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Abstract: Estimation of a single Bernoulli parameter using pooled sam-
pling is among the oldest problems in the group testing literature. To carry
out such estimation, an array of efficient estimators have been introduced
covering a wide range of situations routinely encountered in applications.
More recently, there has been growing interest in using group testing to
simultaneously estimate the joint probabilities of two correlated traits us-
ing a multinomial model. Unfortunately, basic estimation results, such as
the maximum likelihood estimator (MLE), have not been adequately ad-
dressed in the literature for such cases. In this paper, we show that finding
the MLE for this problem is equivalent to maximizing a multinomial likeli-
hood with a restricted parameter space. A solution using the EM algorithm
is presented which is guaranteed to converge to the global maximizer, even
on the boundary of the parameter space. Two additional closed form es-
timators are presented with the goal of minimizing the bias and/or mean
square error. The methods are illustrated by considering an application to
the joint estimation of transmission prevalence for two strains of the Potato
virus Y by the aphid Myzus persicae.
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1. Introduction

Estimation of some trait in a population when the (unknown) prevalence is rare
and/or only a limited number of tests can be performed is a difficult statistical
problem. One approach in such cases is group testing, in which individuals
are screened in pools as opposed to individually. Depending on the underlying
prevalence and group size, such methods have been shown to yield large gains
in efficiency (as measured by mean square error (MSE)) and, often, a reduction
in the total number of tests required [see, for example, 30, 27]. Applications can
be found in a wide range of areas, although uses in plant and animal sciences
are especially common.
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The standard group testing problem, in which the goal is estimation of a single
trait, has been well studied, yielding an array of efficient estimators [see, as a
few examples, 2, 28, 11, 26, 10]. More recently, however, there has been interest
in the use of pooled sampling for the simultaneous estimation of two or more
traits [see, for example, 12, 25, 3, 29, 32, 16, 14]. This interest has been spurred
by the growing availability of multiplex assays in many areas of science designed
for screening multiple diseases simultaneously. The benefits of such assays are
clear, allowing for reductions in the number of tests needed for gathering data
on two or more traits, as well as providing information on the joint distribution
of the characteristics under study. This has led to the need to develop new
statistical methods to handle data generated from such tools and to efficiently
extract information on the underlying multivariate distribution. Furthermore,
new methods for designing pooling studies utilizing multiplex assays which take
the correlations among diseases into account have been needed as well. While
research in these areas has been ongoing, unfortunately, even in the case of two-
diseases, results for small sample estimation do not exist, and basic tools such
as maximum likelihood estimation have not been adequately addressed.

Conceptually, finding the maximum likelihood estimator (MLE) for the two-
trait group testing problem can be expressed as a special case of maximizing a
multinomial likelihood with a constrained parameter space (details are provided
in the following section). Due to the restrictions on the parameter space, closed
form techniques, such as those based on the invariance property of the MLE, do
not work in this case [a recent work, 16, did report a closed form MLE based on
this principle, but it can easily be checked that it yields estimates outside the
parameter space]. While numerical methods are possible, the restriction means
that many estimates will fall on the boundary of the parameter space, and it is
difficult to ensure convergence to a global maximum in such cases.

Maximization under constrained parameter spaces is a well studied problem
for a variety of statistical models [see, for example, 24, 15]. Numerical methods
specifically for the multinomial model under a range of convex constraints have
been developed as well [see 7, and the references therein].

While these previous methods can be adapted to the group testing problem,
our goal here is to provide a much simpler solution for this special case which is
guaranteed to yield a global maximizer. We show that, when optimizing over the
boundary, the problem is equivalent to a convex optimization problem in one
fewer dimension. The maximization can then be carried out using a variety of
methods, and we develop here an EM algorithm-based approach. The resulting
estimator is shown to converge to the unique global maximizer.

Two additional closed form estimators are presented as well. One, based on
the method of moments, is shown to approximate the MLE very closely. The
second, a shrinkage estimator based on the one-trait group testing estimator
presented in Burrows [2], is developed with the intention of reducing the MSE
and/or bias of the MLE.

Numerical comparisons in terms of relative bias and MSE are presented which
cover a wide range of applicable situations. The methods are further illustrated
by considering two experiments where the transmission rates for prevalences of
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different strains of Potato virus Y are to be estimated simultaneously.

2. Statistical model

Let ϕ1 and ϕ2 be marginally Bernoulli random variables with parameters 0 <
p1 < 1 and 0 < p2 < 1, respectively, each indicating the presence of a given trait.
Then, (ϕ1, ϕ2) has a one-to-one correspondence to the vector ϕ = (ϕ10, ϕ01, ϕ11)
with joint multinomial distribution ϕ ∼ MN3(1,p) and parameter space Ψp =
{p : 1′p < 1, 0 ≺ p ≺ 1}, where 1 = (1, 1, 1)′, p = (p10, p01, p11)

′ and p00 =
1− 1′p = 1− p10 − p01 − p11 and ≺ denotes element-wise inequality. Note that
the marginal parameters can be expressed as p1 = p10 + p11 and p2 = p01 + p11.
Throughout this work, our primary interest is estimation of the parameter p.

The ith pooled sample comprised of k individual units can then be represented
by the random variable (ϑi

1, ϑ
i
2) = (max{ϕ11 , · · · , ϕ1k},max{ϕ21 , · · · , ϕ2k})

which corresponds to

ϑi = (ϑi
10, ϑ

i
01, ϑ

i
11)

′ ∼ MN3(1,θ),

where

θ′ = (θ10, θ01, θ11)

= ((p00 + p10)
k − pk00, (p00 + p01)

k − pk00, 1− (p00 + p10)
k − (p00 + p01)

k

+ pk00) (1)

and
θ00 = 1− 1′θ = pk00. (2)

If we sample n such groups, we have the random variable x = (x10, x01, x11)
′ =∑n

i=1 ϑ
i ∼ MN3(n,θ) with parameter space Ψp = {θ(p) : 1′p < 1, 0 ≺ p ≺ 1}.

For later use, we define x00 = n− (x10 + x01 + x11).
It should be noted thatΨp is a proper subset of the full parameter spaceΨθ =

{θ : 1′θ < 1, 0 ≺ θ ≺ 1}. For example, with k = 2, θ = (0.45, 0.45, 0.05)′ ∈ Ψθ

is achieved if and only if p = (0.484, 0.484,−0.192)′ /∈ Ψp. As such, maximizing
the likelihood with respect to p ∈ Ψp is equivalent to the problem of maximizing
a standard multinomial likelihood with respect to θ such that the estimate lies
in the restricted parameter space Ψp.

For use in later results, we define the closure Ψp = Ψp ∪ ∂Ψp where ∂Ψp

is the boundary of the parameter space. Likewise, let X = {x : 0 � x � n},
where � denotes element wise non-strict inequality, be the sample space of x
with interior X0 = {x : 0 ≺ x ≺ n}.

3. Maximum likelihood estimation

We seek to maximize the log-likelihood

�(θ|x) ∝ x00 log(θ00) + x10 log(θ10) + x01 log(θ01) + x11 log(θ11), (3)
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such that θ ∈ Ψp.
The following lemma, the proof of which is given, together with all subsequent

proofs, in Appendix B, establishes the concavity of the log-likelihood function.

Lemma 1.

(a) For x ∈ X0, the log-likelihood given in (3) is strictly concave for all p ∈
Ψθ.

(b) For all x ∈ X , the log-likelihood given in (3) is concave (not necessarily
strict) for all p ∈ Ψθ.

Using standard multinomial theory, we know that, when maximizing over

Ψθ, the unique MLE is given by θ̂
MLE

= x̄ = x
n for x ∈ X0, and this point is

the unique maximizer of the likelihood for all x ∈ X over the closure of Ψθ. To
find the MLE under the restricted parameter space, Ψp, we first note that there
exists a one-to-one mapping θ �→ p as given in the following lemma. The proof
of this lemma is found by inverting (1) and (2).

Lemma 2. The unique function h : θ �→ p is given by

p00 = h00(θ) = (1− θ10 − θ01 − θ11)
1/k,

p10 = h10(θ) = (1− θ01 − θ11)
1/k − h00(θ),

p01 = h01(θ) = (1− θ10 − θ11)
1/k − h00(θ),

p11 = h11(θ) = 1− p00 − p10 − p01.

If we define the set

Rn =

{
x :

(
x00 + x10

n

)1/k

+

(
x00 + x01

n

)1/k

−
(x00

n

)1/k

< 1

}

then, for any x ∈ X0 ∩ Rn, h(x̄) ∈ Ψp where h is as in Lemma 2, so that
such values provide the unique MLE for p by the invariance property of the
MLE. Since the log-likelihood is a concave function on Ψθ, it is clear that the
maximizer for all x /∈ Rn must lie in ∂Ψp. This leads to the following result.

Theorem 1 (Existence and uniqueness of MLE).

(a) A necessary and sufficient condition for the maximum likelihood estimator
of p ∈ Ψp to exist and be unique is that x ∈ X0 ∩ Rn. In this case, the
MLE is given by

p̂MLE = (p̂MLE
10 , p̂MLE

01 , p̂MLE
11 ), (4)

where

p̂MLE
00 =

(x00

n

)1/k

,

p̂MLE
10 =

(
x00 + x10

n

)1/k

−
(x00

n

)1/k

,
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p̂MLE
01 =

(
x00 + x01

n

)1/k

−
(x00

n

)1/k

,

and

p̂MLE
11 = 1− p̂MLE

00 − p̂MLE
10 − p̂MLE

01 .

(b) As n → ∞, P (x ∈ X0 ∩ Rn) = 1 so that the MLE as given in (4) exists
and is unique with probability one.

3.1. Maximization over the boundary

While the above result is complete for large samples, in many cases n will
necessarily be small and we will be interested in maximizing over the closure
Ψp. From here on, p̂MLE will refer to the maximizer over this extended space.
Defining

Rn =

{
x :

(
x00 + x10

n

)1/k

+

(
x00 + x01

n

)1/k

−
(x00

n

)1/k

≤ 1

}
,

the invariance property of the MLE and Lemma 2 are sufficient to establish
p̂MLE = h(x̄) for all x ∈ Rn.

To get an idea of how common boundary estimates can be, Table 1 provides
values of P (x /∈ Rn) for a wide range of n with several realistic values of p and
k. Note that, when n = 1, this probability is theoretically 0 for all values of k
and p.

