESS), ÊSS, in (13) and g-specific

ESS, ẼSS(g), in (14) when d = 1 and n = 1000. The box plots are created based on 10,000

replications. The nonparametric importance sampler yields ẼSS(g) close to one, explaining
the erratic nMSE observed in Figure 5(a).

g(V ), the following ESS specific to g(V ) can be a better diagnostic of importance
samplers, as demonstrated for deterministic simulation models (where V (X) is
a deterministic function of X) (Evans and Swartz, 1995; Owen, 2018):

ẼSS(g) =
(
∑n

i=1 w̃i(g))
2∑n

i=1 w̃i(g)2
, (14)

where w̃i(g) = |g(V )|wi. For stochastic simulation models, as illustrated in Fig-

ure 6(a), a very small ÊSS (close to one) does not necessarily indicate a poor
estimate because correct parametric importance samplers always yield good es-
timates of E . On the other hand, ẼSS(g) is shown to be an effective diagnostic;

in Figure 6(b), it is confirmed that when ẼSS(g) is close to one, the correspond-
ing estimates of nonparametric importance samplers tend to be far from the
estimand E .

The inspection of the g-specific ESS suggests that importance weights in
the tail of nonparametric importance sampling density q̂∗h(Xi) can be unstable.
Especially because the kernel regression can poorly estimate the tail part, tail-
controlling techniques (Owen and Zhou, 2000; Li et al., 2013) can be helpful to
address the issue.

We attribute the erratic nMSE of nonparametric importance sampler in Fig-
ure 5(a) to the severe violation of the assumption, made as a basis of our theoret-
ical analysis in Section 3, that the natural configuration density p has a compact
support K ⊂ R

d. In this example, the tail of p(x) ∼ exp(−x) decays even more
slowly than the tail of p(x) ∼ exp(−x2) in the normal-normal example. The



Stochastic importance sampling 3409

simulation experiment results for d = 2 and 4 are not presented here, as they
repeat the same pattern as for d = 1. We note that the natural configuration
density p in the case study in Section 4.3 has the compact support, indicating
that the assumption is still practical.

4.3. Case study

Wind energy is one of the fastest growing renewable energy sources (You et al.,
2017). Yet, harvesting wind energy remains expensive, compared with fossil
energy sources such as oil, coal, and natural gas, due to the high capital cost
in installing wind turbines. A utility-scale wind turbine whose blade diameter
is commonly greater than 100 ft typically costs more than one million U.S.
dollars. Therefore, wind energy industry pays the utmost attention on ensuring
the structural reliability of the wind turbine to prevent its failure (e.g., Moriarty,
2008; Graf et al., 2017).

At the design stage of wind turbine, evaluating its reliability based on physical
experiments is very limited due to the associated costs. Alternatively, the in-
ternational standard, IEC 61400-1 (International Electrotechnical Commission,
2005), requires wind turbine manufacturers to use stochastic simulation models.
For this purpose, the most widely used simulation models in the U.S. include
TurbSim (Jonkman, 2009) and FAST (Jonkman and Buhl Jr., 2005), which
are developed and maintained by the National Renewable Energy Laboratory
(NREL) of the U.S. Department of Energy. TurbSim simulates a 3-dimensional
time marching wind profile, which becomes an input to FAST that, in turn,
simulates a wind turbine’s structural response to the wind. This case study fo-
cuses on two types of bending moments at the root of a turbine blade, namely,
edgewise and flapwise bending moments, which represent two perpendicular
structural responses of the blade root due to an external force or moment caus-
ing it to bend. We use the same benchmark turbine model (Jonkman et al.,
2009) and simulator setup as Moriarty (2008) (see the references for the rest of
the settings not provided below).

In this case study, the input configuration X is a 10-min average wind speed
(unit: meter per second, m/s), which is fed into TurbSim. X is sampled from
the truncated Rayleigh distribution with the support of [3, 25] and the scale
parameter 10

√
2/π. The simulation output of interest, V , is the 10-min maxi-

mum bending moment (unit: killonewton meter, kNm) at the blade root, which
is produced by FAST based on the simulated wind from TurbSim. Because V
is random even for a fixed X due to the randomness of wind profile generated
in TurbSim, we regard TurbSim and FAST together as a black-box stochastic
simulation model.

