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Abstract: Let A : [0, 1] → Hm (the space of Hermitian matrices) be a ma-
trix valued function which is low rank with entries in Hölder class Σ(β,L).
The goal of this paper is to study statistical estimation of A based on the
regression model E(Yj |τj , Xj) = 〈A(τj), Xj〉, where τj are i.i.d. uniformly
distributed in [0, 1], Xj are i.i.d. matrix completion sampling matrices, Yj

are independent bounded responses. We propose an innovative nuclear norm
penalized local polynomial estimator and establish an upper bound on its
point-wise risk measured by Frobenius norm. Then we extend this estima-
tor globally and prove an upper bound on its integrated risk measured by
L2-norm. We also propose another new estimator based on bias-reducing
kernels to study the case when A is not necessarily low rank and estab-
lish an upper bound on its risk measured by L∞-norm. We show that the
obtained rates are all optimal up to some logarithmic factor in minimax
sense. Finally, we propose an adaptive estimation procedure based on Lep-
skii’s method and model selection with data splitting technique, which is
computationally efficient and can be easily implemented and parallelized
on distributed systems.
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1. Introduction

Let A : [0, 1] → Hm (the space of Hermitian matrices)1 be a matrix valued
function. The goal of this paper is to study the problem of statistical estimation
of a matrix valued function A based on the regression model

E(Yj |τj , Xj) = 〈A(τj), Xj〉, j = 1, . . . , n, (1.1)

where τj are i.i.d. random univariates uniformly distributed on [0, 1], Xj are
i.i.d. matrix completion sampling matrices, Yj are independent bounded random

∗Supported in part by NSF Grants DMS-1509739 and CCF-1523768.
1Note that we use Hm for the simplicity of presentation, and our results can be trivially

generalize to regular matrix spaces such as Rm1×m2 .
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responses. Sometimes, it is convenient to write model (1.1) in the form

Yj = 〈A(τj), Xj〉+ ξj , j = 1, . . . , n, (1.2)

where the noise variables ξj = Yj −E(Yj |τj , Xj) are independent and have zero
means. In particular, we are interested in the case where A is low rank and
its entries belong to a standard function class Σ(β, L) which is called Hölder
class, see Definition 1. When A(t) = A0 with some fixed A0 ∈ Hm for any t ∈
[0, 1], such a problem coincides with the well known matrix completion/recovery
problem that has drawn a lot of attention in the statistics community during
the past few years, see [8, 6, 7, 9, 18, 15, 20, 31, 29, 10] and the references
therein. The low rank assumption in matrix completion/estimation problems
has profound practical background. In the following, we discuss several simple
examples of general low rank matrix valued functions that fit in our problem.

Example 1. Dynamic Collaborative Filtering Model. Let P : [0, 1] → R
m1×r

and Q : [0, 1] → R
m2×r, then A = PQT is apparently a low rank matrix valued

function when r � (m1∧m2). This kind of dynamic collaborative filtering model
was initially introduced by [21], which generalized their well known work [22] to
tackle the Netflix Prize on building dynamic recommender systems.

Example 2. Matrix Function Multiplication Model. Let f : [0, 1] → R and
Ã ∈ R

m1×m2 , where rank(Ã) = r � (m1 ∧m2). Then A = Ã ∗ f is a low rank
matrix valued function. Such applications can be found in biology, chemistry and
signal processing (see [38, 28]) where the underlying information Ã is diffused
via certain uniform diffusion function f .

Example 3. Euclidean Distance Matrix Model. Given the trajectory vectors
of m points in Rd, p1, ..., pm : [0, 1] → Rd. Then the Euclidean distance matrix
(EDM) D : [0, 1] → R

m×m with Dij = ‖pi − pj‖22 is a matrix valued function
with rank at most d + 2 regardless of its size m. Clearly, when m 
 d, D falls
into the low rank realm. In molecular biology, such points are typically in a low
dimensional space such as R

2 or R
3. Similar topics in cases when points are

fixed (see [39]) or in rigid motion (see [32]) have been studied.

An appealing way to address the low rank issue in matrix recovery problems
is through nuclear norm minimization, see [30]. In section 3, we inherit this
idea and propose a local polynomial estimator (see [13]) with nuclear norm
penalization:

Ŝh = argmin
S∈D

1

nh

n∑
j=1

K
(τj − t0

h

)(
Yj −

〈 �∑
i=0

Sipi

(τj − t0
h

)
, Xj

〉)2

+ ε‖S‖1,

(1.3)
where D ⊂ H(�+1)m is a closed subset of block diagonal matrices with Sj ∈
Hm on its diagonal, and {pi(t)}∞i=0 is a sequence of orthogonal polynomials
with nonnegative weight function K. The solution to the convex optimization
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problem (1.3) induces a pointwise estimator of A(t0):

Ŝh(t0) :=

�∑
i=0

Ŝh
i pi(0)

where Ŝh
i are the blocks on the diagonal of Ŝh and � = �β
. We prove that

under mild conditions, the pointwise risk measured by m−2
∥∥Ŝh(t0) − A(t0)

∥∥2

2

of Ŝh(t0) over Hölder class Σ(β, L) satisfies the following upper bound

m−2
∥∥Ŝh(t0)−A(t0)

∥∥2

2
= Op

([mr logn

n

] 2β
2β+1

)
(1.4)

where r is the low rank parameter and ‖ · ‖2 denotes the Frobenius norm of a
matrix.

In section 4, we propose a new global estimator Â based on local polynomial
smoothing and prove that the integrated risk of Âmeasured by L2-norm satisfies
the following upper bound

m−2

∫ 1

0

∥∥Â(t)−A(t)
∥∥2

2
dt = Op

([mr logn

n

] 2β
2β+1

)
. (1.5)

Then we study another naive kernel estimator Ã which can be used to estimate
matrix valued functions which are not necessarily low rank. This estimator is
associated with another popular approach to deal with low rank recovery which
is called singular value thresholding, see [6, 20, 10]. We prove that the sup-norm
risk of Ã satisfies the following upper bound

sup
t∈[h,1−h]

m−2
∥∥Ã(t)−A(t)

∥∥2
= Op

([m logn

n

] 2β
2β+1

)
, (1.6)

where ‖ · ‖ denotes the matrix spectral norm. Note that those rates coincide
with that of classical matrix recovery setting when the smoothness parameter
β goes to infinity.

An immediate question to ask is whether the above rates are optimal. In sec-
tion 5, we prove that the rates in (1.4), (1.5) and (1.6) are all optimal up to some
logarithmic factor in minimax sense, which essentially verified the effectiveness
of our methodology.

As one may have noticed, there is an adaptation issue involved in (1.3).
Namely, one needs to choose a proper bandwidth h and a proper order of degree �
of polynomials. Both parameters are closely related to the smoothness parameter
β of A which is unknown to us in advance. In section 6, we propose a model
selection procedure based on Lepskii’s method ([25]) and the work of [3] and

[37]. We prove that this procedure adaptively selects an estimator Â∗ such that

the integrated risk of Â∗ measured by L2-norm has the following upper bound

m−2

∫ 1

0

∥∥Â∗(t)−A(t)
∥∥2

2
dt = Op

([mr logn

n

] 2β
2β+1

)
(1.7)
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which is still near optimal. What is more important, such a procedure is com-
putationally efficient, feasible when m is comparable to n, and can be easily
parallelized.

The major contribution of this paper is on the theory front. We generalized
the recent developments of low rank matrix completion theory to nonparametric
estimation setting by proposing an innovative optimal estimation procedure. To
our best knowledge, no one has ever thoroughly studied such problems from a
theoretical point of view.

2. Preliminaries

In this section, we introduce some important definitions, basic facts, and nota-
tions for the convenience of presentation.

2.1. Notations

For any Hermitian matrices A,B ∈ Hm, we denote by 〈A,B〉 := tr(AB) the
Hilbert-Schmidt inner product. Denote 〈A,B〉L2(Π) = E〈A,X〉〈B,X〉, where Π
denotes the distribution of X. The corresponding norm ‖A‖2L2(Π) is given by

‖A‖2L2(Π) = E〈A,X〉2.
We use ‖·‖2 to denote the Hilbert-Schmidt norm (Frobenius norm or Schatten

2-norm) induced by the inner product 〈·, ·〉; ‖ · ‖ to denote the operator norm
(spectral norm) of a matrix: the largest singular value; ‖ · ‖1 to denote the trace
norm (Schatten 1-norm or nuclear norm), i.e. the sum of singular values; |A| to
denote the nonnegative matrix with entries |Aij | corresponding to A.

Given X1,...,Xn as the i.i.d. copies of the random measurement matrix X,
denote

σ2
X :=

∥∥∥n−1
n∑

j=1

EX2
i

∥∥∥, UX :=
∥∥‖X‖

∥∥
L∞

,

where UX denotes the L∞-norm of the random variable ‖X‖.

2.2. Matrix completion and statistical learning setting

The matrix completion setting refers to that the random sampling matrices Xj

are i.i.d. uniformly distributed on the following orthonormal basis X of Hm:

X := {Ekj : k, j = 1, ...,m},

where Ekk := ek⊗ek, k = 1, ...,m; Ejk := 1√
2
(ek⊗ej +ej ⊗ek), 1 ≤ k < j ≤ m;

Ekj :=
i√
2
(ek ⊗ ej − ej ⊗ ek), 1 ≤ k < j ≤ m with {ej}mj=1 being the canonical

basis of Rm. The following identities are easy to check when the design matrices
are under matrix completion setting:∥∥A∥∥2

L2(Π)
=

1

m2

∥∥A∥∥2

2
, σ2

X ≤ 2

m
, UX = 1. (2.1)
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The statistical learning setting refers to the bounded response case: there exists
a constant a such that

max
j=1,...n

|Yj | ≤ a, a.s. (2.2)

In this paper, we will consider model (1.1) under both matrix completion and
statistical learning setting.

2.3. Matrix valued function

Let A : [0, 1] → Hm be a matrix valued function. One should notice that we
consider the image space to be Hermitian matrix space for the convenience
of presentation. Our methods and results can be readily extended to general
rectangular matrix space. Now we define the rank of a matrix valued function.
Let rankA(t) := rank(A(t)), ∀t ∈ [0, 1].

Definition 1. Let β and L be two positive real numbers. The Hölder class
Σ(β, L) on [0, 1] is defined as the set of � = �β
 times differentiable functions
f : [0, 1] → R with derivative f (�) satisfying

|f (�)(x)− f (�)(x′)| ≤ L|x− x′|β−�, ∀x, x′ ∈ [0, 1]. (2.3)

The parameters β and � characterize the smoothness of Hölder class Σ(β, L).
They are the most important parameters in our problem just like the dimension
of the matrix m and sample size n. Throughout this paper, we only consider
the case when � is a fixed constant, or in other words � � m. The reason is
that in the asymptotic theory of low rank matrix recovery, the size of m is often
considered to be comparable to the sample size n, say m = O(n). If � is also
comparable to m, then our theory in this paper can be problematic.

In particular, we are interested in matrix valued functions satisfying the fol-
lowing assumptions:

A1 Given a measurement matrix X and for some constant a1,

sup
t∈[0,1]

∣∣〈A(t), X〉
∣∣ ≤ a1.

A2 Given a measurement matrix X and for some constant a2, the derivative
matrices A(k) of A satisfy

sup
t∈[0,1]

∣∣〈A(k)(t), X〉
∣∣ ≤ a2, k = 1, ..., �.

A3 The rank of A,A′, ..., A(�) are uniformly bounded by a constant r,

sup
t∈[0,1]

rankA(k)(t) ≤ r, k = 0, 1, ..., �.

A4 Assume that for ∀i, j, the entry Aij is in the Hölder class Σ(β, L).
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3. A local polynomial Lasso estimator

In this section, we study the pointwise estimation of a low rank matrix valued
function A in Σ(β, L) with � = �β
. The construction of our estimator is inspired
by local polynomial smoothing and nuclear norm penalization. The intuition of
the localization technique originates from classical local polynomial estimators,
see [13]. The intuition behind nuclear norm penalization is that whereas rank
function counts the number of non-vanishing singular values, the nuclear norm
sums their amplitude. The theoretical foundations behind using nuclear norm
heuristic for the rank minimization were proved by [30]. Instead of using the
trivial basis {1, t, t2, ..., t�} to generate an estimator, we use orthogonal polyno-
mials for some technical resasons that we will specify in the proof of Theorem
3.1. Let {pi(t)}∞i=0 be a sequence of orthogonal polynomials with nonnegative
weight function K compactly supported on [−1, 1], then∫ 1

−1

K(u)pi(u)pj(u)du = δij

with δij = 1{i = j} and 1{·} being the indicator function. It is easy to see that
there exists an invertible linear transformation T ∈ R

(�+1)×(�+1) such that

(1, t, t2/2!, ..., t�/�!)T = T (p0(t), p1(t), ..., p�(t))
T .

