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Abstract: In this paper, we study a family of probability distributions,
alternative to the von Mises family, called Inverse Stereographic Normal
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the fact that a large number of proteins involved in the DNA-metabolism
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1. Introduction

In the recent years, statisticians paid increasing attention to random variables
taking values on manifolds. Amongst the most important statistical problems
on manifolds, those arising from the analysis of circular data, spherical data
and toroidal data play a fundamental role (see [15] and [21] for some references
and [29]). Motivated by important applications in molecular biology, we will
concentrate on circular and toroidal data.

The motivation behind this paper relates to the Protein Folding Problem
(PFP), which is one of the major open problems in biochemistry. Protein folding
is the physical process that a protein chain undertakes before reaching its final
three dimensional shape (conformation). The shape of the protein ensures that
the protein does its job properly, while a misfolding can be the cause of several
neurodegenerative diseases and other types of diseases as well [37].

Since the physical process underlying protein folding is complicated, there
has been limited success in predicting the final folded structure of a protein
from its amino acid sequence. A better understanding of this would definitely
have clinical impact and result in the design of efficient drug molecules for the
cure of several diseases such as the ones mentioned above.

The PFP can be divided into two parts: the static problem and the dy-
namic problem. As explained in [6], the static problem concerns the prediction
of the active conformation of the protein given only its amino acid sequence.
The dynamic problem, instead, consists in rationalizing the folding process as a
complex physical interaction. Both these problems have a precise mathematical
formulation [6].

Some regions of the conformation of a protein may look amorphous and so
require random models and probability distributions to be described properly.
As a matter of fact, a large number of proteins involved in DNA metabolism
with different evolutionary origin and catalyzing different reactions assume a
toroidal shape [10], [11]. It has been argued that the preference towards the
toroidal form may be due to special advantages in the DNA-binding [10], [11].
A long list of proteins share the toroidal form [10], [11]. The importance of the
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PFP and the DNA-binding process motivated statisticians to find appropriate
statistical models that describe these phenomena.

The most famous circular distribution is the von Mises distribution. The in-
terest on the theory as well as practical applications stimulated researchers to
look for a good higher dimensional analogue of the one dimensional von Mises
Distribution. The Bivariate von Mises Distribution (BVM) is a probability dis-
tribution describing a two dimensional random vector, taking values on a torus
T
2 := S

1 × S
1. It aims at representing an analogue on the torus of the Bi-

variate Normal Distribution (BVN). The Full Bivariate von Mises Distribution
(FBVM) was first proposed by Mardia [17]. Some of its variants are currently
used in the field of bioinformatics to formulate probabilistic models of protein
structure.

The FBVM seems to be over-parametrized for being the toroidal counter-
part of the BVN. In fact, the FBVM depends on eight parameters, while the
BVN possesses only five parameters. This situation becomes even clearer in the
high-concentration limit (κ → +∞) [26]. For this reason, several submodels
have been proposed. Four commonly used variants of the bivariate von Mises
distribution have been originally proposed by Mardia [18] and then revisited by
Rivest [35] and also by Singh-Hnidzo-Demchuk [39]. They are models with a re-
duced number of parameters and are derived by setting to zero the off-diagonal
elements of the interaction matrix. The following models are submodels of the
FBVM which have been discussed in the literature: the Cosine Model with Pos-
itive Interaction [26], the Cosine Model with Negative Interaction [26], the Sine
Model [39] and the Hybrid Model [13].

The use of these distributions has pros and cons. The pros: the von Mises
distributions resemble the BVN in the high-concentration limit, they are closed
with respect to conditioning, it is relatively easy to give unimodality conditions,
and the parameters have easy interpretability, even when they do not exactly
match the ones of the BVN. The cons: the family is not closed under marginal-
ization (but in the case of high-concentration limit), inference and prediction are
not trivial and require numerical methods. For example, MLEs cannot be com-
puted explicitly, but just via optimization algorithms. To overcome this prob-
lem, more advanced procedures, like pseudo-likelihood estimators, have been
suggested [21].

It is a common belief that the geometry of the torus implies that a completely
natural counterpart of the BVN on the torus is not available (see, for example,
the discussion in [13]). Therefore, despite von Mises’ models have been proven
to be successful, there has not been a definite answer yet to which of the models
proposed is the “best” candidate to represent the toroidal counterpart of the
BVN.

In this paper, we aim at giving an alternative to von Mises models both in
univariate and multivariate case, which maintain the good properties of the von
Mises distributions, like the asymptotic normality, but also possess some extra
properties, such as the simplicity in the estimation that the BVN possesses in
the Euclidean case, but the von Mises distributions do not.

The candidate distribution in the univariate case of S1 is called Inverse Stere-
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ographic Normal Distribution (ISND). The name comes from the fact that the
Stereographic Projection of this distribution is the Normal Distribution on R.

Definition 1.1. We say that a random variable Θ ∈ S
1 has an Inverse Stere-

ographic Normal Distribution, denote by ISN (μ, σ2), if and only if its pdf is
given by

fΘ(θ) :=

√
1

2π

1

(1 + cos θ)σ
e−

1
2σ2 ( sin θ

1+cos θ−μ)
2

,

for some μ ∈ R, σ > 0 and for any θ ∈ [−π,+π). The distribution ISN (0, 1) is
called Inverse Stereographic Standard Normal Distribution.

In a similar manner, we can define on T
n := [−π,+π)n the Multivariate

Inverse Stereographic Normal Distribution (MISND).

Definition 1.2. We say that a random vector Θ := {Θ1, . . . ,Θn} ∈ T
n has a

Multivariate Inverse Stereographic Normal Distribution, denoted by
MISN (μ,Σ), if and only if its pdf is given by

fΘ(θ) := (2π)−n/2|Σ|−1/2
n∏

i=1

1

1 + cos θi
×

e
− 1

2

(
sin θ1

1+cos θ1
−μ1,...,

sin θn
1+cos θn

−μn

)T
Σ−1

(
sin θ1

1+cos θ1
−μ1,...,

sin θn
1+cos θn

−μn

)
,

for some μ := (μ1, . . . , μn) ∈ R
n, Σ ∈ Sym+

n×n with |Σ| := det(Σ), and for any
θ = (θ1, . . . , θn) ∈ T

n. The distribution MISN (0, Id) is called Multivariate
Inverse Stereographic Standard Normal Distribution.

In the following, we concentrate on the case n = 2, namely the Bivariate In-
verse Normal Distribution (BISND), since it is more relevant to the applications
to molecular biology (See Subsection 6.3).

Remark 1.3. Note that this is not the only way in which one can introduce a
location parameter in the ISND. Previously, the location parameter for the ISND
has been introduced as the location of the axis of symmetry of the distribution
on the circle (see for example [1]). In our case μ does not play that role. Instead,
μ corresponds to the mean value of the corresponding projected distribution on
the real line. We refer to Section 4 for more comments on this.

There are several advantages of this approach, listed below not necessarily in
order of importance:

• The Inverse Stereographic Projection suggests a natural way to construct
distributions on manifolds, by transforming distributions on the Euclidean
Space (see Section 2.1);

• The number of parameters of the BISND matches the number of param-
eters of the BVN, without imposing any further constraint and there is
a natural interpretation for the parameters of the ISND in terms of the
parameters of the BVN (see Section 4);
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• The BVM and BISND resemble each other in the case of high-concentra-
tion limit for certain ranges of parameters. Analogously for the ISND and
Wrapped Normal Distribution (WN). Moreover, the ISND approximates
the BVN in the case of high concentration limit (see Section 3);

• The Stereographic Projection suggests a more geometric counterpart of the
Euclidean Moments which differs from the Circular Moments (see Section
4);

• The definition of moments using the Stereographic Projection helps address
some interpretation problems in the parameters of directional variables
(for further comments, we refer to Section 7);

• The MLE estimates for the ISND do not need numerical methods, since
the estimates of the parameters are the transformed estimates of the pa-
rameters of the BVN (see Section 5);

• The Stereographic Projection allows to transfer some test statistics, confi-
dence intervals and hypothesis testing from the Euclidean space to mani-
folds (see Section 5).

The rest of this paper is organized as follows.

In Section 2, we collect some notation and describe some preliminary results.
We describe the construction of general inverse stereographic projected distri-
butions; we give results about the marginals of the ISND which are still ISND
(Theorem 2.3), and conditionals which are ISND as well (Theorem 2.4); we give
unimodality conditions for this family of distributions (Theorem 2.6).

In Section 3, we compare the ISND with the VM and the WN. In particular,
we prove approximation results in the case of high-concentration limit which
connect ISND, VM and WN for some subsets of the parameter space (Theorem
3.1, Theorem 3.2 and Theorem 3.3). Note that WN and VM are close also for
moderate values of the concentration parameter κ, which in the past has been
an argument for using the VM for circular data, due to its compact form.

In Section 4, we introduce Inverse Stereographic Moments (ISMs) and Inverse
Stereographic Moment Generating Functions (ISMGFs) which lead naturally to
a corresponding “intrinsic” CLT on the torus (Theorem 4.12). We compare ISMs
with the classical Circular Moments and with the moments of Euclidean random
variables.

In Section 5, we pass to Statistical Inference. We propose a way to do point
estimation, confidence intervals and hypothesis testing for the model parameters
following the lines of Euclidean cases.

In Section 6, we present some numerical examples and applications. In Sub-
section 6.1, we produce some plots of the ISND for some choices of the param-
eters, both in the unimodal and the multimodal cases. In Subsection 6.2, we
compare numerically the BVM and the ISND, using the results in Section 3
for the corresponding ranges of the parameters. In Subsection 6.3, we give an
application to problems in Molecular Biology, in particular to the problem of
the distribution of dihedral angles on the torus.

We complete our analysis with a discussion (Section 7), the conclusion (Sec-
tion 8) and the technical proofs (Appendix A: Proofs). In the supplementary
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material, we collect some of the codes (Appendix B: Supplementary Material)
used in the applications.

2. Notation and preliminary results

We denote with Matn×n the set of square matrices of dimension n, and with
Sym+

n×n the set of positive symmetric matrices of dimension n.
In Subsection 2.1, we briefly discuss the construction of Inverse Stereographic

Projected Distributions. In Subsection 2.2, we present results about the margi-
nals of ISND which are still ISND (Theorem 2.3), and conditionals of the ISND
which are again ISND (Theorem 2.4). In Subsection 2.3, we give unimodality
conditions for ISND (Theorem 2.6).

2.1. Inverse stereographic projected distributions

Suppose fX1,...,Xn(x1, . . . , xn) is a pdf on R
n. The Stereographic Projection is

defined as

(Θ1, . . .Θn) �→ (X1, . . . , Xn) :=

(
sin(Θ1)

1 + cos(Θ1)
, . . . ,

sin(Θn)

1 + cos(Θn)

)
,

for (Θ1, . . . ,Θn) ∈ Tn and so with Θi ∈ [−π,+π) for every i = 1, . . . , n. There-
fore,

fΘ1,...,Θn(θ1, . . . , θn)dθ1 . . . dθn =

fX1,...,Xn

(
sin(θ1)

1 + cos(θ1)
, . . . ,

sin(θn)

1 + cos(θn)

) n∏
i=1

dθi
1 + cos(θi)

.