To compare the nonparametric importance sampler proposed in this paper
with a parametric importance sampler, we take a parametric method in Choe
et al. (2015) as a benchmark, which also approximates the optimal sampling
density q∗(x) ∝

√
r(x) · p(x) in Lemma 1. We use the same simulation ex-

periment setup therein: For the edgewise bending moment, we use n = 3600,
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m = 600, and ξ = 9300 kNm; for the flapwise bending moment, we use n = 9600,
m = 600, and ξ = 14300 kNm.

To model r(x) using a pilot sample, X is sampled m = 600 times from
a uniform distribution with the support of [3, 25], and the corresponding V ’s
are generated from the NREL simulators. To build the parametric model of
r(x), the generalized additive model for location, scale and shape (GAMLSS)
(Rigby and Stasinopoulos, 2005) is fitted to the pilot sample. Specifically, the
GAMLSS model assumes that the conditional distribution of V given X is a
generalized extreme value distribution whose location and scale parameters are
cubic spline functions of X while the shape parameter is constant over X. The
model parameters are estimated using the backfitting algorithm (Rigby and
Stasinopoulos, 2005). To build the nonparametric model of r(x), we fit the kernel
regression model to the pilot sample with the Gaussian kernel and choose the
smoothing bandwidth by cross-validation.

For both parametric and nonparametric importance samplers, we repeat es-
timating the failure probability E = P (V > ξ) 50 times (in contrast to 10,000
times in the numerical study in Section 4.2). Recall that running the NREL
simulators once takes about 1-min wall-clock time, implying that obtaining the
pilot sample of size m = 600 takes roughly 10 hours. We use the same pilot
sample in all 50 replications, because repeating 50 times of the simulation ex-
periment with n−m = 3000 or 9000 itself requires several days of computation
even if we use high-performance computing described in Section 4.2.

The parametric importance sampler in Choe et al. (2015) uses the failure
probability estimator

Ẽθ̂m =
1

n−m

n∑
i=m+1

g(Vi)
p(Xi)

q∗
θ̂m

(Xi)
, (15)

where the pilot sample is not used, compared with the estimator in (5). In
their procedure, the pilot sample is only used to build the model of r(x). For
fair comparison, we report both estimation results with and without using the
pilot sample in the estimator. Note that nonparametric importance samplers for
stochastic simulation models are not reported in the literature.

Table 1 summarizes the simulation experiment results for edgewise bending
moments. We see that the standard errors of parametric importance samplers
and those of nonparametric importance samplers are not significantly different.
Computational savings of both methods against CMC are remarkable and, at
the same time, comparable with each other.

Table 2 shows the estimation results for flapwise bending moments, which
convey the similar message with the results in Table 1. Note that ξ is set to
roughly yield the similar failure probability E = P (V > ξ) of 0.01 for both
structural load types, because the magnitude of E tends to impact the com-
putational saving. Yet, we see that the computational saving of importance
sampling over CMC for flapwise bending moments is, albeit substantial, not as
large as that for edgewise bending moment. This is because the natural config-
uration density p is not very different from the optimal sampling density q∗ for
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Table 1

Estimation of the failure probability E = P (V > ξ) for the edgewise bending moment V and
the threshold ξ = 9300 kNm

Without the pilot sample With the pilot sample
Sample Standard error Comp. Sample Standard error Comp.

Method mean (95% bootstrap CI) saving mean (95% bootstrap CI) saving
Parametric 0.01005 0.00044 93% 0.01016 0.00036 95%

(0.00036, 0.00051) (0.00030, 0.00042)
Nonparametric 0.00998 0.00046 92% 0.01010 0.00038 95%

(0.00034, 0.00056) (0.00029, 0.00047)

Note: The computational (comp.) saving is (n(CMC) − n)/n(CMC), where

n(CMC) = P̂ (1− P̂ )/(Standard error)2 is the theoretical sample size required for CMC to

attain the same standard error when the true failure probability is equal to P̂ , which is the
sample mean of the parametric importance samplers using the pilot sample. The 95%
bootstrap confidence interval (CI) is constructed based on 100,000 bootstrap replicates.

Table 2

Estimation of the failure probability E = P (V > ξ) for the flapwise bending moment V and
the threshold ξ = 14300 kNm

Without the pilot sample With the pilot sample
Sample Standard error Comp. Sample Standard error Comp.

