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Abstract: Survey data are often collected under informative sampling de-
signs where subject inclusion probabilities are designed to be correlated
with the response variable of interest. The data modeler seeks to estimate
the parameters of a population model they specify from these data. Sam-
pling weights constructed from marginal inclusion probabilities are typically
used to form an exponentiated pseudo likelihood as a plug-in estimator in
a partially Bayesian pseudo posterior. We introduce the first fully Bayesian
alternative, based on a Bayes rule construction, that simultaneously per-
forms weight smoothing and estimates the population model parameters
in a construction that treats the response variable(s) and inclusion proba-
bilities as jointly randomly generated from a population distribution. We
formulate conditions on known marginal and pairwise inclusion probabil-
ities that define a class of sampling designs where L1 consistency of the
joint posterior is guaranteed. We compare performances between the two
approaches on synthetic data. We demonstrate that the credibility intervals
under our fully Bayesian method achieve nominal coverage. We apply our
method to data from the National Health and Nutrition Examination Sur-
vey to explore the relationship between caffeine consumption and systolic
blood pressure.
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1. Introduction

Our focus is on inference about a population generating distribution, P0, esti-
mated on an observed sample data acquired under a complex survey sampling
design from a finite population. A known sampling design distribution, Pν , de-
fines a joint distribution over the random inclusions of units from the finite
population (previously generated from P0). The sampling design distribution,
Pν , often intentionally constructs a correlation between specified unit inclusion
probabilities and the response variable of interest; for example, the U.S. Bureau
of Labor Statistics (BLS) employs proportion-to-size (PPS) sampling design
in the Current Employment Statistics (CES) survey. The CES is administered
with the purpose to construct total employment statistics for area and industry-
indexed domains. Establishments with larger employment values are assigned
higher unit inclusion probabilities since these larger establishments drive more
of the variance in total employment point estimates for domains. Survey designs
that instantiate a correlation between unit inclusions and the response variable
of interest are termed, “informative”, because the inclusion probabilities are in-
formed by the response variable. The balance of information in the observed
sample is different from that in the population under informative sampling,
such that naively estimating a proposed population model, P , on the observed
sample will result in biased inference about P0, that is supposed to govern the
finite population (Savitsky and Toth, 2016). Let N denote the size of a finite
population with variables drawn under P0 and n denote a sample taken from
that population, governed by Pν . Sampling weights constructed to be inversely
proportional to unit inclusion probabilities, πi i = 1, . . . , n, may be used, along
with the response variable(s) of interest, yi, to perform inference about P0 from
the observed sample.

Our contribution is to develop the first fully Bayesian estimator that sup-
poses both (yi, πi) are generated from the population-generating distribution,
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P0, while Pν governs the taking of all possible samples from the finite popu-
lation. Let δ� ∈ {0, 1} be a random variable that indexes the inclusion of unit
�, � ∈ (1, . . . , N) from the population into the observed sample. Pν governs
δ�, where π� = Pr(δ� = 1 | y�), for � ∈ (1, . . . , N). The π� in the CES are
constructed from the y�, where the survey design assigns higher inclusion prob-
abilities with larger employment. The implication is that both (y�, π�) are both
generated (randomly) under P0. So we construct a joint population likelihood
for (y�, π�)�=1,...,N and it is the definition of a joint distribution that makes our
approach fully Bayesian as contrasted with a plug-in approach that treats the
π� as fixed. We introduce a Bayes rule procedure in the sequel that constructs a
joint likelihood for the observed sample, (yi, πi)i=1,...,n, from the specified pop-
ulation joint likelihood. We treat the π� as random by assigning a conditional
likelihood, p (π� | y�,κ). Our approach of treating π� as random (with respect to
P0) allows us to incorporate dependencies induced by the sampling design, Pν .
We are the first to demonstrate that utilizing a fully Bayesian approach leads
to credibility intervals that contract on valid frequentist confidence intervals,
unlike the usual plug-in approaches. We further demonstrate the frequentist
consistency of our fully Bayesian estimator in the sequel that accounts for joint
distribution, (P0, Pν), over population generation and the taking of an informa-
tive sample. In summary, this paper lays down the foundational concepts and
implementation procedure for how to construct and utilize a fully Bayesian es-
timator as an alternative to the plug-in estimator developed by (Savitsky and
Toth, 2016).

