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Abstract: With the advent of wide-spread global and continental-scale
spatiotemporal datasets, increased attention has been given to covariance
functions on spheres over time. This paper provides results for stationary
covariance functions of random fields defined over d-dimensional spheres
cross time. Specifically, we provide a bridge between the characterization
in Berg and Porcu (2017) for covariance functions on spheres cross time
and Gneiting’s lemma (Gneiting, 2002) that deals with planar surfaces.

We then prove that there is a valid class of covariance functions similar
in form to the Gneiting class of space-time covariance functions (Gneiting,
2002) that replaces the squared Euclidean distance with the great circle
distance. Notably, the provided class is shown to be positive definite on
every d-dimensional sphere cross time, while the Gneiting class is positive
definite over Rd × R for fixed d only.

In this context, we illustrate the value of our adapted Gneiting class by
comparing examples from this class to currently established nonseparable
covariance classes using out-of-sample predictive criteria. These compar-
isons are carried out on two climate reanalysis datasets from the National
Centers for Environmental Prediction and National Center for Atmospheric
Research. For these datasets, we show that examples from our covariance
class have better predictive performance than competing models.

Keywords and phrases: Bayesian statistics, covariance functions, global
data, great circle distance, spatiotemporal statistics, sphere.
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1. Introduction

In recent years, there has been a sharp increase in the prevalence of global
or continental-scale spatiotemporal data due to satellite imaging, climate re-
analyses, and wide-spread monitoring networks. Although Earth is not exactly
spherical (it flattens at the pole), it is commonly believed that the Earth can
be well approximated by a sphere (Gneiting, 2013; Castruccio and Stein, 2013).
With the goal of modeling data over large spatial scales, while accounting for
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the geometry of the Earth, there has recently been fervent research on model-
ing and inference for random fields on spheres as well as on spheres cross time.
Recent examples provide a comprehensive overview of these topics, including
Gneiting (2013), Jeong and Jun (2015), Porcu, Bevilacqua and Genton (2016),
Berg and Porcu (2017), and Porcu, Alegŕıa and Furrer (2018).

Under Gaussianity, the covariance function is core to spatiotemporal mod-
eling, inference, and prediction. Covariance functions are positive definite and
showing that a candidate function is positive definite over spheres cross time
often requires mathematical tools from harmonic analysis. Following the works
of Schoenberg (1942) and Gneiting (2013) on spheres, the mathematical char-
acterization of covariance functions on spheres cross time has been given by
Berg and Porcu (2017). In addition, Porcu, Bevilacqua and Genton (2016) pro-
vide examples of covariance functions for practitioners. As a special case of
these covariance classes, some have adapted these classes for temporal models
on circles (one-dimensional spheres) to account for seasonal patterns in tem-
poral autocorrelation (see Shirota and Gelfand, 2017; White and Porcu, 2019).
Generalizations in the area of mathematical analysis include Guella, Menegatto
and Peron (2016a,b, 2017) and Barbosa and Menegatto (2017).

For a random field on R
d×R with stationary covariance function C : Rd×R →

R, Gneiting (2002) showed the following characterization: if C is continuous,
bounded, symmetric, and integrable (over Rd), then C is a covariance function
if and only if the function Cω : R → R, defined by

Cω(u) =

∫
Rd

eih
�ωC(h, u)dh, u ∈ R, (1)

is a covariance function for almost every ω ∈ R
d. Here, i is the unit imaginary

number and � is the transpose operator. This characterization has been the
crux of many important results in spatiotemporal covariance modeling. Exam-
ples include the Gneiting class (Gneiting, 2002), Schlather’s generalized class
(Schlather, 2010), component-wise anisotropic covariances (Porcu, Gregori and
Mateu, 2006), multivariate geostatistical modeling (Apanasovich and Genton,
2010), quasi-arithmetic construction (Porcu, Mateu and Christakos, 2010) and
nonstationary models (Porcu, Mateu and Bevilacqua, 2007). For a given positive
integer d, (1) proves the validity of the Gneiting class of covariance functions:

C(h;u) =
σ2

ψ(u2)d/2
ϕ

(
‖h‖2
ψ(u2)

)
, h ∈ R

d, u ∈ R, (2)

where ‖ · ‖ is the Euclidean norm. The function ϕ : [0,∞) → R+ is com-
pletely monotonic; that is, ϕ is infinitely differentiable on (0,∞), satisfying
(−1)nϕ(n)(t) ≥ 0, n ∈ N. Here, ϕ(n) denotes nth derivative and we use ϕ(0)

for ϕ, where ϕ(0) is required to be finite. The function ψ : [0,∞) → R+ is
strictly positive with a completely monotonic derivative. Here and throughout,
σ2 is used to represent the spatiotemporal variance; that is, a scaling factor of
a spatiotemporal correlation function. We also note that the function C in (2)
is positive definite in R

d ×R for a given positive integer d, but it is not positive
definite on every d-dimensional Euclidean space cross time.
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Our paper focuses on two aspects of covariance modeling on d-dimensional
spheres cross time. We first focus on Criterion (1) and its analogue on spheres
over time. Our result provides an additional equivalence condition to those pro-
vided in Berg and Porcu (2017). We then provide an adaptation of the Gneiting
class (2) to spherical domains, and show that it is positive definite over all d-
dimensional spheres (including the Hilbert sphere) cross time. Further, our proof
is based on direct construction, allows us to avoid Fourier inversion, and does
not require a convergence argument that was originally used by Gneiting (2002).
Porcu, Bevilacqua and Genton (2016) considered a variant of this problem, mod-
ifying the Gneiting class based on temporal rescaling of the spatial component.
This idea was also suggested by Gneiting (2002). In addition to a new Gneit-
ing class for spheres over time, we adapt Heine’s class of covariance functions
(Heine, 1955), originally proposed over two-dimensional Euclidean spaces, to
d-dimensional spheres cross time.

For estimation and prediction with the new covariance class, (5), we take a
Bayesian approach using nearest neighbor Gaussian processes (NNGP) (Datta
et al., 2016a,b). Bayesian models allow for simple and rigorous uncertainty quan-
tification through a single probabilistic framework that does not rely on asymp-
totic assumptions. Because Gaussian process (GP) models for large datasets, as
we have with globally sampled spatiotemporal data, are often computationally
intractable, we use the NNGP as a surrogate. Modeling with the NNGP enables
scalable model fitting, inference, and prediction for real-data examples. Our dis-
cussion here adds to application areas for NNGPs as they have not been used
for global data in the literature.

For our data examples, we use daily near-surface temperature and cloud cov-
erage from the first week of 2017 (Kalnay et al., 1996). We only use the first
week to keep computation times short. To be clear, we do not claim that covari-
ance functions from our new covariance classes are preferable for all datasets.
Indeed, for some datasets that we tested, but that we do not present here, the
new covariance functions in this manuscript showed little or no predictive ad-
vantage. However, we highlight these datasets because they show that our new
Gneiting class yields practical predictive benefits in some cases.