Method mean (95% bootstrap CI) saving mean (95% bootstrap CI) saving
Parametric 0.01037 0.00063 64% 0.01079 0.00059 69%

(0.00046, 0.00078) (0.00043, 0.00073)
Nonparametric 0.01061 0.00075 49% 0.01101 0.00070 56%

(0.00057, 0.00090) (0.00053, 0.00084)

Note: Refer to the note of Table 1.

flapwise bending moments so that the benefit of changing the sampling density
is not enormous.

This case study considers a relatively moderate failure probability E =
P (V > ξ) around 0.01, so we can use the given computational resource to
have 50 replications that allow us to construct bootstrap confidence intervals
on standard errors and compare the performances of methods. On the other
hand, simulation experiments at the scale of a national lab may consider a more
extreme event with a smaller probability. For such case, combining the 50 repli-
cations can lead to an estimate of a much smaller probability (in the order of
1e-05 or smaller as in Choe et al. (2016)). Still, one can construct a confidence
interval on the probability if only using the sample from the second stage (Choe
et al., 2017).

5. Discussion

We consider the problem of estimating the average output from a stochastic
simulation model and propose two-stage estimators using either a parametric
approach or a nonparametric approach. Theoretically, both estimators satisfy
the oracle inequalities but they achieve the oracle variance asymptotically under
different rates and assumptions. As expected, the parametric approach needs a
strong assumption but its variance converges to the oracle variance faster than
the nonparametric approach. The nonparametric approach, however, requires
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weak assumptions but the variance reduction rate is not as fast as the para-
metric approach. Empirically, our numerical study confirmed the theoretical
results, and our case study indicated that the proposed importance samplers
perform well in practice, saving 50%–95% computational resources over a stan-
dard Monte Carlo estimator.

We note that Choe et al. (2015) investigated a parametric importance sampler
for a stochastic simulation model, which is a special case (with g(v) = 1(v ≥ ξ))
of our parametric importance sampler. They use implicitly a two-stage method
with the pilot sample being given a priori for modeling r(x) and do not use
the pilot sample in the estimator. They neither consider nonparametric impor-
tance samplers nor perform a theoretical analysis on the convergence toward the
optimal estimator. Our work focuses more on the formalization of the general
two-stage strategy and the theoretical foundation of importance sampling for
stochastic simulation models. Because we obtain a concrete convergence rate of
the estimator, we enable the optimal choice of the pilot sample size.

In what follows we discuss possible future research directions.

• Manifold support case. In general, when the dimension of the config-
uration d is large, nonparametric importance sampler in Section 2.2 will
not work due to the curse of dimensionality (the slow convergence rate).
However, if the support of q∗ is concentrated around a lower dimensional
manifold, the nonparametric sampler may still work because a fast conver-
gence rate of a nonparametric estimator is possible (Balakrishnan et al.,
2013; Chen, 2016). So we may be able to design a modified nonparametric
importance sampling procedure that achieves oracle variance much faster
than the rate in Corollary 8. The construction of such a procedure is left
as a future work.

• Multi-stage sampling. In this paper we only consider splitting the com-
putational budget into two stages. We can generalize this idea into a k-
stage sampling procedure, where at each stage, we use samples in all previ-
ous stages to design our estimator and sampler for the current stage (e.g.,
Choe, 2017). In this case, the allocation problem becomes more compli-
cated since we may assign different sample sizes to different stages. Also,
the number of stage k will be another quantity that we want to optimize.
Because the two-stage approach is a special case of a multi-stage sampling
procedure, the latter will have a higher variance reduction rate than the
proposed methods in this paper.

• Confidence interval. In the current paper, we focus on the construction
of an estimator of E . In practice, we often report not only a point estimator
but also a confidence interval attached to it. Here we briefly describe two
potential methods of constructing the confidence interval. The first method
is to derive asymptotic normality of Ê and then find a consistent variance
estimator. Note that this is a non-trivial task because when we use a two-
stage approach, the observations are no longer IID. Moreover, estimating
the variance could be another challenging task. The other approach is to
use the bootstrap (Efron, 1982, 1992) to obtain a confidence interval. If
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we choose to use the bootstrap, we need to prove the validity of such a
bootstrap procedure.