1.1. Review of methods to account for informative sampling

There are three broad classes of approaches to adjust model estimation on the
observed sample acquired under an informative sampling (IS) design for infer-
ence about P0. One approach parameterizes the sampling design into the model
estimated on the sampled data (Little, 2004). The sampling design, itself, is
often a nuisance to the data analyst, however, and their focus on the parame-
ters of P0 requires them to marginalize over parameters indexing the sampling
design distribution. It is also often the case that the analyst does not know the
sampling design to parameterize it.

The next two classes of modeling adjustments employ a sampling weight that
is constructed to be inversely proportional to the marginal inclusion probability,
πi = P (δi = 1), for each unit, i ∈ {1, . . . , n}, where n denotes the number of
units in the observed sample, S. The inclusion of unit, i, from the population, U ,
in the sample, S ⊂ U is indexed by the random variables, δi ∈ {0, 1}, governed
by Pν . The likelihood contribution for each unit in the observed sample is ad-
justed by its associated sampling weight, such that the joint adjusted likelihood
over the sample provides an approximation to the balance of information in the
finite population.

The second class of modeling approaches employs a particular form for the
likelihood (Dong et al., 2014; Kunihama et al., 2016; Rao and Wu, 2010; Si
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et al., 2015), rather than allowing the analyst to specify a population model,
P , because the inferential focus is not on parameters of the generating model,
P0, but on domain-level estimation of simple mean and total statistics, such as
total employment for a geographic area and industry combination.

In the third class of modeling approaches, Savitsky and Toth (2016) con-
struct a sampling-weighted pseudo posterior distribution by exponentiating each
unit likelihood contribution, under the analyst-specified model, by its sampling
weight, to produce, p (yi|δi = 1,λ)

wi . Exponentiating by the sampling weight,
wi ∝ 1/πi, constructs the pseudo likelihood used to estimate the pseudo pos-
terior when convolved with the prior distributions for model parameters, λ.
Savitsky and Toth (2016) demonstrate that estimation of (the parameters of)
P0 from the pseudo posterior distribution is asymptotically unbiased. This ap-
proach provides a “plug-in” approximation to the population likelihood (for n
observations), in that the sampling inclusion probabilities, (πi), are assumed
fixed. On the one hand, one may suppose that a sequential generation for the
finite population under P0 and the subsequent taking of the sample under Pν

(where the two distributions are convolved under informative sampling). In this
case, one may view the information contained in the generated finite population
as fixed. Inclusion probabilities are assigned by Pν to the units comprising the
population, and so, are also viewed as fixed (given the underlying finite pop-
ulation). From a Bayesian perspective, on the other hand, there is a dynamic
process of population generation and the taking of an informative sample. If the
population changes, then sample inclusion probabilities, which depend on the
population response values, will also change.

The absence of an established procedure to incorporate the inclusion proba-
bilities into the likelihood of a particular population model chosen by the data
analyst hinders the use of Bayesian statistics in the analysis of survey data
released with sampling weights. To address this lack of a fully Bayesian treat-
ment for modeling data under informative sampling, this paper formulates a
fully Bayesian set-up to jointly model (yi, πi) from P on the observed sam-
ple. Our approach extends the set-up of Pfeffermann et al. (1998) to a fully
Bayesian formulation by specifying a conditional population model, p(πi | yi,κ),
for the inclusion probabilities, (πi)i∈U . We then apply a Bayes rule approach
to construct, p(yi, πi | xi,θ,κ, δi = 1), that conditions on the observed sam-
ple, (δ� = 1)�=1,...,N , where N denotes the population size, |U |, and xi denotes
a vector of covariates. We employ this full likelihood defined on the observed
sample to estimate the joint posterior distribution for model parameters, (θ,κ).
We demonstrate in the sequel that the informativeness of the sampling design
improves estimation efficiency for our fully Bayes approach that jointly models
(yi, πi) as compared to the plug-in, pseudo posterior framework (that treats πi