Apparently, T is lower triangular, and set R(T ) := max1≤j≤�+1

∑�+1
i=1 |Tij |.

Let
D :=

{
Diag

[
S0 S1 . . . S�−1 S�

] }
⊂ Hm(�+1)

be the set of block diagonal matrices with Sk ∈ Hm satisfying |Sij | ≤ R(T )a.

With observations (τj , Xj , Yj), j = 1, ..., n from model (1.1), we define Ŝh as

Ŝh := argmin
S∈D

1

nh

n∑
j=1

K
(τj − t0

h

)(
Yj −

〈 �∑
i=0

Sipi

(τj − t0
h

)
, Xj

〉)2

+ ε‖S‖1.

(3.1)

Remark 1. Note that one can rewrite (3.1) as

Ŝh = argmin
S∈D

1

n

n∑
j=1

(
Ỹj −

〈
S, X̃j

〉)2

+ ε‖S‖1, (3.2)

where X̃j = Diag
[√

1
hK

(
τj−t0

h

)
p0

(
τj−t0

h

)
Xj , ...,

√
1
hK

(
τj−t0

h

)
p�

(
τj−t0

h

)
Xj

]
,

and Ỹj =

√
1
hK

(
τj−t0

h

)
Yj . Then (3.1) is a matrix Lasso type estimator.

Ŝh naturally induces a local polynomial estimator of order � around t0:

Ŝh(τ) :=
�∑

i=0

Ŝh
i pi

(τ − t0
h

)
1
{∣∣∣τ − t0

h

∣∣∣ ≤ 1
}
. (3.3)
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The point estimate of A at t0 is given by

Ŝh(t0) :=

�∑
i=0

Ŝh
i pi(0). (3.4)

Remark 2. Note that (3.1) only guarantees that each Ŝh
i is approximately

low rank and may not exactly recover the rank of A(i)(t0). However, under our
assumption that as long as � is small compared with the matrix size m, then
Ŝh(t0) is still approximately low rank.

In the following theorem, we establish an upper bound on the pointwise risk
of Ŝh(t0) when A(t) is in the Hölder class Σ(β, L) with � = �β
. The proof of
Theorem 3.1 can be found in section 8.1.

Theorem 3.1. Under model (1.1), let (τj , Xj , Yj), j = 1, ..., n be i.i.d. copies
of the random triplet (τ,X, Y ) with X uniformly distributed in X , τ uniformly
distributed in [0, 1], X and τ are independent, and |Y | ≤ a, a.s. for some con-
stant a > 0. Let A be a matrix valued function satisfying A1, A2, A3, and A4.
Denote Φ = maxi=0,...,� ‖

√
Kpi‖∞, and � = �β
. Take

ĥn = C1

( (�3(�!)2Φ2R(T )2a2mr logn

L2n

) 1
2β+1

, ε = D�aΦ

√
log 2m

nmĥn

,

for some numerical constants C1 and D. Then for any ĥn ≤ t0 ≤ 1 − ĥn, the
following bound holds with probability at least 1− n−mr,

1

m2

∥∥∥Ŝh(t0)−A(t0)
∥∥∥2

2
≤ C1(a,Φ, �, L)

(mr logn

n

) 2β
2β+1

, (3.5)

where C1(a,Φ, �, L) is a constant depending on a,Φ, � and L.

Remark 3. One should notice that when β → ∞, bound (3.5) coincides with
a similar result in classical matrix completion of which the rate is Op

(
mr logm

n

)
,

see [20]. As long as n is of the polynomial order of m which is typical in reality,
there is only up to a constant between logn and logm. In section 5, we prove
that bound (3.5) is minimax optimal up to a logarithmic factor. The logarithmic
factor in bound (3.5) and bound of classical matrix completion is introduced by
matrix Bernstein inequality, see [34]. In the case of nonparametric estimation
of real valued function, it is unnecessary, see [35]. Currently, it still remains
as an open problem whether this logarithmic factor is necessary or not for our
problem as well as for classical low rank matrix estimation problem.

4. Global estimators and upper bounds on integrated risk

In this section, we propose two global estimators and study their integrated risk
measured by L2-norm and L∞-norm.
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4.1. From localization to globalization

Firstly, we construct a global estimator based on (3.3). Take

ĥn = C1

(�3(�!)2Φ2R(T )2a2mr logn

L2n

) 1
2β+1

, M = �1/ĥn�.

Without loss of generality, assume that M is even. Denote Ŝh
k (t) the local poly-

nomial estimator around t2k−1 as in (3.3) by using orthogonal polynomials with
K(t) = 1{−1 ≤ t ≤ 1}, where t2k−1 = 2k−1

M , k = 1, 2, ...,M/2 and 1{·} is the
indicator function. Denote

Â(t) =

M/2∑
k=1

Ŝh
k (t)1{t2k−1 − ĥn < t ≤ t2k−1 + ĥn}, t ∈ (0, 1). (4.1)

Note that the weight function K is not necessary to be 1{−1 ≤ t ≤ 1}. It can
be replaced by any K that satisfies K ≥ K0 > 0 on [−1, 1]. The following result
characterizes the integrated risk of estimator (4.1) under matrix completion
setting measured by L2-norm. The proof of Theorem 4.1 can be found in section
8.2.

Theorem 4.1. Assume that the conditions of Theorem 3.1 hold, and let Â be
an estimator defined as in (4.1). Then with probability at least 1− n−(mr−1),

1

m2

∫ 1

0

∥∥Â(t)−A(t)
∥∥2

2
dt ≤ C2(a,Φ, �, L)

(mr logn

n

) 2β
2β+1

, (4.2)

where C2(a,Φ, �, L) is a constant depending on a,Φ, �, L.

Remark 4. When the dimension m degenerates to 1, bound (4.2) matches
the nonparametric minimax rate O(n−2β/(2β+1)) for real valued functions over
Hölder class (see [35]) up to some logarithmic factor, which again is introduced
by the matrix Bernstein inequality, see [34]. In section 5, we show that bound
(4.2) is minimax optimal up to a logarithmic factor.

4.2. Bias reduction through higher order kernels

If A(t) is not necessarily low rank, we propose an estimator which is easy to
implement and prove an upper bound on its risk measured by L∞-norm. Such
estimators are related to another popular approach parallel to local polynomial
estimators for bias reduction, namely, using higher order kernels to reduce bias.
They can also be applied to another important technique of low rank estimation
or approximation via singular value thresholding, see [6] and [10]. The estimator
through nuclear norm penalization is shown by [20] to be equivalent to soft
singular value thresholding of such type of estimators.

The kernels we are interested in satisfy the following conditions:

K1 K(·) is symmetric, i.e. K(u) = K(−u).



Nonparametric estimation of low rank matrix valued function 3859

K2 K(·) is compactly supported on [−1, 1].
K3 RK :=

∫ ∞
−∞ K2(u)du < ∞.

K4 K(·) is of order �, where � = �β
.
K5 K(·) is Lipschitz continuous with Lipschitz constant 0 < LK < ∞.

Consider

Ã(t) =
m2

nh

n∑
j=1

K
(τj − t

h

)
YjXj . (4.3)

Note that when K ≥ 0, (4.3) is the solution to the following convex optimization
problem

Ã(t) = argmin
S∈D

1

nh

n∑
j=1

K
(τj − t

h

)
(Yj − 〈S,Xj〉)2. (4.4)

In the following theorem we prove an upper bound on its global performance
measured by L∞-norm over Σ(β, L). Such kind of bounds is much harder to
obtain even for classical matrix lasso problems. The proof of Theorem 4.2 can
be found in section 8.3.

Theorem 4.2. Under model (1.1), let (τj , Xj , Yj), j = 1, ..., n be i.i.d. copies
of the random triplet (τ,X, Y ) with X uniformly distributed in X , τ uniformly
distributed in [0, 1], X and τ are independent, and |Y | ≤ a a.s. for some constant
a > 0; let A be any matrix valued function satisfying A1 and A4, and kernel K
satisfies K1–K5. Denote � = �β
. Take

h̃n := c∗(K)
(a2(�!)2m logn

2βL2n

) 1
2β+1

. (4.5)

Then with probability at least 1− n−2, the estimator defined in (4.3) satisfies

sup
t∈[h̃n,1−h̃n]

1

m2

∥∥Ã(t)−A(t)
∥∥2 ≤ C∗(K)

(a2(�!)2m log n

2βL2n

) 2β
2β+1

, (4.6)

where C∗(K) and c∗(K) are constants depending on K.

Remark 5. When m degenerates to 1, bound (4.6) coincides with that of real
valued case over Hölder class, which is O(( log n

n )2β/(2β+1)), see [35]. Note that
the logarithmic factor under such metric for real valued Hölder class is necessary.
In section 5, we show that bound (4.6) is minimax optimal up to a logarithmic
factor when m 
 log n.

5. Lower bounds under matrix completion setting

In this section, we prove the minimax lower bounds corresponding to estimators
(3.4), (4.1) and (4.3). In the realm of classical low rank matrix estimation, [29]
studied the optimality issue measured by the Frobenius norm on the classes
defined in terms of a “spikeness index” of the true matrix; [31] derived optimal
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rates in noisy matrix completion on different classes of matrices for the empirical
prediction error; [20] established the minimax rates of noisy matrix completion
problems up to a logarithmic factor measured by the Frobenius norm. Based
on the ideas of [20], standard methods to prove minimax lower bounds in real
valued nonparametric estimation in [35], and some fundamental results in coding
theory, we establish the corresponding minimax lower bounds of (3.5), (4.2) and
(4.6) which essentially shows that the upper bounds we get are all optimal up
to some logarithmic factor.

For the convenience of presentation, we denote by infÂ the infimum over
all estimators of A. We denote by A(r, a) the set of matrix valued functions
satisfying A1, A2, A3, and A4. We denote by P(r, a) the class of distributions
of random triplet (τ,X, Y ) that satisfies model (1.1) with any A ∈ A(r, a).

In the following theorem, we show the minimax lower bound on the pointwise
risk. The proof of Theorem 5.1 can be found in section 8.4.

Theorem 5.1. Under model (1.1), let (τj , Xj , Yj), j = 1, ..., n be i.i.d. copies
of the random triplet (τ,X, Y ) with X uniformly distributed in X , τ uniformly
distributed in [0, 1], X and τ are independent, and |Y | ≤ a, a.s. for some con-
stant a > 0; let A be any matrix valued function in A(r, a). Then there is an
absolute constant η ∈ (0, 1) such that for all t0 ∈ [0, 1]

inf
Â

sup
PA

τ,X,Y ∈P(r,a)

PPA
τ,X,Y

{ 1

m2

∥∥Â(t0)−A(t0)
∥∥2

2
> C

(mr

n

) 2β
2β+1

}
≥ η, (5.1)

where C := C(β, L, a) is a constant depending on β, L and a.

Remark 6. Note that compared with the upper bound (3.5), the lower bound
(5.1) matches it up to a logarithmic factor. As a consequence, it shows that the
estimator (3.4) achieves a near optimal minimax rate of pointwise estimation.
Although, the result of Theorem 5.1 is under bounded response condition, it
can be readily extended to the case when the noise in (1.2) is Gaussian.

In the following theorem, we show the minimax lower bound on the integrated
risk measured by L2-norm. The proof of Theorem 5.2 can be found in section
8.5.

Theorem 5.2. Under model (1.1), let (τj , Xj , Yj), j = 1, ..., n be i.i.d. copies
of the random triplet (τ,X, Y ) with X uniformly distributed in X , τ uniformly
distributed in [0, 1], X and τ are independent, and |Y | ≤ a, a.s. for some con-
stant a > 0; let A be any matrix valued function in A(r, a). Then there is an
absolute constant η ∈ (0, 1) such that

inf
Â

sup
PA

τ,X,Y ∈P(r,a)

PPA
τ,X,Y

{ 1

m2

∫ 1

0

∥∥Â(t)−A(t)
∥∥2

2
dt > C̃

(mr

n

) 2β
2β+1

}
≥ η, (5.2)

where C̃ := C̃(β, L, a) is a constant depending on L, β and a.

Remark 7. The lower bound in (5.2) matches the upper bound we get in (4.2)
up to a logarithmic factor. Therefore, it means that the estimator (4.1) achieves
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a near optimal minimax rate on the integrated risk measured by L2-norm. The
result of Theorem 5.2 can be readily extended to the case when the noise in
(1.2) is Gaussian.