• Multiple estimands of interest. This paper considers the single quan-
tity to be estimated, E = E(g(V (X))), in (1) based on the output V (X)
from a stochastic simulation model. Extending the current work to opti-
mally estimating multiple quantities of interest warrants further investi-
gation. Such extension for stochastic simulation models can build upon
this line of research around deterministic simulation models. For example,
we can consider importance sampling of the union of target events (Owen
et al., 2019). Also, we can recycle existing simulation results (e.g., from the
pilot stage or both stages of estimating another quantity) by recomputing
importance weights (Cornuet et al., 2012). These approaches can benefit
from the classical idea of safe and effective importance sampling (Owen
and Zhou, 2000).
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Appendix A: Proofs

Proof of Lemma 1. Now by the following variance formula:

Var(Y ) = E(Var(Y |X)) + Var(E(Y |X))

and choose Y = g(Vi)
p(Xi)
q(Xi)

and X = Xi, we have

Var

(
g(Vi)

p(Xi)

q(Xi)

)
= E

(
Var (g(Vi)|Xi)

p2(Xi)

q2(Xi)

)
+ Var

(
r†(Xi)

p(Xi)

q(Xi)

)
= E

((
r(Xi)− r†2(Xi)

) p2(Xi)

q2(Xi)

)
+ E

(
r†2(Xi)

p2(Xi)

q2(Xi)

)
− E

2

(
r†(Xi)

p(Xi)

q(Xi)

)
= E

(
r(Xi)

p2(Xi)

q2(Xi)

)
− E

2(r†(X∗)),

(16)

when q(x) = 0 implies r†(x)p(x) = 0. Note that X∗ is from density p. Thus, the

sampling density q affects the variance only via the quantity E

(
r(Xi)

p2(Xi)
q2(Xi)

)
.

The quantity E

(
r(Xi)

p2(Xi)
q2(Xi)

)
has a lower bound from the Cauchy-Schwarz

inequality:
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E

(
r(Xi)

p2(Xi)

q2(Xi)

)
=

∫
r(x)

p2(x)

q(x)
dx

=

∫ (√
r(x)

p(x)√
q(x)

)2

dx ·
∫

(
√

q(x))2dx︸ ︷︷ ︸
=1

≥
(∫ √

r(x)p(x)dx

)2

= E
2
(√

r(X∗)
)
.

(17)

And the equality holds when
√
r(x) p(x)√

q(x)
∝
√
q(x), which implies the optimal

sampling density is
q∗(x) ∝

√
r(x) · p(x).

Thus, when we choose the sampling density to be q∗, by equation (16) and
(17), the variance

Var
(
Êq∗
)
=

1

n
E

(
r(Xi)

p2(Xi)

q2(Xi)

)
− E

2(r†(X∗))

=
1

n

(
E
2
(√

r(X∗)
)
− E

2
(
r†(X∗)

))
.

Proof of Theorem 2. By assumptions (P1–2) and the M-estimation theory
(van der Vaart and Wellner, 1996; van der Vaart, 2000),

‖θ̂m − θ0‖ = OP

(√
1

m

)
,

where θ0 is the parameter such that r(x) = rθ0(x).
Now by assumption (P3),

sup
x∈K

‖rθ̂m(x)− r(x)‖ = sup
x∈K

‖rθ̂m(x)− rθ0(x)‖

≤ sup
x∈K

∥∥∥(θ̂m − θ0) · L0

∥∥∥
= OP

(√
1

m

)
,

which proves the result.

Proof of Theorem 3. For our estimator Êθ̂m , we decompose it into two parts

Êθ̂m = Am +Bn,

where

Am =
1

n

m∑
i=1

g(Vi)
p(Xi)

q0(Xi)
,
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Bn =
1

n

n∑
i=m+1

g(Vi)
p(Xi)

q∗
θ̂m

(Xi)
,

Thus,

Var
(
Êθ̂m
)
= Var(Am +Bn) = Var(Am) + Var(Bn) + 2Cov(Am, Bn). (18)

Note that

E(Am) =
m

n
EXi∼q0

(
g(Vi)

p(Xi)

q0(Xi)

)
=

m

n
E

E(Bn) =
n−m

n
· EXi∼q∗

θ̂m

(
g(Vi)

p(Xi)

q∗
θ̂m

(Xi)

)

=
n−m

n
· EXi∼q∗

θ̂m

(
E

(
g(Vi)

p(Xi)

q∗
θ̂m

(Xi)
|q∗

θ̂m

))
=

n−m

n
· E .