We start by giving background (Section 2) for the theoretical results given in
Section 3. In Section 3, we provide the analogue of (1) for covariance functions
over spheres cross time. Additionally, we adapt the Gneiting class (2) to spheres
cross time and show that, using a subclass of completely monotonic functions,
the adapted Gneiting class can be used on all d-dimensional spheres cross time.
Then, we provide an adaptation of the Heine covariance function, originally
proposed in R × R, to spheres cross time. Proofs of the theoretical results are
technical and are deferred to the Appendix A. We also provide a supplementary
result in Appendix A related to our main result in Section 3. We then turn our
attention to modeling data using covariance functions from our adapted Gneit-
ing class in Section 4. In Section 5, we draw upon our modeling discussion for
simulation studies and real data analyses. In our simulation studies, we explore
parameter identifiability for examples from our adapted Gneiting covariance
class and highlight some limitations. In our data examples, covariance functions



Covariance functions on spheres cross time 2569

from our adapted Gneiting covariance class have better out-of-sample predic-
tive performance than covariance models currently in the literature, using mean
absolute error, mean squared error, and continuous ranked probability scores as
model comparison criteria. Finally, e provide concluding remarks in Section 6.

2. Background

Let d be a positive integer. Here, we consider stationary Gaussian random fields
on d-dimensional unit spheres Sd cross time (in R), where Sd is defined to be
{s ∈ R

d+1 : ‖s‖ = 1}. We use the unit sphere without loss of generality. These
random fields are denoted {Y (s, t), s ∈ S

d, t ∈ R}. We assume Gaussianity
in modeling (Section 4) which implies that finite dimensional distributions are
completely specified by the mean and covariance function of the random field.

As a metric on S
d, we use the great circle distance θ : Sd×S

d → [0, π], defined
as the mapping

(s1, s2) �→ arccos
(
s�1 s2

)
, s1, s2 ∈ S

d.

We then consider covariance functions based on θ(s1, s2) and time difference
u =| t1 − t2 |,

cov (Y (s1, t1), Y (s2, t2)) = C (θ(s1, s2), | t1 − t2 |) , (si, ti) ∈ S
d × R, (3)

where we take θ as an abbreviation for θ(s1, s2). Porcu, Alegŕıa and Furrer
(2018) refer to such covariance functions as spatially geodesically isotropic and
temporally symmetric, and Berg and Porcu (2017) provide a mathematical char-
acterization for these functions.

Covariance functions are positive definite, meaning that for any collection
{(sk, tk)}Nk=1 ⊂ S

d × R and constants {ak}Nk=1,
∑

k,h akahC(θ(sk, sh), | tk − th |
) ≥ 0. It is worth noting that classes of positive definite functions on S

d ×R are
nested, meaning that positive definiteness on S

d×R implies positive definiteness
on S

d′ × R for d′ < d, but the converse is not necessarily true.
Porcu, Bevilacqua and Genton (2016) proposed the inverted Gneiting class

and define it as

C(θ;u) =
σ2

ψ[0,π](θ)1/2
ϕ

(
u2

ψ[0,π](θ)

)
, θ ∈ [0, π], u ∈ R, (4)

with ϕ and ψ as defined in (2), and where ψ[0,π] denotes the restriction of ψ
to the interval [0, π]. In contrast to (2) which scales Euclidean distance by a
function of the temporal lag, (4) rescales the temporal lag by a function of
the great circle distance. This was also mentioned in Gneiting (2002). It might
be more intuitive to rescale space with time, as was done in (2), proposing a
structure like

C(θ;u) =
σ2

ψ(u2)
ϕ

(
θ

ψ(u2)

)
, θ ∈ [0, π], u ∈ R, (5)
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where, in this case, we do not need to restrict any of the functions ϕ and ψ to
the interval [0, π]. Also, one might note that the function ψ is not raised to the
power d/2 as in (2). Showing this construction is valid is nontrivial and receives
an exposition in Section 3.2.

One choice of ϕ, used to construct covariance functions in (2) and (4) is the
Matérn class ϕ(t) = Mα,ν(t), t ≥ 0, α, ν > 0, defined as

Mα,ν(t) =
21−ν

Γ(ν)

(
t

α

)ν

Kν

(
t

α

)
, (6)

where Kν is the MacDonald function (Gradshteyn and Ryzhik, 2007). One ap-
peal of this class is the parameter ν that governs the smoothness at the origin
(Stein, 1999). Unfortunately, Mα,ν(θ) is not positive definite on d-dimensional
spheres, unless ν ∈ (0, 1/2] (Gneiting, 2013), which makes this function less
appealing to model spatial processes that are sufficiently smooth.

3. Theoretical results

3.1. The generalized Gneiting lemma on spheres cross time

We begin our discussion with a criterion for covariance functions defined over
d-dimensional spheres cross time. Let Gλ

k be the kth normalized Gegenbauer
polynomial of order λ > 0 (Dai and Xu, 2013). Gegenbauer polynomials form
an orthonormal basis for the space of square-integrable functions, denoted as
L2([0, π], sin θd−1dθ).

Theorem 1. Let d be a positive integer. Let C : [0, π] × R → R be continuous
and bounded with the kth related Gegenbauer transform, defined as

bk,d(u) =

∫ π

0

C(θ, u)G(d−1)/2
k (cos θ) sin θd−1dθ, u ∈ R, k = 0, 1, . . . , (7)

with bk,d : R → R, satisfying
∑∞

k=0

∫
R

∣∣bk,d(u)∣∣du < ∞. Then, the following
assertions are equivalent:

1. C(θ, u) is the covariance function of a random field on S
d × R;

2. the function Cτ : [0, π] → R, defined as

Cτ (θ) =

∫ +∞

−∞
e−iuτC(θ, u)du, (8)

is the covariance function of a random field on S
d for almost every τ ∈ R;

3. for all k = 0, 1, 2, . . ., the functions bk,d : R → R, defined through (7), are
continuous, positive definite on R, and

∑
k bk,d(0) < ∞.

Some comments are in order. Equivalence of 1 and 3 was shown by Berg
and Porcu (2017). The result completes the picture that had been started by
Gneiting (2013), Berg and Porcu (2017) and Porcu, Bevilacqua and Genton
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(2016). Equivalence of 1 and 2 provides the analogue of Gneiting’s criterion in (1)
for spheres cross time. Thus, Theorem 1 gives insight into relationships between
covariance functions on spheres and covariance functions on Euclidean spaces.
In fact, application of Theorem 1 provides a useful criterion (see Appendix A)
relating spatiotemporal covariances on R×R with covariance functions on S

3×R.
The proof of Theorem 1 is technical, and we defer it to Appendix A to avoid

mathematical obfuscation.

3.2. New classes of covariance functions on spheres cross time

We now detail our findings with two new classes of covariance functions on
spheres over time. To do this, we need to introduce a new class of special func-
tions. A function ϕ : [0,∞) → R is called a Stieltjes function if

ϕ(t) =

∫
[0,∞)

μ(dξ)

t+ ξ
, t ≥ 0, (9)

where μ is a positive and bounded measure. We require throughout ϕ(0) = 1,
which implies that

∫
ξ−1μ(dξ) = 1. Let us call S the set of Stieltjes functions. It

has been proved that S is a convex cone (Berg, 2008), with the inclusion relation
S ⊂ C, where C is the set of completely monotone functions. The relation (9)
shows that the function t �→ (1+t)−1, t ≥ 0, is a Stieltjes function. Using the fact
that ϕ ∈ S if and only if 1/ϕ is a completely Bernstein function (for a definition,
see Porcu and Schilling, 2011) we can get a wealth of examples, as the book by
Schilling, Song and Vondracek (2012) provides an entire catalogue of completely
Bernstein functions. We finally note that completely Bernstein functions are
infinitely differentiable over (0,∞) and have a completely monotonic derivative.

We are now able to state the following result.