From the table, we see that, when p00 is large this probability can be quite
substantial, even for large values of n and small k. While this effect seems to
lessen as the probability of at least one positive trait increases, group testing is
most commonly used in the context of rare traits. It is apparent, then, that the
problem of boundary estimates will be present in many applications.

Unfortunately, despite the concavity of the log-likelihood, the maximum on
the boundary will not occur at a stationary point. Furthermore, the problem
as previously expressed is not guaranteed to have a unique maximizer over
the boundary. As such, maximizing the likelihood over ∂Ψp is a non-trivial
optimization problem.

To proceed, the following theorem allows us to reduce the dimension of the
parameter space by one, facilitating the use of convex theory results to find the
maximizer.

Theorem 2. For all x /∈ Rn the log-likelihood given in (3) over Ψp is maximized
at a point such that p̂11 = 0. If x ∈ X0 or x11 = 0 is the only zero, then the
log-likelihood is uniquely maximized at a point with p̂11 = 0.

As a result of Theorem 2, for values x /∈ Rn the objective function given in
(3) can be expressed in terms of the simpler two-parameter model in which we
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Table 1

Values of P (x /∈ Rn) for varying p, n, and k.

(p10, p01, p11) = (0.045, 0.045, 0.005) (0.095, 0.045, 0.005) (0.1, 0.1, 0.1) (0.25, 0.05, 0.15)

n

k = 2 5 0.1029 0.1724 0.1376 0.0924

10 0.2872 0.3935 0.0834 0.0380

15 0.4299 0.5082 0.0349 0.0144

25 0.5555 0.5465 0.0059 0.0015

50 0.4819 0.4003 0.0002 0.0000

100 0.2475 0.2500 0.0000 0.0000

500 0.0194 0.0474 0.0000 0.0000

1000 0.0014 0.0081 0.0000 0.0000

k = 5 5 0.2879 0.3540 0.2182 0.0849

10 0.4418 0.4408 0.1575 0.1472

15 0.4294 0.4288 0.0903 0.1663

25 0.3666 0.3939 0.0314 0.1454

50 0.2826 0.3359 0.0028 0.0596

100 0.1894 0.2663 0.0000 0.0059

500 0.0196 0.0762 0.0000 0.0000

1000 0.0017 0.0211 0.0000 0.0000

k = 10 5 0.3969 0.3838 0.0909 0.0062

10 0.3984 0.4410 0.2367 0.0214

15 0.3989 0.4414 0.3328 0.0392

25 0.3419 0.3949 0.3783 0.0738

50 0.2883 0.3651 0.2330 0.1419

100 0.2085 0.3094 0.0593 0.2307

500 0.0328 0.1283 0.0000 0.2332

1000 0.0046 0.0542 0.0000 0.0768

k = 25 5 0.3477 0.1579 0.0003 0.0000

10 0.4515 0.3293 0.0012 0.0000

15 0.4277 0.4208 0.0027 0.0000

25 0.4301 0.4841 0.0073 0.0000

50 0.3650 0.4718 0.0272 0.0000

100 0.3070 0.4341 0.0917 0.0001

500 0.1204 0.3089 0.6579 0.0011

1000 0.0477 0.2326 0.8297 0.0025

seek to maximize

�∗(p∗|x) ∝ x00 log((1− p10 − p01)
k) + x10 log((1− p01)

k − (1− p10 − p01)
k)

+ x01 log((1− p10)
k − (1− p10 − p01)

k)

+ x11 log(1− (1− p01)
k − (1− p10)

k + (1− p10 − p01)
k) (5)

over the set Ψp∗ = {p∗ : 1′p∗ < 1, 0 ≺ p∗ ≺ 1} where p∗ = (p10, p01)
′.

The following lemma addresses the concavity of this likelihood function.

Lemma 3.

(a) For x ∈ X0 ∩ R
c

n, the log-likelihood given in (5) is strictly concave for all
(p∗, 0) ∈ Ψθ.

(b) For all x ∈ X ∩ R
c

n, the log-likelihood given in (5) is concave (not neces-
sarily strict) for all (p∗, 0) ∈ Ψθ.
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As a result of Lemma 3 we establish that, for any x /∈ Rn maximization of
(5) over Ψp∗ can be carried out in a number of ways with the resulting estimate,
combined with p̂11 = 0, yielding a global maximum of (3) which is the desired
MLE. In the following section, we develop an EM algorithm-based approach to
solving this simplified optimization problem.

3.2. EM algorithm

In this section we derive an EM algorithm-based estimator assuming values
x /∈ Rn, for which we know the maximizing value takes p11 = 0. For the complete
data, we use the true underlying status of each individual in the study.

Result 1. Beginning with an initial value p∗(0), the estimate from the tth

iteration, t = 1, 2, 3, . . ., of the EM algorithm is given by

p
(t)
10 =

(p
(t−1)
00 + p

(t−1)
10 )k−1p

(t−1)
10

θ
(t−1)
10

x10

n
+

[1− (p
(t−1)
00 + p

(t−1)
10 )k−1]p

(t−1)
10

θ
(t−1)
11

x11

n

(6)

p
(t)
01 =

(p
(t−1)
00 + p

(t−1)
01 )k−1p

(t−1)
01

θ
(t−1)
01

x01

n
+

[1− (p
(t−1)
00 + p

(t−1)
01 )k−1]p

(t−1)
01

θ
(t−1)
11

x11

n

(7)

p
(t)
00 = 1− p

(t)
10 − p

(t)
01 (8)

3.3. Global maximum over the closure

The previous results can be combined to yield an estimator which gives a global
maximizer of the likelihood over the closure, Ψp. The steps for finding this
estimator are given in Algorithm 1.

Algorithm 1 Global Maximizer

1: if x ∈ Rn then
2: take p̂MLE = h(x̄), where h(·) is as in Lemma 2.
3: else
4: beginning with an initial value p∗(0), iterate p∗(t), t = 1, 2, 3, . . . as in (6) - (8)

until convergencea of � (call the value at convergence p∗(∞));
5: take p̂MLE = (p∗(∞), 0).

aIn this article, we use a likelihood based convergence criteria (e.g., stop when
|�(p∗(t+1)|x) − �(p∗(t)|x)| < ε for some ε > 0), but other criteria may be used as well.

For x ∈ Rn, this estimator yields the unique global maximizer of the likeli-
hood based on the invariance property of the MLE and standard multinomial
theory.

For other values in the sample space, using the results in Wu [33], the EM
sequence of estimates will be guaranteed to converge to the global maximizer,
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Table 2

Comparison of estimates and log-likelihood values for the EM algorithm-based estimator
with Nelder Mead optimization for ten randomly generated starting values.

EM Algorithm Nelder Mead

Starting Value p10 p01 p11 � p10 p01 p11 �
(0.176 0.270 0.429) 0.139 0.022 0.000 -8.737 0.140 0.023 0.000 -8.738

(0.332 0.349 0.244) 0.139 0.022 0.000 -8.737 0.139 0.022 0.000 -8.737

(0.058 0.192 0.164) 0.139 0.022 0.000 -8.737 0.139 0.022 0.000 -8.737

(0.164 0.329 0.213) 0.139 0.022 0.000 -8.737 0.140 0.022 0.000 -8.737

(0.346 0.133 0.271) 0.139 0.022 0.000 -8.737 0.139 0.022 0.000 -8.737

(0.110 0.339 0.065) 0.139 0.022 0.000 -8.737 0.139 0.022 0.000 -8.737

(0.368 0.013 0.364) 0.139 0.022 0.000 -8.737 0.162 0.027 0.000 -9.205

(0.149 0.210 0.262) 0.139 0.022 0.000 -8.737 0.238 0.023 0.000 -13.202

(0.086 0.380 0.307) 0.139 0.022 0.000 -8.737 0.139 0.022 0.000 -8.737

(0.053 0.355 0.202) 0.139 0.022 0.000 -8.737 0.139 0.022 0.000 -8.737

provided the sequence of estimates lies in the interior of the parameter space.
In our numerical work, there was not a single case where the final estimate lay
on the boundary of the space. To see why this is true, inspection of R

c

n shows
that x is in this set only if x10 and x01 are both non-zero. This is sufficient to
guarantee the likelihood is maximized at a point with p10 and p01 both positive
(otherwise the value of � will be −∞). If x00 > 0, the same theoretical guarantee
can be made for p00, so that the maximum must lie in the interior and the EM
algorithm will always converge to this point. If x00 = 0, it is more difficult to
show theoretically that p00 > 0 at the maximum, but our numerical work shows
that, even in this case, the maximum will tend to occur at very large values
of p00 (for example, with n = 250, k = 10, and x = (100, 100, 50)′, we have
p̂MLE
00 = 0.82).
To demonstrate the global convergence property of this estimator, Table

2 gives estimates and log-likelihood values for the EM algorithm approach
compared with numerical optimization on the full likelihood using the Nelder
Mead algorithm [23]. This was done for the fixed values k = 10, n = 35,
x = (25, 5, 2)′ /∈ Rn, and ten starting values randomly generated on the prob-
ability simplex. We see that, for many of the starting values, both algorithms
yield identical values, but that the EM algorithm-based estimator is extremely
consistent across all initial points. For the Nelder Mead algorithm, however,
there is variation, with some final estimates far from the true maximizer. While
in some cases it may be possible to make a more informed decision about the
starting value, the ability to bypass this step all together, while still guaran-
teeing convergence to the global maximum, is a strong advantage of the EM
algorithm-based estimator presented here.

4. Alternative estimators

In this section we propose two closed form estimators which are alternatives to
the MLE given in the previous section which requires numerical optimization.
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4.1. Restricted method of moments estimator

The first estimator, which is a method of moments type estimator, is motivated
by the result in Theorem 2, and simply truncates the value of p11 to 0 for values
x /∈ Rn. This estimator has several advantages, most notably that it has a simple
closed form and, as we will show empirically, slightly outperforms the MLE in
terms of both bias and MSE in most cases.

Definition 1 (Restricted method of moments estimator).
Let p̂RMM = (p̂RMM

10 , p̂RMM
01 , p̂RMM

11 ), where

p̂RMM
11 = max

{
0, 1−

(
x00 + x10

n

)1/k

−
(
x00 + x01

n

)1/k

+
(x00

n

)1/k
}
,

p̂RMM
10 = 1−

(
x00 + x01

n

)1/k

− p̂RMM
11 ,

p̂RMM
01 = 1−

(
x00 + x10

n

)1/k

− p̂RMM
11 ,

p̂RMM
00 = 1− p̂RMM

10 − p̂RMM
01 − p̂RMM

11 .