Now we consider the minimax lower bound on integrated risk measured by
L∞-norm for general matrix valued functions without any rank information.
Denote

A(a) :=
{
A(t) ∈ Hm, ∀t ∈ [0, 1] : |Aij(t)| ≤ a, Aij ∈ Σ(β, L)

}
.

We denote by P(a) the class of distributions of random triplet (τ,X, Y ) that
satisfies model (1.1) with any A ∈ A(a).

In the following theorem, we show the minimax lower bound over P(a) and
A(a) measured by L∞-norm. The proof of Theorem 5.3 can be found in section
8.6.

Theorem 5.3. Under model (1.1), let (τj , Xj , Yj), j = 1, ..., n be i.i.d. copies
of the random triplet (τ,X, Y ) with X uniformly distributed in X , τ uniformly
distributed in [0, 1], X and τ are independent, and |Y | ≤ a, a.s. for some con-
stant a > 0; let A be any matrix valued function in A(a). Then there exist an
absolute constant η ∈ (0, 1) such that

inf
Â

sup
PA

τ,X,Y ∈P(a)

PPA
τ,X,Y

{
sup

t∈(0,1)

1

m2

∥∥Â(t)−A(t)
∥∥2

> C̄
(m ∨ log n

n

) 2β
2β+1

}
≥ η,

(5.3)
where C̄ := C̄(β, L, a) is a constant depending on β, L and a.

Remark 8. Recall that in the real valued case, the minimax lower bound mea-
sured by L∞-norm over Hölder class is O(( log n

n )2β/(2β+1)), see [35]. According
to bound (5.3), if dimension m degenerates to 1, we get the same result as in
real valued case and it is optimal. While the dimension m is large enough such
that m 
 logn, the lower bound (5.3) shows that the estimator (4.3) achieves
a near optimal minimax optimal rate up to a logarithmic factor.

6. Model selection

Despite the fact that estimators (3.4) and (4.1) achieve near optimal minimax
rates in theory with properly chosen bandwidth h and order of degree �, such
parameters depend on quantities like β and L which are unknown to us in
advance. In this section, we propose an adaptive estimation procedure to choose
h and � adaptively.

Two popular methods to address such problems are proposed in the past few
decades. One is Lepskii’s method, and the other is aggregation method. In the
1990s, many data-driven procedures for selecting the smoothing parameter h
emerged. Among them, a series of papers stood out and shaped a method what
is now called Lepskii’s method. This method has been described in its general
form and in great detail in [25]. Later, [24] proposed a bandwidth selection
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procedure based on pointwise adaptation of a kernel estimator that achieves op-
timal minimax rate of pointwise estimation over Hölder class, and [23] proposed
a new bandwidth selector that achieves optimal rates of convergence over Besov
classes with spatially imhomogeneous smoothness. The basic idea of Lepskii’s
method is to choose a bandwidth from a geometric grid to get an estimator not
very different from those indexed by smaller bandwidths on the grid. Although
Lepskii’s method is shown to give optimal rates in pointwise estimation over
Hölder class in [24], it has a major defect when applied to our problem: the
procedure already requires a huge amount of computational cost when real val-
ued functions are replaced by matrix valued functions. Indeed, with Lepskii’s
method, in order to get a good bandwidth, one needs to compare all candidates
indexed by smaller bandwidth with the target one, which leads to dramatically
growing computational cost. Still, we have an extra parameter � that needs to
fit with h. As a result, we turn to aggregation method to choose a bandwidth
from the geometric grid introduced by Lepskii’s method, which is more com-
putationally efficient for our problem. The idea of aggregation method can be
briefly summarized as follows: one splits the data set into two parts; the first is
used to build all candidate estimators and the second is used to aggregate the
estimates to build a new one (aggregation) or select one (model selection) which
is at least as good as the best among all candidates.

The model selection procedure we use was initially introduced by [3] in clas-
sical nonparametric estimation with bounded response. [37] generalized this
method to the case where the noise can be unbounded but with a finite p-th mo-
ment for some p > 2. One can find a more detailed review on such penalization
methods in [16].

Firstly, we introduce the geometric grid created by [24] where to conduct
our model selection procedure. Assume that the bandwidth falls into the range
[hmin, hmax]. Recall that the optimal bandwidth ĥn in theory is given as

ĥn = C1

(�3
(
�!ΦR(T )a

)2
mr logn

L2n

) 1
2β+1

. (6.1)

Assume that [β∗, β
∗] and [L∗, L

∗] are the ranges of β, L to be considered respec-
tively. Then hmax and hmin can be chosen as

hmax = C1

(�∗3
(
�∗!ΦR(T )a

)2
mr logn

L2
∗n

) 1
2β∗+1

,

and

hmin = C1

(�3∗
(
�∗!ΦR(T )a

)2
mr logn

L∗2n

) 1
2β∗+1

where �∗ = �β∗
 and �∗ = �β∗
. When those ranges are not given, a natural
upper bound of hmax is 1, and a typical choice of hmin can be set to n−1/2.

Denote

d(h) =

√
1 ∨ 2 log

(hmax

h

)
, dn =

√
2 log

(hmax

hmin

)
, α(h) =

1√
d(h)

.
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Apparently, dn = O(
√
log n). Define grid H inductively by

H :=
{
hk ∈ [hmin, hmax] : h0 = hmax, hk+1 =

hk

1 + α(hk)
, k = 0, 1, 2, ...

}
. (6.2)

{hk} on the grid H is a decreasing sequence and the sequence becomes denser
as k grows.

Now, we consider possible choices of �. A trivial candidate set is

L := {�β∗
, �β∗
+ 1, ..., �β∗
} ⊂ N
∗.

If the size of this set is large, one can shrink it through the correspondence (6.1)
for each hk. For example, if n = Θ(md) for some d > 1, one can choose �i such

that
⌊ (1−d−1) logn−1

2 log hk
− 0.5

⌋
≤ �i ≤

⌊
logn−1

2 log hk
− 0.5

⌋
, which indicates the more the

data, the narrower the range. We denote the candidate set for � as L. Then the
set

H̃ = H×L := {(h, �) : h ∈ H, � ∈ L}
indexed a countable set of candidate estimators.

Remark 9. In general, selecting h is considered to be more challenging and
important than selecting � and ε. On one hand, one needs to select h from an
interval which is an uncountable set compared with selecting � from only a finite
set of integers. On the other hand, the performance of the estimator is much
more sensitive to different choices of h, namely, a very small change of h can
lead to huge performance degradation. We shall see this through our simulation
study in section 7.2. Once h and � are chosen, one can get εi by plug in the

value of (hi, �i) to get the corresponding εi = (�i + 1)R(T )Φ
√

log 2m
nmhi

.

Now we introduce our model selection procedure based on H̃. We split the
data (τj , Xj , Yj), j = 1, ..., 2n, into two parts with equal size. The first part of the
observations {(τj , Xj , Yj) : j ∈ �n} contains n data points, which are randomly
drawn without replacement from the original data set. We construct a sequence
of estimators Âk, k = 1, 2, ... based on the training data set �n through (4.1) for

each pair in H̃. Our main goal is to select an estimator Â among {Âk}, which
is as good as the one that has the smallest mean square error. We introduce an
quantity πk associated with each estimator Âk which serves as a penalty term.
We use the remaining part of the data set {(τj , Xj , Yj) : j ∈ τ †n} to perform the
selection procedure:

k∗ = argmin
k

1

n

∑
j∈τ†

n

(Yj − 〈Âk(τj), Xj〉)2 +
πk

n
. (6.3)

Denote Â∗ = Âk∗
as the adaptive estimator. In practice, we suggest one to rank

all estimators Âk according to the following rule: 1. pairs with bigger h always
have smaller index; 2. if two pairs have the same h, the one with smaller � has
smaller index. Our selection procedure can be summarized as Algorithm 1.
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Algorithm 1: Model Selection Procedure.

1. Construct the geometric grid H defined in (6.2) and the candidate set H̃;

2. Equally split the data set (τj , Xj , Yj), j = 1, ..., N into two parts �n and τ†n by
randomly drawing without replacement;

3. For each pair in H̃, construct an estimator Âk defined in (4.1) using data in �n;

4. Perform the selection procedure in (6.3) using data in τ†n.

The selection procedure described in Algorithm 1 have several advantages:
firstly, it chooses a global bandwidth instead of a local one; secondly, since
our selection procedure as in (6.3) is only based on computation of entries of

Âk, no matrix computation is involved in the last step, which can efficiently
save computational cost when m is large; finally, step 3 and 4 can be easily
parallelized on distributed platforms.

The following theorem shows that the integrated risk of Â∗ measured by L2-
norm can be bounded by the smallest one among all candidates plus an extra
term of order O(n−1) which is negligible. The proof of Theorem 6.1 can be found
in section 8.7.

Theorem 6.1. Under model (1.1), let (τj , Xj , Yj), j = 1, ..., 2n be i.i.d. copies
of the random triplet (τ,X, Y ) with X uniformly distributed in X , τ uniformly
distributed in [0, 1], X and τ are independent, and |Y | ≤ a, a.s. for some con-
stant a > 0; let A be a matrix valued function satisfying A1, A2, A3, and A4; let
{Âk} be a sequence of estimators constructed from H̃; let Â∗ be the adaptive es-
timator selected through Algorithm 1. Then with probability at least 1−n−(mr−1)

1

m2

∫ 1

0

∥∥Â∗(t)−A(t)
∥∥2

2
dt ≤ 3min

k

{ 1

m2

∫ 1

0

∥∥Âk(t)−A(t)
∥∥2

2
dt+

πk

n

}
+

C(a)

n
,

(6.4)
where C(a) is a constant depending on a.

Recall that Card(H) = O(log n), one can take πk = kmr. Then πk ≤
c1mr logn uniformly for all k with some numerical constant c1. According to
Lepskii’s method that at least one candidate in H gives the optimal bandwidth
associated with the unknown smoothness parameter β, the following corollary is
a direct consequence of Theorem 4.1 and 6.1, which shows that Â∗ is adaptive.

Corollary 6.1. Assume that the conditions of Theorem 6.1 hold with πk =
kmr, and n > mr logn. Then with probability at least 1− n−(mr−1)

1

m2

∫ 1

0

∥∥Â∗(t)−A(t)
∥∥2

2
dt ≤ C(a, �, L)

(mr logn

n

) 2β
2β+1

(6.5)

where C(a, �, L) is a constant depending on a, �, and L.
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7. Numerical simulation

In this section, we present numerical simulation results of the estimators (3.1)
and (4.1) to validate the theoretical bounds in (3.5), (4.2), (5.1), and (5.2).
Then we present the simulation results of the model selection procedure shown
in Algorithm 1. Recall that the key optimization problem we need to solve is
(3.1). We develop a solver based on the well known alternating direction method
of multipliers (ADMM) algorithm [5] and its applications to matrix recovery
problems, see [27, 11]. The algorithm can be summarized as in Algorithm 2.

Algorithm 2: ADMM Algorithm.

Set up the values of max Iteration and tolerance εtol > 0; Initialize S(0), S̄(0) ∈ D and
Z(0) = 0 ; while k < max Iteration do

S(k+1) = argmin
S∈D

1
nh

n∑
j=1

K
(

τj−t0
h

)(
Yj −

〈 �∑
i=0

Sipi

(
τj−t0

h

)
, Xj

〉)2
+ ρ

2
‖S −

S̄(k)‖22 + 〈Z(k), S − S̄(k)〉;
S̄(k+1) = argmin

S̄∈D

ε‖S̄‖1 + ρ
2
‖S(k+1) − S̄‖22 + 〈Z(k), S(k+1) − S̄〉;

Z(k+1) = Z(k) + ρ(S(k+1) − S̄(k+1));
if ‖S̄(k+1) − S̄(k)‖22 ≤ εtol or ‖Z(k+1) − Z(k)‖22 ≤ ρ2εtol then

Reaching the tolerance;
end

Return S̄(k+1). k = k + 1;
end

Return S̄(k+1).

The underlying matrix valued function we create is in Hölder class Σ(β, L)
with β = 3/2, L = 24 and rank constraint r ≤ 3. The orthogonal polynomial
we choose is Chebyshev polynomials of the second kind.

7.1. Simulation results of theoretical bounds

We present the numerical simulation results to validates the theoretical bounds
that we proved in section 3, 4 and 5. By plug in the optimal bandwidth in
Theorem 3.1, we run Algorithm 2 to solve the pointwise estimator at t0 = 0.5
with m = 150. Fig. 1a–Fig. 1g show different levels of recovery of the underlying
true data matrix as in Fig. 1h. As we can see, the recovery quality increases
evidently as sample size n grows.