Theorem 2. Let C : [0, π] × R be the mapping defined through (5), where ϕ
is a Stieltjes function on the positive real line, with ϕ(0) = 1, and ψ is strictly
positive with a completely monotone derivative. Then, C is a covariance function
on S

d × R for all positive integers d.

Again, the proof is deferred to Appendix A. This result completes the adap-
tation of the Gneiting class (Gneiting, 2002) to spheres cross time. Theorem 2
allows C in (5) to be positive definite on every d-dimensional sphere under the
condition that the function ϕ is a Stieltjes function. As already mentioned, the
class is rich, and there is a whole catalogue available from the book by Schilling,
Song and Vondracek (2012). In addition, our proof in Appendix A does not
require any Fourier inversion techniques, nor convergence arguments as those
used in Gneiting (2002).

We also note that the Matérn function Mα,ν cannot be used for the purposes
of Theorem 2. This is not surprising, as arguments in Gneiting (2013) show
that the Matérn covariance function in (6) can only be used in Theorem 2 for
0 < ν ≤ 1/2. If one is interested in smoother realizations over spheres, then
a common method involves using the Euclidean distance on spheres (Gneiting,
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2013; Porcu, Alegŕıa and Furrer, 2018), also called chordal distance, in (2). In
this case, any choice for ν > 0 preserves positive definiteness. At the same
time, using chordal distance has a collection of drawbacks that have inspired
constructive criticism in Banerjee (2005), Gneiting (2013), Porcu, Alegŕıa and
Furrer (2018) and Alegria and Porcu (2017), to cite a few. We explore both
possibilities and compare them in terms of predictive performance in Section 5.

To introduce another class of covariance functions, we define the complemen-
tary error function erfc as

erfc(t) =
2√
π

∫ ∞

u

exp
(
−ξ2

)
dξ, t ≥ 0,

and erfc(t) = 2− erfc(−t) when t is negative. We can show the following result.

Theorem 3. Let ψ[0,π] be the restriction to [0, π] of a positive function with a
completely monotonic derivative. Then,

C(θ, u) =e−|u|erfc

(√
ψ[0,π](θ)−

| u |
2
√
ψ[0,π](θ)

)
+

e|u|erfc

(√
ψ[0,π](θ) +

| u |
2
√

ψ[0,π](θ)

)
,

(10)

θ ∈ [0, π], u ∈ R, is a covariance function on S
d × R for all d = 1, 2, . . ..

The class presented in (10) is related to a covariance class on R×R considered
by Heine (1955). Again, the proof is provided in Appendix A.

4. Modeling nonseparable spatiotemporal data

4.1. Hierarchical process modeling for spatiotemporal data

We illustrate the utility of one of our covariance classes (Theorem 2) using
hierarchical NNGP models in a Bayesian setting. In spatial and spatiotemporal
analyses, Bayesian models are often preferred for hierarchical modeling because
they allow for simple and rigorous uncertainty quantification through a single
probabilistic framework that does not rely on asymptotic assumptions (see, e.g.,
Gelman et al., 2014; Banerjee, Carlin and Gelfand, 2014; Cressie and Wikle,
2015).

Spatiotemporal random effects for point-referenced data are often specified
through a functional prior using a Gaussian process (GP). Gaussian processes
are natural choices for modeling data that vary in space and time. However,
likelihood computations for hierarchical GP models require inverting a square
matrix with dimension equal to the size of the data, making GP models in-
tractable in “big-data” settings. Many have addressed this computational bot-
tleneck using either low-rank or sparse matrix methods (see Heaton et al., 2018,
for a review and comparison of some of these methods).
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Low-rank methods depend on selecting representative points, often called
knots, that are used to approximate the original process (see, e.g., Higdon,
2002; Banerjee et al., 2008; Cressie and Johannesson, 2008; Stein, 2008). These
models tend to oversmooth and often have poor predictive performance (see
Stein, 2014; Heaton et al., 2018).

In contrast to low-rank methods, inducing sparsity in either the covariance
matrix or the precision matrix can reduce the computational burden. Covari-
ance tapering creates sparsity in the covariance matrix by using compactly sup-
ported covariance functions (see, e.g., Furrer, Genton and Nychka, 2006; Kauf-
man, Schervish and Nychka, 2008). These methods are generally effective for
parameter estimation and interpolation; however, the allowable class of covari-
ance functions is limited. On the other hand, inducing sparsity in the precision
matrix has been leveraged to approximate GPs using Markov random fields
(Lindgren, Rue and Lindstroem, 2011) or using conditional likelihoods (Vec-
chia, 1988; Stein, Chi and Welty, 2004). These approaches were extended to
process modeling by Gramacy and Apley (2015) and Datta et al. (2016a). For
discussion and further extension of these approaches, see Katzfuss and Guin-
ness (2017). Unlike local approximate Gaussian processes (Gramacy and Apley,
2015), the NNGP is itself a GP (Datta et al., 2016a) and has good predictive
performance relative to other “fast” GP methods (See Heaton et al., 2018).

To specify an NNGP, we begin with a parent GP over Rd×R or Sd×R. Nearest
neighbor Gaussian process models induce sparsity in the precision matrix of the
parent Gaussian model by assuming conditional independence given neighbor-
hood sets constructed from directed acyclic graphs, yielding huge computational
benefits (Datta et al., 2016a,b). Modeling, model fitting, and prediction details
for NNGP models are given in Appendix B.

4.2. Examples of covariance functions

Here, we turn our attention to six nonseparable covariance functions used in
simulation studies in Section 5.1 in our data analyses (Sections 5.2 and 5.3). For
all examples, we parameterize the models with variance σ2 and use cs and ct
to represent the strictly positive spatial and temporal scale parameters, respec-
tively.

Explicitly, we consider two special cases from the Gneiting class (2) with
ϕ(t) = Mcs,ν(t), t ≥ 0, for Mcs,ν , defined in (6), obtained when ν = 1/2 and
ν = 3/2,

C(h, u) =
σ2(

1 +
(

|u|
ct

)α)δ+βd/2
Mcs,ν

⎛⎜⎝ ‖h‖(
1 +

(
|u|
ct

)α)β/2

⎞⎟⎠ , (11)

where (h, u) ∈ Rd × R. These choices correspond to Mcs,1/2(t) = exp(−t/cs)
and Mcs,3/2(t) = exp(−t/cs)(1+ t/cs), t ≥ 0. Here, we work on the sphere, thus
‖ · ‖ refers to chordal distance. The parameters restriction is δ > 0, β ∈ (0, 1]
and α ∈ (0, 2].
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For the remaining examples, (θ, u) ∈ [0, π] × R. Next, we consider a pair of
similar covariance models from the inverted Gneiting class (Porcu, Bevilacqua
and Genton, 2016) in (4)):

C(θ, u) =
σ2(

1 +
(

θ
cs

)α)δ+β/2
exp

⎛⎜⎝− |u|2γ

c2γt

(
1 +

(
θ
cs

)α)βγ

⎞⎟⎠ , (12)

where δ > 0, and where β, α and γ belong to the interval (0, 1]. The sec-
ond we consider uses the generalized Cauchy covariance function (Gneiting and
Schlather, 2004) for the temporal margin, that is ψ(u) = (1 + (|u|/cs)γ)−λ:

C(θ, u) =
σ2(

1 +
(

θ
cs

)α)δ+β/2

⎛⎜⎝1 +
|u|2γ

c2γt

(
1 +

(
θ
cs

)α)βγ

⎞⎟⎠
−λ

, (13)

with δ, λ > 0, and where β, α and γ belong to the interval (0, 1].
As a first example from our new adapted Gneiting class on spheres cross time