Viceversa, suppose fΘ1,...,Θn(θ1, . . . , θn) is a pdf on T
n. The Inverse Stereo-

graphic Projection is defined as

(X1, . . . , Xn) �→ (Θ1, . . . ,Θn) := (2 arctan(X1), . . . , 2 arctan(Xn)) ,

for every (X1, . . . , Xn) ∈ R
n. Therefore,

fX1,...,Xn(x1, . . . , xn)dx1 . . . dxn =

2n
n∏

i=1

dxi

1 + x2
i

fΘ1,...,Θn (2 arctan(x1), . . . , 2 arctan(xn)) .

As a consequence, a natural measure on the torus when the probability distri-
bution is obtained through Inverse Stereographic Projection P is the pull-back
measure of the Lebesgue measure on R:

P ∗dx1 . . . dxn =

n∏
i=1

dθi
1 + cos θi

.
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Remark 2.1. There are other possible multidimensional generalizations of the
inverse stereographic projection. In the case of the sphere, the authors of [1]
note that the Jacobian of the stereographic projection is non-trivial and they
use a projection which produces a slightly simpler Jacobian to the expenses of a
slightly more complicated construction (see also [41]). When reduced to p = 2,
namely S

1, the projections here and in [1] coincide.

Remark 2.2. The Stereographic Projection is a conformal transformation and
so it does not change angles. In our context, this is a very useful property as
it means that the Stereographic Projection maps elliptical contours to elliptical
contours.

2.2. Marginals and conditionals of MISND

In strong contrast with the Multivariate von Mises Distribution, the ISND is
closed under marginalization.

Theorem 2.3. Suppose a random variable

Θ := {Θ1, . . . ,Θn} ∼ MISN (μ,Σ).

Then, for every i = 1, . . . , n, we have

Θi ∼ ISN (μi,Σii).

Proof. See Appendix A.

The ISND is closed under conditioning too.

Theorem 2.4. Suppose a random variable

Θ := {Θ1, . . . ,Θn} ∼ MISN (μ,Σ)

and we have the partition Θ = (Θ1,Θ2), μ = (μ1, μ2),

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
,

where Θ1 and μ1 are k×1 vectors and Σ11 ∈ Matk×k. Let Σ
−
22 be the generalized

inverse of Σ22. Then, the conditional distribution of Θ1, given Θ2 is given by

Θ1 | Θ2 ∼ MISN
(
μ1 − Σ12Σ

−
22 (Θ2 − μ2) ,Σ11 − Σ12Σ

−
22Σ21

)
.

Proof. The proof follows the same lines as in the proof of Theorem 2.3 and the
techniques used in the Euclidean case (see for example Theorem 1.2.11 page 12
in [28]).

Remark 2.5. As far as we know, these results are new at least in the case
μ �= 0.
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2.3. Unimodality and multimodality conditions

The ISND can be both unimodal or multimodal depending on the parameters
μ and σ2 (see the plots in Subsection 6.1). In this subsection, we give necessary
and sufficient conditions for the ISND to be unimodal. Recall that in the case
n = 1, Θ ∼ ISN (μ, σ2) has a pdf given by

fΘ(θ) :=

√
1

2π

1

(1 + cos θ)σ
e−

1
2σ2 ( sin θ

1+cos θ−μ)
2

,

for some μ ∈ R, σ > 0 and for any θ ∈ [−π,+π). Note that, for θ = −π,
the density has a removable singularity and it can be extended to a smooth
function by choosing fΘ(−π) = 0. This makes θ = −π a critical point of the
density and hence the global minimum. Since S1 is compact and fΘ(θ) is not
constant, it admits a maximum and a minimum distinct from the maximum. To
ensure unimodality, we need to find μ and σ2 such that fΘ(θ) admits only one
further critical point apart from θ = −π.

Note that fΘ(θ) is differentiable for every θ ∈ (−π,+π). By direct computa-
tion, the first derivative of fΘ(θ) is given by

d

dθ
fΘ(θ) =

√
1

2πσ2

1

(1 + cos θ)2σ2
e−

1
2σ2 ( sin θ

1+cos θ−μ)
2

×{
σ2 sin θ −

(
sin θ

1 + cos θ
− μ

)}
.

Therefore, we need to find conditions for which

σ2 sin θ −
(

sin θ

1 + cos θ
− μ

)
= 0

only once for θ ∈ (−π,+π).
The case μ = 0 is simpler and has been treated in [1], where authors proved

that fΘ(θ|μ, σ2) is unimodal if and only if σ2 ≤ 1
2 . In this case, the maximum is

achieved at θ = 0 and the minimum at θ = −π. The interpretation is that when
the mass of the density is too spread out on the real line, when mapped to the
circle, it tends to accumulate on itself and produces more than one peak.

The case μ �= 0 is more complicated and it is not present in the literature.
Note that one solution always exist because the functions f1(θ;μ, σ

2) := σ2 sin θ
and f2(θ;μ, σ

2) := sin θ
1+cos θ − μ cross each others. In fact, f1(θ;μ, σ

2) is bounded

in (−π, π) while f2(θ;μ, σ
2) goes from −∞ to +∞, while θ goes from −π to +π.

We have the following theorem.

Theorem 2.6. Consider the random variable Θ ∼ ISN(μ, σ2) with pdf
fΘ(θ|μ, σ2) and parameters μ �= 0 and σ2 > 0. Then, fΘ(θ|μ, σ2) is unimodal if
and only if Δ(μ, σ2) < 0, where Δ(μ, σ2) is given by

Δ(μ, σ2) = 18μ2(1− 2σ2)− μ4 + μ2(1− 2σ2)2 − 4(1− 2σ2)3 − 27μ2.
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Fig 1. Unimodality region Δ(μ, σ2) < 0, coloured in white. Left plot: x = μ2 and y = 1−2σ2.
Right plot: x = μ and y = σ2. In both plots: μ ∈ R and σ ∈ R+. Note that the value of μ does
not represent the position of the mean, mode or median of the ISND(μ, σ2), even if it does
represent the position of the mean, mode and median of the corresponding N(μ, σ2).

Proof. See Appendix A.

Remark 2.7. Note that the condition on Δ(μ, σ2) < 0 can be extremely sim-
plified in the variables x := μ2 and y := 1−2σ2. Indeed, Δ̃(x, y) := Δ(μ, σ2) < 0
becomes

18xy − x2 + xy2 − 4y3 − 27x < 0.

with x > 0 and y < 1. This inequality is quadratic in x and so it can be solved
easily by

max

{
0,

1

2

(
y2 + 18y − 27−

√
y4 + 20y3 + 270y2 − 972y + 729

)}
< x <

1

2

(
y2 + 18y − 27 +

√
y4 + 20y3 + 270y2 − 972y + 729

)
,

for y < 1. Note that for y < 1, the argument of the square root is always positive.
We refer to Figure 1 for a picture of the region Δ̃(x, y) = Δ(μ, σ2) < 0.

Remark 2.8. Note that for μ = 0, the discriminant Δ(0, σ2) = 4(2σ2 − 1)3 is
negative if and only if 0 ≤ σ2 < 1

2 . When Δ(0, σ2) = 0, namely σ2 = 1
2 , we

have three identical solutions. Therefore, Theorem 2.6 in the case μ = 0 is in
agreement with the results of [1] (see also [7]).

It is important to recall that the inverse stereographic projection does not
necessarily send critical points to critical points and so we cannot study the
critical points of fΘ by studying the critical points fX and then transform
them. This makes the analysis of unimodality non-trivial. It is interesting to
notice that, in the symmetric case, the inverse stereographic projection does
not change the parity of the set of critical points. Indeed, we have the following
lemma.

Lemma 2.9. Suppose fX is a pdf on R and fΘ is a pdf on [−π,+π) such that
Θ = 2arctan(X) and such that both have a finite number of critical points.
Moreover, suppose that fΘ(θ) = fΘ(−θ) for every θ ∈ [−π,+π). Then, both
fΘ(θ) and fX(x) have an odd number of critical points.
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Proof. Direct computation or direct consequence of the fact that the stereo-
graphic projection is a conformal transformation.

Example 2.1. For a random variable Θ ∼ ISN(0, σ2), the density fΘ(θ) has
three critical points 0, ±π for σ2 < 1/2 and five 0, ±π, ± arccos

(
1
σ2 − 1

)
∈

[−π,+π) for σ2 ≥ 1/2. On the other hand, the corresponding random variable
X = tan Θ

2 ∼ N(0, σ2) has always three critical points −∞, 0,+∞, with x =
−∞,+∞ corresponding to θ = −π,+π and x = 0 corresponding to θ = 0.

3. Comparison theorems: ISND vs Von Mises and Wrapped Normal

In this subsection, we compare the ISND with the VM and the WN. A classical
argument to promote the use of the VM as a natural circular counterpart of the
Normal Distribution is that, in the case of high-concentration limit (κ → +∞),
the two distributions resemble each others

fVM (θ | 0, κ) = eκ cos(θ)

2πI0(κ)



√
κ

2π
eκ(cos θ−1) 


√
κ

2π
e−κθ2/2,

for 0 < θ � 1 or for κ � 1. This approximation is valid in every Lp([−π,+π))-
norm for p ∈ [1,+∞] and, as mentioned, does not uniquely identify the VM;
in fact it is valid for several other distributions like the truncated normal and,
indeed, it is valid for the ISND as well.

Theorem 3.1. Consider the two distributions

fVM (θ | 0, κ) = eκ cos(θ)

2πI0(κ)
, fISN (θ | 0, σ2) =

1√
2πσ2

1

1 + cos θ
e−

1
2σ2 ( sin θ

1+cos θ )
2

,

with θ ∈ R and κ−1 = 4σ2. Then

‖fVM (θ | 0, κ)− fISN (θ | 0, σ2)‖L∞([−π,+π)) → 0, as κ → +∞.

Proof. See Appendix A.

The bivariate case for certain ranges of the parameters follows easily.

Theorem 3.2. Consider the following BVM:

fVM (φ, ψ) ∝ exp[κ1[cos(φ)− 1]

+ κ2[cos(ψ)− 1] + (cos(φ)− 1, sin(φ))A(cos(ψ)− 1, sin(ψ))T ],

defined for φ ∈ [−π,+π) and ψ ∈ [−π,+π). Here, κ1 and κ2 are the concentra-
tion parameters, and the matrix A = [a11, a; a, a22] ∈ Mat2×2 is the interaction
matrix. Further, consider the BISND:

fBISN (φ, ψ) :=
1

2π|Σ|1/2
1

1 + cosφ,

1

1 + cosψ
×

e−
1
2 (

sinφ,
1+cos φ, ,

sinψ
1+cos ψ )

T
Σ−1( sinφ,

1+cos φ, ,
sinψ

1+cos ψ ),
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defined for φ ∈ [−π,+π) and ψ ∈ [−π,+π). Here, Σ ∈ Sym+
2×2 with Σ−1 =

[b11, b; b, b22]. In the regime where κ1 = b11
4 , κ2 = b22

4 and a22 = − b
4 , the follow-

ing holds:

‖fBISN (φ, ψ)− fVM (φ, ψ)‖L+∞([−π,+π)) → 0, κ1, κ2 → +∞.

Proof. In the case where b = 0, the variables φ and ψ decouple and so the proof
is a direct consequence of Theorem 3.1. The general case follows from a small
modification of the proof of Theorem 3.1, that you can find in Appendix A.