In Fig. 2a, we display the comparison of pointwise risk between our theo-
retical bounds proved in (3.5), (5.1) and our simulation results. In Fig. 2b, we
display the comparison of integrated risk measured by the L2-norm between
the theoretical bounds proved in (4.2), (5.2) and our simulation results. Since
β = 3/2 and � = 1, we use piecewise linear polynomials to approximate the un-
derlying matrix-valued function. Fig. 2a and 2b show that the simulation results
match well with the minimax lower bound (5.1) and (5.2). One should notice
that sometimes our simulated error rate is smaller than the theoretical minimax
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Fig 1. Pointwise estimator at t0 = 0.5 with different sample size.

Fig 2. Error Rate Comparison.

lower bound. We think the discrepency is due to the constant factors depending
on a, L in the minimax lower bound that we computed are not very accurate.

7.2. Simulation results of model selection

Recall that in section 6, we developed Algorithm 1 to adaptively choose param-
eters h and �. Since the choice of � is made through simply choosing one from
a set of integers and is quite straight forward, and choosing a good bandwidth
h is more critical and complicated, we focus on the choice of the smoothing
parameter h in our simulation study. We set � = 1 which is the true parameter
and focus on the selection of h.

We implement Algorithm 1 in this section, and perform simulation with m =
90 and n = 3200000. The theorectially optimal bandwidth h∗ is around 0.09.
We choose hmax = 1.0 and hmin = 0.01 to construct the geometric grid H as
in (6.2). We display the simulation results in Table 1. To be more specific, we
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Table 1

Model Selection.

Bandwidth on grid H Integrated risk Model selection criterion
1.0000 68.1239 5.8238
0.5000 45.0275 4.7442
0.2602 1.0207 1.0100
0.1461 0.0657 0.3862
0.0853 0.0333 0.3490
0.0510 0.0437 0.4821
0.0311 0.0538 0.6741
0.0192 0.0663 0.9771
0.0121 0.0807 1.3199

Fig 3. Model Selection on Grid H.

compute each global estimator as in (4.1) with each bandwidth on the H. The
corresponding integrated risks measured by L2-norm are displayed in second
column and our model selection criterion computed as in (6.3) are displayed in
the third column. One should expect better integrated risk with smaller value
of the third column. The data are plotted in Fig. 3. As we can see, our model
selection procedure selects ĥ = 0.0853 with the smallest criterion value of 0.3490,
which shows that ĥ is very close to the optimal value of h. The corresponding
integrated risk is also the smallest among all candidates on the grid and stays
very close to the global minimum.

8. Proofs

8.1. Proof of Theorem 3.1

Proof. Firstly, we introduce a sharp oracle inequality of locally integrated risk
of estimator (3.3) in the following lemma. The proof of Lemma 1 can be found
in the appendix, which follows the same derivision as the proof of Theorem 19.1
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in [19]. To be more specific, one just needs to rewrite (3.1) as

Ŝh = argmin
S∈D

1

n

n∑
j=1

(
Ỹj −

〈
S, X̃j

〉)2

+ ε‖S‖1, (8.1)

where X̃j = Diag
[√

1
hK

(
τj−t0

h

)
p0

(
τj−t0

h

)
Xj , ...,

√
1
hK

(
τj−t0

h

)
p�

(
τj−t0

h

)
Xj

]
,

and Ỹj =

√
1
hK

(
τj−t0

h

)
Yj . Then the proof of Lemma 1 can be reproduced from

the original proof with minor modifications. Since it is mostly tedious repeated
arguments, we omit it here. One should notice that in the original proof of
Theorem 19.1 in [19], a matrix isometry condition needs to be satisfied. That is
‖A‖2

L2(Π̃)
= μ0‖A‖22 for some constant μ0 > 0 and any A ∈ Hm with Π̃ being

the distribution of X̃. One can easily check that it is true with (8.1). It is also
the primary reason why we used orthogonal polynomials instead of the trivial
basis {1, t, t2, ...}.
Lemma 1. Assume that the condition of Theorem 3.1 holds. Then there exist
a numerical constants D > 0 such that for all

ε ≥ D(�+ 1)R(T )Φa
(√

log 2m

nmh

∨ (log 2m)Φ

nh

)
,

and for arbitrary η > 0, the estimator (3.4) satisfies with probability at least
1− e−η

1

h
EK

(τ − t0
h

)〈
A(τ)− Ŝh(τ), X

〉2

≤ inf
S∈D

{ 1

h
EK

(τ − t0
h

)〈
A(τ)− S(τ), X

〉2

+
D2(�+ 1)2Φ2R(T )2a2(rank(S)m log 2m+ η)

nh

}
,

(8.2)

where S(τ) :=
�∑

i=0

Sipi
(
τ−t0
h

)
.

Then we consider

1

h
EK

(τ − t0
h

)〈
A(τ)−

�∑
i=0

Ŝh
i pi

(τ − t0
h

)
, X

〉2

=
1

h
EK

(τ − t0
h

)〈
A(τ)−

�∑
i=0

Sipi

(τ − t0
h

)
+

�∑
i=0

(Si − Ŝh
i )pi

(τ − t0
h

)
, X

〉2

=
1

h
EK

(τ − t0
h

)〈 �∑
i=0

(Si − Ŝh
i )pi

(τ − t0
h

)
, X

〉2

+
1

h
EK

(τ − t0
h

)〈
A(τ)−

�∑
i=0

Sipi

(τ − t0
h

)
, X

〉2
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+
2

h
EK

(τ − t0
h

)〈
A(τ)−

�∑
i=0

Sipi

(τ − t0
h

)
, X

〉〈 �∑
i=0

(Si − Ŝh
i )pi

(τ − t0
h

)
, X

〉
(8.3)

Therefore, from (8.2) and (8.3), we have for any S ∈ D

1

h
EK

(τ − t0
h

)〈 �∑
i=0

(Si − Ŝh
i )pi

(τ − t0
h

)
, X

〉2

≤ 2

h
EK

(τ − t0
h

)∣∣∣〈A(τ)− �∑
i=0

Sipi

(τ − t0
h

)
, X

〉〈 �∑
i=0

(Si−Ŝh
i )pi

(τ − t0
h

)
, X

〉∣∣∣
+

D2(�+ 1)2Φ2R(T )2a2(rank(S)m log 2m+ η)

nh
.

≤
( c4

c2 − 1

) 1

h
EK

(τ − t0
h

)〈
A(τ)−

�∑
i=0

Sipi

(τ − t0
h

)
, X

〉2

+
( c2

c2 − 1

){D2(�+ 1)2Φ2R(T )2a2(rank(S)m log 2m+ η)

nh

}
,

(8.4)
where we used the fact that for any positive constants a and b, 2ab ≤ 1

c2 a
2+c2b2

for some c > 1. Take S such that

�∑
i=0

Sipi

(τ − t0
h

)
= A(t0)+A′(t0)h

(τ − t0
h

)
+ ...+

A(�)(t0)h
�

�!

(τ − t0
h

)�

. (8.5)

Note that this is possible since the right hand side is a matrix valued polynomial
of τ−t0

h up to order �, and span{p0(t), p1(t), ..., p�(t)} = span{1, t, ..., t�}. Under
the condition that all entries of A(k)(t) are bounded by a, then entries of Sk

are bounded by R(T )a. Thus, the corresponding S ∈ D. Obviously, rank(Si) ≤
(�+1− i)r. Since A ∈ Σ(β, L), we consider �-th order Taylor expansion of A at
t0 to get

A(τ) = A(t0) +A′(t0)(τ − t0) + ...+
Ã(τ − t0)

�

�!
, (8.6)

where Ã is the matrix with Ãij = A
(�)
ij (t0 + αij(τ − t0)) for some αij ∈ [0, 1].

Then we apply the Taylor expansion (8.6) and identity (8.5) to get

1

h
EK

(τ − t0
h

)〈
A(τ)−

�∑
i=0

Sipi

(τ − t0
h

)
, X

〉2

≤ 1

h
EK

(τ − t0
h

) 1

m2

∥∥∥LU(τ − t)β

�!

∥∥∥2

2
≤ L2h2β

(�!)2
,

(8.7)

where U denotes the matrix with all entries being 1. The first inequality is due
to Aij ∈ Σ(β, L), and the second is due to |τ − t0| ≤ h. Under the condition
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that X is uniformly distributed in X , and the orthogonality of {pi(t)}�i=0, it is
easy to check that

1

h
EK

(τ − t0
h

)〈 �∑
i=0

(Si − Ŝh
i )pi

(τ − t0
h

)
, X

〉2

=
1

m2

�∑
i=0

‖Ŝh
i − Si‖22 (8.8)

Note that

∥∥Ŝh(t0)− S(t0)
∥∥2

2
=

∥∥ �∑
i=0

(Ŝh
i − Si)pi(0)

∥∥2

2
≤ (�+ 1)Φ2

�∑
i=0

∥∥Ŝh
i − Si

∥∥2

2
, (8.9)

where the second inequality is due to Cauchy-Schwarz inequality and pi(t) are
uniformly bounded on [−1,1]. Combining (8.4), (8.7), (8.8), and (8.9), we get
with probability at least 1− e−η

1

m2
‖Ŝh(t0)−A(t0)‖22 ≤

( c4

c2 − 1

)2L2h2β

(�!)2

+
( c2

c2 − 1

){D2(�+ 1)2Φ2R(T )2a2(rank(S)m log 2m+ η)

nh

}
.

By optimizing the right hand side with respect to h and take η = mr log n, we
take

ĥn = C
(�3(�!)2Φ2R(T )2a2mr logn

L2n

) 1
2β+1

,

where C is a numerical constant. This completes the proof of the theorem.

8.2. Proof of Theorem 4.1

Proof. It is easy to see that

∫ 1

0

‖Â(t)−A(t)‖22dt ≤
M/2∑
k=1

∫ t2k−1+ĥn

t2k−1−ĥn

‖Ŝh
k (t)−A(t)‖22dt. (8.10)

For each k,

1

m2

∫ t2k−1+ĥn

t2k−1−ĥn

∥∥Ŝh
k (t)−A(t)

∥∥2

2
dt

= Eτ,X1{(t2k−1 − ĥn, t2k−1 + ĥn]}
〈
A(τ)− Ŝh(τ), X

〉2

By (8.2), (8.7) and arguments used to prove Theorem 3.1, we have with proba-
bility at least 1− 1

nmr ,

1

m2ĥn

∫ t2k−1+ĥn

t2k−1−ĥn

∥∥Ŝh
k (t)−A(t)

∥∥2

2
dt ≤ C1(a,Φ, �, L)

(mr log n

n

) 2β
2β+1

.
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Then take the union bound over k, from (8.10) we get with probability at least
1− 1

nmr−1 ,

1

m2

∫ 1

0

‖Â(t)−A(t)‖22dt ≤ C2(a,Φ, �, L)
(mr logn

n

) 2β
2β+1

,

where C2(a,Φ, �, L) is a constant depending on a,Φ, �, L.

8.3. Proof of Theorem 4.2

Proof. In this proof, we use C(K) to denote any constant depending on K
which may vary from place to place. This simplifies the presentation while does
no harm to the soundness of our proof.

Consider

sup
t∈[h̃n,1−h̃n]

‖Ã(t)−A(t)‖ ≤ sup
t∈[h̃n,1−h̃n]

‖Ã(t)−EÃ(t)‖+ sup
t∈[h̃n,1−h̃n]

‖EÃ(t)−A(t)‖.

(8.11)
The first term on the right hand side is recognized as the variance and the second
is the bias. Firstly, we deal with the bias term. Denote B(t0) := EÃ(t0)−A(t0),
t0 ∈ [h̃n, 1− h̃n]. Recall from (1.2), E(ξj |τj , Xj) = 0 for any t0 ∈ [h̃n, 1− h̃n] we
have

EÃ(t0) = E
m2

nh

n∑
j=1

K
(τj − t0

h

)
(〈A(τj), Xj〉+ ξj)Xj

=
m2

h
EK

(τ − t0
h

)
〈A(τ), X〉X.