(see Theorem 2), we chose the Stieltjes function

ϕ(t) = κ
1− e−2

√
t+1

√
t+ 1

, t ≥ 0,

with κ := 1/(1 − e−2) a normalization constant. We then pick the function
ψ(t) = (1 + tα)δ, that is a Bernstein function for α, δ ∈ (0, 1]. Thus, we have

C(θ, u) =
σ2κ(

1 +
(

|u|
ct

)α)δ

1− e
−2

⎛⎝1+ θ

cs(1+( |u|
ct
)
α
)
δ

⎞⎠1/2

(
1 + θ

cs(1+( |u|
ct
)
α
)
δ

)1/2
. (14)

For the second, we again propose a generalized Cauchy covariance function for
the spatial margin, obtaining

C(θ, u) =
σ2(

1 +
(

|u|
ct

)α)δ+β/2

⎛⎜⎝1 +
θγ

cγs
(
1 +

(
|u|
ct

)α)βγ

⎞⎟⎠
−λ

, (15)

where δ > 0, β, γ ∈ (0, 1], α ∈ (0, 2] and λ > 0.
For all models in our simulation study and our data analyses, we include an

independent Gaussian error term with variance τ2 in the model. The variance τ2

is often called a nugget and accounts for potential discontinuities at the origin
of the covariance function. In other words, the nugget accounts for sources of
uncertainty that are not explained or captured by our spatiotemporal model.
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4.3. Model comparison

To compare models that differ in terms of covariance specification, we propose
the following criteria for comparing predictions to hold-out data yi: 90% pre-
dictive interval coverage, predictive mean square or absolute error (defined as
(E(Yi | Yobs) − yi)

2 or | E(Yi | Yobs) − yi |, respectively), where Yobs denotes
observations. Besides these common criteria, we also use a strictly proper scor-
ing rule (Gneiting and Raftery, 2007), the continuous ranked probability score
(CRPS), defined as

CRPS(Fi, yi) =

∫ ∞

−∞
(Fi(x)−1(x ≥ yi))

2dx = E | Yi−yi | −
1

2
E | Yi−Y ′

i |, (16)

where Yi and Y ′
i follow the predictive distribution Fi (see Brown, 1974; Matheson

and Winkler, 1976, for early discussion on CRPS).. An empirical estimate of
the continuous ranked probability score, using M posterior predictive samples
Yi,1, ..., Yi,M from Yi | Yobs, is

CRPS(F̂i, yi) =
1

M

M∑
j=1

| Yi,j − yi | −
1

2M2

M∑
j=1

M∑
k=1

| Yi,j − Yi,k | . (17)

We average continuous ranked probability scores over all hold-out data to obtain
a single value for comparison.

5. Simulation and data examples

Using only covariance functions (14) and (15), we provide a brief simulation
study in Section 5.1 to explore the identifiability of covariance model parameters
using an NNGP model. In Sections 5.2 and 5.3, we illustrate practical predictive
advantages of the new Gneiting class using spherical distance (Theorem 2) using
two climate reanalysis datasets from the National Centers for Environmental
Prediction and National Center for Atmospheric Research (Kalnay et al., 1996).
For both analyses, we use the first week of the 2017 dataset.

5.1. Simulation study

Here, we present simulation studies to explore the empirical identifiability of
covariance model parameters. To do this, we simulate many datasets that differ
in their covariance specification, using either (14) and (15). For each covari-
ance function, we fix parameters and generate 1,000 datasets from the following
generative model:

Y (s, t) = w(s, t) + ε(s, t), (18)

w(s, t) ∼ GP(0, C((s, t), (s′, t′))),

ε(s, t) ∼ GP(0, τ2δssδ
t
t),
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where observations lie on an evenly spaced grid of latitudes ranging from −90
to −60 (5◦ spacing) and longitudes between −180 and 0 (5◦ spacing). This grid
is repeated from times 1 to 10, giving N = 4330. While we use a full GP spec-
ification for simulation and the dataset is not particularly large when fitting a
single model, we fit these data using a hierarchical NNGP model with m = 25
neighbors because this mirrors modeling approach in Section 4 and because we
fit 1,000 simulated datasets per simulation (6,000 in total). Neighbors are se-
lected using simple rectangular neighborhood sets using great-circle (spherical)
distance to define nearness (see Datta et al., 2016b).

When simulating from (18) using (14) as the covariance function, we use with
σ2κ = 4, cs = 0.2, ct = 2, α = 1/2, δ = 1/2, and τ2 = 1 for the noise term
ε(s, t). For τ2 and σ2, we use inverse-gamma priors with 0.1 as both the shape
and scale (corresponding to the rate of a gamma distribution) parameters. We
assume cs ∼ Unif(0, π), ct ∼ Unif(0, 10), α ∼ Unif(0, 1], and δ ∼ Unif(0, 1], a
priori.

When using (15) in the generative model (18), we set σ2 = 4, cs = 0.2, ct = 2,
α = 1, β = 1/2, δ = 3/4, λ = 1, γ = 1/2, and τ2 = 1 for the noise term ε(s, t).
For simplicity, we constrain δ+ β/2 = 1, γ = 1/2, and λ = 1. As before, we use
inverse-gamma priors with 0.1 as both the shape and scale parameters for τ2

and σ2. As before, we assume cs ∼ Unif(0, π), ct ∼ Unif(0, 10), α ∼ Unif(0, 2],
β ∼ Unif(0, 1], and δ ∼ Unif(0, 1], a priori.

We explore the effect of fixing some model parameters to examine how model
identifiability is affected. Specifically, we consider fixing combinations of cs, ct,
and α in (14) and (15) to the true value. In this setting, we re-fit the mod-
els described above, keeping all other specifications the same as described. We
present the 90% empirical coverage rates for all parameters in Table 1. In this
table, dashes indicate that parameters are fixed. For (14), we see improved cov-
erage rates (i.e., closer to 90%) for σ2 and α when range parameters cs and ct
are fixed; however, δ shows significant under coverage when range parameters
are fixed. The results for (15) are similar. When range parameters are fixed,
coverage rates for σ2 and β are closer to 90%. For this covariance model, α has
slightly worse coverage when range parameters are fixed.

Table 1

90% empirical coverage rates. Here, we use dashes when parameters are fixed on the
parameters used in simulating the data.

Model σ2 τ2 cs ct α δ or β
(14) 0.72 0.87 0.71 0.84 0.74 0.81
(14) 0.79 0.87 –– –– 0.82 0.62
(14) 0.80 0.89 –– –– –– 0.55
(15) 0.73 0.88 0.67 0.89 0.75 0.99
(15) 0.82 0.89 –– –– 0.69 0.92
(15) 0.82 0.90 –– –– –– 0.92

These simulation studies highlight some of the limitations in estimating pa-
rameters of covariance functions from Theorem 2. For both (14) and (15), we
note that there is limited parameter identifiability, particularly for spatial range
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parameter cs and spatiotemporal variance σ2. Although we do not provide iden-
tifiability proofs, this result seems similar to the limited identifiability of the
Matérn class that is identifiable up to σ2cs

−2ν (see Zhang, 2004). Apparently,
this issue becomes even more complex under the space-time setting, and the lack
of theoretical results for space-time asymptotics and equivalence of Gaussian
measures make this problem very difficult. In this simulation, we find improved
parameter identifiability when we fix spatial range parameters. We emphasize
that the primary goal of our analyses is comparing predictive performance. How-
ever, if the unbiased estimation of covariance parameters is the primary goal,
then a multi-stage fitting process can improve estimation (Mardia and Marshall,
1984).