Another consequence of Theorem 3.1 is that the ISND is close to the WN.
This distribution is particularly relevant, as it is the unique solution to the heat
equation on the circle and it is the only distribution preserving causality when
used for kernel smoothing [12].

Theorem 3.3. Consider the two distributions

fWN (θ | 0, σ2
Wn) =

1

σWN

√
2π

+∞∑
k=−∞

e
− (θ−2πk)2

2σ2
WN

and

fISN (θ | 0, σ2
ISN ) =

1√
2πσ2

1

1 + cos θ
e
− 1

2σ2
ISN

( sin θ
1+cos θ )

2

,

with θ ∈ R, κ−1 = 4σ2
ISN and σ2

WN = A(κ), where A(κ) := I1(κ)
I0(κ)

and

Ip(κ) :=
1

2π

∫ 2π

0

cos(pθ)eκ cos θdθ

is the modified Bessel function of the first kind and order p. Then

‖fWN (θ | 0, σ2
WN )− fISN (θ | 0, σ2

ISN )‖L∞([−π,+π)) → 0, as κ → +∞.

Proof. We have

‖fWN (θ | 0, σ2
WN )− fISN (θ | 0, σ2

ISN )‖L∞([−π,+π)) ≤
‖fWN (θ | 0, σ2

WN )− fVM (θ | 0, κ)‖L∞([−π,+π))

+ ‖fVM (θ | 0, κ)− fISN (θ | 0, σ2
ISN )‖L∞([−π,+π)).

As κ → +∞, the first summand goes to zero because of equations (3.5.23) and
(3.5.24) on page 58 of [15], while the second summand goes to zero because of
Theorem 3.1.

4. ISMs, ISMGF and a version of the Central Limit Theorem

Classical circular (trigonometric) moments (CMs) have been studied in the liter-
ature in the context of inverse stereographic distributions (see [30], [31], [33] and
the references therein). There, the authors do not seem to consider the inverse



2728 A. Selvitella

map and deal with classical CMs. As the results in [30], [31], [33] underline,
CMs seem not natural. In fact the formulas for CMs derived in those papers
are complicated functions of the parameters of their models. As a consequence,
when related to the parameters, CMs lack in interpretability for those distri-
butions. This motivates the search for a notion of moments which suits better
inverse stereographic distributions.

We introduce the Inverse Stereographic Moments (ISMs) and compare them
with CMs in Subsection 4.1. In Subsection 4.2, we introduce the Inverse Stere-
ographic Moment Generating Function (ISMGF) and use ISMs to rephrase the
Central Limit Theorem (CLT) in the context of Tn for n ≥ 1.

4.1. The inverse stereographic moments

The classical way in which Moments on the Circle are defined is the following.

Definition 4.1. Consider a random variable Θ defined on S
1 with pdf given by

fΘ(θ), for every θ ∈ [−π,+π). Then, the Circular Moment (CM) of Θ of order
k with k ∈ N is defined as

mk[Θ] := EΘ[e
ikθ] =

∫
[−π,+π)

fΘ(θ)e
ikθdθ.

This procedure has no connection with the extra structure coming from the
Stereographic Projection, since the Stereographic Projection does not send the
Lebesgue Measure on [−π,+π) to the Lebesgue Measure on R and also does not
send polynomials defined on C 
 R

2 to their restriction to S
1.

We propose to compute Moments in a way which is consistent with the Stere-
ographic Projection, so that it is particularly suitable for inverse stereographic
projected random variables defined on S

1. This procedure identifies in a geo-
metrically natural way the circular counterpart of the moments defined in the
Euclidean Space with respect to the Lebesgue Measure. A corresponding con-
struction works in higher dimensions too.

Definition 4.2. Consider a random variable Θ defined on S
1 with pdf fΘ(θ).

Then, we define the Inverse Stereographic Moment (ISM) of Θ of order k with
k ∈ N as

mS
1

k [Θ] := EΘ

[(
sin θ

1 + cos θ

)k
]
:=

∫ +π

−π

(
sin θ

1 + cos θ

)k

fΘ(θ)dθ.

Remark 4.3. Note that, by applying the Stereographic Projection, we get

mS
1

k [Θ] =

∫ +∞

−∞
xkfΘ(2 arctan(x))

2dx

1 + x2
.

Therefore, if fΘ(θ) comes from an Inverse Stereographic Projection, namely Θ =
2 arctan(X), then

mS
1

k [Θ] =

∫ +∞

−∞
xkfX(x)dx.
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ISMs are definitely different from CMs, in particular in how they relate to the
parameters of the underlying circular distribution. We give a small proposition
on the comparison between CMs and ISMs for the ISND, but definitely the
relation between CMs and ISMs deserve a deeper and more general investigation.

Proposition 4.4. Consider a random variable Θ ∼ ISN(μ, σ2) with μ ∈ R

and σ2 ≥ 0. We have:

EΘ[sin θ] = EΘ

[
sin θ

1 + sin θ

]
⇔ μ = 0 or σ2 = 0.

Proof. We have that

EΘ

[
sin θ

1 + sin θ

]
= μ and EΘ[sin θ] = μ

√
π

2σ2
e

1
2σ2

(
1− Φ(

√
1/2σ2)

)
,

where Φ is the error function (cdf of N(0, 1)). Therefore, the two moments are
equal if and only if μ = 0 or σ2 = 0.

Note that μ = 0 is an obvious solution of EΘ[sin θ] = EΘ[
sin θ

1+sin θ ], due to

oddness of the integrands. The case σ2 = 0 represents the degenerate case
where Θ = c ∈ R a.s wrt to the Lebesgue measure on R.

A consequence of Proposition 4.4 is that a large ISM of order 2 affects a CM
of order 1, but does not affect the ISM of order 1. This can be interpreted as
some sort of orthogonality between the first and second ISMs and mimics the
orthogonality of X̄ and S2 for the MVN.

Corollary 4.5. Consider a random variable Θ ∼ ISN(μ, σ2) with μ ∈ R and
σ ≥ 0. If

V arS
1

(Θ) := EΘ

[(
sin θ

1 + sin θ

)2
]
− E2

Θ

[
sin θ

1 + sin θ

]
= σ2 → +∞,

then

EΘ

[
sin θ

1 + sin θ

]
= μ,

independently of σ2, while

EΘ[sin θ] → 0.

Proof. Direct computation plus the computations in the proof of Proposition
4.4.

Not all random variables defined on S
1 admit finite ISMs. For example, the

Uniform Distribution on S1 (Θ ∼ Unif(−π,+π)), which corresponds to the
Cauchy Distribution on the Real Line through Inverse Stereographic Projection,
does not admit any finite ISM, while all its CMs are finite. We have the following
result.
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Proposition 4.6. Consider a random variable Θ ∈ S
1 whose pdf fΘ(θ) is

continuous and such that fΘ(θ) ∼ (θ − π)α for some α > 0 when θ ∼ +π and
fΘ(θ) ∼ (θ + π)β for some β > 0 when θ ∼ −π. Then

mS
1

k [Θ] < +∞ ⇔ k ≤ min{α, β}.

Proof. It is a direct consequence of the Taylor expansion of sin θ
1+cos θ at +π, where

sin θ
1+cos θ ∼ − 2

θ−π , and at −π, where sin θ
1+cos θ ∼ − 2

θ+π .

The definition if ISMs can be easily extended to random variables defined on
T
n.

Definition 4.7. Consider a random variable Θ = (Θ1, . . . ,Θn) ∈ T
n with pdf

given by fΘ(θ) and θ := (θ1, . . . , θn). Then, we define the Inverse Stereographic
Moment (ISM) of Θ of order k with k = (k1, . . . , kn) ∈ N

n as

mT
n

(k1,...,kn)
[Θ] := EΘ

[(
sin θ1

1 + sin θ1

)k1

× · · · ×
(

sin θn
1 + sin θn

)kn
]

=

∫
[−π,+π)n

n∏
i=1

dθi

[(
sin θ1

1 + sin θ1

)k1

× · · · ×
(

sin θn
1 + sin θn

)kn
]
fΘ(θ).

Example 4.1. With this definition, it is easy to see that the ISMs of a random
variable distributed as MISN (μ,Σ) coincide with the standard moments of
the MVN in R

n and so

ET
n

[MISN (μ,Σ)] = μ, V arT
n

[MISN (μ,Σ)] = Σ.

Note that the interpretation is a little tricky because μ and Σ are not scale and
location parameter for the variable Θ, but only for the variable X. In particular,
it is easy to see that MISN ’s family is not closed under re-location and re-
scaling (affine transformations).

Remark 4.8. An important consequence of this definition of moments is that
we can compute moments of distributions coming from Inverse Stereographic
Projections analytically and by performing simple integrations on R

n. This
seems a big simplification for estimation purposes, since the estimation of pa-
rameters would not need numerical optimization algorithms, in general. Note
that the simplification in the computation is directly related to how simple the
computation of the moments is in the corresponding random variable on the
Euclidean space.

4.2. A CLT and the ISMGF

The ISMGF is defined in the following way.
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Definition 4.9. Consider a random variable Θ ∈ S
1 with pdf fΘ(θ). The In-

verse Stereographic Moment Generating Function (ISMGF) is defined as

MS
1

Θ (t) := EΘ

[
et tan

θ
2

]
=

∫ +π

−π

et tan
θ
2 fΘ(θ)dθ,

for every t ∈ I, with 0 ∈ I ⊂ R.

Remark 4.10. Applying the Stereographic Projection, we get

MS
1

Θ (t) =

∫ +∞

−∞
etxfΘ(2 arctan(x))

2dx

1 + x2
.

Therefore, if fΘ(θ) comes from an Inverse Stereographic Projection, namely Θ =
2 arctan(X), then

MS
1

Θ (t) =

∫ +∞

−∞
etxfX(x)dx = MX(t).

This makes the ISMGF a natural choice. We can construct an ISMGFs in
higher dimensions as well. We concentrate on the case of Tn.

Definition 4.11. Consider a random vector Θ = (Θ1, . . . ,Θn) ∈ T
n with pdf

given by fΘ(θ) and θ := (θ1, . . . , θn). Then, we define the Inverse Stereographic
Moment Generating Function (ISMGF) on the Torus as

MT
n

Θ (t1, . . . , tn) := ETn

[
e
∑n

i=1 ti tan
θi
2

]
:=

∫
[−π,+π)n

n∏
i=1

dθie
∑n

i=1 ti tan
θi
2 fΘ(θ).

Here, t1, . . . , tn ∈ I, with 0 ∈ I ⊂ R.

We have the following theorem, which represents an “intrinsic” version of the
CLT on S

1.

Theorem 4.12. Suppose {Θi}i∈N ⊂ S
1 is a sequence of iid random variables

such that Θi = 2arctan(Xi) for every i ∈ N and some {Xi}i∈N ⊂ R. Suppose

MS
1

Θi
(t) exists in a neighbourhood of t = 0 for every i ∈ N. Further, suppose that

ES
1

[Θi] = μ and V ar[Θi] = σ2 > 0. Define

Φn := P−1

(√
n

(
1
n

∑n
i=1 P (Θi)− μ

)
σ

)
,

with P being the Stereographic Projection. Then,

Φn → ISN (0, 1) as n → +∞,

in the sense of the ISMGF and so in distribution.