By applying the Taylor expansion of A(τ) as in (8.6) and the fact that K is a
kernel of order �, we get

EÃ(t0) = E
m2

h
K

(τ − t0
h

)
〈A(t0), X〉X + E

m2

h
K

(τ − t0
h

) (τ − t0)
�

�!
〈Ã,X〉X,

where Ã is the same as in (8.6). It is easy to check that the first term on the
right hand side is A(t0). Therefore we rewrite B(t0) as

B(t0) = E
m2

h
K

(τ − t0
h

) (τ − t0)
�

�!
〈Ã,X〉X

= E
m2

h
K

(τ − t0
h

) (τ − t0)
�

�!
〈Ã−A(�)(t0), X〉X,

where the second equity is due to the fact that each element of A(t) is in Σ(β, L)
and K is a kernel of order �. Then we can bound each element of matrix B(t0)
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as

|Bij(t0)| ≤
∫ 1

0

1

h
K

(τ − t0
h

) |τ − t0|�
�!

|a(�)ij (t0 + α(τ − t0))− a
(�)
ij (t0)|dτ

≤ L

∫ 1

0

|K(u)| |uh|
β

�!
du

≤ C(K)
Lhβ

�!
.

Thus

sup
t∈[h̃n,1−h̃n]

‖B(t)‖ ≤ C(K)
Lmhβ

�!
. (8.12)

On the other hand, for the variance term supt∈[h̃n,1−h̃n]
‖Ã(t)− EÃ(t)‖2, we

construct a δ − net on the interval [0, 1] with δ = 1/M , and

M = n2, tj =
2j − 1

2M
, j = 1, ...,M.

Denote Sn(t) := Ã(t)− EÃ(t), then we have

sup
t∈[h̃n,1−h̃n]

‖Sn(t)‖ ≤ sup
t∈[0,1]

‖Sn(t)‖ ≤ max
i

‖Sn(ti)‖+ sup
|t−t′|≤δ

‖Sn(t)− Sn(t
′)‖.

(8.13)
Next, we bound both terms on the right hand side respectively. For each ti,

Sn(ti) =
m2

nh

n∑
j=1

(
K

(τj − ti
h

)
YjXj − EK

(τj − ti
h

)
YjXj

)
.

The right hand side is a sum of zero mean random matrices, we apply the matrix
Bernstein inequality, see [34]. Under the assumption of Theorem 4.2, one can
easily check that with probability at least 1− e−η,

‖Sn(ti)‖ ≤ C(K)m2
(√

a2(η + log 2m)

mnh

∨ a(η + log 2m)

nh

)
.

Indeed, by setting X̄ = m2/hK
(
τ−t
h

)
Y X − Em2/hK

(
τ−t
h

)
Y X, it is easy to

check that UX̄ � ‖K‖∞am2/h and σ2
X̄

� RKa2m3/h. By taking the union
bound over all i and setting η = 4 logn, we get with probability at least 1−n−2,

max
i

∥∥Sn(ti)
∥∥2 ≤ C(K)

a2m3 logn

nh
.

As for the second term on the right hand side of (8.13), by the assumption
that K is a Lipschitz function with Lipschitz constant LK , we have

sup
|t−t′|≤δ

‖Sn(t)− Sn(t
′)‖ ≤ sup

|t−t′|≤δ

‖(Ã(t)− Ã(t′))‖+ sup
|t−t′|≤δ

‖E(Ã(t)− Ã(t′))‖

≤ LKam3

n2h2
+

LKam

n2h2
.
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Thus with probability at least 1− n−2,

sup
t∈[h̃n,1−h̃n]

‖Sn(t)‖2 ≤ C(K)
a2m3 log n

nh

Together with the upper bound we get on the bias in (8.12), we have with
probability at least 1− n−2,

sup
t∈[h̃n,1−h̃n]

1

m2
‖Ã(t)−A(t)‖2 ≤ C(K)

(a2m logn

nh
+

L2h2β

�!2

)
.

Choose

h̃n = C(K)
(a2(�!)2m log n

2βL2n

) 1
2β+1

,

we get

sup
t∈[h̃n,1−h̃n]

1

m2
‖Ã(t)−A(t)‖2 ≤ C(K)

(a2(�!)2m log n

2βL2n

) 2β
2β+1

.

8.4. Proof of Theorem 5.1

Proof. Without loss of generality, we assume that both m and r are even num-
bers. We introduce several notations which are key to construct the hypothesis
set. For some constant γ > 0, denote

C =
{
Ã = (aij) ∈ C

m
2 × r

2 : aij ∈ {0, γ}, ∀1 ≤ i ≤ m/2, 1 ≤ j ≤ r/2
}
,

and consider the set of block matrices

B(C) =
{ [

Ã Ã . . . Ã O
]
∈ C

m
2 ×m

2 : Ã ∈ C
}
, (8.14)

where O denotes the m/2 × (m/2 − r�m/r
/2) zero matrix. Then we consider
a subset of Hermitian matrices Sm ⊂ Hm,

Sm =

{ [
Õ Â

Â∗ Õ

]
∈ C

m×m : Â ∈ B(C)
}
. (8.15)

An immediate observation is that for any matrix A ∈ Sm, rank(A) ≤ r.
Due to the Varshamov-Gilbert bound (see Lemma 2.9 in [35]), there exists

a subset A0 ⊂ Sm with cardinality Card(A0) ≥ 2mr/32 + 1 containing the zero
m×m matrix 0 such that for any two distinct elements A1 and A2 of A0,

‖A1 −A2‖22 ≥ mr

16
�m
r

γ2 ≥ γ2m

2

32
. (8.16)
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Let fn(t) denote the function fn(t) := Lhβ
nf

(
t−t0
hn

)
, t ∈ [0, 1], where hn =

c0
(
mr
n

)1/(2β+1)
, with some c0 > 0, and f ∈ Σ(β, 1/2) ∩ C∞ and Supp(f) =

[−1/2, 1/2]. Note that there exist functions f satisfying this condition. For in-
stance, one can take

f(t) = αe
− 1

1−4u2 I(|u| < 1/2), (8.17)

for some sufficient small α > 0. It is easy to check that fn(t) ∈ Σ(β, L) on [0, 1].
We consider the following hypotheses of A at t0:

Aβ
0 :=

{
Â(t) = Afn(t), t ∈ [0, 1] : A ∈ A0

}
.

The following claims are easy to check: firstly, any element in Aβ
0 together with

its derivative have rank uniformly bounded by r, and the difference of any two
elements of Aβ

0 satisfies the same property for fixed t0; secondly, the entries

of any element of Aβ
0 together with its derivative are uniformly bounded by

some constant for sufficiently small chosen γ; finally, each element of A(t) ∈ Aβ
0

belongs to Σ(β, L). Therefore, Aβ
0 ⊂ A(r, a) with some chosen γ.

According to (8.16), for any two distinct elements Â1(t) and Â2(t) of Aβ
0 , the

difference between Â1(t) and Â2(t) at point t0 is given by

‖Â1(t0)− Â2(t0)‖22 ≥ γ2L2c2β0 f2(0)

32
m2

(mr

n

) 2β
2β+1

. (8.18)

On the other hand, we consider the joint distributions PA
τ,X,Y such that τ ∼

U [0, 1], X ∼ Π0 where Π0 denotes the uniform distribution on X , τ and X are
independent, and

PA(Y |τ,X) =

{
1
2 + 〈A(τ),X〉

4a , Y = a,
1
2 − 〈A(τ),X〉

4a , Y = −a.

One can easily check that as long as A(τ) ∈ Aβ
0 , such PA

τ,X,Y belongs to the
distribution class P(r, a). We denote the corresponding n-product probability

measure by PA. Then for any A(τ) ∈ Aβ
0 , the Kullback-Leibler Divergence

between P0 and PA is

K(P0,PA) = nE
(
p0(τ,X) log

p0(τ,X)

pA(τ,X)
+ (1− p0(τ,X)) log

1− p0(τ,X)

1− pA(τ,X)

)
,

where pA(τ,X) = 1/2+ 〈A(τ), X〉/4a. Note that PA(Y = a|τ,X) ∈ [1/4, 3/4] is
guaranteed provided that |〈A(t), X〉| ≤ a. Thus by the inequality − log(1+u) ≤
−u+ u2/2, ∀u > −1, and the fact that PA(Y = a|τ,X) ∈ [1/4, 3/4], we have

K(P0,PA) ≤ nE2(p0(τ,X)− pA(τ,X))2 ≤ n

8a2
E〈A(τ), X〉2.

Recall that A(τ) = Afn(τ) ∈ Aβ
0 , by τ ∼ U [0, 1] and X ∼ Π0, we have

K(P0,PA) ≤
n

8a2
1

m2
L2‖f‖22h2β+1

n m2γ2 ≤ L2‖f‖22c2β+1
0 γ2

8a2
mr. (8.19)
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Therefore, provided the fact that Card(A0) ≥ 2mr/32 + 1, together with (8.19),
we have

1

Card(Aβ
0 )− 1

∑
A∈Aβ

0

K(P0,PA) ≤ α log(Card(Aβ
0 )− 1) (8.20)

is satisfied for any α > 0 if γ is chosen as a sufficiently small constant. In view
of (8.18) and (8.20), the lower bound (5.1) follows from Theorem 2.5 in [35].

8.5. Proof of Theorem 5.2

Proof. Without loss of generality, we assume that both m and r are even num-
bers. Take a real number c1 > 0, define

M =
⌈
c1

( n

mr

) 1
2β+1

⌉
, hn =

1

2M
, tj =

2j − 1

2M
,

and

φj(t) = Lhβ
nf

( t− tj
hn

)
, j = 1, ...M, t ∈ [0, 1],

where f is defined the same as in (8.17). Meanwhile, we consider the set of all

binary sequences of length M : Ω =
{
ω = (ω1, ..., ωM ), ωi ∈ {0, 1}

}
= {0, 1}M .

By Varshamov-Gilbert bound, there exists a subset Ω0 = {ω0, ..., ωN} of Ω such

that ω0 = (0, ..., 0) ∈ Ω0, and d(ωj , ωk) ≥ M
8 , ∀ 0 ≤ j < k ≤ N , and N ≥ 2

M
8 ,

where d(·, ·) denotes the Hamming distance of two binary sequences. Then we

define a collection of functions based on Ω0: E =
{
fω(t) =

M∑
j=1

ωjφj(t) : ω ∈ Ω0

}
.

From the result of Varshamov-Gilbert bound, we know that S := Card(E) =

Card(Ω0) ≥ 2
M
8 + 1. It is also easy to check that for all fω, fω′ ∈ E ,∫ 1

0

(fω(t)− fω′(t))2dt =
M∑
j=1

(ωj − ω′
j)

2

∫
Δj

φ2
j (t)dt

= L2h2β+1
n ‖f‖22

M∑
j=1

(ωj − ω′
j)

2

≥ L2h2β
n ‖f‖22/16,

(8.21)

where Δj = [(j − 1)/M, j/M ].
In what follows, we combine two fundamental results in coding theory: one

is Varshamov-Gilbert bound ([14, 36]) in its general form of a q-ary code, the
other is the volume estimate of Hamming balls. Let Aq(n, d) denote the largest
size of a q-ary code of block length n with minimal Hamming distance d.

Proposition 8.1. The maximal size of a q − ary code of block length n with
minimal Hamming distance d = pn, satisfies

Aq(n, d+ 1) ≥ qn(1−hq(p)), (8.22)
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where p ∈ [0, 1− 1/q], hq(p) = p logq(q− 1)− p logq p− (1− p) logq(1− p) is the
q − ary entropy function.

We now have all the elements needed in hand to construct our hypotheses set.
Denote Ω1 = {ω1, ..., ωN}, which is a subset of Ω0 without ω0. We then consider

a subset E1 of E which is given by E1 :=
{
fω(t) =

M∑
j=1

ωjφj(t) : ω ∈ Ω1

}
.

Clearly, S1 := Card(E1) ≥ 2M/8. Then we define a new collection of matrix
valued functions as

C =
{
Ã = (aij) ∈ C

m
2 × r

2 :aij ∈ {δfω : ω ∈ Ω1

}
,

δ ∈ C, ∀1 ≤ i ≤ m/2, 1 ≤ j ≤ r/2}.