as fixed). We formulate conditions that guarantee the L1 frequentist consistency
of our fully Bayes estimator. We further conduct a simulation study that demon-
strates the credibility sets generated under our fully Bayes construction achieve
nominal coverage (and we also demonstrate, by contrast, that credibility sets
of the sampling-weighted, pseudo posterior distribution do not achieve nominal
coverage).
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Pfeffermann et al. (1998) focus on maximum likelihood point estimation from
p(yi | xi,θ,κ, δi = 1), rather than the joint distribution over the response and
inclusion probabilities, as do we. We also relax their theoretical condition of
independence among the sampled units that they employ to guarantee consis-
tency of the point estimate to asymptotic independence in our result for the L1

consistency of our fully Bayes posterior distribution.

Pfeffermann et al. (2006) also extend Pfeffermann et al. (1998) to a par-
tially Bayesian estimation, but they treat (π�)�=1,...,N as fixed ; in particular,
they formulate a likelihood for the observed sample using Equation 3.3 of Pf-
effermann et al. (1998) that uses Bayes rule to achieve p(yi|xi,θ,κ, δi = 1) =
[E(πi | yi, xi,κ)/E(πi | xi,θ,κ)] × p(yi | θ), where they only specify the pop-
ulation distribution, p(yi | θ) and do not treat πi as random. Instead, they
specify a point estimate, E(πi| . . .) (obtained without specifying distribution
for πi). By contrast, our formulation for the joint likelihood takes the view
that the inclusion probabilities, (πi), are generated along with the population,
(yi,xi)i=1,...,N , N = |U |. So the approach of Pfeffermann et al. (2006) may be
viewed to be not fully Bayesian as is ours because it does not specify a joint
model for p(πi|yi,κ).

We derive the joint likelihood for the observed sample, p(yi, πi|δi = 1, · · · ),
that adapts a Bayes rule approach from Pfeffermann et al. (1998), which ad-
justs the analyst-specified population likelihood, p(yi, πi| · · · ), from which we
formulate our joint posterior distribution for the observed sample in Section 2.
We provide examples that demonstrate how to implement the fully Bayes esti-
mator and elucidate its properties. Conditions are constructed that guarantee a
frequentist L1 contraction of our fully Bayesian posterior distribution, P , onto
the true generating distribution in Section 3. This section can be skipped with-
out loss of understanding the practical application of the proposed method. We
conduct a simulation study under a synthetically generated population from a
known, P0, from which we draw samples under an informative, proportion-to-
size (PPS) sampling design, to compare the performances of our fully Bayesian
estimator and the pseudo posterior in Section 4. We reveal that: (1) fully Bayes
credible intervals achieve nominal frequentist coverage while the pseudo poste-
rior under covers; and (2) the fully Bayes point estimates are robust, in terms
of bias and mean square error (MSE), against high variability of inclusion prob-
abilities in contrast to the pseudo posterior. We illustrate our fully Bayesian
estimator by assessing the relationship between caffeine consumption and sys-
tolic blood pressure using NHANES data in Section 5. The paper concludes
with a discussion in Section 6. The proofs for the main result, along with two
enabling results and other materials are contained in the Appendix.

2. Fully Bayesian estimator under Bayes rule

We proceed to formulate a posterior distribution for the observed sample taken
under an informative design as a function of inclusion probabilities to produce
unbiased inference and correct uncertainty quantification for the population
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model. Our approach first constructs a joint distribution for the response, y,
and inclusion probabilities, π, for the population, which we define as a fully
Bayesian specification (because we treat π as random). We then use Bayes rule
to adjust the joint population likelihood to an expression for the observed sample
by incorporating conditional distributions for inclusion indicators, (δi ∈ {0, 1}).
The adjusted likelihood is unbiased for the population model parameters esti-
mated on the sample. We later show the novel result that credibility sets of the
posterior distribution estimated from the fully Bayes adjusted likelihood achieve
nominal coverage.
From Bayes rule,

p(yi, πi|xi,θ,κ, δi = 1) =
Pr(δi = 1|yi, πi,xi,θ,κ)× p(yi, πi|xi,θ,κ)