This is not the most general version of the CLT possible and the theorem
works in higher dimensions as well.
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Proof. See Appendix A.

Remark 4.13. The standard ISND is multimodal. However, we have that

Φτ
n := P−1

(
τ

√
n

(
1
n

∑n
i=1 P (Θi)− μ

)
σ

)
→ ISN (0, τ2).

Therefore, we can tune the parameter τ2 so that τ2 < 1/2 and so the convergence
in distribution is towards a unimodal ISND. This possibly surprising fact is a
consequence of the fact that the stereographic projection (and in general any
continuous function) does not preserve the number of modes. This connects to
our previous discussion in Lemma 2.9 and Example 2.1.

5. Inference

In this section, we discuss some key inferential issues such as point estimation,
confidence intervals and hypothesis testing and we briefly comment on some
sampling methods for inverse stereographic probability distributions.

The first statistical problem that we address is parameter estimation.

Definition 5.1. Consider a statistic TX on the Euclidean Space. Then, we
call Inverse Stereographic Statistic, the following real-valued or vector-valued
function: TΘ := P−1 ◦ TX ◦ P , where P is the Stereographic Projection.

These estimators are natural for probability distributions defined through
Inverse Stereographic Projection. Suppose we have a random sample Θi ∼
ISN (μ, σ2), for i = 1, . . . , n. We can define the Inverse Stereographic Sample
Mean as

Θ̄S := P−1

(
n∑

i=1

P (Θi)

n

)
,

where Θi ∼ ISN (μ, σ2), for i = 1, . . . , n. By the definition of P and since
Θi ∼ ISN (μ, σ2), for i = 1, . . . , n, we have P (Θi) ∼ N(μ, σ2), for i = 1, . . . , n,

and so
∑n

i=1
P (Θi)

n ∼ N(μ, σ2/n). Again, by the definition of P , we have
Θ̄S ∼ ISN (μ, σ2/n). Note that similar considerations can be done for the Sam-
ple Variance and other estimators. P (Θ̄S) is a point estimator of μ. The MLEs
can be computed very easily, because the extra term with respect to the like-
lihood of the MVN, appearing because of the pull-back measure, is parameter
independent.

Theorem 5.2. Suppose Θ1, . . . ,Θn is a random sample drawn from a random
variable Θ ∼ ISN(μ, σ2) with μ and σ2 unknown parameters. The MLEs of μ
and σ2 are given by:

μ̂ =
1

n

n∑
i=1

tan

(
θi
2

)
, σ̂2 =

1

n

n∑
i=1

[
tan

(
θi
2

)
− μ̂

]2

.

Proof. Direct computation.
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We can develop Interval Estimation for random variables distributed as an
Inverse Projected Distributions as well.

Example 5.1. Suppose Θ ∼ ISN (μ, σ2) is a random variable defined on S1

with parameters μ unknown and σ2 known. Let P be the Stereographic Pro-
jection. A (1 − α)-Confidence Interval for μ can be constructed as follows. We
have

1− α = Pr
(
c ≤ P

(
Θ̄S

)
− μ ≤ d

)
= Pr

(
c+ μ ≤ P

(
Θ̄S

)
≤ d+ μ

)
= Pr

(
c+ μ ≤ 1

n

n∑
i=1

P (Θi) ≤ d+ μ

)
= Pr

(
c

σ/
√
n
≤ Z ≤ d

σ/
√
n

)

= Φ(d
√
n/σ)− Φ(c

√
n/σ),

with Z ∼ N(0, 1) and Φ the error function. A possible choice is then c = −d =
zα/2

σ√
n
with zα/2 the corresponding normal quantiles. Therefore,

C(θ̄S) = C(θ1, . . . , θn) :=

{
μ : P (θ̄S) + zα/2

σ√
n
≤ μ ≤ P (θ̄S)− zα/2

σ√
n

}

becomes an Inverse Stereographic Interval Estimator of μ. Since

P (C(θ1, . . . , θn)) = 1− α

for some α ∈ [0, 1], then C(θ1, . . . , θn) is a (1− α)-Inverse Stereographic Confi-
dence Interval of μ.

Remark 5.3. Note that Θ̄S ∼ ISN (0, σ2) if and only if P (Θ̄S) ∼ N(0, σ2)
and so C(Θ̄S) does not depend on P . This is an important property, because
makes C(θ̄S) “intrinsic” of S1, namely independent of the charts used on S

1.

Remark 5.4. There are two fundamental advantages in using this perspective:
a theoretical and a practical one. From a theoretical point of view, everything is
geometrically consistent and fully “intrinsic”. From a practical point of view, the
estimators are explicit and their distributions can be computed as explicitly as
they can be computed for the corresponding projected distribution. Therefore,
there is no extra need for numerical optimization. The main negative feature of
these estimators derives from the fact that the way in which they approach the
true values of the parameters is counter-intuitive in the Θ variables, because it
is measured with P ∗dx. We will discuss this in a particular example in Section
6, but definitely it deserves further investigation. See Figure 2 below, where it
is shown how confidence bands become much worse close to the cut-point.

We turn the discussion to Hypothesis Tests.

Example 5.2. Suppose Θ ∼ ISN (μ, σ2) is a random variable defined on S
1

with μ unknown and σ2 known. Let P be the Stereographic Projection. We test
the following hypothesis:

H0 : μ = μ0 vs Ha : μ �= μ0.
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Fig 2. The plots illustrate how good confidence bands for the normal distribution (left plot)
might become very bad for the ISND (right plot) when we approach the cut-point. In these
plots, μ = 0 and σ2 = 10. This is actually a problem for the interpretability of the estimators,
especially if peaks are concentrated close to the cut-point.

Consider a random sample Θ1, . . . ,Θn ∼ ISN (μ, σ2). We can use the inversion
theorem and build a Rejection Region from the Confidence Intervals described
above. For a fixed level α, theMost Powerful Unbiased Test (see [4]) has rejection
region

R(θ) :=
{
θ = (θ1, . . . , θn) : |P (θ̄S)− μ| > zα/2σ/

√
n
}
.

This test has size α if P (H0 is rejected |μ = μ0) = α.

It is worth mentioning that it is easy to sample from Inverse Stereographic
Projected Distributions. The strategy is to sample from the corresponding Eu-
clidean Distributions and then inverse stereographic project the sample to the
circle or the torus. To accomplish this, we can simply use Box-Muller Sampling
or other classical algorithms (see [4]).

6. Applications and numerical examples

We give some numerical examples and applications of the theory developed in
the previous sections.

6.1. Plots

We collect some plots in order to visualize the ISND and BISND and the depen-
dency on the parameters of the location, scale and shape of the distribution. The
parameter μ has a mixed role: it behaves more as a location parameter for small
values, but it affects skewness and concentration a lot more for higher values.
We refer to Figure 3 up to Figure 9 for the plots and some more comments.

6.2. Comparison between the VM and the ISND

We use Theorem 3.1 to illustrate that for κ → +∞ the VM distribution is well
approximated by the ISND. For κ = 10, the densities of the ISN(0, (4κ)−1) and
the VM(0, κ) overlap (see Figure 10).
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Fig 3. The plots show the ISN (0, σ2) coloured with levels of concentration in decreasing
order: red σ2 = 0.1, yellow σ2 = 0.5, green σ2 = 1 and blue σ2 = 10). As demonstrated by
the plots, the parameter μ = 0 forces the distribution to be symmetric.

Fig 4. The plots show the ISN (1, σ2) coloured with levels of concentration in decreasing
order: red σ2 = 0.1, yellow σ2 = 0.5, green σ2 = 1 and blue σ2 = 10. The introduction of the
parameter μ �= 0 breaks the symmetry, increases the flexibility of the model and produces a
higher variety of shapes. Note that when σ2 = 1, the ISND was bimodal for μ = 0, but it is
unimodal for μ = 1 in agreement with Theorem 2.6.

A similar comparison can be done in the bivariate case, using Theorem 3.2.
If we analyze the contour plots of the BISN(0, (4κ)−1) and the BVM(0, κ)
for κ = 10, the lines overlap (see Figure 11). Note that the VM is unimodal
independently of its parameters μ and κ, while there are regimes where the
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Fig 5. The plots show the uncorrelated BISN (0,Σ) with decreasing level of concentration.
From the top, left to right, Σ = 0.1 ∗ Id, Σ = Id, Σ = 2 ∗ Id and Σ = 10 ∗ Id. We can see that
the number of modes increases for less concentrated distributions and peaks move towards the
cut-point. This is somehow a limitation of the model, in the sense that skewness and location
are ruled by one single parameter: there is gain in flexibility of skewness with respect to the
VM, but the change in location cannot be achieved without increasing skewness as it happens
for the VM.

Fig 6. The plots show the uncorrelated BISN (0,Σ) with different marginal variances. From
the top, left to right, Σ = [0.1, 0; 0, 0.5], Σ = [0.1, 0; 0, 1], Σ = [0.5, 0; 0, 1] and Σ = [1, 0; 0, 10].

ISND is bimodal (See Theorem 2.6). This of course happens in the case in
which concentration is not high in agreement with the results of Section 3.

To overcome this lack of flexibility in the number of modes of the VM, people
use mixtures of VM (see for example [26]). It is useful to know in which cases
it is better to use a mixture of VM with the expenses of extra parameters and
when it is enough to use a ISND, which is more parsimonious. Note that a
limited number of parameters is often associated to a better fit of the model
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Fig 7. The plots show the uncorrelated BISN (μ,Σ) with decreasing level of concentration
and with parameter μ �= 0. From the top, left to right, Σ = [0.1, 0; 0, 0.1] and μ = (0, 1),
Σ = [0.1, 0; 0, 0.1] and μ = (0,−1), Σ = [0.1, 0; 0, 1] and μ = (0, 1), Σ = [0.1, 0; 0, 1] and
μ = (0,−1), Σ = [1, 0; 0, 10] and μ = (0, 1), and Σ = [1, 0; 0, 10] and μ = (0,−1).

Fig 8. The plots show several cases of correlated and not correlated BISN (μ,Σ) with dif-
ferent values of μ. The left column is centred at μ = (0, 0), while the right one is cen-
tred at μ = (0, 0.3). From top to bottom the variance matrices are Σ = [0.1, 0.05; 0.05, 0.1],
Σ = [0.1, 0; 0, 0.1] and Σ = [1, 0.5; 0.5, 1].

and a better understanding of the phenomenon under study. From Figure 12
and Figure 13, we note that there are some differences in the shape of the
bimodal ISND and the mixture of VM. In the case in which peaks are far away,
the mixture of VM keeps its symmetry around peaks, while the ISND becomes
skewed towards the zero angle. In the case in which peaks are close by, the
mixture of VM separates peaks more distinctly, while the ISND seems more
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Fig 9. The plots show different correlated BISN (μ,Σ) with varying values of μ and Σ. The
different combinations produce a high variety of shapes and more complicated mode structures.
With small μ, we see a translation of the peaks almost without skewness. With higher μ
skewness becomes significant. Left column, top to bottom: Σ = [0.1, 0; 0, 0.1] and μ = (1, 0.3),
Σ = [1, 0.5; 0.5, 1] and μ = (1, 0.3), and Σ = [1, 0.5; 0.5, 1] and μ = (0.1, 0.1), Right column:
Σ = [0.1, 0; 0, 1] and μ = (1, 0.3), Σ = [1, 0.05; 0.05, 1.5] and μ = (1, 0.3), and Σ = [1, 0; 0, 1]
and μ = (0.1, 0.1).