It is not hard to see that p̂RMM ∈ Ψp for all x and that p̂RMM = p̂MLE ∈ Ψp

for all x ∈ Rn. Further properties showing the relation between the RMM
estimator and the MLE are given in Section 4.3.

4.2. Burrows type estimator

One of the main advantages of a closed form estimator as above is the ability
to provide simple bias corrections. The problem of bias for the MLE can be
generalized from the single-trait group testing case, where this issue is a major
focus of the literature. A proof that no unbiased estimator exists for the single-
trait group testing problem under a fixed sampling model is given in [10], and
this can be extended directly to the two-trait model considered in this paper.
The issue of bias for the two-trait case is discussed further in [9], where it is
shown that any unbiased estimator found under an alternative sampling plan
necessarily yields values outside the parameter space.

In the one-trait case, Burrows’ estimator [2] has been shown repeatedly to
improve on the MLE in terms of both bias and MSE [see, for example, 11, 4].
The motivation is to find a shrinkage estimator of the form (1−αx̄)1/k where α
is optimal in the sense of removing bias of O(1/n) from the estimator. Burrows
[2] showed that this is accomplished by taking α = n

n+η where η = k−1
2k .

In the two disease case, it can be shown that, when the MLE exists in Ψp,
applying the identical shrinkage coefficient to each term in the estimator yields
the same overall bias reduction. This is true since, for x ∈ Rn, each term of
the MLE as given in Theorem 1 is marginally binomially distributed, so that
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the problem is identical to that in Burrows’ original work. In cases where the
MLE does not exist in Ψp, we can apply the same correction to the terms of
the estimator p̂RMM to get a similar approximate result on the non-truncated
terms.

Definition 2 (Burrows type estimator). Let p̂B = (p̂B10, p̂
B
01, p̂

B
11), where

p̂B11 =

{
1−

(
x00+x10+η

n+η

)1/k

−
(

x00+x01+η
n+η

)1/k

+
(

x00+η
n+η

)1/k

, x ∈ Rn

0, otherwise,

p̂B10 = 1−
(
x00 + x01 + η

n+ η

)1/k

− p̂B11,

p̂B01 = 1−
(
x00 + x10 + η

n+ η

)1/k

− p̂B11,

p̂B00 = 1− p̂B10 − p̂B01 − p̂B11,

with η = k−1
2k .

4.3. Theoretical comparisons of estimators

In this section we provide some of the theoretical properties of the three esti-
mators introduced above in terms of their large sample properties.

Theorem 3.

(a) p̂RMM − p̂MLE a.s.→ 0;

(b)
√
n(p̂j − p)

d→ N(0, 1
k2Σ) for j ∈ {MLE,RMM,B} where the elements

of Σ are given in Appendix A.

Importantly, this theorem shows that each of the three estimators shares the
same asymptotic distribution. The following result gives the first order expec-
tations for each of the three estimators.

Theorem 4.

(a)

E(p̂MLE
10 ) = E(p̂RMM

10 ) = p10 +
k − 1

2k2n

(
p10 +

1

pk−1
00

− 1

(p00 + p10)k−1

)
+O(n−2)

E(p̂MLE
01 ) = E(p̂RMM

01 ) = p01 +
k − 1

2k2n

(
p01 +

1

pk−1
00

− 1

(p00 + p01)k−1

)
+O(n−2)

E(p̂MLE
11 ) = E(p̂RMM

11 ) = p11 +
k − 1

2k2n

(
p11 +

1

(p00 + p01)k−1

+
1

(p00 + p10)k−1
− 1

pk−1
00

− 1

)
+O(n−2)
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(b)

E(p̂B10) = p10 +O(n−2)

E(p̂B01) = p01 +O(n−2)

E(p̂B11) = p11 +O(n−2)

5. Numerical comparisons

In this section we provide numerical comparisons for each of the three estimators
introduced here in terms of relative bias and MSE. For the ith component of p

and an estimator p̂, the relative bias is defined to be 100× E(p̂i−pi)
pi

. Results are
provided for four values of p, covering a range of realistic scenarios from very
small (p = (0.001, 0.001, 0.0001)′) to moderately small (p = (0.25, 0.05, 0.15)′).
Larger values of the prevalence parameters are not considered here as it would
be uncommon for group testing to be considered in such cases.

Figures 1 and 2 give the bias and MSE calculations for k = 2 and k = 10,
respectively, for a fixed number of tests, n = 25. More complete numerical
comparisons are provided as tables in Appendix C for n = 10, 25, 50, and 100,
as well as two additional prevelence points.

For all values of p, there is a marked increase in bias as k moves from 2 to
10. It should be noted that if k = 1, all estimators would yield an identical
unbiased estimator. This increase in bias is accompanied by large decreases in
MSE for small p, which shows the general advantage of group testing in such
cases. Of course, for larger p, k = 10 yields unacceptably large MSE values.
This indicates the importance of choosing an appropriate value of k, a problem
which is known to be very difficult, even in the case of estimating a single trait
[for discussion of this issue, see 13, 8].

Comparing estimators, we see that the the MLE and RMM estimators yield
very similar, and often identical, values for both bias and MSE. While there
is some trade off for the bias, the RMM method generally outperforms the
MLE method slightly in terms of MSE. This, combined with the estimator’s
simple closed form expression, makes a strong argument for preferring the RMM
method to the MLE method in practice, even for small sample sizes.

For the Burrows type estimator, comparisons in terms of bias are much more
difficult. This is especially true for k = 10, where the larger overall values occur
with wide fluctuation across individual components of the parameter vector.
For example, with k = 10, n = 10, and p = (0.15, 0.1, 0.2)′, the relative bias
for the MLE and Burrows estimators, respectively, are (11.39,−31.54, 265.91)′

and (−84.34,−88.70, 17.27)′. In both cases, the levels of bias are very high, and
would likely be unacceptable in most applications. On the other hand, when p
is very small, or as n increases, the Burrows estimator does generally offer an,
at least modest, bias reduction.

The real advantage of the Burrows type estimator is seen when looking at
the MSE. For k = 2, the MSE values for p̂B are moderately smaller than those
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Fig 1. Comparisons of 1000 × mean square error (MSE) and relative bias, defined for the

ith element to be 100× E(p̂i−pi)
pi

, for n = 25 and k = 2. The varying scales in each individual

plot should be noted.

of the other two estimators for all scenarios considered. When k is increased to
10, we see that this trend of slight improvement continues (with some modest
exceptions) for the smaller values of p, which are precisely the cases for which a
larger k is appropriate. As the prevalence increases, however, and the MSE val-
ues for the MLE and RMM become highly inflated, the Burrows type estimator
is able to maintain much more reasonable levels. This robustness property of
p̂B is very important, as it lowers the impact of choosing a poor value for the
group size k.

We close this section with two interesting observations regarding the numer-
ical comparisons. First, for the bias calculations, we see that each estimator
often yields a large positive bias for the p11 component. This is true despite the
fact that these estimators truncate the corresponding value to zero for a set of
sample values with non-trivial probability (as seen in Table 1). This surprising
fact indicates that any attempts at reducing the bias in such cases will likely be
very difficult.

Second, from Table 8 in the Appendix we see that, for the larger two values
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Fig 2. Comparisons of 1000 × mean square error (MSE) and relative bias, defined for the ith

element to be 100 × E(p̂i−pi)
pi

, for n = 25 and k = 10. The varying scales in each individual

plot should be noted.

of p, some of the MSE values for p̂B actually increase with n, approaching
rapidly the values for the other two estimators. For p = (0.25, 0.05, 0.25)′, we
see from Table 1 that the increasing MSE values correspond with rising values of
P (x /∈ Rn). While the higher prevalence of boundary estimates largely explains
the increasing MSE values, it is interesting that this phenomenon is seen only
for the Burrows type estimator and not the MLE or RMM methods.

6. Application to estimation of Potato virus Y transmission rates

Potato virus Y (PVY) is a member of the genus Potyvirus, one of the largest
groups of plant viruses in the world [20]. PVY is known to infect over 15 plant
species and to be transmitted by over 50 species of aphids [6]. The disease
can have a large economic impact due to decreased yield from a variety of
symptoms such as leaf necrosis, mosaic or vein banding, and leaf drop. Further
losses occur when seeds are excluded from being sold as part of certified seed
programs requiring virus incidence rates as low as 1% [6].
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In recent years, the ordinary strain, PVYO, has declined in prevalence relative
to several new and recombinant strains [22]. Notable among such strains in the
United States are PVYN:O and PVYNTN. These developments are important
since various strains can present with a variety of different symptoms, and they
may not be detected in the current widely available screening tests for PVY.
The development of multiplex assays for this purpose has been an active area
of research in the plant science literature [see, as a few examples, 1, 19, 20].

Understanding why this shift in strains is occurring remains largely unknown.
One possibility that has been frequently tested is that these differences can be
accounted for by varying rates in transmission by aphids across strains [22]. Since
examining this hypothesis requires an efficient means of carrying out prevalence
estimation, we use this example to illustrate the methods presented in this paper.

As a specific example, we consider two experiments estimating the prevalence
rates of two sets of PVY strains, PVYO and PVYN:O, as well as PVYO and
PVYNTN. This was the motivation for two studies found in [22], which looked
at transmission rates for these strains by the aphidMyzus persicae. Those studies
yielded estimates

(pO, pN :O, pO+N :O) = (0.067, 0.028, 0.019),

where pi represents the prevalence of PV Y i, i ∈ {O,N : O,O+N : O} and the
+ indicates infection with both strains, and

(pO, pNTN , pO+NTN ) = (0.144, 0.158, 0.178),

where pi represents the prevalence of PV Y i, i ∈ {O,NTN,O +NTN}. While
these estimates give very different values for pO, it should be noted that each
experiment used different source plant species, and that other factors such as
aphid populations within species and virus isolates within strains are known to
affect transmission rates [6].

Using the above parameter estimates as fact, we calculate the relative bias and
MSE for each estimator presented here for various values of n and k. Included is
the case of k = 1 (no group testing), for which all estimators are identical. We
note that, while the studies in Mondal et al. [22] did not use pooled sampling,
there exist many group testing applications in the PVY literature [see, as just
two examples, 21, 5].

Figures 3 and 4 give plots of the relative bias for the first and second ex-
periments, respectively, for k increasing from 1 to 25 and various values of n.
Figures 5 and 6 give similar plots for the log(MSE). We use log(MSE) here to
account for the rapid increases in scale as k grows.