Obviously, the collection C is a S1-ary code of block length mr/4. Thus, we can
apply the result of Proposition 8.1. It is easy to check that for p = 1/4, and
q ≥ 4

1− hq(p) = 1− p logq
q − 1

p
+ (1− p) logq(1− p) ≥ 1

4
. (8.23)

In our case, q = S1 ≥ 2M/8 and n = mr/4. If we take p = 1/4, we know that

AS1(mr/4,mr/16) ≥ AS1(mr/4,mr/16 + 1) ≥ S
mr/16
1 . (8.24)

In other words, (8.24) guarantees that there exists a subset H0 ⊂ C with
Card(H0) ≥ 2Mmr/128 such that for any A1, A2 ∈ H0, the Hamming distance
between A1 and A2 is at least mr/16. Now we define the building blocks of our
hypotheses set

H := H0 ∪
{
Om

2 × r
2

}
,

where Om
2 × r

2
is the m

2 × r
2 zero matrix. Obviously, H has size Card(H) ≥

2Mmr/64 + 1, and for any A1(t), A2(t) ∈ H, the minimum Hamming distance is
still greater than mr/16. We consider the set of matrix valued functions

B(H) =

{ [
Ã Ã . . . Ã O

]
: Ã ∈ H

}
,

where O denotes the m/2 × (m/2 − r�m/r
/2) zero matrix. Finally, our hy-
potheses set of matrix valued functions Hm is defined as

Hm =

{ [
Õ Â

Â∗ Õ

]
∈ C

m×m : Â ∈ B(H)

}
.

By the definition of Hm and similar to the arguments in proof of Theorem 5.1,
it is easy to check that Hm ⊂ A(r, a), and also

Card(Hm) ≥ 2Mmr/64 + 1. (8.25)
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Now we consider any two different hypotheses Aj(t), Ak(t) ∈ Hm.∫ 1

0

‖Aj(t)−Ak(t)‖22dt ≥ γ2mr

16
2
⌊m
r

⌋ ∫ 1

0

(fω(t)− fω′(t))2dt, (8.26)

where ω �= ω′. Based on (8.21), we have

1

m2

∫ 1

0

‖Aj(t)−Ak(t)‖22dt ≥
γ2L2h2β

n ‖f‖22
256

≥ c∗
(mr

n

) 2β
2β+1

, (8.27)

where c∗ is a constant depending on ‖f‖2, L, c1 and γ.
On the other hand, we repeat the same analysis on the Kullback-Leibler

divergence K(P0,PA) as in the proof of Theorem 5.1. One can get

K(P0,PA)≤
n

8a2
E〈A(τ), X〉2 ≤ n

8a2
γ2

M∑
j=1

∫ 1

0

φ2
j (τ)dτ ≤ γ2c2β+1

1 L2Mmr‖f‖22
8a2

,

(8.28)
where A(τ) ∈ Hm. Combine (8.25) and (8.28) we know that

1

Card(Hm)− 1

∑
A(t)∈Hm

K(P0,PA) ≤ α log(Card(Hm)− 1) (8.29)

is satisfied for any α > 0 if γ is chosen as a sufficiently small constant. In view
of (8.27) and (8.29), the lower bound follows from Theorem 2.5 in [35].

8.6. Proof of Theorem 5.3

Proof. Without loss of generality, assume that m is an even number. For some

constant γ > 0, denote V =
{
v ∈ C

m
2 : ai ∈ {0, γ}, ∀ 1 ≤ i ≤ m/2

}
. Due to the

Varshamov-Gilbert bound (see Lemma 2.9 in [35]), there exists a subset V0 ⊂ V
with cardinality Card(V0) ≥ 2m/16 + 1 containing the zero vector 0 ∈ C

m
2 , and

such that for any two distinct elements v1 and v2 of V0,

‖v1 − v2‖22 ≥ m

16
γ2. (8.30)

Consider the set of matrices

B(V) =
{ [

v v . . . v
]
∈ C

m
2 ×m

2 : v ∈ V0

}
.

Clearly, B(V) is a collection of rank one matrices. Then we construct another
matrix set Vm,

Vm =

{ [
Õ V

V ∗ Õ

]
∈ C

m×m : V ∈ B(V)
}

where Õ is the m/2×m/2 zero matrix. Apparently, Vm ⊂ Hm.
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On the other hand, we define the grid on [0, 1]

M =
⌈
c2

( n

m+ logn

) 1
2β+1

⌉
, hn =

1

2M
, tj =

2j − 1

2M
,

and

φj(t) = Lhβ
nf

( t− tj
hn

)
, j = 1, ...M, t ∈ [0, 1]

where f is defined the same as in (8.17), and c2 is some constant. Denote Φ :={
φj : j = 1, ...M

}
. We consider the following set of hypotheses: Aβ

B := {Â(t) =
V φj(t) : V ∈ Vm, φj ∈ Φ}. One can immediately get that the size of Aβ

B satisfies

Card(Aβ
B) ≥ (2m/16 + 1)M. (8.31)

By construction, the following claims are obvious: any element Â(t) of Aβ
B has

rank at most 2; the entries of Â(t) ∈ Aβ
B are uniformly bounded for some

sufficiently small γ, and Âij(t) ∈ Σ(β, L). Thus Aβ
B ⊂ A(a).

Now we consider the distance between two distinct elements A(t) and A′(t)

of Aβ
B. An immediate observation is that

sup
t∈[0,1]

‖A(t)−A′(t)‖2 ≥ 1

4
sup

t∈[0,1]

‖A(t)−A′(t)‖22,

due to the fact that ∀t ∈ (0, 1), rank(A(t)−A′(t)) ≤ 4. Then we turn to get lower

bound on sup
t∈(0,1)

‖A(t)−A′(t)‖22. Recall that by construction of Aβ
B, we have for

any A �= A′, A(t) = A1φj(t), A′(t) = A2φk(t), where A1, A2 ∈ Vm. There are
three cases need to be considered: 1). A1 �= A2 and j = k; 2). A1 = A2 �= 0 and
j �= k; 3). A1 �= A2 and j �= k.

For case 1,

sup
t∈[0,1]

‖A(t)−A′(t)‖22 = ‖A1 −A2‖22‖φj‖2∞

≥ m2

16
γ2L2h2β

n ‖f‖2∞ ≥ c∗1m
2
(m+ logn

n

) 2β
2β+1

,

where c∗1 is a constant depending on ‖f‖2∞, β, L and γ.

For case 2,

sup
t∈[0,1]

‖A(t)−A′(t)‖22 = ‖A1‖22‖φj − φk‖2∞

≥ m2

16
γ2L2h2β

n ‖f‖2∞ ≥ c∗2m
2
(m+ logn

n

) 2β
2β+1

,

where c∗2 is a constant depending on ‖f‖2∞, β, L and γ.
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For case 3,

sup
t∈[0,1]

‖A(t)−A′(t)‖22 ≥ (‖A1‖22‖φj‖2∞ ∨ ‖A2‖22‖φk‖2∞)

≥ m2

16
γ2L2h2β

n ‖f‖2∞ ≥ c∗3m
2
(m+ logn

n

) 2β
2β+1

,

where c∗3 is a constant depending on ‖f‖2∞, β, L and γ.
Therefore, by the analysis above we conclude that for any two distinct ele-

ments A(t) and A′(t) of Aβ
B,

sup
t∈[0,1]

‖A(t)−A′(t)‖2 ≥ 1

4
sup

t∈[0,1]

‖A(t)−A′(t)‖22 ≥ c∗m
2
(m+ logn

n

) 2β
2β+1

,

(8.32)
where c∗ is a constant depending on ‖f‖2∞, L, γ and β.

Meanwhile, we repeat the same analysis on the Kullback-Leibler divergence
K(P0,PA) as in the proof of Theorem 5.1. One can get that for any A ∈ Aβ

B,
the Kullback-Leibler divergence K(P0,PA) between P0 and PA satisfies

K(P0,PA) ≤
n

8a2
E|〈A(τ), X〉|2 ≤ n

8a2
γ2

∫ 1

0

φ2
j (τ)dτ

≤ γ2c2β+1
2 L2(m+ logn)‖f‖22

8a2
.

(8.33)

Combine (8.31) and (8.33) we know that

1

Card(Aβ
B)− 1

∑
A∈Aβ

B

K(P0,PA) ≤ α log(Card(Aβ
B)− 1) (8.34)

is satisfied for any α > 0 if γ is chosen as a sufficiently small constant. In view
of (8.32) and (8.34), the lower bound follows from Theorem 2.5 in [35].

8.7. Proof of Theorem 6.1

Proof. For any Âk, denote the difference in empirical loss between Âk and A by

rn(Â
k, A) : =

1

n

n∑
j=1

(Yj − 〈Âk(τj), Xj〉)2 −
1

n

n∑
j=1

(Yj − 〈A(τj), Xj〉)2

= − 1

n

n∑
j=1

Uj ,

where Uj = (Yj − 〈A(τj), Xj〉)2 − (Yj − 〈Âk(τj), Xj〉)2. It is easy to check that

Uj = 2(Yj − 〈A(τj), Xj〉)〈Âk(τj)−A(τj), Xj〉 − 〈Âk(τj)−A(τj), Xj〉2. (8.35)

We denote r(Âk, A) := E〈Âk(τ) − A(τ), X〉2. The following concentration in-
equality developed by [12] to prove Bernstein’s inequality is key to our proof.
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Lemma 2. Let Uj , j = 1, ..., n be independent bounded random variables
satisfying |Uj − EUj | ≤ M with h = M/3. Set Ū = n−1

∑n
j=1 Uj . Then for all

t > 0

P

{
Ū − EŪ ≥ t

nε
+

nεvar(Ū)

2(1− c)

}
≤ e−t,

with 0 < εh ≤ c < 1.

Firstly, we bound the variance of Uj . Under the assumption that |Y | and
|〈A(τ), X〉| are bounded by a constant a, one can easily check that h = 8a2/3.
Given E(Yj |τj , Xj) = 〈A(τj), Xj〉, we know that the covariance between the
two terms on the right hand side of (8.35) is zero. Conditionally on (τ,X), the
second order moment of the first term satisfies

4Eσ2
Y |τ,X〈Âk(τj)−A(τj), Xj〉2 ≤ 4a2r(Âk, A).

To see why, one can consider the random variable Ỹ with the distribution P{Ỹ =
a} = P{Ỹ = −a} = 1/2. The variance of Y is always bounded by the variance

of Ỹ which is a2 under the assumption that |Yj | and |〈Âk(τj), Xj〉| are bounded
by a constant a > 0. Similarly, we can get that the variance of the second term
conditioned on (τ,X) is also bounded by 4a2E〈Âk(τj)−A(τj), Xj〉2. As a result,

nvar(Ū) ≤ 8a2r(Âk, A). By the result of Lemma 2, we have for any Âk with
probability at least 1− e−t

r(Âk, A)− rn(Â
k, A) <

t

nε
+

4a2εr(Âk, A)

1− c
.

Set t = επk + log 1/δ, we get with probability at least 1− δ/eεπk

(1− α)r(Âk, A) < rn(Â
k, A) +

πk

n
+

4a2

(1− c)α

( log 1/δ

n

)
,

where α = 4a2ε/(1− c) < 1. Denote

k̃∗ = argmin
k

{
r(Âk, A) +

πk

n

}
.

By the definition of Â∗, we have with probability at least 1− δ/eεπ̂
∗

(1− α)r(Â∗, A) < rn(Â
k̃∗
, A) +

πk̃∗

n
+

4a2

(1− c)α

( log 1/δ

n

)
, (8.36)

where π̂∗ is the penalty terms associated with Â∗.
Now we apply the result of Lemma 2 one more time and set t = log 1/δ, we

get with probability at least 1− δ

rn(Â
k̃∗
, A) ≤ (1 + α)r(Âk̃∗

, A) +
4a2

(1− c)α

log 1/δ

n
. (8.37)
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Apply the union bound of (8.36) and (8.37), we get with probability at least
1− δ(1 + e−επ̂∗

)

r(Â∗, A) ≤ (1 + α)

(1− α)

(
r(Âk̃∗

, A) +
πk̃∗

n

)
+

4a2

(1− c)α(1− α)

log 1/δ

n
.

By taking ε = 3/32a2 and c = εh,

r(Â∗, A) ≤ 3
(
r(Âk̃∗

, A) +
πk̃∗

n

)
+

64a2

3

log 1/δ

n
.

By taking δ = 1/nmr and adjusting the constant, we have with probability at
least 1− 1/nmr

1

m2

∫ 1

0

∥∥Â∗(t)−A(t)
∥∥2

2
dt

≤ 3min
k

{ 1

m2

∫ 1

0

∥∥Âk(t)−A(t)
∥∥2

2
dt+

πk

n

}
+ C(a)

mr logn

n

where C(a) is a constant depending on a.

Appendix: Proof of Lemma 1

The proof of Lemma 1 follows from a similar approach introduced by [19].

Proof. For any S ∈ Hm of rank r, S =
∑r

j=1 λi(ej ⊗ ej), where λj are non-
zero eigenvalues of S (repeated with their multiplicities) and ej ∈ C

m are the

corresponding orthonormal eigenvectors. Denote sign(S) :=
r∑

j=1

sign(λi)(ej⊗ej).