5.2. Surface air temperature reanalysis data

For this section, we utilize the 2017 National Centers for Environmental Pre-
diction/National Center for Atmospheric Research daily average 0.995 sigma
level (near-surface) temperature reanalysis data (Kalnay et al., 1996). Air tem-
perature at 0.995 sigma level is defined to be the temperature taken at an air
pressure 0.995 × surface air pressure.

The foundations of global temperature change are well established (see, e.g.,
Folland et al., 2001; Hansen et al., 2006, 2010). Furthermore, air temperature
changes have, along with other changes in climate, a wide and deep impact on
global biological systems (see Parmesan and Yohe, 2003; Thomas et al., 2004;
Held and Soden, 2006). For these reasons, many climate models are dedicated
to understanding past and predicting future temperature changes (see Simmons
et al., 2004, for some discussion and comparisons about the various analyses of
surface air temperature).

The daily near-surface temperature reanalysis data represent daily temper-
ature averages over a global grid with 2.5◦ spacing for latitude and longitude.
We thin the data to 5◦ spacing for latitude and longitude to carry out a model
comparison on the hold-out data. In this dataset, we have observations at 2522
unique spatial locations, giving 17654 total observations. The averages of near-
surface temperature over the first week of January are plotted in Figure 1.
Additionally, we give the density estimate of near-surface temperature for each
day in Figure 1. Figure 1 shows that the overall temperature distribution is
similar across days and demonstrates a clear spatial structure. Because our
covariance model allows space to be scaled by time while using the spherical
distance, we expect that our model may be able to capture the strong spatial
structure in this data more effectively than the models with which we compare
them.

With 17654 data, carrying out fully Bayesian inference using a full GP model
is computationally burdensome; thus, we utilize a NNGP model. For these mod-
els, we use simple neighborhood selection presented in Datta et al. (2016b) using
m = 25 neighbors, using the five nearest neighbors at the five most recent times,
including the current time. We utilize two covariance models from each of the
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Fig 1. (Left) Near-surface temperature heat map in degrees Kelvin (K) (Right) Kernel density
estimates of global near-surface temperature for each day.

Gneiting class, the inverted-Gneiting class using spherical distance, and our
new Gneiting class (Theorem 2). These models are presented in (11) to (15).
For all models, we use inverse-gamma prior distributions for τ2 and σ2 with
0.1 for both the shape and scale parameters (corresponding to the rate param-
eter of a gamma distribution). We use prior distributions of cs ∼ Unif(0, π),
ct ∼ Unif(0, 10), α ∼ Unif(0, 2], and β ∼ Unif(0, 1] for correlation function
parameters. Because many covariance models have limited parameter identifia-
bility, we constrain δ + βd/2 = 1 for (11), and δ + β/2 = 1 for (12), (13), and
(15).

We compare these six models in terms of predictive performance on a ran-
domly selected subset of the hold-out data. In total, we use 1000 locations
over the week, giving 7000 hold-out observations. These hold-out locations are
plotted in Figure 5 in Appendix C. We compare these models in terms of pre-
dictive root mean squared error, mean absolute error, continuous ranked prob-
ability score, and 90% prediction interval coverage, as discussed in Section 4.3.
For predictions, neighbors are chosen to make prospective predictions using 25
neighbors (See Appendix B for details on modeling and prediction).

The results presented are based on 25,000 posterior draws after a burn-in of
5,000 iterations using a Gibbs sampler presented in Appendix B. These posterior
samples are used for prediction and posterior inference. The results of the model
comparison are given in Table 2. For this data, the covariance models from our
class (14) and (15) had the best out-of-sample predictive performance, and the
model (14) was the very best. For comparison, the Gneiting class using chordal
distance had continuous ranked probability scores 7% and 16% higher than the
best model for ν = 1/2 and ν = 3/2, respectively. Both models from the inverted
Gneiting class with spherical distance were 13% worse in terms of continuous
ranked probability scores.
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Table 2

Predictive performance of competing covariance models for the cloud cover dataset. For
brevity in the table, let PRMSE and PMAE denote predictive mean squared error and mean

absolute error, respectively. Relative CRPS is scaled such that the lowest is one. Bolded
entries are used to indicate best model performances, i.e. lowest PRMSE, PMAE, and

CRPS and 90% interval coverage closest to 90%.

Equation PRMSE PMAE 90% Coverage CRPS Relative CRPS
(11) and ν = 1/2 6.44 4.58 0.91 3.50 1.07
(11) and ν = 3/2 7.15 5.08 0.91 3.81 1.16
(12) 6.79 4.85 0.90 3.70 1.13
(13) 6.78 4.84 0.90 3.69 1.13
(14) 6.02 4.26 0.90 3.28 1.00
(15) 6.04 4.40 0.90 3.35 1.02

For the best model, (14), we provide posterior summaries in Table 3. Ad-
ditionally, we display the correlation contour as function of spherical distance
θ and time t for the posterior mean in Figure 2. Correlation is very persistent
as a function of time; thus, decreases in autocorrelation are almost completely
attributable to changes in spatial location.

Table 3

Posterior summaries for the near-surface air temperature dataset for parameters for the
model fit using (14). Percentiles (2.5% and 97.5%) represent posterior percentiles.

Mean Standard Deviation 2.5% 97.5%
τ2 21.140 0.553 20.088 22.250
σ2 105.897 4.253 97.953 114.498
cs 0.994 0.024 0.952 1.025
ct 2.783 3.243 0.026 9.624
α 0.017 0.020 0.001 0.067
δ 0.090 1.54e-3 0.088 0.092

Fig 2. Posterior mean correlation contour plot for the near-surface air temperature.

We can also compute posterior summaries for σ2/(σ2+τ2), interpreted as the
proportion of total variance attributable to the spatiotemporal random effect.
Here, the posterior mean of σ2/(σ2 + τ2) is 0.834. In other words, our selected
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covariance model accounts for 83.4% of the total variance. In Table 3 and Figure
2, cs and ct suggest that the surface temperature process exhibits persistent
correlation over both space and time. Low values of α in (14) add temporal
smoothness.

5.3. Total cloud coverage reanalysis data

For this section, we utilize the 2017 National Centers for Environmental Pre-
diction/National Center for Atmospheric Research daily average total cloud
coverage reanalysis data (Kalnay et al., 1996). Total cloud coverage is defined
as the fraction of the sky covered by any visible clouds, regardless of type. Total
cloud coverage takes values between 0 and 100, representing a percentage of
cloud coverage. Values of total cloud coverage close to 0 indicate clear skies,
values from 40 to 70 percent represent broken cloud cover, and overcast skies
correspond with 70 to 100 percent.

The degree of cloudiness impacts how much solar energy radiates to the
Earth (see, e.g., Svensmark and Friis-Christensen, 1997). Total cloud coverage,
like changes in global surface temperature, has been impacted by global climate
changes (see, e.g., Melillo et al., 1993; Wylie et al., 2005), and changes in total
cloud coverage are linked with many biological changes (see Pounds, Fogden
and Campbell, 1999). Thus, tracking, predicting, and anticipating changes in
cloudiness have important implications for understanding global climate changes
and their effects on ecosystems.