From Figure 3, we see that, with the exception of n = 25, the relative bias
is reasonably close to zero for all values of k. For the largest number of tests,
n = 250, the bias has all but disappeared. Even for n = 25 with small k, less
than or equal to 10, the level of bias is sufficiently small for all estimators.
We note that, in this and all subsequent plots, the MLE and RMM values are
indistinguishable, which is unsurprising given the results in the previous section.
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Fig 3. Relative bias, defined for the ith element to be 100× E(p̂i−pi)
pi

, for varying group sizes,

k, and number of pools tested, n, with true (pO, pN :O, pO+N :O) = (0.067, 0.028, 0.019). Note
that the values for the MLE and RMM estimators are indistinguishable in this figure.

In Figure 4, where the underlying prevalence is larger, we see much more
variation in the relative bias among estimators and across k. Now, only for
small values of k = 1 or k = 2 is the bias near zero. In this case, due to the
large value of pO+NTN , as k increases the probability of each test being pos-
itive for both strains of PVY goes to one. As such, we see, for all estimators,
the relative bias for PVYO and PVYNTN go to −100 (since the estimates for
each converge to zero). For PVYO + NTN, the MLE and RMM estimates ap-
proach 100×

(
1

0.178 − 1
)
= 461.8. This is another illustration of the importance

of choosing an appropriate pool size, so as to avoid the problem of getting all
positive groups [for an excellent discussion of the problem of drawing all positive
groups in the one-trait estimation case, see 11]. While the Burrows type esti-
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Fig 4. Relative bias, defined for the ith element to be 100× E(p̂i−pi)
pi

, for varying group sizes,

k, and number of pools tested, n, with true (pO, pNTN , pO+NTN ) = (0.144, 0.158, 0.178).
Note that the values for the MLE and RMM estimators are indistinguishable in this figure.

mator ameliorates this somewhat by shrinking the estimate of pO+NTN towards
zero, it does nothing to help the zero estimates for the other parameters.

For the MSE, from Figure 5, we see the log(MSE) has a similar parabolic
shape for each component of the parameter vector and all n. In this particular
case, it appears that the same group size, k = 10, minimizes the MSE simulta-
neously for each parameter and number of tests. By carefully noting the change
in scale on the y-axis, it is clear that the MSE is decreasing appreciably with
n. The values across estimators are similar for most scenarios, with the Bur-
rows type estimator appearing to offer a slight improvement in MSE. For the
PVYO component, which is the largest among the three, we see that Burrows’
estimator is much more robust to the choice of group size (as seen by the more
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Fig 5. log(MSE) for varying group sizes, k, and number of pools tested, n, with true
(pO, pN :O, pO+N :O) = (0.067, 0.028, 0.019). Note that the values for the MLE and RMM
estimators are indistinguishable in this figure. The varying scales for the subplots should be
noted as well.

horizontal nature of its line in the figures), although this advantage decreases
with n.

For the MSE in the second experiment, Figure 6 indicates that, for the MLE
and RMM estimators, the minimum value is attained at k = 2 for all values of
n and each parameter. For the Burrows type estimator, this is true for the first
two parameters, but not for pO+NTN , for which the MSE appears to continue
decreasing as a function of k (with the exception of n = 25, where the minimum
occurs at k = 20). Of course, when considering all three parameters together,
the choice of k = 2 appears ideal, even for the Burrows type estimator. As in
Figure 6, the Burrows type estimator outperforms the others, slightly for small
k and to a significant degree for k between 10 and 20.
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Fig 6. log(MSE) for varying group sizes, k, and number of pools tested, n, with true
(pO, pNTN , pO+NTN ) = (0.144, 0.158, 0.178). Note that the values for the MLE and RMM
estimators are indistinguishable in this figure. The varying scales for the subplots should be
noted as well.

While it is important to look at performance for each component of the
parameter vector, the lack of a single index value makes direct quantitative
comparison difficult. To address this, we consider looking at the average absolute
relative bias and average MSE, where the mean is taken across the three elements
of the parameter vector. These values are provided in Tables 3 and 4 for each of
the scenarios considered above for the first and second experiments, respectively.

Table 3 shows that, for all estimators, the smallest average MSE value occurs
when k = 10. This adds support to what was observed in Figure 5. With this
group size, the average MSE is 4.4 times smaller when n = 25 than the value
when group testing is not used. For n = 250, this decreases to 4.1, which is still
a very large gain in efficiency. This is achieved with only a small increase in the
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Table 3

Average absolute relative bias and average MSE comparisons for PVY example with
(pO, pN :O, pO+N :O) = (0.067, 0.028, 0.019).

Average Absolute Relative Bias

k = 1 k = 2 k = 5 k = 10 k = 15 k = 20 k = 25

n = 25 p̂MLE 0.000 1.938 1.942 2.691 3.804 9.472 34.247

p̂RMM 0.000 1.941 1.914 2.654 3.740 9.370 34.213

p̂B 0.000 2.265 1.833 2.636 4.751 8.244 12.063

n = 50 p̂MLE 0.000 0.702 0.940 1.286 2.227 3.369 5.692

p̂RMM 0.000 0.701 0.936 1.278 2.210 3.337 5.634

p̂B 0.000 0.773 0.326 0.544 1.317 2.896 5.323

n = 100 p̂MLE 0.000 0.262 0.463 0.851 1.671 2.813 4.210

p̂RMM 0.000 0.261 0.463 0.851 1.668 2.806 4.194

p̂B 0.000 0.091 0.020 0.044 0.189 0.649 1.703

n = 250 p̂MLE 0.000 0.104 0.184 0.353 0.736 1.401 2.470

p̂RMM 0.000 0.104 0.184 0.353 0.736 1.401 2.469

p̂B 0.000 0.000 0.000 0.001 0.001 0.017 0.136

Average 1000×MSE

k = 1 k = 2 k = 5 k = 10 k = 15 k = 20 k = 25

n = 25 p̂MLE 1.451 0.792 0.433 0.362 0.553 3.491 17.432

p̂RMM 1.451 0.790 0.433 0.361 0.550 3.487 17.427

p̂B 1.451 0.773 0.411 0.327 0.341 0.394 0.470

n = 50 p̂MLE 0.725 0.398 0.218 0.182 0.202 0.284 1.418

p̂RMM 0.725 0.398 0.217 0.182 0.202 0.283 1.416

p̂B 0.725 0.393 0.212 0.173 0.184 0.218 0.274

n = 100 p̂MLE 0.363 0.200 0.109 0.091 0.103 0.130 0.175

p̂RMM 0.363 0.200 0.109 0.091 0.103 0.129 0.175

p̂B 0.363 0.199 0.107 0.088 0.097 0.119 0.151

n = 250 p̂MLE 0.145 0.080 0.043 0.036 0.040 0.052 0.072

p̂RMM 0.145 0.080 0.043 0.036 0.040 0.052 0.072

p̂B 0.145 0.080 0.043 0.035 0.039 0.049 0.066

bias with, for example, the Burrows type estimator yielding relative bias values
of 2.636 for n = 25 and 0.001 when n = 250. This shows a clear advantage to
using group testing in similar applications. Even if the ideal group size of 10 was
not chosen, we still see a large benefit for all estimators when k = 2 or k = 5.
For the Burrows type estimator, even if too large of a group size, such as k = 25,
were chosen, the result is still much better than when group testing is not used.
For example, with n = 50 and k = 25, the Burrows type estimator yields an
average MSE 2.6 times smaller than that achieved without group testing, and
an average absolute relative bias of only 5.3. Of course, in the same scenario
if the MLE were used instead, the average MSE would be nearly double that
of the non-group testing case, showing again the benefit of the Burrows type
estimator.
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Table 4

Average absolute relative bias and average MSE comparisons for PVY example with
(pO, pNTN , pO+NTN ) = (0.144, 0.158, 0.178).

Average Absolute Relative Bias

k = 1 k = 2 k = 5 k = 10 k = 15 k = 20 k = 25

n = 25 p̂MLE 0.000 1.645 32.815 85.262 182.278 215.017 220.157

p̂RMM 0.000 1.642 32.613 85.218 182.279 215.017 220.157

p̂B 0.000 0.057 21.208 58.466 73.960 66.875 72.426

n = 50 p̂MLE 0.000 0.784 15.950 72.532 151.365 209.528 219.343

p̂RMM 0.000 0.784 15.865 72.548 151.368 209.528 219.343

p̂B 0.000 0.014 8.960 23.514 76.680 71.713 68.104

n = 100 p̂MLE 0.000 0.384 5.607 65.263 104.234 199.209 217.765

p̂RMM 0.000 0.384 5.594 65.363 104.234 199.209 217.765

p̂B 0.000 0.003 1.018 32.305 73.750 76.057 69.307

n = 250 p̂MLE 0.000 0.152 1.738 69.306 85.050 171.500 213.232

p̂RMM 0.000 0.152 1.738 69.409 85.062 171.502 213.232

p̂B 0.000 0.001 0.033 62.471 45.787 80.101 74.528

Average 1000×MSE

k = 1 k = 2 k = 5 k = 10 k = 15 k = 20 k = 25

n = 25 p̂MLE 5.368 4.565 23.864 154.920 229.355 239.482 240.586

p̂RMM 5.368 4.563 23.753 154.905 229.355 239.482 240.586

p̂B 5.368 4.359 17.461 16.267 15.627 15.219 15.584

n = 50 p̂MLE 2.684 2.199 9.558 99.728 215.451 237.782 240.389

p̂RMM 2.684 2.199 9.508 99.740 215.451 237.782 240.389

p̂B 2.684 2.154 8.617 18.140 16.418 15.440 15.282

n = 100 p̂MLE 1.342 1.082 3.134 53.677 189.030 234.070 239.949

p̂RMM 1.342 1.082 3.125 53.740 189.026 234.070 239.949

p̂B 1.342 1.071 2.726 22.721 17.202 16.035 15.318

n = 250 p̂MLE 0.537 0.429 0.921 27.087 129.438 222.342 238.479

p̂RMM 0.537 0.429 0.921 27.156 129.445 222.341 238.479

p̂B 0.537 0.427 0.850 24.285 18.635 17.142 15.823

In Table 4 we again see, similar to what was indicated in Figure 6, that
the best choice of group size for the second experiment is k = 2. In this case,
however, the gains relative to the non grouping case are much more modest
with, for example, the average MSE for the Burrows type estimator only 1.2
times smaller when n = 25.