Let PL, P⊥
L be the following orthogonal projectors in the space (Hm, 〈·, ·〉):

PL(A) := A− PL⊥APL⊥ , P⊥
L (A) := PL⊥APL⊥ , ∀A ∈ Hm

where PL denotes the orthogonal projector on the linear span of {e1, ..., er},
and PL⊥ is its orthogonal complement. Clearly, this formulation provides a
decomposition of a matrix A into a “low rank part” PL(A) and a “high rank
part” P⊥

L (A) if rank(S) = r is small. Given b > 0, define the following cone in
the space Hm:

K(D;L; b) := {A ∈ D : ‖P⊥
LA‖1 ≤ b‖PL(A)‖1}

which consists of matrices with a “dominant” low rank part if S is low rank.
Firstly, we can rewrite (3.1) as

Ŝh = argmin
S∈D

1

n

n∑
j=1

(
Ỹj −

〈
S, X̃j

〉)2

+ ε‖S‖1, (A.1)



3882 F. Zhou

where X̃j = Diag
[√

1
hK

(
τj−t0

h

)
p0

(
τj−t0

h

)
Xj , ...,

√
1
hK

(
τj−t0

h

)
p�

(
τj−t0

h

)
Xj

]
,

and Ỹj =

√
1
hK

(
τj−t0

h

)
Yj .

Denote the loss function as

L
(
Ỹ ; 〈S(τ), X̃〉

)
:=

(
Ỹj −

〈
S, X̃j

〉)2

,

and the risk

PL
(
Ỹ ; 〈S(τ), X̃〉

)
:= EL

(
Ỹ ; 〈S(τ), X̃〉

)
= σ2 + E

1

h
K

(τ − t0
h

)(
Y − 〈S(τ), X〉)2

Since Ŝh is a solution of the convex optimization problem (A.1), there exists

a V̂ ∈ ∂
∥∥Ŝh

∥∥
1
, such that for ∀S ∈ D (see [2] Chap. 2)

2

n

n∑
j=1

(〈
Ŝh, X̃j

〉
− Ỹj

)
〈Ŝh − S, X̃j〉+ ε〈V̂ , Ŝh − S〉 ≤ 0.

This implies that, for all S ∈ D,

EL′(Ỹ ; 〈Ŝh, X̃〉)〈Ŝh − S, X̃〉+ ε〈V̂ , Ŝh − S〉

≤ EL′(Ỹ ; 〈Ŝh, X̃〉)〈Ŝh − S, X̃〉 − 2

n

n∑
j=1

(〈Ŝh, X̃j〉 − Ỹj)〈Ŝh − S, X̃j〉,
(A.2)

where L′ denotes the partial derivative of L(y;u) with respect to u. One can
easily check that for ∀S ∈ D,

EL′(Ỹ ; 〈Ŝh, X̃〉)〈Ŝh − S, X̃〉
≥ E(L(Ỹ ; 〈Ŝh, X̃〉)− L(Ỹ ; 〈S, X̃〉)) + ‖Ŝh − S‖2

L2(Π̃)
,

(A.3)

where Π̃ denotes the distribution of X̃. If EL(Ỹ ; 〈Ŝh, X̃〉) ≤ EL(Ỹ ; 〈S, X̃〉) for
∀S ∈ D, then the oracle inequality in Lemma 1 holds trivially. So we assume
that EL(Ỹ ; 〈Ŝh, X̃〉) > EL(Ỹ ; 〈S, X̃〉) for some S ∈ D. Thus, inequalities (A.2)
and (A.3) imply that

EL(Ỹ ; 〈Ŝh, X̃〉) + ‖Ŝh − S‖2
L2(Π̃)

+ ε〈V̂ , Ŝh − S〉

≤ EL(Ỹ ; 〈S, X̃〉) + EL′(Ỹ ; 〈Ŝh, X̃〉)〈Ŝh − S, X̃〉

− 2

n

n∑
j=1

(〈Ŝh, X̃j〉 − Ỹj)〈Ŝh − S, X̃j〉.
(A.4)

According to the well known representation of subdifferential of nuclear norm,
see [17] Sec. A.4, for any V ∈ ∂‖S‖1, we have

V := sign(S) + P⊥
L (W ), W ∈ Hm , ‖W‖ ≤ 1.
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By the duality between nuclear norm and operator norm

〈P⊥
L (W ), Ŝh − S〉 = 〈P⊥

L (W ), Ŝh〉 = 〈W,P⊥
L (Ŝh)〉 = ‖P⊥

L (Ŝh)‖1.

Therefore, by the monotonicity of subdifferentials of convex function ‖ · ‖1, for
any V := sign(S) + P⊥

L (W ) ∈ ∂‖S‖1, we have

〈V, Ŝh − S〉 = 〈sign(S), Ŝh − S〉+ ‖P⊥
L (Ŝh)‖1 ≤ 〈V̂ , Ŝh − S〉, (A.5)

we can use (A.5) to change the bound in (A.4) to get

EL(Ỹ ; 〈Ŝh, X̃〉) + ‖S − Ŝh‖2
L2(Π̃)

+ ε‖P⊥
L (Ŝh)‖1

≤ EL(Ỹ ; 〈S, X̃〉) + ε〈sign(S), S − Ŝh〉+ EL′(Ỹ ; 〈Ŝh, X̃〉)〈Ŝh − S, X̃〉

− 2

n

n∑
j=1

(〈Ŝh, X̃j〉 − Ỹj)〈Ŝh − S, X̃j〉.
(A.6)

For the simplicity of representation, we use the following notation to denote the
empirical process:

(P − Pn)(L′(Ỹ ; 〈Ŝh, X̃〉))〈Ŝh − S, X̃〉 :=

EL′(Ỹ ; 〈Ŝh, X̃〉)〈Ŝh − S, X̃〉 − 2

n

n∑
j=1

(〈Ŝh, X̃j〉 − Ỹj)〈Ŝh − S, X̃j〉.
(A.7)

The following part of the proof is to derive an upper bound on the empirical
process (A.7). Before we start with the derivation, let us present several vital
ingredients that will be used in the following literature. For a given S ∈ D and
for δ1, δ2, δ3, δ4 ≥ 0, denote

A(δ1, δ2) := {A ∈ D : A− S ∈ K(D;L; b), ‖A− S‖L2(Π̃) ≤ δ1, ‖P⊥
LA‖1 ≤ δ2},

Ã(δ1, δ2, δ3) := {A ∈ D : ‖A− S‖L2(Π̃) ≤ δ1, ‖P⊥
LA‖1 ≤ δ2, ‖PL(A− S)‖1≤δ3},

Ǎ(δ1, δ4) := {A ∈ D : ‖A− S‖L2(Π̃) ≤ δ1, ‖A− S‖1 ≤ δ4},

and

αn(δ1, δ2) := sup{|(P − Pn)(L′(Ỹ ; 〈A, X̃〉))〈A− S, X̃〉| : A ∈ A(δ1, δ2)},
α̃n(δ1, δ2, δ3) := sup{|(P − Pn)(L′(Ỹ ; 〈A, X̃〉))〈A− S, X̃〉| : A ∈ Ã(δ1, δ2, δ3)},

α̌n(δ1, δ4) := sup{|(P − Pn)(L′(Ỹ ; 〈A, X̃〉))〈A− S, X̃〉| : A ∈ Ǎ(δ1, δ4)}.

Given the definitions above, Lemma 3 below shows upper bounds on the three
quantities αn(δ1, δ2), α̃n(δ1, δ2, δ3), α̌n(δ1, δ4). The proof of Lemma 3 can be
found in section A.1. Denote

Ξ := n−1
n∑

j=1

εjX̃j (A.8)

where εj are i.i.d. Rademacher random variables.
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Lemma 3. Suppose 0 < δ−k < δ+k , k = 1, 2, 3, 4. Let η > 0 and

η̄ := η +

2∑
k=1

log([log2(
δ+k
δ−k

)] + 2) + log 3,

η̃ := η +
3∑

k=1

log([log2(
δ+k
δ−k

)] + 2) + log 3,

η̌ := η +
∑

k=1,k=4

log([log2(
δ+k
δ−k

)] + 2) + log 3.

Then with probability at least 1− e−η, for all δk ∈ [δ−k , δ
+
k ], k = 1, 2, 3

αn(δ1, δ2) ≤
C1(�+ 1)R(T )Φa√

h

{
E‖Ξ‖(

√
rank(S)mδ1 + δ2) +

2(�+ 1)R(T )Φaη̄

n
√
h

+ δ1

√
η̄

n

}
(A.9)

α̃n(δ1, δ2, δ3) ≤
C2(�+ 1)R(T )Φa√

h

{
E‖Ξ‖(δ2 + δ3) +

2(�+ 1)R(T )Φaη̃

n
√
h

+ δ1

√
η̃

n

} (A.10)

α̌n(δ1, δ4) ≤
C3(�+ 1)R(T )Φa√

h

{
E‖Ξ‖δ4 +

2(�+ 1)R(T )Φaη̌

n
√
h

+ δ1

√
η̌

n

}
,

(A.11)

where C1, C2, and C3 are numerical constants.

Since both Ŝh and S are in D, by the definition of α̃ and α̌, we have

(P − Pn)(L′(Ỹ ; 〈Ŝh, X̃〉))〈Ŝh − S, X̃〉
≤ α̃(‖Ŝh − S‖L2(Π̃); ‖P⊥

L Ŝh‖1; ‖PL(Ŝ
h − S)‖1),

(A.12)
and

(P − Pn)(L′(Ỹ ; 〈Ŝh, X̃〉))〈Ŝh − S, X̃〉 ≤ α̌(‖Ŝh − S‖L2(Π̃); ‖Ŝh − S‖1). (A.13)

If Ŝh − S ∈ K(D;L; b), by the definition of α, we have

(P − Pn)(L′(Ỹ ; 〈Ŝh, X̃〉))〈Ŝh − S, X̃〉 ≤ α(‖Ŝh − S‖L2(Π̃); ‖P⊥
L Ŝh‖1). (A.14)

Assume for a while that

‖Ŝh − S‖L2(Π̃) ∈ [δ−1 , δ
+
1 ], ‖P⊥

L Ŝh‖1 ∈ [δ−2 , δ
+
2 ], ‖P⊥

L (Ŝh − S)‖1 ∈ [δ−3 , δ
+
3 ].

(A.15)

By the definition of subdifferential, for any V̂ ∈ ∂‖Ŝh‖1,

〈V̂ , S − Ŝh〉 ≤ ‖S‖1 − ‖Ŝh‖1.
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Then we apply (A.13) in bound (A.4) and use the upper bound on α̌n(δ1, δ4) of
Lemma 3, and get with probability at least 1− e−η,

P (L(Ỹ ; 〈Ŝh, X̃〉)) + ‖Ŝh − S‖2
L2(Π̃)

≤ P (L(Ỹ ; 〈S, X̃〉)) + ε(‖S‖1 − ‖Ŝh‖1) + α̌n(‖Ŝh − S‖L2(Π̃), ‖Ŝh − S‖1)

≤ P (L(Ỹ ; 〈S, X̃〉)) + ε(‖S‖1 − ‖Ŝh‖1)

+
C3(�+ 1)R(T )Φa√

h

{
E‖Ξ‖‖Ŝh − S‖1 +

2(�+ 1)R(T )Φaη̌

n
√
h

+ ‖Ŝh − S‖L2(Π̃)

√
η̌

n

}
.

(A.16)
Assuming that

ε >
C(�+ 1)R(T )Φa√

h
E‖Ξ‖, (A.17)

where C = C1 ∨ 4C2 ∨ C3. From (A.16)

P (L(Ỹ ; 〈Ŝh, X̃〉)) ≤ P (L(Ỹ ; 〈S, X̃〉)) + 2ε‖S‖1 +
C3(�+ 1)2R(T )2Φ2a2η̃

nh
.

(A.18)

We now apply the upper bound on α̃n(‖Ŝh − S‖L2(Π̃), ‖P⊥
L Ŝh)‖1, ‖PL(Ŝ

h −
S)‖1) to (A.6) and get with probability at least 1− e−η,

P (L(Ỹ ; 〈Ŝh, X̃〉)) + ‖Ŝh − S‖2
L2(Π̃)

+ ε‖P⊥
L (Ŝh)‖1

≤ P (L(Ỹ ; 〈S, X̃〉)) + ε‖PL(Ŝ
h − S)‖1

+ α̃n(‖Ŝh − S‖L2(Π̃), ‖P⊥
L Ŝh)‖1, ‖PL(Ŝ

h − S)‖1)

≤ P (L(Ỹ ; 〈S, X̃〉)) + ε‖PL(Ŝ
h − S)‖1

+
C2(�+ 1)R(T )Φa√

h

{
E‖Ξ‖(‖P⊥

L Ŝh)‖1 + ‖PL(Ŝ
h − S)‖1)

}
+

C2(�+ 1)2R(T )2Φ2a2η̃

nh
,

(A.19)

where the first inequality is due to the fact that

|〈sign(S), S − Ŝh〉| = |〈sign(S),PL(S − Ŝh)〉|
≤ ‖sign(S)‖‖PL(S − Ŝh)‖1 ≤ ‖PL(S − Ŝh)‖1.