The daily total cloud coverage reanalysis data represent daily averages and
are given on a global grid with 1.9◦ spacing for latitude and 1.875◦ spacing for
longitude. The spatial averages of cloud coverage over the first week of January
are plotted in Figure 3. This map shows clear spatial variability that suggests
that a spatial model is appropriate. We provide density estimates of total cloud
coverage for each day of the week in Figure 3. These density estimates show
that cloud coverage is similar across days.

Again, we thin the data to 3.8◦ spacing for latitude and 3.75◦ for longitude
to carry out model comparison on hold-out data. In total, we have 4512 unique
spatial locations, giving 31584 total observations. With 31584 data, carrying out
fully Bayesian inference using a full Gaussian process model is intractable; thus,
we utilize a nearest neighbor Gaussian process model. For these models, we use
the same neighborhood formulations and fit the same covariance models with
the same prior distribution to these data as we did in Section 5.2.

To obtain a test set to compare the six competing models, we randomly
select 1000 locations and predict at these locations over the time-span of our
data, giving a test set of size 7000. These hold-out locations are plotted in Figure
6 in Appendix C. As before, we compare these models in terms of predictive
mean squared error, mean absolute error, continuous ranked probability scores,
and 90% prediction interval coverage, as discussed in Section 4.3. The results of
the model comparison are given in Table 4.

Again, an example from our new class was best and models in terms of
prediction for the total cloud coverage dataset. All competing models were at
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Fig 3. (Left) Total cloud coverage heat map in percentage, taking values 0 to 100 (Right)
Kernel density estimates of total cloud coverage for each day

Table 4

Predictive performance of competing covariance models for the total cloud coverage dataset.
For brevity in the table, let PRMSE and PMAE denote predictive mean squared error and
mean absolute error, respectively. Relative CRPS is scaled such that the lowest is one.

Bolded entries are used to indicate best model performance, i.e. lowest PRMSE, PMAE,
and CRPS and 90% interval coverage closest to 90%.

Equation PRMSE PMAE 90% Coverage CRPS Relative CRPS
(11) and ν = 1/2 13.92 11.08 0.95 7.85 1.32
(11) and ν = 3/2 13.35 10.51 0.94 7.53 1.26
(12) 19.89 8.27 0.90 8.27 1.39
(13) 19.31 8.18 0.90 8.15 1.37
(14) 13.24 10.41 0.95 7.51 1.26
(15) 10.68 7.66 0.95 5.96 1.00

Table 5

Posterior summaries for the total cloud coverage dataset for parameters for the model fit
using (15). Percentiles (2.5% and 97.5%) represent posterior percentiles.

Mean Std. Err. 2.5% 97.5%
τ2 22.280 3.601 16.764 31.598
σ2 595.93 7.677 580.318 610.792
cs 0.102 0.004 0.094 0.110
ct 6.762 1.794 3.416 9.803
α 0.350 0.071 0.232 0.516
β 0.952 0.049 0.817 0.999

least 26% worse in terms of continuous ranked probability score compared to
the best model (15).

For the best predictive model in (15), we provide posterior summaries in
Table 5. Additionally, we display the correlation contour as function of spherical
distance θ and time t for the posterior mean in Figure 4. The scale of the plots
in Figure 4 are not the same as Figure 2. Correlation falls off sharply as a
function of great circle distance. In this way, the total cloud coverage dataset
differs greatly from the near-surface temperature dataset which demonstrated
very persistent autocorrelation over space and time.
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Fig 4. Posterior mean correlation contour plot for total cloud coverage data.

For the total cloud coverage data, spatiotemporal variance σ2 accounts for
96.40% of the total variance σ2 + τ2 (see Table 5). In Table 5, the parameter
ct suggests that the surface temperature process exhibits persistent correlation
over time; however, as discussed, the parameter cs indicates rapid decay as a
function of space. The separability parameter β ∈ [0, 1] is close to one, meaning
that the covariance process is nonseparable.

6. Discussion and conclusion

In this paper, we generalize the Gneiting criteria for nonseparable covariance
functions (Gneiting, 2002) in Theorem 1 and present new classes of nonsepa-
rable covariance models for spatiotemporally data in Theorems 2 and 3. In a
simulation study, we explored the identifiability of covariance parameters for two
covariance functions from Theorem 2 and noted that these covariance functions
have limited parameter identifiability. However, some of these challenges are
remedied by fixing the spatial range parameter. We then illustrate the utility of
our new Gneiting-like class using spherical distance through two climate reanal-
ysis datasets from the National Centers for Environmental Prediction and Na-
tional Center for Atmospheric Research (Kalnay et al., 1996). In these two data
examples, covariance models from Theorem 2 outperform similar stationary non-
separable covariance models from Gneiting (2002) and Porcu, Bevilacqua and
Genton (2016) using continuous ranked probability scores, root mean squared
error, and mean absolute error. As discussed, we do not suggest that covariance
functions from our new covariance classes are preferable for all datasets. How-
ever, these results highlight the benefit of allowing spatial distance to be scaled
by the difference in time and the importance of using the spherical distance
relative to Euclidean distance or chordal distance for these datasets.

The result in Theorem 1 presents a key for extending results obtained in
Euclidean spaces to spheres cross time. Due to the lack of literature for multi-
variate cross-covariance models on spheres over time, with the notable exception
of Alegria et al. (2017), we recommend this as a valuable area of expansion. In
addition, the development of nonstationary covariance models for spheres cross
time is an important direction for future research.
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Appendix A: Proofs for Theorems

In this Appendix, we provide proofs for all theorems presented in the manuscript.
In addition, we provide a supplemental result (Theorem 4).

Proof of Theorem 1

We start by proving the implication (1) −→ (2). Let C ∈ Ψd,T . Then, according
to Theorem 3.3 in Berg and Porcu (2017), C admits the expansion

C(θ, u) =

∞∑
k=0

bk,d(u)G(d−1)/2
k (cos θ), (θ, u) ∈ [0, π]× R, (19)

with bk,d being positive definite on R for all k = 0, 1, . . ., and with the con-
straint that

∑∞
k=0 bk,d(0) < ∞. Let us start by noting that the assumption∑

k

∫ ∣∣bk,d(u)∣∣du < ∞ implies C(θ, ·) ∈ L1(R) for all θ ∈ [0, π]. In fact,∫ ∞

−∞
| C(θ, u) | du =

∫ ∞

−∞

∣∣∣∣ ∞∑
k=0

bk,d(u)G(d−1)/2
k (cos θ)

∣∣∣∣du
≤

∞∑
k=0

∫ ∞

−∞

∣∣∣∣bk,d(u)∣∣∣∣du < ∞,

where the last step is justified by the fact that, for normalized Gegenbauer
polynomials,

∣∣Gλ
k (u)

∣∣ ≤ Gλ
k (1), λ > 0.