7. Discussion

In this paper, we have addressed the problem of prevalence estimation for two-
traits simultaneously using group-testing methods. While a solution for large
samples is straightforward (as shown in Theorem 1), the high probability of
the MLE lying on the boundary for small sample cases requires more careful
consideration. We have shown that (see Table 1), depending on the underlying
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prevalence, this problem can be substantial, even for sample sizes that are much
larger than would be feasible in many applications.

The problem of finding an MLE has been shown as a special case of maximiz-
ing a multinomial likelihood with a restricted parameter space. While this is, in
general, a difficult problem, we showed that, whenever a closed form maximizer
does not exist, the optimization problem can be expressed as a simpler prob-
lem in one fewer dimension. This was used to develop an estimation approach
based on the EM algorithm which is simple both conceptually and computa-
tionally. More importantly, the resulting estimator is guaranteed to converge to
the global maximizer for all values in the sample space.

In addition, we have provided a second estimator, based on the method of
moments, which very closely approximates the MLE, but has the advantage of
a closed form expression. This, in turn, was used to develop a third estimator
based on the shrinkage estimator for one-trait group testing estimation presented
in Burrows [2].

Among the three estimators, numerical comparisons showed that none uni-
formly outperforms the others in terms of relative bias and MSE. Still, the
Burrows type estimator does generally offer some advantage in terms of MSE,
and has the added benefit of being robust to poor specification of the group size.
As such, this estimator can be recommended as the best choice in most cases,
including those similar to the PVY strain prevalence estimation application
considered here.

For many realistic cases, such as with small p and moderate n, our numerical
results indicate that the bias is well contained even though the number of tests is
too small to rely on large sample results. It is in these cases that the importance
of the results presented here is highlighted, since the use of the large sample
MLE or direct numerical optimization can yield poor results. For other cases,
such as with very small n or larger parameter values, the bias is much larger
and the estimators presented here are not ideal. Unfortunately, there exist no
alternatives in the literature to date for addressing these issues, so that future
research in this area is essential.

One important extension that we have not considered here is estimation when
tests are subject to misclassification. Among many other examples, group test-
ing studies incorporating testing errors can be found in Tu et al. [31], Liu et
al. [18], and Zhang et al. [34]. While very common in medical studies, this is-
sue appears to be less commonly considered in plant science areas such as the
PVY application presented here. For example, none of the previously cited pa-
pers in the PVY literature [6, 21, 22] included misclassification parameters in
their statistical models, although exceptions do exist [see, as one example, 17].
Reasons for this include assumptions that the testing errors are negligible in a
given application, as well as sample sizes that are too small for simultaneously
estimating the usually unknown misclassification parameters. When testing er-
rors are incorporated into the model, the results presented in this paper which
greatly simplify estimation (e.g., Theorem 2) do not hold, so that different ap-
proaches must be taken. It is still possible to numerically optimize the likelihood
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in such cases, although care must be taken with the starting values when this
is done.

A second area which has not been considered here, is how to best choose the
group size k. In the one-trait estimation case, this has proven to be a very diffi-
cult problem with solutions requiring either reasonably precise prior knowledge
of the true parameter value [e.g., 27] or adaptive approaches [e.g., 13]. For two
traits, an adaptive approach based on optimal design theory has been given [12],
but relies heavily on large sample assumptions. Numerical studies or theoreti-
cal results for constructing locally optimum designs based on prior information
have, to our knowledge, not been done. Further research is necessary to provide
reasonable small sample solutions to this problem in order to realize the full
benefits of group-testing for a wide range of applications.

Appendix A: Large sample covariance matrix for all estimators

Letting λ10 = p00 + p10 and λ01 = p00 + p01, the elements of Σ as defined in
Theorem 3 (b) are given by:
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Appendix B: Proofs

B.1. Proof of Lemma 1

(a) We proceed by showing the negative Hessian, −H(p), to be positive defi-

nite. For convenience, we consider the parameter vectors θ̃
′
= (θ00, θ10, θ01) =

(pk00, (p00+p10)
k−pk00, (p00+p01)

k−pk00) and p̃′ = (p00, p10, p01). For the standard

multinomial vector, we have−H(θ̃) = D+x11

θ2
11
11′ whereD = diag

(
x00

θ2
00
, x10

θ2
10
, x01

θ2
01

)
which is positive definite since, for any z′ = (z1, z2, z3) ∈ R

3 such that z �= 0,

− z′H(θ̃)z =
x00z

2
1

θ200
+

x10z
2
2

θ210
+

x01z
2
3

θ201
+

x11(1
′z)2

θ211
> 0. (9)

Now, H(p̃) = ∂θ
∂p

′
H(θ̃) ∂θ∂p , where

∂θ
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= k

⎛
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00 0 0
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k−1 − pk−1

00 (p00 + p10)
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⎞
⎟⎠ ,

and so
−z′H(p̃)z = −z∗′H(θ̃)z∗ > 0

by (4) provided

z∗ =
∂θ

∂p
z �= 0. (10)

Since ∂θ
∂p is full rank, (10) holds whenever z �= 0 and the result follows.

(b) If x ∈ X ∩X c
0 , so that at least one element is zero, then the inequality in

(4) is replaced by
−z′H(θ̃)z ≥ 0.

The remainder of the proof is identical to that of (a) with the result that −H(p)
is positive semi-definite, hence the log-likelihood is concave (though not neces-
sarily strict).

B.2. Proof of Theorem 1

(a) This follows directly from the previous discussion using the invariance prop-
erty based on the multinomial MLE.

(b) Let g(x) =
(
x00+x10

n

)1/k
+

(
x00+x01

n

)1/k −
(
x00

n

)1/k
. Then, by the strong

law of large numbers

g(x)
a.s.→ (θ00 + θ10)

1/k
+ (θ00 + θ01)

1/k − (θ00)
1/k

= p00 + p10 + p01 < 1,
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so that for large enough n, P (x ∈ Rn) = 1. Likewise, x/n
a.s.→ θ implies that x

lies in the interior of its support with probability one. That is, for large enough
n, P (x ∈ X0) = 1. It follows then that P (x ∈ X0 ∩Rn) = 1.

B.3. Proof of Theorem 2

For all x, the invariance property of the MLE gives the unique maximizer over
Ψθ to be p̃ = h(x̄), where h is as in Lemma 2. If x ∈ X0 ∩ R

c

n then we
have p̃11 < 0, by the definition of Rn. Furthermore, by Lemma 1 (a), the log-
likelihood, �, is strictly concave over this set and, by (1) and (2), each of p̃00, p̃10,
and p̃01 are non-negative (since otherwise, the corresponding θ values would be
negative, hence not in Ψθ). Suppose now that p′ ∈ Ψp is the true maximizer
over the boundary and satisfies p′11 > 0. Then, since p̃ is a global maximum
and � is strictly concave, the line segment �(tp̃+(1− t)p′), 0 ≤ t ≤ 1 is strictly
decreasing as t → 0. However, there exists a point in ∂Ψ on the line with t > 0,
say p′′, satisfying p′′11 = 0 and �(p′′) > �(p′).

If x /∈ Rn and at least one of the elements of x is equal to zero, the log-
likelihood is concave (not strictly, Lemma 1 (b)). As such, the previous analysis
can be repeated with the conclusion that �(p′′) ≥ �(p′), so that � is maximized
at a point with p11 = 0, although perhaps not uniquely.

For x11 = 0, the log-likelihood is proportional to x00 log(p
k
00)+x10 log((p00+

p10)
k−pk00)+x01 log((p00+p01)

k−pk00). Let p be any point such that p11 > 0. It
is clear that taking the point p′ = (p00, p10+p11, p01, 0) the value of this function
can be increased, provided x10 > 0. If instead x10 = 0 but x01 > 0, the same
can achieved by taking p′ = (p00, p10, p01 + p11, 0). Likewise, if both x10 = 0
and x01 = 0, so that x00 = n, the log-likelihood can be increased by taking
p′ = (p00 + p11, p10, p01, 0). Since one of these three cases must occur, it follows
that any point maximizing the log-likelihood will necessarily have p11 = 0.

B.4. Proof of Lemma 3

The proof of both (a) and (b) is nearly identical to that of Lemma 1, the primary
difference being that we now have

∂θ

∂p
=

k

⎛
⎜⎝

−(1− p10 − p01)
k−1 −(1− p10 − p01)

k−1

(1− p10 − p01)
k−1 (1− p10 − p01)

k−1 − (1− p01)
k−1

(1− p10 − p01)
k−1 − (1− p10)

k−1 (1− p10 − p01)
k−1

⎞
⎟⎠ .

Since this matrix has full column rank, it follows that (10) holds if and only if
z �= 0 and the rest of the proof is identical.
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B.5. Proof of Result 1

Let Zij = (zij10, z
ij
01) represent the (latent) disease status of the j

th unit from the

ith pool, so that Zij ∼ MN(1,p∗) and set zij00 = n− zij10 − zij01.
Using Z as the complete data in the EM framework, the complete data log-

likelihood is given by

�C(p
∗, z) ∝

∑∑
zij00 log(1− p10 − p01) +

∑∑
zij10 log(p10)

+
∑∑

zij01 log(p01).

We now proceed to calculate the E and M steps, respectively.

E-step:
Let ζsr (p

∗(t)) = E(Z11
r |ϑ1

s = 1,p∗(t)), where r ∈ {(00), (10), (01)} is the
true status (under the reduced model), and s ∈ S = {(00), (10), (01), (11)}
is the observed status, and p∗(t) is the parameter estimate at the tth

iteration. Then, we have the expectation of the complete log-likelihood

Q
(
p∗;p∗(t)

)
∝ k

∑
s∈S

ζs00(p
∗(t))Xs log(1− p10 − p01)

+ k
∑
s∈S

ζs10(p
∗(t))Xs log(p10)

+ k
∑
s∈S

ζs01(p
∗(t))Xs log(p01). (11)

To calculate the values of ζsr (p
∗(t)), we have

ζ0000 (p
∗(t)) = E(Z11

00 |ϑ1
00 = 1,p∗(t)) = P (Z11

00 = 1|ϑ1
00 = 1)

=
P (ϑ1

00 = 1|Z11
00 = 1)P (Z11

00 = 1)

P (ϑ1
00 = 1)

=
(p

(t)
00 )

k−1p
(t)
00

θ
(t)
00

= 1,

where the fourth equality holds since, conditioning on the first observation
being negative, the pool will be negative if and only if the remaining k−1
units are negative as well.
Likewise,

ζ1000 (p
∗(t)) =

[(p
(t)
00 + p

(t)
10 )

k−1 − (p
(t)
00 )

k−1]p
(t)
00

θ
(t)
10

ζ0100 (p
∗(t)) =

[(p
(t)
00 + p

(t)
01 )

k−1 − (p
(t)
00 )

k−1]p
(t)
00

θ
(t)
01
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ζ1100 (p
∗(t)) =

[1− (p
(t)
00 + p

(t)
10 )

k−1 − (p
(t)
00 + p

(t)
01 )

k−1 + (p
(t)
00 )

k−1]p
(t)
00

θ
(t)
11

ζ0010 (p
∗(t)) = 0

ζ1010 (p
∗(t)) =

(p
(t)
00 + p

(t)
10 )

k−1p
(t)
10

θ
(t)
10

ζ0110 (p
∗(t)) = 0

ζ1110 (p
∗(t)) =

[1− (p
(t)
00 + p

(t)
10 )

k−1]p
(t)
10

θ
(t)
11

ζ0001 (p
∗(t)) = 0

ζ1001 (p
∗(t)) = 0

ζ0101 (p
∗(t)) =

(p
(t)
00 + p

(t)
01 )

k−1p
(t)
01

θ
(t)
01

ζ1101 (p
∗(t)) =

[1− (p
(t)
00 + p

(t)
01 )

k−1]p
(t)
01

θ
(t)
11

.