Pr(δi = 1|xi,θ,κ)
, (1)

where the expression on the left-hand side of Equation (1) adjusts the joint
population likelihood, p(yi, πi|xi,θ,κ), specified on the right-hand side for the
realized sample. This joint population likelihood is defined with respect to Pλ0 ,
where λ = (θ,κ) and λ0 is the true generating value. So we treat both (y, π)
as jointly generated from Pλ0 . The δi are governed by the sampling design
distribution, Pν , that we will formally introduce in Section 3.
We may simplify the numerator by plugging in (See also equation (7.1) in Pfef-
fermann et al., 1998),

Pr(δi = 1|yi, πi,xi,θ,κ) = πi. (2)

We next compute the double expectation with respect to (κ,θ) in the denomi-
nator,

Pr(δi = 1|xi,θ,κ) =

∫ ∫
Pr(δi = 1|yi, πi,xi,θ,κ)p(yi, πi|xi,θ,κ) dπidyi (3)

=

∫ ∫
πip(πi|yi,xi,κ) dπi p(yi|xi,θ) dyi

=

∫
E(πi|yi,xi,κ) p(yi|xi,θ) dyi

=Eyi|xi,θ [E(πi|yi,xi,κ)] ,

where we assume separability of the parameter sets, κ,θ, in the conditional
distributions for πi|yi,xi and yi|xi,

p(yi, πi|xi,θ,κ) =p(πi|yi,xi,θ,κ)p(yi|xi,θ,κ) (4)

=p(πi|yi,xi,κ)p(yi|xi,θ),

where p(πi|yi,xi,κ) and p(yi|xi,θ) denote conditional distributions for the pop-
ulation. We make note that we have factorized the joint population distribution
over (yi, πi), such that information about the sampling design is parameterized
in the conditional model for πi|yi, rather than in the conditional distribution
for yi|xi.
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We define ps(yi, πi|xi,θ,κ) = p(yi, πi|xi,θ,κ, δi = 1) (where subscript, s,
indexes the observed sample of size, n) to be the likelihood contribution for
each unit, i ∈ S, and plug in Equations (2) and (3) into Equation (1) to obtain,

ps(yi, πi|xi,θ,κ) =
πip(πi|yi,xi,κ)

Ey′
i|xi,θ [E(π′

i|y′i,xi,κ)]
× p(yi|xi,θ) (5)

Let N = |U | denote the population size and S = {S(1), . . . , S(n)} := {i ∈
{1, . . . , N} : δi = 1}, the population indices of individuals or units included in
the random sample S of size n = |S|. Therefore, Pr(S = s) ∝

∏n
i=1 πs(i). Let the

generic vector r(s) := {r(s)1 , . . . , r
(s)
n } := {rs(1), . . . , rs(n)} represent the values of

variable, r, observed in the sample. With this notation the likelihood over the
observed sample of size, n, is specified by,

�(θ,κ;y(s),π(s),x(s)) =

n∏
i=1

[
ps(y

(s)
i , π

(s)
i | xi

(s),θ,κ)
]

from which we may incorporate the prior distributions to formulate the posterior
distribution observed on the sample,

ps(θ,κ | y(s),π(s),x(s)) ∝ �(θ,κ;y(s),π(s),x(s))× Prior(θ)× Prior(κ).

We have now constructed the backbone of a fully Bayesian model that takes
into account informative sampling designs for estimation of population model
parameters. Our result jointly models the response and the inclusion probabil-
ities, i.e., (yi, πi), using only quantities observed in the sample; in particular,
the joint distribution of (yi, πi) are different in the observed sample and in the
population, and we have corrected for this difference in a way that allows us
to make unbiased estimation of the parameters of the population model. In
contrast to Si et al. (2015), we do not impute the values for the non sampled
units. By assuming a population distribution for the inclusion probabilities, the
variability of the inclusion probabilities is modeled and the noise not depending
on the response (and xi) is discarded; more specifically ps(yi, πi | · · · ) in Equa-
tion (5) is constructed from a conditional model that regresses πi on yi and uses
the expected value in the denominator.