Let Cτ be the function defined through (8). Since C(θ, ·) ∈ L1(R) for all θ,
and using Lebsegue’s theorem, we have

Cτ (θ) =

∫ +∞

−∞
e−iuτC(θ, u)du

=

∫ +∞

−∞
e−iuτ

∞∑
k=0

bk,d(u)G(d−1)/2
k (cos θ)du

=

∞∑
k=0

b̂k,d(τ)G(d−1)/2
k (cos θ), θ ∈ [0, π],

where b̂k,d(τ) =
∫ +∞
−∞ e−iuτ bk,d(u)du. Clearly, for any k = 0, 1, . . . we have that

b̂k,d is nonnegative and additionally b̂k,d ∈ L1(R). To complete the proof, we in-

voke the theorem of Schoenberg (1942) and thus need to show that
∑

k b̂k,d(τ) <
∞ for all τ ∈ R. Again invoking Lebsegue’s theorem we have

∞∑
k=0

b̂k,d(τ) =

∞∑
k=0

∫ +∞

−∞
e−iuτ bk,d(u)du

=

∫ +∞

−∞
e−iuτ

∞∑
k=0

bk,d(u)du
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=

∫ +∞

−∞
e−iuτBd(u)du,

with Bd(u) =
∑∞

k=0 bk,d(u). Using the fact that
∑∞

k=0 bk,d(0) < ∞ and that
bk,d(0) ≥| bk,d(u) | for all u ∈ R (because bk,d are positive definite for all k), we
get

∞ >
∞∑
k=0

bk,d(0) ≥
∞∑
k=0

| bk,d(u) |≥
∞∑
k=0

bk,d(u) = Bd(u), u ∈ R,

showing that Bd is bounded and continuous. Further, Bd is positive definite
on R because positive definite functions are a convex cone being closed under
pointwise convergence. To complete the result, we need to prove that Bd ∈
L1(R). This comes from the fact that

Bd(u) = C(0, u) ∈ L1(R).

The proof is completed.
To prove (2) −→ (1), we let Cτ as defined through (8) and suppose that

Cτ ∈ Ψd a.e. τ ∈ R. By Schoenberg (1942) theorem, we have that

b̃k,d(τ) := κ

∫ π

0

Cτ (θ)G(d−1)/2
k (cos θ) sin θd−1dθ, τ ∈ R, (20)

is nonnegative, where κ > 0 (Berg and Porcu, 2017). Using again Schoenberg
(1942) theorem, we can write Cτ as

Cτ (θ) =

∞∑
k=0

b̃k,d(τ)Gk(cos θ), θ ∈ [0, π].

Since Cτ ∈ Ψd a.e. τ , this in turn implies ∞ > Cτ (0) =
∑

k b̃k,d(τ) for all τ ∈ R.
We now define

B̃d(τ) :=

∞∑
k=0

B̃k,d(τ), τ ∈ R.

Apparently B̃d is nonnegative. Let us now show that B̃d ∈ L1(R). To do so, we
note that ∫ +∞

−∞

∣∣∣B̃d(u)
∣∣∣du =

∫ +∞

−∞

∣∣∣ ∞∑
k=0

b̃k,d(u)
∣∣∣du

≤
∞∑
k=0

∫ +∞

−∞

∣∣∣̃bk,d(u)∣∣∣du < ∞,

so that B̃d ∈ L1(R) as asserted. This in turn implies that bk,d ∈ L1(R) for all
k = 0, 1, . . .. Thus, we can define a function C : [0, π]× R → R through

C(θ, u) =
1

2π

∫ +∞

−∞
e−iuτCτ (θ)dτ

1

2π

∫ +∞

−∞
e−iuτ

∞∑
k=0

b̃k,d(τ)Gk(cos θ)
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=

∞∑
k=0

bk,d(u)Gk(cos θ), θ ∈ [0, π], u ∈ R,

and where bk,d(·) = 1/(2π)
∫
ei·τ b̃k,d(τ)dτ is positive definite on R for all n ∈ N.

Thus, the proof is completed by invoking Theorem 3.3 in Berg and Porcu (2017)
and by verifying that

∞∑
k=0

bk,d(0) =

∞∑
k=0

∫ +∞

−∞
b̃k,d(τ)dτ < ∞.

We now prove the implication (2) −→ (3). Since Cτ ∈ Ψd for almost every
τ ∈ R, we have that (20) holds. This implies that

bk,d(u) =
1

π

∫ +∞

−∞
eiuτ b̃k,d(τ)dτ, k = 0, 1, . . . ,

is positive definite. Summability of the sequence {bk,d(u)}∞k=0 at u = 0 follows
easily from previous arguments.

To prove the implication (3) −→ (2), using (7) we have

bk,d(u) =

∫ π

0

C(θ, u)G(d−1)/2
k (cos θ) sin θd−1dθ

=
1

2π

∫ +∞

−∞
eiuτ

∫ π

0

Cτ (θ)Gk(θ) sin θ
d−1dθdτ,

which shows that Cτ ∈ Ψd for all τ because the positive definiteness of bk,d(·)
implies, by Lemma 4.3 in Berg and Porcu (2017), that the inner integral here,∫ π

0
Cτ (θ)Gk(θ) sin θ

d−1dθ, is nonnegative.
To conclude, the implication (3) −→ (1) has been shown by Berg and Porcu

(2017). �

Proof of Theorem 2

We start by noting the beautiful formula∫ ∞

0

e−rxe−rξdr =
1

x+ ξ
, ξ > 0, x ≥ 0.

We now consider the function

Hξ(θ, u) =

∫ ∞

0

e−rθe−rξψ(u2)dr =
1

ψ(u2)

(
ξ +

θ

ψ(u2)

)−1

,

where (θ, u) ∈ [0, π] × R. This shows that Hξ is positive definite on every d-
dimensional sphere cross time (R) because the mapping θ �→ exp(−rθ) is positive
definite on every d-dimensional sphere S

d (Gneiting, 2013, Theorem 7) and
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because u �→ exp(−ξrψ(u2)) is positive definite on the real line. Since ϕ ∈ S,
we have, using (9), that

C(θ, u) =
1

ψ(u2)
ϕ

(
θ

ψ(u2)

)
=

∫ ∞

0

Hξ(θ, u)μ(dξ),

and this proves the assertion. �

Proof of Theorem 3

We make use of the arguments in the proof of Theorem 2, in concert with
formula (15) on page 15 of Bateman (1954):

π

2

∫ ∞

0

cos(tω) exp
(
−(1 + ω2)x

) dω

1 + ω2

= e−uerfc

(√
x− t

2
√
x

)
+ euerfc

(√
x+

t

2
√
x

)
,

for x, t ≥ 0. We now replace x with ψ[0,π](θ) and t with |u|. Since the compo-
sition of the negative exponential with a positive functions having completely
monotonic derivative provides a completely monotonic function, we can invoke
Theorem 7 in Gneiting (2013) to infer that the mixture above provides, in view
of analogous arguments to the proof of Theorem 2, a positive definite function
on S

d × R for all d. The proof is completed. �

Supplementary Theorem for Section 3.1

We now show how Theorem 1 can be useful to understand connections and
analogues between the class of positive definite functions R × R and positive
definite functions on the circle S

1 cross R.

Theorem 4. Let ϕ : R×R → R be a covariance function that is symmetric in
both arguments. Let ϕτ : R → R be the function defined by

ϕτ (x) =

∫ +∞

−∞
eiuτϕ(x, u)du, x ∈ R. (21)

and suppose that such an integral is well defined. Let ϕτ (x) = 0 whenever |x| ≥
π. Call C(θ, u) = ϕ[0,π](θ, u), θ ∈ [0, π], u ∈ R, where the restriction to [0, π]
is with respect to the first argument. Then, C(θ, u) is a covariance function on
S3 × R.