Fig 10. We plot the ISN(0, (4κ)−1) and the VM(0, κ) for κ = 10. The two curves are
basically indistinguishable.

Fig 11. We plot the BISN(0, (4κ)−1 ∗ Id) and the BVM(0, κ ∗ Id) for κ = 10. The two level
curves are basically indistinguishable.
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Fig 12. Bimodal ISND vs mixture of VM distribution with far away modes.

Fig 13. Bimodal ISND vs mixture of VM distribution with nearby modes.

suitable in the more complicated cases of almost indistinguishable peaks.

6.3. Applications to molecular biology

In this subsection, we consider some applications of our results to molecular
biology.

To illustrate the distribution of the dihedral angles φ and θ (sometimes called
conformational angles or torsional angles) in the protein main chain, people use
the so called Ramachandran map. The Ramachandran map identifies a point in
the protein main chain with a point on a flat square of the Euclidean plane
R

2 with opposite sides identified. From the mathematical point of view, the
Ramachandran map represents the embedding of the Flat Torus into the Eu-
clidean space R

4. It turns out to be a very useful starting point in the inference
process. We analyze the Ramachandran Plots of three proteins and model the
distributions of the dihedral angles with inverse stereographic distributions.

Myoglobin PDB=1MNB
The first dataset we consider contains the Dihedral Angles of Myoglobin from
the Protein Database [32]. Myoglobin is a globular protein whose function is to
store molecular oxygen in muscles. Its secondary structure consists mostly of
α-helices, so it is expected that the Ramachandran plot shows a highly concen-
trated region.

To fit the ISND model, we did not use the MLE, because it was giving
unintuitive results with lack of interpretability, possibly due to the fact that the
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Fig 14. Ramachandran Plot of Myoglobin and associated density estimate of the marginal
distribution of the dihedral angle Φ. The red line represent the empirical distribution, the
black the ISND fit.

convergence are phrased in norms given in the variables tan(Θ/2) and not Θ
(See also Remark 5.4 and Figure 2). The estimation problem definitely needs
further investigation. We decided to attack the problem with a semi-parametric
approach. We centred the dihedral angle ψ so we could apply our Comparison
Theorems from Section 3 and fit the parameter σ2 with the value which was
giving the ISND pdf closer to the empirical density in L∞-norm (which implies
closeness in distribution), in agreement with the convergence results of Section
3 (See also Figure 2). We did also the following further simplification in the
code. Reading through the lines of the proofs of the Comparison Theorems, one
can see that outside the mode (the distribution of the ψ angle for 1MND is
unimodal), there is no need to match the parameters of the distributions that
we are comparing since both distributions approach zero heavily. Where the
parameters matter the most is in the asymptotic shape of the mode. Therefore,
it is reasonable to think that the fit is most likely good if the modes are close.
Indeed, using this criterion, the fit seems pretty good as you can verify from
Figure 14. The distance between the fitted distribution and the kernel density
estimate of the empirical distribution is 0.01775444. This value has been found
by a simple search over the parameter σ2 with step size 10−3. In terms of the
mode structure, the model is also plausible.

Important Comment
The estimation in the Myoglobin PDB=1MNB example uncovers a very signif-
icant issue: since the MLE approach basically fits a normal distribution on the
real line, outliers, which are projected very far out by the inverse stereographic
map, lead to serious problems. A possible remedy could be found in trimmed
estimators which are known to be more robust in such cases.

Gomesin PDB=1KFP (Marginals and Bivariate ISND)
The second dataset we consider contains the Dihedral Angles of Gomesin from
the Protein Database [32]. Gomesin is a peptide isolated from the blood cells of
a spider. The interest in analyzing the dataset is that the Ramachandran Plot of
the dihedral angles of this protein show some skewness. Fitting the ISND as in
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Fig 15. Comparison of the two parameters and one parameter fit of the marginal density
estimate of the marginal distribution of the dihedral angle Ψ. The red line represent the
empirical distribution, the black the ISND fit.

the previous example, give us the plot on the right in Figure 15 and a distance
of 0.0006968093. However, we can see that the right tail is a little off and does
not show a really good fit. To prevent this to happen, we searched for the best
couple of parameters μ and σ2 jointly. The plot on the left in Figure 15 confirms
a better result and the distance in norm decreases to 2.409174 ∗ 10−6. This
example shows definitely an improvement in the fit, when using ISND instead
of VM in cases where the distribution of dihedral angles is significantly skewed.

For what concerns the joint distribution of the dihedral angles for the
Gomesin, we fitted a BISND. The MLE for the various parameters with cor-
responding 95% confidence intervals are given by μ̂φ = −1.096495 (−1.427,

−0.766), μ̂ψ = −0.946447 (−2.197, 0.304), σ̂2
φ = 4.289921 (3.467962, 5.444849),

σ̂2
ψ = 61.29062 (49.54718, 77.79121) and σ̂φ,ψ = −0.946447 (−2.675504,

2.464707). The original fit did not seem optimal, and heuristics in the choice of
the cut-point did not seem to work. Therefore, we performed a “grid-search”
over both angles in steps of π/16 and we obtained the fit in Figure 16 with
cut-point at P = (−9π/16,−14π/16). The BISND catches the skewness in the
distribution of the dihedral angles, but seems confused by presence of an extra
observation, to which it assigns an extra mode. This example shows both the the
pros and the cons in the use of the BISND to fit data on T

2, namely the extra
flexibility vs the problem of the choice of the cut-point. We refer to Section 7
for more coments on the choice of the cut-point. Note that as shown in Figure
16, the chain seems not long enough (153 dihedral angles) for a non-parametric
method, like kernel density estimation, to take over. We fitted also the BISND
using the criterion we used to fit the marginals. The distribution obtained fit
better close to the mode, but missed completely to catch the dihedral angles
in the zone −π < φ < 0, 0 < ψ < π, which is not desirable, since it is not a
forbidden region in the Ramachandran Plot. Considering the sensitivity of the
fit to the cut-point, we tried to estimate the parameters using robust statistics,
like the median, the interquartile range and the MCD by Rouseeuw and Van
Driessen [36]. The estimates for the various parameters give μ̂φ = −1.134703,
μ̂ψ = −0.6737781, σ̂φ = 0.1638183, σ̂ψ = 0.2821952 and σ̂φ,ψ = 0.007492636.
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Fig 16. Two fitted BISND for the Gomesin 1KFP vs Kernel Density Estimation. BISND
seems doing a better job in capturing some pattern, in particular if using robust statistics,
while KDE shows overfitting.

Note that the bigger variation in the estimate is given by the marginal vari-
ances, which now, since more robust, are responsible of the unimodality of the
fit (see Figure 16). We believe this last method gives the fit more representative
of the distribution of the dihedral angles, even if the best goodness of fit test
is produced by the non parsimonious KDE. Further investigation needs to be
done on this issue.

Important Comment
In general situations, it is not easy to provide a good parametric model for
distributions on manifolds, especially because the models available are much
less than the ones available on the Euclidean space. For example, it is often
hard to find a correct model if the VM, WN and ISND are not good models.
However, with the next example, we outline a procedure which might be useful
in such cases. Namely, we use the stereographic projection to send our data
to the Euclidean space, we build a model there and we project it back to the
manifold.

1208 Protein Structures from CDB

We consider a data set from the open access Conformational Angles DataBase
(see [5]). It consists of 8190 Conformation Angles from 1208 PDB structures
in 25% non-redundant protein chains. See Figure 17. The experiment method
taken into consideration is the NMR (Nuclear Magnetic Resonance). The Ra-
machandran Plot for the residue ALA is shown in Figure 17. The Shapiro-Wilk
Normality Test rejects beyond every reasonable doubt the hypothesis of nor-
mality on the projected data set and so we cannot conclude that these data are
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Fig 17. Ramachandran Plot of the 8190 Conformation Angles from 1208 PDB structures in
25% non-redundant protein chains.

distributed as an ISND (see Appendix B: Supplementary Material).
At this point, without taking advantage of the projected data set, it seems

not easy to find a reasonable model which fits the data well. Let us see how the
projected marginals behave under Stereographic Projection (see Figure 10). It
seems reasonable to test if −X ∼ exp(λ) and if Y ∼ exp(μ) for some λ > 0 and
μ > 0. To do this, we perform a Kolmogorov-Smirnov Test.

Remark 6.1. Although this hypothesis has been formulated after looking at
the data, here we are not interested in the result of the test, but in proposing
test procedures. A similar point of view has already been taken in [23] (See
Section 5.3 of that paper).

From the Kolmogorov-Smirnov Test (see Appendix B), we cannot reject the
Null Hypothesis, which does support our model. Note that the rejection region
has a more intuitive shape in the projected variables.

From the Ramachandran Plot, it is clear that there are two peaks and that
the data are clustered along two main major circles of the torus. Our model,
even if it fits well, does not see these differences, which translates to some lack
of power of our test. This is also unsatisfactory from a biological point of view,
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Fig 18. Stereographic projection of the marginals of the distributions of the 8190 Conforma-
tion Angles.

since the model is good only in the region of right handed α-helices, but is
not sensitive enough in the area of left handed α-helices. However, this dataset
contains 1208 PDB structures and so it would be probably too much requesting
a better performance for a model with so few parameters.

This example shows a possible procedure to adopt in the cases where more
common models, like VM or WN do not provide a good fit and/or it is incon-
venient to increase too much the number of parameters (using mixtures, for
example).

Remark 6.2. Using the novel hybrid QTAIM Ramachandran plots (see [27]),
we think that the BISND could potentially be useful in modelling the glycine
amino acid monomer, which largely occupies the “forbidden” regions of the
Ramachandran plot.

Remark 6.3. VMs are successfully used in Projective Shape Analysis (see for
example [9] and [24]). It is definitely important to see if the ISND family is a good
model in that context as well. Because of the Comparison Theorems presented
in Section 3, we expect similar performances in the high-concentration limit.

7. Discussion

In this section, we critically discuss the advantages and disadvantages in mod-
elling distribution as Inverse Stereographic Distributions.

The cut-point
The construction of an inverse stereographic projected distribution might not
seem completely satisfactory for the possible ambiguity left in the choice of the
cut-point. Consider for simplicity the case of n = 2, namely Θ ∈ S

1, and let
θ0 be the North Pole of the corresponding Stereographic Projection. For generic
α, β ∈ S

1, we have that PΘ(Θ ∈ [α, β]) depends on θ0. This does not seem a
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desirable property. However, the choice of the North Pole corresponds to the
choice of the point at infinity in the real line. Also that is arbitrary and “breaks
the symmetry” of the real line. Very similarly, the choice of the North Pole
“breaks the symmetry” of the circle. Analogously can be argued for the choice
of the origin of a coordinate system of the real line. Note that the problem of
the cut-point is strictly connected to the fact that the circle S1 is homeomorphic
to the real projective line PR

1, but not to the real line R. This seems to us the
intrinsic reason for which this problem cannot be fully resolved.