(19)

We first bound the covariance. Let Dm = {(X1, V1), · · · , (Xm, Vm)} be the
collection of the first part of the data. Then

Cov(Am, Bn) = E(AmBn)− E(Am)E(Bn)

= E(AmE(Bn|Dm))− (n−m) ·m
n2

· E2

= E(AmE(Bn|q∗θ̂m))− (n−m) ·m
n2

· E2

= E

(
Am · n−m

n
· E
)
− (n−m) ·m

n2
· E2

=
(n−m) ·m

n2
· E2 − (n−m) ·m

n2
· E2

= 0.

(20)

Therefore, we only need to focus on the variance of each part.

Let Vmin =
(
E
2
(√

r(X∗)
)
− E

2(r†(X∗))
)

be the minimal variance under

the optimal sampling density. By Lemma 1,

Var(Am) =
m

n2

(
E

(
r(Xi)

p2(Xi)

q20(Xi)

)
− E

2(r†(X∗))

)
=

m

n2
Vmin +

m

n2

(
E

(
r(Xi)

p2(Xi)

q20(Xi)

)
− E

2
(√

r(X∗)
))

=
m

n2
Vmin +

m

n2
Vq0 .

(21)



3416 Y.-C. Chen and Y. Choe

And the variance of the second part is

Var(Bn) = E (Var(Bn|Dm)) + Var (E(Bn|Dm))

= E (Var(Bn|Dm)) + Var (E)︸ ︷︷ ︸
=0

=
n−m

n2
· E
(
E

(
r(Xi)

p2(Xi)

q∗2
θ̂m

(Xi)
|q∗

θ̂m

)
− E

2(r†(X∗))

)

=
n−m

n2
· E
(
E

(
r(X∗)

p(X∗)

q∗
θ̂m

(X∗)
|q∗

θ̂m

))
− n−m

n2
· E2(r†(X∗)).

(22)

So the key part is in the quantity E

(
E

(
r(X∗) p(X∗)

q∗
θ̂m

(X∗) |q∗θ̂m

))
. By Theorem 2

we have

sup
x∈K

‖rθ̂m(x)− r(x)‖ = OP

(√
1

m

)
,

which implies
q∗
θ̂m

(x)− q∗(x) = Δm · p(x),

where Δm = OP

(√
1
m

)
. Thus,

E

(
r(X∗)

p(X∗)

q∗
θ̂m

(X∗)
|q∗

θ̂m

)
=

∫
r(x)

p2(x)

q∗
θ̂m

(x)
dx

=

∫
r(x)

p2(x)

q∗(x) + Δm · p(x)dx

=

∫
r(x)

p2(x)

q∗(x)
dx+O (Δm)

= E
2
(√

r(X∗)
)
+OP

(√
1

m

)
.

(23)

Note that in the above equation, the constant in the O(Δm) term is∫
r(x)p3(x)/q∗(x)2dx =

∫
r(x)p(x)/[C2 · r(x)]dx =

1

C2

∫
p(x)dx =

1

C2
,

where C is the constant from equating q∗(x) = C
√
r(x)p(x). The assumption

(P1) implies that the ratio p(x)
q∗(x) = 1

C·r−1/2(x)
is uniformly bounded. Thus, the

higher order terms are bounded.
Putting this back to equation (22), we obtain

Var(Bn) =
n−m

n2

(
E
2
(√

r(X∗)
)
− E

2(r†(X∗))
)
+

n−m

n2
E

(
OP

(√
1

m

))
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=
n−m

n2
Vmin +

n−m

n2
O

(√
1

m

)
.

Note that E
(
OP

(√
1
m

))
= O
(√

1
m

)
because the random quantity in the OP

term is from Δm and is from the difference |θ̂m−θ0|, which is the absolute value
of an asymptotic normal distribution so the expectation of the OP leads to the
same convergence rate.

Now putting altogether, we obtain

Var
(
Êθ̂m
)
=

m

n2
Vmin +

m

n2
Vq0 +

n−m

n2
Vmin +

n−m

n2
O

(√
1

m

)

=
1

n
Vmin +

1

n2

(
m · Vq0 + (n−m) ·O

(√
1

m

))
.

(24)

Proof of Theorem 6. Recall that r̂h(x) =
∑m

i=1 YiK( x−Xi
h )∑m

i=1 K( x−Xi
h )

and r(x) = E(Yi|Xi =

x). Define the following two quantities

r̃h(x) =
1

mhd

∑m
i=1 YiK

(
x−Xi

h

)
q0(x)

,

rh(x) =
E
(

1
hdYiK

(
x−Xi

h

))
q0(x)

.