Proof. Since ϕ is positive definite in R×R, by Lemma 1 in Gneiting (2002) we
get that ϕτ is positive definite in R a.e. τ ∈ R. Additionally, ϕτ (x) = 0 whenever
|x| ≥ π. Call ψτ the restriction of ϕτ to [0, π]. By Corollary 3 in Gneiting (2013)

we have that the coefficients b̃k,1(τ), τ ∈ R in the Schoenberg expansion of ψτ ,
as defined in (20) are nonnegative and strictly decreasing in k for any fixed
τ ∈ R. This implies that ϕτ (θ) is positive definite in S

3 for almost every τ ∈ R.
Application of Theorem 1, Assertion 2, shows that C(θ, u) is positive definite in
S3 × R. The proof is completed.
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Appendix B: Modeling details for the nearest neighbor Gaussian
process

Suppose we begin with a parent Gaussian process over R
d × R or S

d−1 × R.
Nearest neighbor Gaussian processes induce sparsity in the precision matrix
of the parent Gaussian process by assuming conditional independence given
neighborhood sets (Datta et al., 2016a,b). Let S = {(s1, t1), (s2, t2), ..., (sk, tk)}
of k distinct location-time pairs denote the reference set, where we allow time to
act as a natural ordering and impose an ordering on the locations observed at
identical times. Then, we define neighborhood sets NS = {N(si, ti); i = 1, ..., k}
over the reference set with N(si, ti) consisting of the m nearest neighbors of
(si, ti), selected from {(s1, t1), (s2, t2), ..., (si−1, ti−1)}. If i ≤ m+ 1, N(si, ti) =
{(s1, t1), (s2, t2), ..., (si−1, ti−1)}. For the Gibbs sampler, we need to define an
inverse of the neighborhood set, which we call U(si, ti). The set U(si, ti) consists
of all sites that include (si, ti) in their neighborhood sets.

Along with S, NS defines a Gaussian directed acyclic graph wS with a joint
distribution

p(wS) =
k∏

i=1

p(w(si, ti) | wN(si,ti)) =

k∏
i=1

N (w(si, ti) | B(si,ti)wN(si,ti),F(si,ti)),

(22)
where N is a normal distribution,

B(si,ti) = C(si,ti),N(si,ti)C
−1
N(si,ti)

,

F(si,ti) = σ2 −B(si,ti)CN(si,ti),(si,ti),

where C(si,ti),N(si,ti) is a vector of covariances between (si, ti) and its neighbors,
we define CN(si,ti) to be the covariance matrix for the neighbors of (si, ti), and
wN(si,ti) is the subset of wS corresponding to neighbors N(si, ti) (Datta et al.,
2016a). Datta et al. (2016a) extend this Gaussian directed acyclic graph to a
GP. This Gaussian process formulation only requires storage of k m×m distance
matrices and requires many fewer floating point operations than full Gaussian
process models (see Datta et al., 2016a). Like any other GP model, the NNGP
can be utilized hierarchically for spatiotemporal random effects. In this article,
we use NNGP as an alternative to the full Gaussian process specification.

We envision our model taking the following form:

Y (s, t) = x(s, t)�β + w(s, t) + ε(s, t), (23)

w(s, t) ∼ NNGP (0, C((s, t), (s′, t′))),

ε(s, t) ∼ GP (0, τ2δssδ
t
t),

where Y (s, t) is a spatiotemporal process measured (with error), x(s, t) are p
spatiotemporal covariates, and δba is the Kronecker delta function. We define
C((s, t), (s′, t′)) using a covariance model discussed in Section 2 or Section 3.
We recommend using inverse gamma (IG) prior distributions for τ2 from the
pure error term and σ2 from the covariance function because this selection
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gives closed form full conditional distributions. If the outcomes and covariates
are centered, then an intercept is unnecessary. If covariates are not available,
then x(s, t)�β is replaced with μ. Here, for more compact notation, we index
space-time location pairs with i as (si, ti) and refer to corresponding outcomes,
covariates, and spatiotemporal random effects as yi, xi, and wi, respectively.

The prior mean and variance for regression coefficients β are mβ and V −1
β ,

respectively. Additionally, let aV and aτ be shape parameters for the inverse
gamma prior distributions for σ2 and τ2. Similarly, let bV and bτ be scale pa-
rameters (corresponding to rate parameter of the gamma distribution) for the
inverse gamma prior distributions for σ2 and τ2.

The full conditional distributions for the Gibbs sampler, which we denote
· | · · · , are

β | · · · ∼ Np(V
∗
β m

∗
β , V

∗
β )

τ2 | · · · ∼ IG(a∗τ , b
∗
τ )

σ2 | · · · ∼ IG(a∗V , b
∗
V )

wi | · · · ∼ N1(V
∗
wi
m∗

wi
, V ∗

wi
).

To express V ∗
wi

and m∗
wi
, we must define some additional terms. First, we let

B(s′,t′),(si,ti) be the scalar in B(s′,t′) corresponding to (si, ti). Second, we define

a(s′,t′),(si,ti) = w(s′, t′)−
∑

(sj ,tj)∈N(s′,t′),(sj ,tj) 	=(sj ,tj)

B(s′,t′),(si,ti)w(si, ti).

For more details, see Datta et al. (2016a).
The parameters of the full conditional distributions are as follows:

V ∗
β =

(
X�X/τ2 + V −1

β

)−1

m∗
β = V −1

β mβ +
∑
i

xi(yi − wi)/τ
2

V ∗
wi

=

⎛⎝1/τ2 + F−1
(si,ti)

+
∑

(s′,t′):(s′,t′)∈U(si,ti)

B2
(s′,t′),(si,ti)

/F(s′,t′)

⎞⎠−1

m∗
wi

= (yi − x�
i β)/τ

2 +B(si,ti)wN(si,ti)/F(si,ti)+∑
(s′,t′):(s′,t′)∈U(si,ti)

B(s′,t′),(si,ti)a(s′,t′),(si,ti)/F(s′,t′)

a∗V = aV + n/2

b∗V = bV + σ2
∑
i

(wi −B(si,ti)wN(si,ti))
�(wi −B(si,ti)wN((si,ti)))/F(si,ti)

a∗τ = aτ +
n

2

b∗τ = bτ +
1

2

∑
i

(yi − x�
i β − wi)

2.
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Prediction at an arbitrary location and time requires selection of m nearest
neighbors from the reference set S for that location-time pair. We discuss two
ways of selecting m neighbors. In theory, any location-time pair from the refer-
ence set can be selected as a neighbor for any prediction. If we allow predictions
to depend on data occurring after the prediction time, then we call this a retro-
spective prediction since such a prediction could only be made retrospectively.
On the other hand, a prospective prediction limits neighbor selection to elements
of S that occur at the same time or prior to the time of prediction. Datta et al.
(2016b) selects neighbors for prospective predictions, and we do the same in our
analyses.

Predicted spatiotemporal random effects at location-time pairs follow a con-
ditional normal distribution, where conditioning is limited to its neighbors. For
any space-time pair (s, t), the conditional distribution of the random effect is

w(s)|wN(s) ∼ N
(
Cs,N(s)C

−1
N(s)wN(s), C(s, s)− Cs,N(s)C

−1
N(s)C

�
s,N(s)

)
. (24)

Then, the posterior prediction Y (s, t) | Y is x(s, t)�β+w(s, t)+ εi(s, t), where,
in practice, posterior samples of β, w(s, t), and τ2 are used to sample from the
posterior predictive distribution. Predictions at hold-out location-time pairs can
be used to compare competing models.

Appendix C: Locations of hold-out data from Section 5

Here, we provide the locations of hold-out data used for model validation. The
locations for hold-out air temperature are given in Figure 5. The locations for
hold-out cloud coverage are in Figure 6.

Fig 5. Hold-out locations used for predictive performance for the near-surface air temperature.
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Fig 6. Hold-out locations used for predictive performance for the total cloud coverage dataset.
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