A richer family of distributions can be considered by introducing a trans-
lation parameter θ0, in which case the fit can be optimized over θ0. In this
perspective, the corresponding family of normal distributions might be consid-
ered more naturally on PR

1, with θ0 corresponding to the point at infinity. The
extra flexibility has been proven to be useful in the applications considered in
Section 6.

Population and Sample ISMs
The definitions of ISMs turn out to be somehow independent of the choice of the
North Pole. To fix the ideas, consider the case n = 2. The choice of the North
Pole N is as arbitrary as the choice of the origin or the point at infinity in the
real line. A line does not know anything about the system of coordinates that
we put on. In the same way, the circle has no intrinsically well defined North
Pole. However, we want that characteristic quantities like the expected value
and the variance are as independent as possible with respect to the choice of
the North Pole.

If we choose a North Pole N ′ �= N , you can go from one Stereographic
Projection to another by a simple change in the angles θi �→ θ + θ0i for i =
1, . . . , n. This choice of N ′ produces a new Inverse Stereographic Projection
and so a new pdf fΘ(θ + θ0) �= fΘ(θ). The measure also changes consistently(

dθ
1+cos θ �→ dθ

1+cos(θ+θ0)

)
, and so it compensates the change in the pdf.

This procedure of choosing a geometric definition of moments leaves every
characteristic quantity to be invariant. There is still the dependence on the
choice of the origin (or of the point at infinity) in the Euclidean Space and so
the definition is not perfectly independent of any coordinate system. However,
this sort of dependence on the coordinate system is the same as the Euclidean
one, where it is well accepted and unavoidable.

If we pose our attention to the sample moments, instead of the population
moments, we need to consider the possibility of data points crossing the cut-
point. Note that the ISND approaches zero heavily in the neighbourhood of the
cut-point and makes the crossing less likely to happen. Nevertheless, confidence
bands around the cut-point can get extremely large, as shown in Figure 2.
Distributions with positive probability in the neighbourhood of the cut-point
do not have finite population moments, as shown in Proposition 4.6.

ISMs vs CMs
The canonical definition of CMs run into some problems due to the fact that
they do not take into consideration the different geometry of the circle and torus.
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Consider the sample mean of two angles. If the angles are θ1 = −0.01 and
θ2 = +0.01, we have no problem to say that the mean is 0. Suppose, instead,
the angles are −π

2 and π
2 . Then, it is not clear if it is more reasonable to say

that the mean is 0 or π.

Knowing the mean is much more meaningful in the Euclidean setting than in
a periodic setting, where −∞ and +∞ join together. The ISMs address this issue
by “breaking the symmetry” of the circle and keeping −∞ and +∞ distinct.
In this way, the problem mentioned above no longer exists. This procedure also
suggests that it might be more intuitive to give an interpretation of parameters of
circular/toroidal distributions after stereographic projection of the distribution,
as we have done above.

Parameter Estimation vs cut-point

Another important issue which naturally arises from the above comments is how
the parameter estimation is influenced by the choice of the cut-point.

Suppose we have a set of observations on S
1 highly concentrated around a

point θ and we believe the underlying probability distribution come from an in-
verse stereographic family. If we believe that unimodality needs to be highlighted
in our model, it is not recommended to choose the cut-point in the middle of
the cluster, because that would in fact risk to split the single mode into two
modes highly concentrated around the cut-point. It is indeed more reasonable
to choose the cut-point opposite to the centre of the cluster.

For real valued random variables, the parameter estimation is also influenced
by the choice of the coordinate system, but in a more linear way and so, the
influence is more intuitive, especially in the case of a normal distribution. The
stereographic projection is nonlinear and so does not preserve linearity. As a
consequence, different choices of cut-points lead to different parameter estima-
tions.

8. Conclusion

In this paper, we have discussed several aspects of the ISND. We have de-
rived some theoretical properties, like the unimodality conditions, and proved
the Comparison Theorems with the VM and the WN. Then, we discussed the
ISMs, the ISMGF and an intrinsic version of the CLT. We concluded with the
illustrations, and some applications to molecular biology.

ISMs bring a novel perspective to the parametric statistics on manifolds and
need to be investigated further. The performance of inverse stereographic esti-
mators with respect to classical ones deserves future attention.

To verify the potential of ISND especially in higher dimensional models, fur-
ther applications need to be tested. The possibility for the BISND to have more
than two peaks might make the BISND flexible enough to describe the secondary
structure of some of the proteins whose dihedral angles have multimodal distri-
butions without the need of mixture models.
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Appendix A: Proofs

In Appendix A, we give the proofs of the theorems presented in the paper.

Proof of Theorem 2.3

We give the proof just in the case n = 2, which is more interesting for the
applications that we have in mind, but the proof for the general case follows in
a similar way.

Suppose a random variable Θ := {Θ1, . . . ,Θn} ∼ MISN (μ,Σ). Its pdf is
given by

fΘ(θ) := (2π)−n/2|Σ|−1/2
n∏

i=1

1

1 + cos θi
×

e
− 1

2

(
sin θ1

1+cos θ1
−μ1,...,

sin θn
1+cos θn

−μn

)T
Σ−1

(
sin θ1

1+cos θ1
−μ1,...,

sin θn
1+cos θn

−μn

)
,

for some μ := (μ1, . . . , μn) ∈ R
n, some Σ ∈ Sym+

n×n and for any θ = (θ1, . . . ,
θn) ∈ [−π,+π)n. In the case n = 2, we have:

fΘ1,Θ2(θ1, θ2) :=
1

2π|Σ|1/2
1

(1 + cos θ1)

1

(1 + cos θ2)

× e
− 1

2

[
sin θ1

1+cos θ1
−μ1,

sin θ2
1+cos θ2

−μ2

]T
Σ−1

[
sin θ1

1+cos θ1
−μ1,

sin θ2
1+cos θ2

−μ2

]
.

Therefore,

fΘ1(θ1) =

∫ +π

−π

dθ2fΘ1,Θ2(θ1, θ2) =

∫ +π

−π

dθ2
1

2π|Σ|1/2
1

(1 + cos θ1)

1

(1 + cos θ2)
×

× e
− 1

2

[
sin θ1

1+cos θ1
−μ1,

sin θ2
1+cos θ2

−μ2

]T
Σ−1

[
sin θ1

1+cos θ1
−μ1,

sin θ2
1+cos θ2

−μ2

]
.

Now, define B := Σ−1 and so Bij = (Σ−1)ij for j = 1, 2 and 2b = b12 + b21.
This implies that

fΘ1(θ1) =
1

2π|Σ|1/2
e
− b11

2

{
sin θ1

1+cos θ1
−μ1

}2

(1 + cos θ1)

×
∫ +π

−π

dθ2
(1 + cos θ2)

e
− b22

2

{
sin θ2

1+cos θ2
−μ2

}2

e
− 2b

2

{
sin θ1

1+cos θ1
−μ1

}{
sin θ2

1+cos θ2
−μ2

}
.

Now, we do the following change of variables:

z :=
sin θ2

1 + cos θ2
− μ2, dz =

dθ2
1 + cos θ2

.

Then, we obtain:

fΘ1(θ1) =
1

2π|Σ|1/2
e
− b11

2

{
sin θ1

1+cos θ1
−μ1

}2

(1 + cos θ1)

∫ +∞

−∞
dze−

1
2 [2bα(θ1)z+b22z

2],
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with α(θ1) :=
sin θ1

1+cos θ1
− μ1. Upon completing the square, we get

fΘ1(θ1) =
1

2π|Σ|1/2
e
− b11

2

{
sin θ1

1+cos θ1
−μ1

}2

e
+ b2

2b22

{
sin θ1

1+cos θ1
−μ1

}2

(1 + cos θ1)
×

∫ +∞

−∞
dze

− 1
2

[
b22z+

bα(θ1)√
b22

]2

.

By performing another change of variables

x := b22z +
bα(θ1)√

b22
, dx = b22dz,

we get

fΘ1(θ1) =
1

2π|Σ|1/2
√
b22

e
− b11

2

{
sin θ1

1+cos θ1
−μ1

}2

e
+ b2

2b22

{
sin θ1

1+cos θ1
−μ1

}2

(1 + cos θ1)

∫ +∞

−∞
dxe−

1
2x

2

=

√
b22b11 − b2√
2π

√
b22

e
− 1

2
b11b22−b2

b22

{
sin θ1

1+cos θ1
−μ1

}2

(1 + cos θ1)
=

1√
2πΣ11

e
− 1

2Σ11

{
sin θ1

1+cos θ1
−μ1

}2

(1 + cos θ1)
.

Since

fΘ1(θ1) =
1√

2πΣ11

e
− 1

2Σ11

{
sin θ1

1+cos θ1
−μ1

}2

(1 + cos θ1)
,

then Θ1 ∼ ISN(μ1,Σ11). Thus, the family of MISND is closed under marginal-
ization, as required.

Proof of Theorem 2.6

We need to solve the equation

σ2 sin θ −
(

sin θ

1 + cos θ
− μ

)
= 0

for μ ∈ R, μ �= 0 and σ2 > 0 and deduce the conditions on μ, σ2 for which it
has only a single solution for θ ∈ (−π,+π). We have already discussed the case
θ = −π, and so we can assume θ ∈ (−π,+π). In this domain the transformation
t = tan(θ/2) is a diffeomorphism, so we can use the parametric equations

sin θ =
2t

1 + t2
, cos θ =

1− t2

1 + t2
,

(there is a one-to-one correspondence between the solutions in θ and the solu-
tions in t). We get:

σ2 2t

1 + t2
−

(
2t

1+t2

1 + 1−t2

1+t2

− μ

)
= 0,



Geometric pdfs on the torus with applications to molecular biology 2749

which simplifying becomes

σ2 2t

1 + t2
− t+ μ = 0

and so
σ22t− t(1 + t2) + μ(1 + t2) = 0

or better
t3 − μt2 + (1− 2σ2)t− μ = 0.

We want to find conditions on μ and σ2 so that this polynomial admits only
one real solution in t. For this, we need to examine the Discriminant of the
Polynomial. We recall the following lemma.

Lemma A.1. Consider the polynomial

P [t; a, b, c, d] := at3 + bt2 + ct+ d = 0

with a �= 0 and a, b, c, d ∈ R. Equation P [t; a, b, c, d] = 0 has at least one real
solution t1. Moreover, let

Δ := 18abcd− 4b3d+ b2c2 − 4ac3 − 27a2d2

be the Discriminant of P [t; a, b, c, d]. Then:

• If Δ > 0, P [t; a, b, c, d] has three distinct real roots;
• If Δ = 0, P [t; a, b, c, d] has multiple roots and all the roots are real;
• If Δ < 0, P [t; a, b, c, d] has one real root and two complex conjugate roots.

We use this lemma for the polynomial

P [t; a, b, c, d] = t3 − μt2 + (1− 2σ2)t− μ.

In the notation of Lemma A.1, we have

a = 1, b = −μ, c = 1− 2σ2, d = −μ.

Therefore, the discriminant Δ = Δ(μ, σ2) in this case becomes

Δ(μ, σ2) = 18μ2(1− 2σ2)− μ4 + μ2(1− 2σ2)2 − 4(1− 2σ2)3 − 27μ2.