Achieving our result of Equation (5) requires specification of a joint popu-
lation generating distribution, p(yi, πi|xi,θ,κ). Specifying a population model
for the response, p(yi|xi,θ), is commonly done. Going a step further, as we
do, to incorporate the inclusion probabilities in the population model, is not
commonly done. By contrast, the pseudo posterior approach, which is formally
introduced in the sequel, considers the inclusions probabilities (or equivalently,
the sampling weights) as fixed. Under an informative sampling design where the
(πi) are constructed to depend on the (yi), each time we generate new values
of the response variable we are prompted to update the inclusion probabilities
for all units in the population after fixing a sampling design. So we believe the
treatment of πi as random is natural as they are conditioned on the values of
population variables.
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The price the modeler pays for this fully Bayesian approach is that they are
required to specify a conditional distribution of the inclusion probabilities for all
units in the population, p(πi | yi,κ). This requirement raises two computational
difficulties: Firstly, even if the specified population likelihood, p(yi|xi,θ), and
the associated prior, p (θ), yield a closed form conditional posterior distribution,
this construction for the population model does not produce a conjugate pos-
terior under our formulation to correct for informative sampling (IS) because
the sampling design is not ignorable; Secondly, the computation of the expected
value in the denominator of Equation (5) is a computational bottleneck as we
are required to compute this expected value for each observation in every Gibbs
sampler iteration. We cope with the first difficulty by relying on the black box
solver Stan (Carpenter et al., 2016), that uses a “no U turn” version of Hamilto-
nian Monte Carlo (HMC) approach to draw samples from the full joint posterior
distribution, which is a version of a Metropolis-Hastings sampler that produces
proposals which partially suppress the random walk. HMC performs well under
(is insensitive to) non-conjugacy, but may be sensitive to varying scale in the
data. Other alternative sampling approaches include the generalized elliptical
slice sampler of Nishihara et al. (2014), which is another version of an MH sam-
pler that automatically generates proposals that is not sensitive to the scale of
the data, and may be embedded in a Gibbs scan to draw samples from a block of
correlated parameters. Regarding the second computational challenge, we pro-
ceed to construct a set of conditions on p(πi | yi,xi,κ) and the likelihood that
guarantee the availability of a closed form expression for this expected value.

We next specify a class of conditional population distributions from Equa-
tion (4) that yield a closed form result for the expectation step in denomi-
nator of (5), which simplifies posterior computation. Let vi and ui be sub-
vectors of xi, the covariates used to specify the conditional distribution of
πi | yi,xi,κ and yi | xi,θ, respectively; that is, πi | yi,xi,κ ∼ πi | yi,vi,κ
and yi | xi,θ ∼ yi | ui,θ. Note that we allow for vi and ui to have common
covariates. Let normal(x | μ, s2) denote the normal distribution pdf with mean
μ and variance s2 evaluated at x, and lognormal(· | μ, s2) denote the lognormal
pdf, so that X ∼ lognormal(μ, s2) is equivalent to logX ∼ normal(μ, s2). Go-
ing forward, we assume that πi is proportional, as opposed to exactly equal, to
the inclusion probability for unit i. In other words, no restriction is imposed on∑

i πi where the index i could run over the population or sample indices. We will
see in the sequel that normalizing the sum of the inverse inclusion probabilities
is required to regulate the estimation of posterior uncertainty under the pseudo
likelihood approach, but such is not required for our fully Bayesian formulation.