M-step:
Since (11) is a standard multinomial log-likelihood of size kn, the unique
global maximizer is given by

p
(t+1)
00 =

∑
s∈S ζs00(p

∗(t))Xs

n

p
(t+1)
10 =

∑
s∈S ζs10(p

∗(t))Xs

n

p
(t+1)
01 =

∑
s∈S ζs01(p

∗(t))Xs

n
.

B.6. Lemmas for Theorems 3 and 4

Before proving Theorems 3 and 4, we provide the following three lemmas.

Lemma 4. P (x ∈ R
c

n) = O(n−2)

Proof. We have x ∈ R
c

n only if
(
x00+x10

n

)1/k
+

(
x00+x01

n

)1/k −
(
x00

n

)1/k
> 1.

Choose ε such that (θ00 + θ10 + ε)1/k + (θ00 + θ01 + ε)1/k − (θ00 − ε)1/k ≤ 1
so that x ∈ R

c

n implies the event {nθ00 − x00 > nε} ∪ {x00 + x10 − nθ00 −
nθ10 > nε} ∪ {x00 + x01 − nθ00 − nθ01 > nε} occurs. Then, using the Markov
inequality,
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P (x ∈ R
c

n) ≤ P ({nθ00 − x00 > nε} ∪ {x00 + x10 − nθ00 − nθ10 > nε}

∪ {x00 + x01 − nθ00 − nθ01 > nε})

≤ P (|x00 − nθ00| > nε) + P (|x00 + x10 − nθ00 − nθ10| > nε)

+ P (|x00 + x00 − nθ00 − nθ01| > nε)

<
E(x00 − nθ00)

4 + E(x00 + x10 − nθ00 − nθ10)
4

n4ε4

+
E(x00 + x00 − nθ00 − nθ01)

4

n4ε4

=
C

n2
,

for some constant C which does not depend on n.

Lemma 5. Let f = (f1, f2, f3) =
((

x00+x10

n

)1/k
,
(
x00+x01

n

)1/k
,
(
x00

n

)1/k)
, then

the elements of f can be expressed as follows:

(a) f1(x00 + x10) = p00 + p10 + 1
nk(p00+p10)k−1 (x00 + x10 − n(p00 + p10)

k) +
1−k

2n2k2(p00+p10)2k−1 (x00 + x10 − n(p00 + p10)
k)2 +Op(n

−2);

(b) f2(x00 + x01) = p00 + p01 + 1
nk(p00+p01)k−1 (x00 + x01 − n(p00 + p01)

k) +
1−k

2n2k2(p00+p01)2k−1 (x00 + x01 − n(p00 + p01)
k)2 +Op(n

−2);

(c) f3(x00) = p00 +
1

nkpk−1
00

(x00 − npk00) +
1−k

2n2k2p2k−1
00

(x00 − npk00)
2 +Op(n

−2).

Proof. For each element of f , the component random variables can be expressed
as a single marginal binomial random variable (e.g., x00 + x10 ∼ Bin(n, (p00 +
p10)

k)). The result then follows by taking the second order Taylor expansion of
each element about the mean of the constituent random variable.

We illustrate this for f1. Let x̃ = x00+x10 and set x̃0 = E(x̃) = n(p00+p10)
k.

Then, since df1
dx̃ = ξ

n

(
x̃
n

)ξ−1
and d2f1

dx̃2 = ξ(ξ−1)
n2

(
x̃
n

)ξ−2
, the Taylor expansion of

f1 about x̃0 yields, letting ξ = 1/k,

f1 =

(
x̃0

n

)ξ

+
ξ

n

(
x̃0

n

)ξ−1

(x̃− x̃0) +
ξ(ξ − 1)

2n2

(
x̃0

n

)ξ−2

(x̃− x̃0)
2 +Op(n

−2)

= p00 + p10 +
1

nk(p00 + p10)k−1
(x00 + x10 − n(p00 + p10)

k)

+
1− k

2n2k2(p00 + p10)2k−1
(x00 + x10 − n(p00 + p10)

k)2 +Op(n
−2).

Lemma 6. Let

g = (g1, g2, g3) =

((
x00 + x10 + η

n+ η

)1/k

,

(
x00 + x01 + η

n+ η

)1/k

,

(
x00 + η

n+ η

)1/k
)
,

then the elements of g can be expressed as follows:
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(a) g1(x00 + x10) = p00 + p10 +
1−(p00+p10)

k

nk(p00+p10)k−1 η + 1
nk(p00+p10)k−1 (x00 + x10 −

n(p00 + p10)
k) + 1−k

2n2k2(p00+p10)2k−1 (x00 + x10 − n(p00 + p10)
k)2 +Op(n

−2);

(b) g2(x00 + x01) = p00 + p01 +
1−(p00+p01)

k

nk(p00+p01)k−1 η + 1
nk(p00+p01)k−1 (x00 + x01 −

n(p00 + p01)
k) + 1−k

2n2k2(p00+p01)2k−1 (x00 + x01 − n(p00 + p01)
k)2 +Op(n

−2);

(c) g3(x00) = p00 +
1−pk

00

nkpk−1
00

η+ 1
nkpk−1

00

(x00 − npk00) +
1−k

2n2k2p2k−1
00

(x00 − npk00)
2 +

Op(n
−2).

Proof. The proof proceeds identically as for the previous lemma by first finding
the second order taylor expansion of the elements of g about the mean of the
respective component random variables. The result then follows by finding the
Taylor expansion of each resultant term about η = 0.

We illustrate this for g1, for which, letting x̃, x̃0, and ξ be as defined in the
proof of the previous lemma, has the Taylor expansion about x̃0

g1 =

(
x̃0 + η

n+ η

)ξ

+
ξ(x̃0 + η)ξ−1

(n+ η)ξ
(x̃− x̃0) +

ξ(ξ − 1)(x̃0 + η)ξ−2

2(n+ η)ξ
(x̃− x̃0)

2

+Op(n
−2). (12)

For an integer r, we have

d

dη

(
(x̃0 + η)ξ−r

(n+ η)ξ

)
=

ξ − r

(n+ η)r+1

(
x̃0 + η

n+ η

)ξ−r−1

− ξ

(n+ η)r+1

(
x̃0 + η

n+ η

)ξ−r

,

so that for r > 1 this derivative is O(n−3). Likewise, for all r ≥ 1 the second
derivative of the same term will be O(n−3). As such, taking the Taylor expansion
of (12) about η = 0 yields

g1 =

(
x̃0

n

)ξ

+
ξ

n

(
x̃0

n

)ξ−1

η − ξ

n

(
x̃0

n

)ξ

η +
ξ

x

(
x̃0

n

)ξ−1

(x̃− x̃0)

+
ξ(ξ − 1)

2n2

(
x̃0

n

)ξ−2

(x̃− x̃0)
2 +Op(n

−2)

= p00 + p10 +
1− (p00 + p10)

k

nk(p00 + p10)k−1
η

+
1

nk(p00 + p10)k−1
(x00 + x10 − n(p00 + p10)

k)

+
1− k

2n2k2(p00 + p10)2k−1
(x00 + x10 − n(p00 + p10)

k)2 +Op(n
−2)
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B.7. Proof of Theorem 3

(a) By the definition of the RMM estimator, we have pRMM − pMLE =
h(x)I(x ∈ R

c

n), where h is some bounded function and I is the indicator func-
tion. Then, from (b) in Theorem 1 the right hand side of this expression con-
verges to zero almost surely, and the result follows.

(b) Each estimator can be expressed as p̂ = h1(x)+h2(x)I(x ∈ R
c

n) for some
bounded functions h1, h2. By standard multinomial theory, x is asymptotically
normal with rate O(n−1) so that the first term, h1, is as well by the Delta
method. By Lemma 4 and the boundedness of h2, the second term is of order
O(n−2) so that the overall convergence (up to O(n−1)) is determined only by
the first term. The exact values of the asymptotic covariance matrix can then
be calculated directly using the Taylor expansions given in Lemmas 5 and 6.
Some algebra shows that each estimator yields an identical covariance matrix,
so that the large sample distributions, up to O(n−1), are identical.

We illustrate the calculations for the covariance matrix (as given in Appendix
A) by finding Σ11, where

1
nk2Σ11 is the asymptotic variance of p10 for the MLE.

Note that, for pMLE
11 , the function h1 defined above is given by f1 − f3, where

f1, f3 are as in Lemma 5. As such, ignoring terms of O(n−2), the asymptotic
variance of pMLE

10 is given by, defining λ10 = p00 + p10,

Σ11 = nk2E (f1 − f3 − p10)
2

=
1

n
E

(
(x00 + x10 − nλk

10)

λk−1
10

− (x00 − nλk
00)

pk−1
00

)2

=
1

n

(
V(x00 + x10)

λ2k−2
10

+
V(x00)

p2k−2
00

− 2
Cov(x00 + x10, x00)

λk−1
10 pk−1

00

)

=
1

n

(
nλk

10(1− λk
10)

λ2k−2
10

+
npk00(1− pk00)

p2k−2
00

−2
npk00(1− pk00)− npk00(λ

k
10 − pk00)

λk−1
10 pk−1

00

)

=
1

λk
10

[
λ2
10 − 2λ10p00

]
+

p200
pk00

− (λ10 − p00)
2

= p210

(
1

λk
10

− 1

)
+ p200

(
1

pk00
− 1

λk
10

)
.