Note that for μ = 0, we recover the case already treated above and in [1].
Lemma A.1 tells us that, when Δ(μ, σ2) < 0, we have one single root in t, and
so we have unimodality in t and so in θ, and that, when Δ(μ, σ2) > 0, we have
three distinct roots in t and hence we have multimodality in t and so in θ. The
proof of the theorem is not complete yet, because it is still possible that for
Δ(μ, σ2) = 0, there are three identical roots. Note that since our polynomial is
monic, then to have three identical roots β ∈ R it needs to be of the form:

t3 − 3βt2 + 3β2t− β3 = 0.
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This implies the following conditions on μ and σ2:

−μ = −3β, 1− 2σ2 = 3β2, −μ = −β3.

Note that the first and third condition together imply either β = 0 and so μ = 0
and σ2 = 1

2 which has been treated before, or β2 = 3. But β2 = 3 together
with the second condition implies 1 − 2σ2 = 9 which is a contradiction. This
completes the proof of the theorem.

Remark A.2. The solutions of this system can be calculated explicitly and
pretty easily using some symbolic software like Maple or Wolfram Alpha. How-
ever, they have a complicated form and do not add any extra insight. Therefore,
we have decided to not report them in the paper.

Proofs of Comparisons Theorems

Proof of Theorem 3.1 We have for K := [−κ−1/3, κ−1/3]

‖fVM (θ | 0, κ)− fISN (θ | 0, σ2)‖L∞([−π,+π)) =

max
{ ∥∥fVM (θ | 0, κ)− fISN (θ | 0, σ2)

∥∥
L∞(K)

,∥∥fVM (θ | 0, κ)− fISN (θ | 0, σ2)
∥∥
L∞([−π,+π)\K)

}
.

Consider the first argument of the max. We get (for κ � 1):∥∥∥∥ eκ cos(θ)

2πI0(κ)
− 1√

2πσ2

1

1 + cos θ
e−

1
2σ2 ( sin θ

1+cos θ )
2
∥∥∥∥
L∞(K)

≤

sup
|θ|≤κ−1/3

∣∣∣∣
√

κ

2π

(
eκ(cos θ−1) − e−2κ( sin θ

1+cos θ )
2
)∣∣∣∣ =

sup
|θ|≤κ−1/3

√
κ

2π
e−2κ( sin θ

1+cos θ )
2
∣∣∣(eκ(cos θ−1−2( sin θ

1+cos θ )
2
) − 1

)∣∣∣ ≤
sup

|θ|≤κ−1/3

√
κ

2π
e−κ θ2

2 ∗ sup
|θ|≤κ−1/3

∣∣∣(eκ(cos θ−1−θ2/2) − eκ
θ2

2 −2κ( sin θ
1+cos θ )

2)∣∣∣
≤ Cκ−1/3 → 0, as κ → +∞.

for some C > 0 by Lagrange remainder’s theorem.
Consider the second argument of the max. We get (for κ � 1):∥∥∥∥ eκ cos(θ)

2πI0(κ)
− 1√

2πσ2

1

1 + cos θ
e−

1
2σ2 ( sin θ

1+cos θ )
2
∥∥∥∥
L∞([−π,+π)\[−κ−1/3,κ−1/3])

=

∥∥∥∥ eκ cos(θ)

2πI0(κ)
− 1√

2πσ2

1

1 + cos θ
e−

1
2σ2 ( sin θ

1+cos θ )
2
∥∥∥∥
L∞([κ−1/3,+π))

≤
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∥∥∥∥ eκ cos(θ)

2πI0(κ)

∥∥∥∥
L∞([κ−1/3,+π))

+

∥∥∥∥ 1√
2πσ2

1

1 + cos θ
e−

1
2σ2 ( sin θ

1+cos θ )
2
∥∥∥∥
L∞([κ−1/3,+π))


 1√
2π/κ

eκ(1−κ−2/3−1) +
1√
2π/κ

e−κ1/3/2 → 0, as κ → 0,

where in the last inequality we used the fact that the function

1√
2πσ2

1

1 + cos θ
e−

1
2σ2 ( sin θ

1+cos θ )
2

is monotone decreasing in θ. This completes the proof of the theorem.

Remark A.3. Due to the extra parameters of the BVM, there are several
possible regimes in which the BVM distribution and BISND are close to each
other.

With the choice of the parameters in Theorem 3.2, the BVM and BISND
match at second order near the origin. If we want the two families to match
at cubic order near the origin, we need a = 0 (which is the coefficient of the
term −θ1θ

2
2 − θ2θ

3
1). It is not possible for the two families to match at quartic

order since that would require κ1 = −12b11 (coefficients of θ41) and κ2 = −12b22
(coefficients of θ42) which would be in contradiction with the matching conditions
at second order κ1 = b11

4 and κ2 = b22
4 .

Proof of Theorem 4.12

By construction of the ISMGF, we have

MS
1

Θi
(t) = MP (Θi)(t),

for every i ∈ N. This implies that

ES
1

[Θi] = μ, V arS
1

[Θi] = σ2.

By definition of ISMGF, we obtain

MS
1

Φn
(t) = MS

1

P−1

( √
n( 1

n

∑n
i=1

P (Θi)−μ)
σ

) (t) = M√
n( 1

n

∑n
i=1

P (Θi)−μ)
σ

(t).

The random variable
√
n( 1

n

∑n
i=1 P (Θi)−μ)
σ satisfies all the hypotheses of the clas-

sical CLT. Moreover, independence is preserved by the Stereographic Projection,
as it can be seen by the following chain of equalities:

fΘ1,Θ2(θ1, θ2) = fX1,X2

(
sin θ1

1 + cos θ1
,

sin θ2
1 + cos θ2

)
dθ1

1 + cos θ1

dθ2
1 + cos θ2

= fX1

(
sin θ1

1 + cos θ1

)
fX2

(
sin θ2

1 + cos θ2

)
dθ1

1 + cos θ1

dθ2
1 + cos θ2

= fΘ1(θ1)fΘ2(θ2).
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Therefore, √
n

(
1
n

∑n
i=1 P (Θi)− μ

)
σ

→ X ∼ N (0, 1)

in distribution. By the continuous mapping theorem,

g

(√
n

(
1
n

∑n
i=1 P (Θi)− μ

)
σ

)
→ g(X)

for every continuous g. We have that

M√
n( 1

n

∑n
i=1

P (Θi)−μ)
σ

→ MN (0,1) = MP−1(N (0,1))(t) = MISN (0,1)(t)

and so that
MS

1

Φn
(t) → MISN (0,1)(t) as n → +∞.

Also
Φn → ISN (0, 1) as n → +∞,

by the continuous mapping theorem with g = P−1. This concludes the proof of
the theorem.

Appendix B: Supplementary material

We provide several of the codes used in the manuscript. The missing ones are
simple adaptations of the ones presented here.

Here is the code for the Unimodality Plot

#mu^2 vs 1-2*sigma^2

import numpy as np

import matplotlib.pyplot as plt

xlist = np.linspace(0, 10, 500)

ylist = np.linspace(-9, 1, 500)

X, Y = np.meshgrid(xlist, ylist)

Z = np.sqrt(18*X*Y-X**2+X*Y**2-4*Y**3-27*X)

plt.figure()

contour = plt.contour(X, Y, Z, levels=[0])

contour_filled = plt.contourf(X, Y, Z, levels, colors=[’g’])

plt.title(’Unimodality vs Multimodality’)

plt.xlabel(’mu^2’)

plt.ylabel(’1-2*sigma^2’)

plt.show()

#mu vs sigma^2

import numpy as np

import matplotlib.pyplot as plt

xlist = np.linspace(-10, 10, 500)

ylist = np.linspace(0, 20, 500)
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X, Y = np.meshgrid(xlist, ylist)

Z = np.sqrt(18*X**2*(1-2*Y)-X**4+X**2*(1-2*Y)**2

-4*(1-2*Y)**3-27*X**2)

plt.figure()

contour = plt.contour(X, Y, Z, levels=[0])

contour_filled = plt.contourf(X, Y, Z, levels, colors=[’g’])

plt.title(’Unimodality vs Multimodality’)

plt.xlabel(’mu’)

plt.ylabel(’sigma^2’)

plt.show()

The following is the code to plot ISND at different level of concentration.
This is for the case μ = 0, but a similar one can be produced when μ = 1.

##Plots ISND##

par(mfrow=c(2,2))

##Unimodal

sigma2=0.1

mu=0

eq = function(x){1/(2*pi*sigma2)^0.5*1/(1+cos(x))

*exp(-1/(2*sigma2)*(sin(x)/(1+cos(x))-mu)^2)}

plot(eq, from = -pi, to = pi, type=’l’,xlab="angle theta",

ylab="ISND(0,0.1)-unimodal-")

##Unimodal (umbilic top-threshold)

sigma2=0.5

mu=0

eq = function(x){1/(2*pi*sigma2)^0.5*1/(1+cos(x))

*exp(-1/(2*sigma2)*(sin(x)/(1+cos(x))-mu)^2)}

plot(eq, from = -pi, to = pi, type=’l’,xlab="angle theta",

ylab="ISND(0,0.5)-unimodal-")

##Multimodal (Standard ISND)

sigma2=1

mu=0

eq = function(x){1/(2*pi*sigma2)^0.5*1/(1+cos(x))

*exp(-1/(2*sigma2)*(sin(x)/(1+cos(x))-mu)^2)}

plot(eq, from = -pi, to = pi, type=’l’,xlab="angle theta",

ylab="(standard) ISND(0,1)-multimodal-")

#Multimodal (low concentration)

sigma2=10

mu=0

eq = function(x){1/(2*pi*sigma2)^0.5*1/(1+cos(x))

*exp(-1/(2*sigma2)*(sin(x)/(1+cos(x))-mu)^2)}

plot(eq, from = -pi, to = pi, type=’l’,xlab="angle theta",
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ylab="ISND(0,10)-multimodal-")

This is the code for the Correlated Bivariate ISND:

%%%%%

%%%Bivariate ISND

%%%%%

%%% Correlated, different values Sigma and mu. %%%

%Figure 1

x = linspace(-pi,pi);

y = linspace(-pi,pi);

[X,Y] = meshgrid(x,y);

sigma12=0.1;

sigma22=0.1;

t=0;

b11=sigma22/(sigma12*sigma22-t^2);

b=-t/(sigma12*sigma22-t^2);

b22=sigma12/(sigma12*sigma22-t^2);

mu1=1;

mu2=0.3;

b=0;

Z = exp( -(0.5*b11)*(tan(X/2)-mu1).^2).

*exp(-(0.5*b22)*(tan(Y/2)-mu2).^2)

.*exp( -(b)*(tan(X/2)-mu1).*(tan(Y/2)-mu2))

.*((sigma12*sigma22-t^2)*(1+cos(X)).*(1+cos(Y))).^(-1);

figure

subplot(3,2,1);

contour(X,Y,Z)

title(’Sigma=[0.1,0;0,0.1] and mu=(1,0.3)’)

hold on

%Figure 2

x = linspace(-pi,pi);

y = linspace(-pi,pi);

[X,Y] = meshgrid(x,y);

sigma12=0.1;

sigma22=1;

t=0;

b11=sigma22/(sigma12*sigma22-t^2);

b=-t/(sigma12*sigma22-t^2);

b22=sigma12/(sigma12*sigma22-t^2);

mu1=1;

mu2=0.3;

b=0;

Z = exp( -(0.5*b11)*(tan(X/2)-mu1).^2).