Theorem 1. If p(πi | yi,vi,κ) = lognormal(πi | h(yi,vi,κ), σπ2), with the
function h(yi,vi,κ) of the form h(yi,vi,κ) = g(yi,vi,κ) + t(vi,κ) where σ2

π =
σ2
π(κ,vi), possibly a function of (κ,vi) then

ps(yi, πi | ui,vi,θ,κ) =
normal

(
log πi | g(yi,vi,κ) + t(vi,κ), σ

2
π

)
exp {t(vi,κ) + σ2

π/2} ×My(κ;ui,vi,θ)
×p(yi | ui,θ)

with My(κ;ui,vi,θ) := Ey|ui,θ [exp {g(yi,vi,κ)}].
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The proof of this theorem Appendix Section A. If both My and p(yi | · · · )
admit closed form expressions, then ps(yi, πi | · · · ) has a closed form, as well;
for example, when g(yi,vi,κ) = κyyi with κy ∈ κ ∈ R, then My(κ;ui,vi,θ)
is the moment generating function (MGF) of yi | θ evaluated at κy, which will
have a closed form defined on R for typically-used normal, binomial and probit
population models for the responses. The closed form forMy(κ;ui,vi,θ) implies
a closed form for ps(yi, πi | · · · ). Analogously, we may consider an interaction
between y and v, using g(yi,vi,κ) = (κy + vt

iκv)yi ≡ tyi with κ = (κy,κv). In
this case, we achieve, My(t; · · · ), which is the MGF evaluated at t.

By selecting a lognormal distribution for πi | yi we achieve an expectation
with respect to y of the exponential of a linear κy term in y, which is just the
moment generating function for y, parameterized by κ. This important result
outlines a class of population models where the integration (expectation) step
in the denominator of Equation (5) admits a closed-form expression for easy
posterior sampling. In a fully Bayesian implementation, the integration step
must be evaluated on every posterior sampling iteration. So our development of
Theorem 1 to highlight the class of models with closed forms is an important
development. We conduct further discussion in Section 6 of on-going work to
explore the use of numerical integration to allow a wider and more general class
of models for a fully Bayesian implementation.

Our assumption of a lognormal distribution for πi|yi is also mathematically
appealing since the inclusion probability, πi, for individual, i, is usually com-
posed from the product of inclusion probabilities of selection across the stages
of the multistage survey design. If each of these stagewise probabilities are log-
normal then their product, πi, is lognormal as well. We next apply Theorem 1
to some common settings.

2.1. Linear regression population model

Assume the linear regression model for the population, p(yi | ui,θ), is con-
structed as,

yi | ui,θ ∼ normal
(
ut
iβ, σ

2
y

)
, with θ = (β, σ2

y) (6)

and the conditional population model for inclusion probabilities is specified as,

πi | yi,vi,κ ∼ lognormal
(
κyyi + vt

iκx, σ
2
π

)
, with κ = (κy,κx, σ

2
π) (7)

This construction results from setting, g(yi,vi,κ) = kyyi, t(vi,κ) = vt
iκx,

σ2
π(κ,vi) = σ2

π. Here β and κx are vectors of regression coefficients that include
an intercept, so the first entry of both ui and vi equals 1. We select prior
distributions,

β ∼MVN(0, 100I)

(κy,κx) ∼MVN(0, 100I) (8)
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σy, σπ
iid∼Cauchy+(0, 1)

where Cauchy+(m, v) denotes the Cauchy distribution with location and scale
parametersm and v, respectively, restricted to the positive real line; MVN(m,Σ)
denotes the multivariate normal distribution with mean vector m and variance-
covariance matrix Σ; and I the identity matrix.

Since y ∼ normal(m, s2) admits a closed form expression forMy(t) = exp(tm+
t2s2/2), we apply Theorem 1 to obtain,

ps(yi, πi | ui,vi,θ,κ) =
normal(log π | κyyi + vt

iκx, σ
2
π)

exp
{
vt
iκx + σ2

π/2 + κyut
iβ + κ2

yσ
2
y/2

} (9)

× normal(yi | ut
iβ, σ

2
y)

The resulting form of the expression for log ps(. . . ) is provided in an Ap-
pendix, Section B.