Similar calculations yield the other values of Σ, noting that the h1 functions
for pMLE

01 and pMLE
11 are given by f2 − f3 and 1− f1 − f2 + f3, respectively.

To see that the Burrows estimator yields the same asymptotic covariance
matrix, note that the function h1 defined above for pB10 is g1 − g3, where g1
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and g3 are as defined in Lemma 6. Now, for any value of η, we have, ignoring
terms of O(n−2), g1 − g3 = f1 − f3 + C, where C is constant with respect to
x and of order O(n−1). As such, the asymptotic variance of pB10 is given by
E(f1− f3+C− p10)

2 = 1
nk2Σ11+2CE(f1− f3− p10)+C2 = 1

nk2Σ11+O(n−2).
Similar reasoning holds for the other elements of the asymptotic covariance
matrix for the Burrows estimator.

B.8. Proof of Theorem 4

This proof is nearly identical to (b) in the previous theorem. The first order
expectations can be found using the Taylor expansions in Lemmas 5 and 6, and
combined as in the proof the the previous theorem.

Appendix C: Additional Tables

Table 5

Relative bias, defined for the ith element to be 100× E(p̂i−pi)
pi

, for k = 2

(p10 p01 p11) = (0.001 0.001 0.0001) (0.045 0.045 0.005) (0.095 0.045 0.005)

n = 10 p̂MLE 2.536 2.536 3.658 -1.089 -1.089 38.991 -0.726 -5.012 76.072
p̂RMM 2.533 2.533 3.658 -1.312 -1.312 38.991 -1.040 -5.432 76.072

p̂B -0.036 -0.036 1.063 -3.889 -3.889 35.701 -3.719 -7.947 72.229

n = 25 p̂MLE 0.934 0.934 2.026 -2.038 -2.038 29.988 -1.598 -4.819 55.740

p̂RMM 0.921 0.921 2.026 -2.166 -2.166 29.988 -1.795 -5.027 55.740

p̂B -0.089 -0.089 1.005 -3.192 -3.192 28.838 -2.862 -6.056 54.610

n = 50 p̂MLE 0.420 0.420 1.500 -1.656 -1.656 20.740 -1.167 -3.207 35.042

p̂RMM 0.406 0.406 1.500 -1.728 -1.728 20.740 -1.282 -3.317 35.042

p̂B -0.097 -0.097 0.993 -2.248 -2.248 20.259 -1.822 -3.851 34.685

n = 100 p̂MLE 0.168 0.168 1.234 -0.819 -0.819 10.236 -0.521 -1.469 16.252

p̂RMM 0.153 0.153 1.234 -0.851 -0.851 10.236 -0.576 -1.519 16.252

p̂B -0.097 -0.097 0.981 -1.116 -1.116 10.049 -0.849 -1.794 16.153

(p10 p01 p11) = (0.1 0.1 0.1) (0.15 0.1 0.2) (0.25 0.05 0.15)

n = 10 p̂MLE 2.808 2.808 3.457 7.017 7.664 1.417 5.662 6.391 2.047

p̂RMM 2.670 2.670 3.457 6.911 7.536 1.417 5.527 6.112 2.047

p̂B -1.105 -1.105 1.309 0.327 0.299 0.068 0.156 -0.573 0.326

n = 25 p̂MLE 1.415 1.415 0.911 2.009 2.147 0.824 1.789 2.281 0.788

p̂RMM 1.411 1.411 0.911 2.008 2.146 0.824 1.787 2.278 0.788

p̂B -0.031 -0.031 0.061 0.068 0.079 -0.010 0.047 0.064 -0.001

n = 50 p̂MLE 0.715 0.715 0.428 0.944 1.002 0.428 0.853 1.070 0.405

p̂RMM 0.715 0.715 0.428 0.944 1.002 0.428 0.853 1.070 0.405

p̂B 0.006 0.006 0.001 0.015 0.017 -0.001 0.012 0.020 -0.002

n = 100 p̂MLE 0.353 0.353 0.214 0.460 0.487 0.216 0.417 0.518 0.205

p̂RMM 0.353 0.353 0.214 0.460 0.487 0.216 0.417 0.518 0.205

p̂B 0.002 0.002 0.000 0.004 0.004 0.000 0.003 0.005 0.000
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Table 6

Relative bias, defined for the ith element to be 100× E(p̂i−pi)
pi

, for k = 10

(p10 p01 p11) = (0.001 0.001 0.0001) (0.045 0.045 0.005) (0.095 0.045 0.005)

n = 10 p̂MLE 3.922 3.922 14.062 -4.274 -4.274 108.752 9.787 -14.963 206.077
p̂RMM 3.914 3.914 14.062 -4.623 -4.623 108.752 9.205 -15.437 206.077
p̂B -0.800 -0.800 8.924 -12.035 -12.035 109.953 -10.672 -23.050 209.083

n = 25 p̂MLE 0.993 0.993 10.694 -2.916 -2.916 51.631 -1.630 -8.554 102.982
p̂RMM 0.973 0.973 10.694 -3.065 -3.065 51.631 -1.904 -8.770 102.982
p̂B -0.856 -0.856 8.705 -6.106 -6.106 55.188 -5.949 -12.646 114.048

n = 50 p̂MLE 0.088 0.088 9.442 -1.646 -1.646 27.247 -1.402 -5.377 61.226
p̂RMM 0.064 0.064 9.442 -1.724 -1.724 27.247 -1.559 -5.500 61.226
p̂B -0.842 -0.842 8.461 -3.301 -3.301 29.770 -3.601 -7.621 68.648

n = 100 p̂MLE -0.330 -0.330 8.494 -0.685 -0.685 12.290 -0.887 -3.062 33.958
p̂RMM -0.349 -0.349 8.494 -0.722 -0.722 12.290 -0.974 -3.129 33.958
p̂B -0.800 -0.800 8.010 -1.549 -1.549 13.957 -2.030 -4.290 38.628

(p10 p01 p11) = (0.1 0.1 0.1) (0.15 0.1 0.2) (0.25 0.05 0.15)

n = 10 p̂MLE 111.716 111.716 129.351 11.390 -31.535 265.909 110.522 -72.403 184.599
p̂RMM 111.318 111.318 129.351 11.368 -31.566 265.909 110.506 -72.460 184.599
p̂B -33.310 -33.310 25.769 -84.340 -88.696 17.266 -69.376 -90.862 25.260

n = 25 p̂MLE 59.336 59.336 -7.420 90.400 16.338 151.864 166.329 -60.572 54.524
p̂RMM 58.873 58.873 -7.420 90.335 16.252 151.864 166.284 -60.668 54.524
p̂B 12.736 12.736 -12.717 -59.829 -63.740 23.014 -45.998 -69.863 23.300

n = 50 p̂MLE 24.030 24.030 -14.632 135.538 52.818 52.866 157.344 -37.670 18.687
p̂RMM 23.786 23.786 -14.632 135.549 52.844 52.866 157.268 -37.754 18.687
p̂B 10.603 10.603 -10.444 -19.383 -14.790 5.401 -26.463 -40.935 13.750

n = 100 p̂MLE 10.090 10.090 -6.788 131.223 82.807 -19.231 121.669 1.298 1.744
p̂RMM 10.033 10.033 -6.788 131.371 82.942 -19.231 121.667 1.259 1.744
p̂B 1.437 1.437 -1.403 32.649 53.351 -26.689 -8.370 -1.585 0.551

Table 7

1000 × mean squared error (MSE) for k = 2

(p10 p01 p11) = (0.001 0.001 0.0001) (0.045 0.045 0.005) (0.095 0.045 0.005)

n = 10 p̂MLE 0.053 0.053 0.005 2.286 2.286 0.351 4.779 2.248 0.446
p̂RMM 0.053 0.053 0.005 2.272 2.272 0.351 4.734 2.222 0.446
p̂B 0.050 0.050 0.005 2.154 2.154 0.333 4.476 2.109 0.425

n = 25 p̂MLE 0.020 0.020 0.002 0.895 0.895 0.127 1.867 0.903 0.156
p̂RMM 0.020 0.020 0.002 0.892 0.892 0.127 1.856 0.898 0.156
p̂B 0.020 0.020 0.002 0.874 0.874 0.125 1.818 0.880 0.154

n = 50 p̂MLE 0.010 0.010 0.001 0.451 0.451 0.060 0.938 0.465 0.074
p̂RMM 0.010 0.010 0.001 0.450 0.450 0.060 0.935 0.464 0.074
p̂B 0.010 0.010 0.001 0.445 0.445 0.059 0.926 0.459 0.073

n = 100 p̂MLE 0.005 0.005 0.001 0.229 0.229 0.030 0.471 0.237 0.038
p̂RMM 0.005 0.005 0.001 0.229 0.229 0.030 0.470 0.236 0.038
p̂B 0.005 0.005 0.001 0.227 0.227 0.030 0.467 0.235 0.038

(p10 p01 p11) = (0.1 0.1 0.1) (0.15 0.1 0.2) (0.25 0.05 0.15)

n = 10 p̂MLE 6.581 6.581 5.672 13.421 9.927 11.993 18.174 5.241 8.946
p̂RMM 6.546 6.546 5.672 13.331 9.860 11.993 17.994 5.188 8.946
p̂B 6.001 6.001 5.345 10.794 7.940 11.017 14.779 4.368 8.338

n = 25 p̂MLE 2.494 2.494 2.268 4.349 3.196 4.444 6.008 1.766 3.426
p̂RMM 2.494 2.494 2.268 4.349 3.196 4.444 6.006 1.766 3.426
p̂B 2.416 2.416 2.215 4.145 3.045 4.316 5.722 1.682 3.332

n = 50 p̂MLE 1.224 1.224 1.123 2.094 1.537 2.173 2.898 0.849 1.680
p̂RMM 1.224 1.224 1.123 2.094 1.537 2.173 2.898 0.849 1.680
p̂B 1.205 1.205 1.110 2.049 1.503 2.143 2.834 0.830 1.657

n = 100 p̂MLE 0.606 0.606 0.557 1.030 0.756 1.075 1.427 0.417 0.832
p̂RMM 0.606 0.606 0.557 1.030 0.756 1.075 1.427 0.417 0.832
p̂B 0.601 0.601 0.554 1.019 0.748 1.068 1.411 0.413 0.826
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Table 8