*exp(-(0.5*b22)*(tan(Y/2)-mu2).^2)
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.*exp( -(b)*(tan(X/2)-mu1).*(tan(Y/2)-mu2))

.*((sigma12*sigma22-t^2)*(1+cos(X)).*(1+cos(Y))).^(-1);

subplot(3,2,2);

contour(X,Y,Z)

title(’Sigma=[0.1,0;0,1] and mu=(1,0.3)’)

hold on

%Figure 3

x = linspace(-pi,pi);

y = linspace(-pi,pi);

[X,Y] = meshgrid(x,y);

sigma12=1;

sigma22=1;

t=0;

b11=sigma22/(sigma12*sigma22-t^2);

b=-t/(sigma12*sigma22-t^2);

b22=sigma12/(sigma12*sigma22-t^2);

mu1=0.1;

mu2=0.1;

b=0;

Z = exp( -(0.5*b11)*(tan(X/2)-mu1).^2).

*exp(-(0.5*b22)*(tan(Y/2)-mu2).^2)

.*exp( -(b)*(tan(X/2)-mu1).*(tan(Y/2)-mu2))

.*((sigma12*sigma22-t^2)*(1+cos(X)).*(1+cos(Y))).^(-1);

subplot(3,2,6);

contour(X,Y,Z)

title(’Sigma=[1,0;0,1] and mu=(0.1,0.1)’)

hold on

%Figure 4

x = linspace(-pi,pi);

y = linspace(-pi,pi);

[X,Y] = meshgrid(x,y);

sigma12=1;

sigma22=1;

t=0;

b11=sigma22/(sigma12*sigma22-t^2);

b=-t/(sigma12*sigma22-t^2);

b22=sigma12/(sigma12*sigma22-t^2);

mu1=0.1;

mu2=0.1;

b=0.5;

Z = exp( -(0.5*b11)*(tan(X/2)-mu1).^2).

*exp(-(0.5*b22)*(tan(Y/2)-mu2).^2)

.*exp( -(b)*(tan(X/2)-mu1).*(tan(Y/2)-mu2))

.*((sigma12*sigma22-t^2)*(1+cos(X)).*(1+cos(Y))).^(-1);

subplot(3,2,5);

contour(X,Y,Z)
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title(’Sigma=[1,0.5;0.5,1] and mu=(0.1,0.1)’)

hold on

%Figure 5

x = linspace(-pi,pi);

y = linspace(-pi,pi);

[X,Y] = meshgrid(x,y);

sigma12=1;

sigma22=1.5;

t=0;

b11=sigma22/(sigma12*sigma22-t^2);

b=-t/(sigma12*sigma22-t^2);

b22=sigma12/(sigma12*sigma22-t^2);

mu1=1;

mu2=0.3;

b=0.05;

Z = exp( -(0.5*b11)*(tan(X/2)-mu1).^2).

*exp(-(0.5*b22)*(tan(Y/2)-mu2).^2)

.*exp( -(b)*(tan(X/2)-mu1).*(tan(Y/2)-mu2))

.*((sigma12*sigma22-t^2)*(1+cos(X)).*(1+cos(Y))).^(-1);

subplot(3,2,4);

contour(X,Y,Z)

title(’Sigma=[1,0.05;0.05,1.5] and mu=(1,0.3)’)

hold on

%Figure 6

x = linspace(-pi,pi);

y = linspace(-pi,pi);

[X,Y] = meshgrid(x,y);

sigma12=1;

sigma22=1;

t=0;

b11=sigma22/(sigma12*sigma22-t^2);

b=-t/(sigma12*sigma22-t^2);

b22=sigma12/(sigma12*sigma22-t^2);

mu1=1;

mu2=0.3;

b=0.5;

Z = exp( -(0.5*b11)*(tan(X/2)-mu1).^2).

*exp(-(0.5*b22)*(tan(Y/2)-mu2).^2)

.*exp( -(b)*(tan(X/2)-mu1).*(tan(Y/2)-mu2))

.*((sigma12*sigma22-t^2)*(1+cos(X)).*(1+cos(Y))).^(-1);

subplot(3,2,3);

contour(X,Y,Z)

title(’Sigma=[1,0.5;0.5,1] and mu=(1,0.3)’)

hold on
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Here, we give the codes for the comparison between the bimodal ISND and a
mixture of VM:

#mixture Separated

x<-seq(-pi,+pi, length=1000);

head(x)

kappa1<-15;

kappa2<-15;

e<-0.7;

mu1<-(pi-e);

mu2<-(pi+e);

p1<-0.5;

y<-p1*exp(kappa1*(cos(x-mu1)))/(2*pi*besselI(kappa1,0))+(1-p1)

*exp(kappa2*(cos(x-mu2)))/(2*pi*besselI(kappa2,0))

plot(x,y)

sigma2<-kappa1*p1+kappa2*(1-p1);

mu<-0;

y<-((2*pi*sigma2)^0.5*(1+cos(x)))^(-1)

*exp(-0.5*((sigma2)^(-1))*(tan(x/2)-mu)^2);

plot(x,y)

#mixture Closeby

x<-seq(-pi,+pi, length=1000);

head(x)

kappa1<-5;

kappa2<-5;

e<-1;

mu1<-(-e);

mu2<-(+e);

p1<-0.5;

y<-p1*exp(kappa1*(cos(x-mu1)))/(2*pi*besselI(kappa1,0))+(1-p1)

*exp(kappa2*(cos(x-mu2)))/(2*pi*besselI(kappa2,0))

plot(x,y)

sigma2=1;

#sigma2<-kappa1*p1+kappa2*(1-p1);

mu<-0;

y<-((2*pi*sigma2)^0.5*(1+cos(x)))^(-1)

*exp(-0.5*((sigma2)^(-1))*(tan(x/2)-mu)^2);

plot(x,y)

This is the code for the comparison of the VM and the ISDN.

#Comparison von Mises ISND

curve(sqrt(101)/(sqrt(2*pi)*(1+cos(x+pi/2)))

x = -pi:pi/100:pi;

kappa=10;

y = (2*kappa/pi)^0.5.*(1+cos(x)).^(-1).
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*exp(-2*kappa.*(tan(x/2)).^2);

plot(x,y)

hold on

y = exp(kappa*cos(x))./(2*pi*besseli(0,kappa));

plot(x,y)

legend(’ISND(0,1/(4kappa))’,’VM(0, kappa)’)

This is the code for confidence bands.

e<-1;

plot(x,dnorm(x, mean=0, sd=10),

xlim=c(-pi, pi), ylim=c(-2, 2), col="red")

lines(x,dnorm(x, mean=0, sd=10)

+e, xlim=c(-pi, pi), ylim=c(-2, 2), col="blue")

lines(x,dnorm(x, mean=0, sd=10)

-e, xlim=c(-pi, pi), ylim=c(-2, 2))

plot(x,(1+cos(x))^(-1)*dnorm(tan(x/2), mean=0, sd=10),

xlim=c(-pi, pi), ylim=c(-2, 2), col="red")

lines(x,(1+cos(x))^(-1)*(dnorm(tan(x/2), mean=0, sd=10)+e),

xlim=c(-pi, pi), ylim=c(-2, 2), col="blue")

lines(x,(1+cos(x))^(-1)*(dnorm(tan(x/2), mean=0, sd=10)-e),

xlim=c(-pi, pi), ylim=c(-2, 2))

This is the code for the analysis of the Gomesin’s dihedral angle ψ:

###Gomesin

##2 parameters

phi<-(pi/180)*na.omit(tor$phi)

psi<-(pi/180)*na.omit(tor$psi[2:19])

plot(phi, psi)

#Variance estimate

sigma2=0;

err<-10;

m<-max(density(psi)$y);

mu<-0;

for (k in 1:1000) {

sigma2<-k/1000;

for (j in 1:1000) {

mu<- -pi+2*pi*j/1000;

z<-((1+cos(psi))*(sqrt(2*pi*sigma2)))^(-1)

*exp(-(0.5/sigma2)*(tan(-psi/2)-mu)^2);

if (max(abs(m-max(z)))<err) {

t<-k;

s<-j;

err<-max(abs(m-max(z)));

}
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}

}

print(t)

#Psi Marginals S1

plot(density(psi),

xlim=c(min(psi), max(psi)), ylim=c(0,3), col="red")

x<-seq(-pi, +pi, length=1000);

mu=-pi+2*pi*s/1000;

sigma2=t/1000;

w<-((1+cos(x))*(sqrt(2*pi*sigma2)))^(-1)

*exp(-(0.5/sigma2)*(tan(x/2)-mu)^2)

lines(x+pi/2,w,

xlim=c(min(psi)-density(psi)$x[which.max(density(psi)$y)],

max(psi)-density(psi)$x[which.max(density(psi)$y)]), col="black")

err

This code loads and analyzes the data relative to the example in molecular
biology from CDB.

#Data

require(gdata);

DihedralAnglesData = read.xls ("/DehidralAnglesData_JustAngles

_CorrectDataGoodFormat.xls",

sheet = 1, header = TRUE);

DAD<-DihedralAnglesData;

head(DAD);

plot(DAD[,1],DAD[,2]);

plot(DAD[,1],DAD[,2],

main="Ramachandran Plot", xlab="phi-angle(degrees)",

ylab="psi-angle(degrees)");

AngoliMedi<-c(mean(DAD[,1]), mean(DAD[,2]));

var(DAD);

smoothScatter(DAD[,1],DAD[,2],

main="Ramachandran Plot-SmoothScatter",

xlab="phi-angle(degrees)", ylab="psi-angle(degrees)")

x=sin(2*pi*DAD[,1]/360)/(1+cos(2*pi*DAD[,1]/360));

y=sin(2*pi*DAD[,2]/360)/(1+cos(2*pi*DAD[,2]/360));

Projected<- matrix(c(x,y), nrow = 8190, ncol=2);

dim(Projected);

plot(Projected[,1], Projected[,2],

xlim=c(-20,20), ylim=c(-20,20))

#Estimation:

mean(x)

[1] -2.092306
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mean(y)

[1] 2.257566

InvProjMeanX<- 2*atan(mean(x))

InvProjMeanY<- 2*atan(mean(y))

InvProjMeanX

[1] -2.249901

InvProjMeanY

[1] 2.307633

#Test

library(mvnormtest)

require(mvnormtest)

mshapiro.test(t(Projected[1:4000,]))

Shapiro-Wilk normality test

data: Z

W = 0.1063, p-value < 2.2e-16

#Reject the test of Normality without any doubt,

accordingly to the Shapito Test.

This code produces the marginals for the dataset in the example from CDB.

par(mfrow=c(2,2)); hist(x,breaks=10000, xlim=c(-10,10));

hist(y,breaks=10000, xlim=c(-10,10));

We test our proposed distributions with with Kolmogorov-Smirnov.

ks.test(y,mean(y))

Two-sample Kolmogorov-Smirnov test

data: y and mean(y)

D = 0.8172, p-value = 0.5165

alternative hypothesis: two-sided

ks.test(-x,mean(-x))

Two-sample Kolmogorov-Smirnov test

data: -x and mean(-x)

D = 0.8641, p-value = 0.4442

alternative hypothesis: two-sided

#The Projected look like exponential (the y) and reversed

exponential (the x). This may suggest a stereographic double

exponential as a good fit. Can’t reject, it seems a good fit.
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