2.2. Other population models

Since a closed-form moment generating function of yi | ui,θ defined in R implies
a closed form for ps(yi, πi | . . . ), extensions for the logistic, probit and Pois-
son regressions to perform asymptotically unbiased estimations on the observed
sample are straightforward; for example, employing the conditional lognormal
model, Equation (7), for the inclusion probabilities, but now selecting a probit
construction for a dichotomous, yi ∼ Bernoulli(pi), with pi = Φ−1(xt

iθ), where
Φ−1 is the inverse of the standard normal CDF. We note the closed form MGF,
E(ety) = (1− p+ pet) for all t, and obtain,

ps(yi, πi | ui,vi,θ,κ) =
normal(log πi | κyyi + vt

iκx, σ
2
π)

exp {vt
iκx + σ2

π/2} (1− pi + pieκy )
× Bernoulli(y | pi)

with Bernoulli(y | pi) = pyi

i (1− pi)
1−yi .

2.3. Splines basis population model

We extend the linear regression model to a splines setting for situations where
the relationship between the response and the predictor is not linear. Here,
p(yi | ui,θ) is constructed as,

yi ∼ normal(μ(ui), σ
2
y) with μ(ui) := B(ui)β (10)

with B(ui) := (Bi1, . . . , Bib), the vector of penalized B-spline coefficients as-
sociated with ui, where b denotes the number of spline bases. We construct a
rank-deficient multivariate Gaussian prior for the coefficients, β, which penalizes
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or regulates the smoothness of the estimated function, μ, by employing a b× b
matrix, Q = DtD, where D is the discretized kth difference operator (Speckman
and Sun, 2003) in the density kernel,

σ
−(b−k)/2

β
exp− 1

2σ2
β
βtQβ.

The order, k, regulates the resulting smoothness of the fitted function or its
order of differentiability. B(ui) has at most k entries different from zero. The
penalized pdf specified for β is not proper since the dimension of β is b, but
Q is of rank b − k. We observe that the MLE for (β, σ2

y, σ
2
β) is a type of ridge

regression estimator since it satisfies,

(BtB/σ̂2
y +Q/σ̂2

β)β̂ = Bty/σ̂2
y.

Our simulation scenarios in Section 4 will utilize this penalized B-spline formu-
lation with (b = 8, k = 4). The priors for model variances are set as weakly
informative proper priors,

σy ∼ normal+(0, 102), σβ ∼ Cauchy+(0, 10) and σπ ∼ Cauchy+(0, 1);

where normal+(m, s2) denotes the normal distribution with mean and variance
parameters m and s2, respectively, restricted to be positive. τβ = 1/σ2

β is

referred to as a complexity parameter.
Since the spline model is a particular case of the linear regression model in

Subsection 2.1, ps(yi, πi | ui,vi,θ,κ), with θ := (β, σ2
y), for the spline model has

the same expression as that for the linear model in Equation (9) after replacing
uT
i β for Biβ (assuming our continued employment of a lognormal prior for πi

in Equation (7)).
We may further generalize the populations for yi and πi|yi with the addition

of latent random effects (for example, to parameterize the dependence induced
by the clustering step of a multistage sampling design). We defer such models
to on-going research in order to focus on comparing general properties of the
fully Bayes method to the pseudo posterior. See Section 6 for more discussion
of future research.

2.4. Estimation of population distribution of inclusion probabilities

For a simple one-stage design the whole population of inclusion probabilities or
equivalent is available, because their values are required to draw a sample. For a
multistage cluster sample like a survey of individuals within households, we draw
a sample recursively, only specifying inclusion probabilities for units selected at
the previous level. This procedure provides sampling probabilities only for those
lowest-level units or individuals that are selected into the sample. It may be
useful for the survey administrator to estimate the population distribution of
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Fig 1. Histogram of the n = 100 log-transformed sampled inclusion probabilities along with
the true simulated standardized normal population density (solid line) and estimated normal-
ized population density (dashed line) with mean and variance estimated using Equation (11).

inclusion probabilities from the observed sample in order to verify a subgroup of
units targeted for over-sampling do, indeed, express relatively higher inclusion
probabilities.