1000 × mean squared error (MSE) for k = 10

(p10 p01 p11) = (0.001 0.001 0.0001) (0.045 0.045 0.005) (0.095 0.045 0.005)

n = 10 p̂MLE 0.011 0.011 0.001 0.848 0.848 0.225 11.757 1.044 0.526
p̂RMM 0.011 0.011 0.001 0.838 0.838 0.225 11.710 1.030 0.526
p̂B 0.010 0.010 0.001 0.654 0.654 0.210 1.679 0.859 0.492

n = 25 p̂MLE 0.004 0.004 0.000 0.288 0.288 0.085 0.782 0.368 0.185
p̂RMM 0.004 0.004 0.000 0.286 0.286 0.085 0.772 0.365 0.185
p̂B 0.004 0.004 0.000 0.272 0.272 0.084 0.703 0.359 0.190

n = 50 p̂MLE 0.002 0.002 0.000 0.146 0.146 0.045 0.374 0.189 0.095
p̂RMM 0.002 0.002 0.000 0.145 0.145 0.045 0.370 0.188 0.095
p̂B 0.002 0.002 0.000 0.142 0.142 0.045 0.361 0.189 0.099

n = 100 p̂MLE 0.001 0.001 0.000 0.076 0.076 0.025 0.190 0.100 0.052
p̂RMM 0.001 0.001 0.000 0.075 0.075 0.025 0.188 0.100 0.052
p̂B 0.001 0.001 0.000 0.075 0.075 0.025 0.187 0.100 0.053

(p10 p01 p11) = (0.1 0.1 0.1) (0.15 0.1 0.2) (0.25 0.05 0.15)

n = 10 p̂MLE 107.093 107.093 108.999 103.465 48.242 430.127 229.936 9.708 224.885
p̂RMM 107.021 107.021 108.999 103.462 48.235 430.127 229.939 9.700 224.885
p̂B 5.963 5.963 8.182 18.051 9.102 4.409 33.645 2.705 5.507

n = 25 p̂MLE 33.024 33.024 11.586 134.286 58.504 242.080 245.355 6.821 44.190
p̂RMM 32.906 32.906 11.586 134.262 58.476 242.080 245.350 6.805 44.190
p̂B 6.993 6.993 6.531 14.150 9.705 11.590 16.595 3.947 6.101

n = 50 p̂MLE 6.998 6.998 3.791 130.373 52.119 102.981 219.979 6.169 8.984
p̂RMM 6.934 6.934 3.791 130.382 52.136 102.981 219.952 6.156 8.984
p̂B 4.800 4.800 3.613 13.320 14.354 18.479 7.891 5.559 6.283

n = 100 p̂MLE 2.134 2.134 1.630 91.463 37.516 36.011 167.099 7.515 7.635
p̂RMM 2.120 2.120 1.630 91.560 37.585 36.011 167.102 7.510 7.635
p̂B 1.782 1.782 1.444 18.683 23.035 24.012 5.322 7.265 7.360
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[7] Grendár, M. and S̆pitalský, V. (2017). Multinomial and empirical likelihood
under convex constraints: Directions of recession, Fenchel duality, the PP
algorithm. Electronic Journal of Statistics 11 2547–2612. MR3679903

[8] Haber, G. and Malinovsky, Y. (2017). Random walk designs for select-
ing pool sizes in group testing estimation with small samples. Biometrical
Journal 59 1382–1398. MR3731221

[9] Haber, G. and Malinovsky, Y. (2018). On the construction of
unbiased estimators for the group testing problem. Sankhya A.
https://doi.org/10.1007/s13171-018-0156-4.

[10] Haber, G., Malinovsky, Y., and Albert, P. S. (2018). Sequential estimation
in the group testing problem. Sequential Analysis 37 1–17. MR3773152

[11] Hepworth, G. and Watson, R. (2009). Debiased estimation of proportions
in group testing. Journal of Royal Statistical Society, Series C 58 105–121.
MR2662236

[12] Hughes-Oliver, J. M. and Rosenberger, W. (2000). Efficient estimation of
the prevalence of multiple rare traits. Biometrika 87 315–327. MR1782481

[13] Hughes-Oliver, J. M. and Swallow, W. H. (1994). A two-stage adaptive
group testing procedure for estimating small proportions. Journal of the
American Statistical Association 89 982–993. MR1294742

[14] Hyun, N., Gastwirth, J. L., Graubard, B. I. (2018). Grouping methods
for estimating prevalences of rare traits for complex survey data that pre-
serve confidentiality of respondents. Statistics in Medicine 37 2174–2186.
MR3802942

[15] Jamshidian, M. (2004). On algorithms for restricted maximum likeli-
hood estimation. Computational Statistics and Data Analysis 45 137–157.
MR2045465

[16] Li, Q., Liu, A., and Xiong, W. (2017). D-Optimality of group testing for
joint estimation of correlated rare diseases with misclassification. Statistica
Sinica 27 823–838. MR3674698

[17] Liu, S. C., Chiang, K. S., Lin, C. H., Chung, W. C., Lin, S. H., and Yang,
T. C. (2011). Cost analysis in choosing group size when group testing for
Potato virus Y in the presence of classification errors. Annals of Applied
Biology 159 491–502.

[18] Liu, A., Liu, C., Zhang, Z., and Albert, P. S. (2012). Optimality of
group testing in the presence of misclassification. Biometrika 99 245–251.
MR2899678

[19] Lorenzen, J. H., Piche, L. M., Gudmestad, N. C., Meacham, T., and Shiel,
P. (2006). A multiplex PCR assay to characterize potato virus Y isolates
and identify strain mixtures. Plant Disease 90 935–940.

[20] Mallik, I., Anderson, N. R., and Gudmestad, N. C. (2012). Detection and
differentiation of Potato Virus Y strains from potato using immunocapture
multiples RT-PCR. American Journal of Potato Research 89 184–191.

http://www.ams.org/mathscinet-getitem?mr=3679903
http://www.ams.org/mathscinet-getitem?mr=3731221
http://www.ams.org/mathscinet-getitem?mr=3773152
http://www.ams.org/mathscinet-getitem?mr=2662236
http://www.ams.org/mathscinet-getitem?mr=1782481
http://www.ams.org/mathscinet-getitem?mr=1294742
http://www.ams.org/mathscinet-getitem?mr=3802942
http://www.ams.org/mathscinet-getitem?mr=2045465
http://www.ams.org/mathscinet-getitem?mr=3674698
http://www.ams.org/mathscinet-getitem?mr=2899678


Multinomial group testing estimation 2657

[21] Mello, A. F. S., Olarte, R. A., Gray, S. M., and Perry, K. L. (2011). Trans-
mission efficiency of Potato virus Y strains PVYO and PVYN-Wi by five
aphid species. Plant Disease 95 1279–1283.

[22] Mondal, S., Lin, Y., Carroll, J. E., Wenninger, E. J., Bosque-Perez, N. A.,
Whitworth, J. L., Hutchinson, P., Eigenbrode, S., and Gray, S. M. (2017).
Potato virus Y transmission efficiency from potato infected with single or
multiple virus strains. Phytopathology 107 491–498.

[23] Nelder, J. A. and Mead, R. (1965). A simplex method for function mini-
mization. The Computer Journal 7 308–313. MR3363409

[24] Nettleton, D. (1999). Convergence properties of the EM Algorithm in con-
strained parameter spaces. Canadian Journal of Statistics 27 639–648.
MR1745828

[25] Pfeiffer, R. M., Rutter, J. L., Gail, M. H., Struewing, J., and Gastwirth,
J. L. (2002). Efficiency of DNA pooling to estimate joint allele frequencies
and measure linkage disequilibrium. Genetic Epidemiology 22 94–102.

[26] Santos, J. D. and Dorgman, D. (2016). An approximate likelihood estima-
tor for the prevalence of infections in vectors using pools of varying sizes.
Biometrical Journal 58 1248–1256. MR3545659

[27] Swallow, W. H. (1985). Group Testing for Estimating Infection Rates and
Probabilities of Disease Transmission. Phytopathology 75 882–889.

[28] Tebbs, J. M., Bilder, C. R., and Koser, B. K. (2003). An empirical Bayes
group-testing approach to estimating small proportions. Communications
in Statistics – Theory and Methods 32 983–995. MR1982763

[29] Tebbs, J. M., McMahan, C. S., and Bilder, C. R. (2013). Two-stage hierar-
chical group testing for multiple infections with application to the infertility
prevention project. Biometrics 69 1064–1073. MR3146801

[30] Thompson, K. H. (1962). Estimation of the proportion of vectors in a nat-
ural population of insects, Biometrics 18 568–578.

[31] Tu, X. M., Litvak, E., and Pagano, M. (1995). On the informativeness
and accuracy of pooled testing in estimating prevalence of a rare disease:
application to HIV screening. Biometrika 82 287–297. MR1354229

[32] Warasi, M. S., Tebbs, J. M., McMahan, C. S., and Bilder, C. R. (2016).
Estimating the prevalence of multiple diseases from two-stage hierarchical
pooling. Statistics In Medicine 35 3851–3864. MR3538051

[33] Wu, C. F. (1983). On the convergence properties of the EM algorithm. The
Annals of Statistics 11 95–103. MR0684867

[34] Zhang, Z., Liu, C., Kim, S., and Liu, A. (2014). Prevalence estimation
subject to misclassification: the mis-substitution bias and some remedies.
Statistics in Medicine 33 4482–4500. MR3267400

http://www.ams.org/mathscinet-getitem?mr=3363409
http://www.ams.org/mathscinet-getitem?mr=1745828
http://www.ams.org/mathscinet-getitem?mr=3545659
http://www.ams.org/mathscinet-getitem?mr=1982763
http://www.ams.org/mathscinet-getitem?mr=3146801
http://www.ams.org/mathscinet-getitem?mr=1354229
http://www.ams.org/mathscinet-getitem?mr=3538051
http://www.ams.org/mathscinet-getitem?mr=0684867
http://www.ams.org/mathscinet-getitem?mr=3267400

	Introduction
	Statistical model
	Maximum likelihood estimation
	Maximization over the boundary
	EM algorithm
	Global maximum over the closure

	Alternative estimators
	Restricted method of moments estimator
	Burrows type estimator
	Theoretical comparisons of estimators

	Numerical comparisons
	Application to estimation of Potato virus Y transmission rates
	Discussion
	Large sample covariance matrix for all estimators
	Proofs
	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Lemma 3
	Proof of Result 1
	Lemmas for Theorems 3 and 4
	Proof of Theorem 3
	Proof of Theorem 4

	Additional Tables
	Acknowledgments
	References