(25)

We can bound the difference supx∈K
‖r̂h(x)− r(x)‖ by

sup
x∈K

‖r̂h(x)− r(x)‖ = sup
x∈K

‖r̂h(x)− r̃h(x) + r̃h(x)− rh(x) + rh(x)− r(x)‖

≤ sup
x∈K

‖r̂h(x)− r̃h(x)‖+ sup
x∈K

‖r̃h(x)− rh(x)‖+ sup
x∈K

‖rh(x)− r(x)‖.

(26)
Now we separately bound each term.

The first term supx∈K
‖r̂h(x) − r̃h(x)‖ involves the difference between q0(x)

and 1
mhd

∑m
i=1 K

(
x−Xi

h

)
= q̂m(x), which is the difference between the kernel

density estimator (KDE) q̂m(x) and q0(x). By assumption (N2) and (K1–2), it
is known in the literature that

sup
x∈K

‖q̂m(x)− q0(x)‖ = O(h2) +OP

(√
logm

mhd

)
;

see, e.g., Lemma 5 in Chen et al. (2015a) and Lemma 10 in Chen et al. (2015b).
Thus,

sup
x∈K

‖r̂h(x)− r̃h(x)‖ = O(h2) +OP

(√
logm

mhd

)
. (27)

For the second term, it equals to

sup
x∈K

‖r̃h(x)− rh(x)‖
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= sup
x∈K

∥∥∥∥∥ 1
mhd

∑m
i=1 YiK

(
x−Xi

h

)
q0(x)

−
E
(

1
hdYiK

(
x−Xi

h

))
q0(x)

∥∥∥∥∥
= sup

x∈K

∥∥∥∥∥ 1

q0(x)

(
1

mhd

m∑
i=1

YiK

(
x−Xi

h

)
− E

(
1

hd
YiK

(
x−Xi

h

)))∥∥∥∥∥ .
Now using Theorem 2.3 in Giné and Guillou (2002) and assumption (N1) and
(K1–2), we can bound

sup
x∈K

∥∥∥∥∥ 1

mhd

m∑
i=1

YiK

(
x−Xi

h

)
− E

(
1

hd
YiK

(
x−Xi

h

))∥∥∥∥∥ = OP

(√
logm

mhd

)
.

Assumption (N2) implies that the density q0(x) is lower bounded by qmin. Thus,
we obtain the bound

sup
x∈K

‖r̃h(x)− rh(x)‖

≤ 1

qmin
sup
x∈K

∥∥∥∥∥ 1

mhd

m∑
i=1

YiK

(
x−Xi

h

)
− E

(
1

hd
YiK

(
x−Xi

h

))∥∥∥∥∥
= OP

(√
logm

mhd

)
. (28)

The third term supx∈K
‖rh(x) − r(x)‖ involves the bias in nonparametric

regression which is known to be at rate O(h2) under assumption (N2). Based
on this rate and equations (27) and (28), by equation (26) we obtain

sup
x∈K

‖r̂h(x)− r(x)‖ = O(h2) +OP

(√
logm

mhd

)
,

which is the desired result.

Proof of Theorem 7. This proof follows the same way as the proof of Theorem 3:
we decompose Êh∗ = Am+Bn and control the variance of Am and Bn and show
that the covariance is 0.

The only difference is in the variance of Bn. Because the estimation error
now becomes (see equation (9))

sup
x∈K

‖r̂h∗(x)− r(x)‖ = OP

((
logm

m

) 2
d+4

)
,

the variance

Var(Bn) =
n−m

n2

(
E
2
(√

r(X∗)
)
− E

2(r†(X∗))
)
+

n−m

n2
O

((
logm

m

) 2
d+4

)
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=
n−m

n2
Vmin +

n−m

n2
O

((
logm

m

) 2
d+4

)
.

Thus, the total variance is

Var
(
Êh∗

)
= Var(Am) + Var(Bn) + 2Cov(Am, Bn)︸ ︷︷ ︸

=0

=
m

n2
Vmin +

m

n2
Vq0 +

n−m

n2
Vmin +

n−m

n2
O

((
logm

m

) 2
d+4

)

=
1

n
Vmin +

1

n2

(
m · Vq0 + (n−m) ·O

((
logm

m

) 2
d+4

))
,

which proves the desired result.
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