With assumption (A.17) holds, we get from (A.19)

PL(Ỹ ; 〈Ŝh, X̃〉) + ε‖P⊥
L (Ŝh)‖1

≤ PL(Ỹ ; 〈S, X̃〉) + 5ε

4
‖PL(Ŝ

h − S)‖1 +
ε

4
‖P⊥

L (Ŝh)‖1

+
C2(�+ 1)2R(T )2Φ2a2η̃

nh
.

(A.20)
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If the following is satisfied:

C2(�+ 1)2R(T )2Φ2a2η̃

nh
≥ 5ε

4
‖PL(Ŝ

h − S)‖1 +
ε

4
‖P⊥

L (Ŝh)‖1, (A.21)

we can just conclude that

P (L(Ỹ ; 〈Ŝh, X̃〉)) ≤ P (L(Ỹ ; 〈S, X̃〉)) + C2(�+ 1)2R(T )2Φ2a2η̃

nh
, (A.22)

which is sufficient to meet the bound of Lemma 1. Otherwise, by the assumption
that P (L(Ỹ ; 〈Ŝh, X̃〉)) > P (L(Ỹ ; 〈S, X̃〉)), one can easily check that

‖P⊥
L (Ŝh − S)‖1 ≤ 5‖PL(Ŝ

h − S)‖1,

which implies that Ŝh−S ∈ K(D;L; 5). This fact allows us to use the bound on
αn(δ1, δ2) of Lemma 3. We get from (A.6)

P (L(Ỹ ; 〈Ŝh, X̃〉)) + ‖Ŝh − S‖2
L2(Π̃)

+ ε‖P⊥
L (Ŝh)‖1

≤ P (L(Ỹ ; 〈S, X̃〉)) + ε〈sign(S), S − Ŝh〉

+
C1(�+ 1)R(T )Φa√

h
E‖Ξ‖(

√
rank(S)m‖Ŝh − S‖L2(Π̃) + ‖P⊥

L (Ŝh)‖1)

+
C1(�+ 1)2R(T )2Φ2a2η̄

nh
.

(A.23)

By applying the inequality∣∣〈sign(S), Ŝh − S〉
∣∣ ≤ m

√
rank(S)‖Ŝh − S‖L2(Π̃),

and the assumption (A.17), we have with probability at least 1− e−η,

P (L(Ỹ ; 〈Ŝh, X̃〉))≤P (L(Ỹ ; 〈S, X̃〉)) + ε2m2rank(S) +
C1(�+ 1)2R(T )2Φ2a2η̄

nh
.

(A.24)
To sum up, the bound of Lemma 1 follows from (A.18), (A.22) and (A.24)

provided that condition (A.17) and condition (A.15) hold.
We still need to specify δ−k , δ

+
k , k = 1, 2, 3, 4 to establish the bound of the

theorem. By the definition of Ŝh, we have

Pn(L(Ỹ ; 〈X, Ŝh〉)) + ε‖Ŝh‖1 ≤ Pn(L(Ỹ ; 〈X, 0〉)) ≤ Q,

implying that ‖Ŝh‖1 ≤ Q
ε . Next, ‖P⊥

L Ŝh‖1 ≤ ‖Ŝh‖1 ≤ Q
ε and ‖PL(Ŝ

h − S)‖1 ≤
2‖Ŝh − S‖1 ≤ 2Q

ε + 2‖S‖1. Finally, we have ‖Ŝh − S‖L2(Π̃) ≤ 2a. Thus, we can

take δ+1 := 2a, δ+2 := Q
ε , δ

+
3 := 2Q

ε +2‖S‖1, δ+4 := Q
ε +‖S‖1. With these choices,

δ+k , k = 1, 2, 3, 4 are upper bounds on the corresponding norms in condition

(A.15). We choose δ−1 := a√
n
, δ−2 := a2

nε ∧ δ+2
2 , δ−3 := a2

nε ∧ δ+3
2 , δ−4 := a2

nε ∧ δ+4
2 .

Let η∗ := η + 3 log(B log2(‖S‖1 ∨ n ∨ ε ∨ a−1 ∨ Q)). It is easy to verify that
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η̄ ∨ η̃ ∨ η̃ ≤ η∗, for a proper choice of numerical constant B in the definition
of η∗. When condition (A.15) does not hold, which means at least one of the
numbers δ−k , k = 1, 2, 3, 4 we chose is not a lower bound on the corresponding
norm, we can still use the bounds

(P − Pn)(L′(Y ; 〈Ŝh, X̃〉))〈Ŝh − S, X̃〉
≤ α̃(‖Ŝh − S‖L2(Π̃) ∨ δ−1 ; ‖P⊥

L Ŝh‖1 ∨ δ−2 ; ‖PL(Ŝ
h − S)‖1 ∨ δ−3 ),

(A.25)

and

(P − Pn)(L′(Y ; 〈Ŝh, X̃〉))〈Ŝh − S, X̃〉
≤ α̌(‖Â(t)ε − S‖L2(Π̃) ∨ δ−1 ; ‖Ŝh − S‖1 ∨ δ−4 ),

(A.26)

instead of (A.12), (A.13). In the case when Ŝh − S ∈ K(D;L; 5), we can use the
bound

(P − Pn)(L′(Y ; 〈Ŝh, X̃〉))〈Ŝh − S, X̃〉≤α(‖Ŝh − S‖L2(Π̃) ∨ δ−1 ; ‖P⊥
L Ŝh‖1 ∨ δ−2 ),

(A.27)
instead of bound (A.14). Then one can repeat the arguments above with only
minor modifications. By the adjusting the constants, the result of Lemma 1
holds.

The last thing we need to specify is the size of ε which controls the nuclear
norm penalty. Recall that from condition (A.17), the essence is to control E‖Ξ‖.
Here we use a simple but powerful noncommutative matrix Bernstein inequali-
ties. The original approach was introduced by [1]. Later, the result was improved
by [34] based on the classical result of [26]. We give the following lemma which
is a direct consequence of the result proved by [34], and we omit the proof here.

Lemma 4. Under the model (1.1), Ξ is defined as in (A.8) with τj are i.i.d.
uniformly distributed in [0,1], and εj are i.i.d. Rademacher random variables,
and Xj are i.i.d uniformly distributed in X . Then for any η > 0, with probability
at least 1− e−η

‖Ξ‖ ≤ 4
(√

(η + log 2m)

nm

∨ (η + log 2m)Φ

n
√
h

)
,

and by integrating its exponential tail bounds

E‖Ξ‖ ≤ C
(√

log 2m

nm

∨ (log 2m)Φ

n
√
h

)
where C is a numerical constant.

Together with (A.17), we know for some numerical constant D > 0,

ε ≥ D
Φa(�+ 1)R(T )√

h

(√
log 2m

nm

∨ (log 2m)Φ

n
√
h

)
,

which completes the proof of Lemma 1.



3888 F. Zhou

A.1. Proof of Lemma 3

Proof. We only prove the first bound in detail, and proofs of the rest two bounds
are similar with only minor modifications. By Talagrand’s concentration inequal-
ity [33], and its Bousquet’s form [4], with probability at least 1− e−η,

αn(δ1, δ2) ≤ 2Eαn(δ1, δ2) +
24(�+ 1)2R(T )2Φ2a2η

nh
+

12(�+ 1)R(T )Φaδ1
√
η√

nh
.

(A.28)
By standard Rademacher symmetrization inequalities, see [17], Sec. 2.1, we can
get

Eαn(δ1, δ2) ≤ 4E sup
{∣∣∣ 1

n

n∑
j=1

εj(〈A, X̃j〉 − Ỹj)〈A− S, X̃j〉
∣∣∣ : A ∈ A(δ1, δ2)

}
,

(A.29)
where {εj} are i.i.d. Rademacher random variables independent of {(τj , Xj , Ỹj)}.
Then we consider the function f(u) = (u−y+v)u, where |y| ≤ 2Φa√

h
and |v|, |u| ≤

2(�+1)R(T )Φa√
h

. Clearly, this function has a Lipschitz constant 6(�+1)R(T )Φa√
h

. Thus

by comparison inequality, see [17], Sec. 2.2, we can get

E sup
{∣∣∣n−1

n∑
j=1

εj(〈A, X̃j〉 − Ỹj)〈A− S, X̃j〉
∣∣∣ : A ∈ A(δ1, δ2)

}
≤ 6(�+ 1)R(T )Φa√

h
E sup

{
n−1

∣∣∣ n∑
j=1

εi〈A− S, X̃j〉
∣∣∣ : A ∈ A(δ1, δ2)

}
.

(A.30)

As a consequence of (A.29) and (A.30), we have

Eαn(δ1, δ2) ≤
12(�+ 1)R(T )Φa√

h
E sup

{
n−1

∣∣∣ n∑
j=1

εi〈A− S, X̃j〉
∣∣∣ : A ∈ A(δ1, δ2)

}
.

(A.31)

The next step is to get an upper bound on
∣∣n−1

n∑
j=1

εi〈A− S, X̃j〉
∣∣. Recall that

Ξ := n−1
n∑

j=1

εjX̃j , then we have n−1
n∑

j=1

εi〈A − S, X̃j〉 = 〈A − S,Ξ〉. One can

check that

|〈A− S,Ξ〉| ≤ |〈PL(A− S),PLΞ〉|+ |〈P⊥
L (A− S),Ξ〉|

≤ ‖PLΞ‖2‖PL(A− S)‖2 + ‖Ξ‖‖P⊥
LA‖1

≤ m
√

2rank(S)‖Ξ‖‖A− S‖L2(Π̃) + ‖Ξ‖‖P⊥
LA‖1.

The second line of this inequality is due to Hölder’s inequality and the third
line is due to the facts that (A − S) ∈ K(D;L; 5), rank(PL(Ξ)) ≤ 2rank(S),
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‖PLΞ‖2 ≤ 2
√
rank(PL(Ξ))‖Ξ‖, and

∥∥A− S
∥∥2

L2(Π̃)
= 1

m2

∥∥A− S
∥∥
2
. Therefore,

12(�+ 1)R(T )Φa√
h

E sup
{∣∣∣n−1

n∑
j=1

εi〈A− S, X̃j〉
∣∣∣ : A ∈ A(δ1, δ2)

}
≤ 12(�+ 1)R(T )Φa√

h
E‖Ξ‖(2

√
2rank(S)mδ1 + δ2).

(A.32)

It follows from (A.28), (A.31) and (A.32) that with probability at least 1− e−η,

αn(δ1, δ2) ≤
(12(�+ 1)R(T )Φa√

h
E‖Ξ‖(

√
rank(S)mδ1 + δ2)

)
+

24(�+ 1)2R(T )2Φ2a2η

nh
+

12(�+ 1)R(T )Φaδ1
√
η√

nh
.

Now similar to the approach in [19], we make this bound uniform in δk ∈ [δ−k , δ
+
k ].

Let δjkk = δ+k 2
−jk , jk = 0, ..., [log2(δ

+
k /δ

−
k )] + 1, k = 1, 2. By the union bound,

with probability at least 1−e−η/3, for all jk = 0, ..., [log2(δ
+
k /δ

−
k )]+1, k = 1, 2,

we have

αn(δ1, δ2) ≤
(12(�+ 1)R(T )Φa√

h
E‖Ξ‖(

√
rank(S)mδj11 + δj22 )

)
+

24(�+ 1)2R(T )2Φ2a2η

nh
+

12(�+ 1)R(T )Φaδj11
√
η√

nh
,

which implies that for all δk ∈ [δ−k , δ+k ], k = 1, 2,

αn(δ1, δ2) ≤
(12(�+ 1)R(T )Φa√

h
E‖Ξ‖(

√
rank(S)mδ1 + δ2)

)
+

24(�+ 1)2R(T )2Φ2a2η̄

nh
+

12(�+ 1)R(T )Φaδ1
√
η̄√

nh
.

The proofs of the second and the third bounds are similar to this one, we omit
the repeated arguments.
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