We select a model that satisfies the conditions of Theorem 1, but set yi ≡ 0.
This is, g(yi,vi,κ) is constant and without loss of generality equal to zero. Then,
My(κ;ui,vi,θ) = 1 and Theorem 1 implies

ps(πi | vi,κ) =
normal

(
log πi | t(vi,κ), σ

2
π

)
exp {t(vi,κ) + σ2

π/2}
(11)

If we assume πi ∼ lognormal(t(vi,κ), σ
2
π) for i = 1, . . . , N with Pr(δi = 1) =

πi/
∑N

i=1 πi, we can make inference about the parameters κ and σ2
π using only

the observed inclusion probabilities. As an example we simulate π1, . . . , π105
iid∼

lognormal(κ = 0, σ2
π = 1). (Our choice of the lognormal distribution implies

t(vi,κ) ≡ κ.) We draw n = 100 inclusion probabilities (πi) under IS, and
estimate the parameter values κ and σ2

π via Equation (11) using the priors
outlined in Equation (8). Figure 1 shows the histogram of the log transformed
sampled inclusion probabilities observed in our sample of n = 100, along with
the standardized density of generated inclusion probabilities for our simulated
population, displayed in the solid line, and our estimated normal density with
population mean E(κ | π1, . . . , πn) and variance E(σ2

π | π1, . . . , πn), displayed
in the dashed line. Notice that we employ the unstandardized sampling weights.
If the sampling weights are multiplied by a constant c > 0; e.g., c := n/

∑n
i=1 πi,

we are then estimating κ+ log c.

2.5. Pseudolikelihood alternative to the fully Bayes estimator

The pseudo posterior approach is a plug-in method that is not fully Bayesian,
which we will use to compare with the fully Bayes method we propose in this
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paper. The pseudo likelihood is formed by exponentiating the likelihood con-

tribution for each observed unit in the sample by its sampling weight, w
(s)
i ,

in,

pseudo(θ;y(s),w(s)) =

n∏
i=1

p(y
(s)
i | x(s)

i,θ)
w

(s)
i

where w
(s)
i ∝ 1/π

(s)
i is the sampling weight that is standardized such that∑

w
(s)
i = n, where n denotes to the observed sample size, which is required

to regulate the amount of estimated posterior uncertainty. Let w(s) :=

(w
(s)
1 , . . . , w

(s)
n ) denote the vector of these unit-indexed sampling weights that

are typically published with the survey data in order to correct for IS. Inference
is carried out by constructing the pseudo posterior distribution be proportional
to pseudo(θ;y(s),w(s)) × Prior(θ) (Savitsky and Toth, 2016). Although the
pseudo likelihood is an improper distribution, it admits a proper joint poste-
rior distribution under employment of proper priors. Classical implementations
of the sampling weighted pseudo likelihood, by contrast to the Bayesian im-
plementation, employ MLE estimation of population model parameters on the
observed IS. The standard error of the estimate of parameter, θ, is estimated
via resampling methods such as balanced repeated replication (McCarthy, 1969;
Krewski and Rao, 1981) or Fray’s method (Judkins, 1990) when the sampling
design and the information provided to the analyst allow it.

The advantages of the plug-in pseudo posterior method over the proposed
fully Bayesian construction are: (i) Estimation does not require a custom pos-
terior sampler. Relatively slight modifications are performed to the popula-
tion model sampler to incorporate the pseudo likelihood; (ii) Specification of
πi | yi, · · · for the population is not required; (iii) There is no expected value
in Equation (3) to compute as there is in the fully Bayes method. The disad-
vantages of the pseudo posterior approach are: (i) It is not fully Bayesian; (ii)
It does not discard variation in weights that do not depend on the response,
such that noise (unrelated to the response) is introduced into the estimation
of the pseudo posterior distribution; (iii) The weights must be normalized to
regulate the amount of estimated posterior uncertainty, which is not required
for the fully Bayes approach. We will show in the sequel that the fully Bayes
approach expresses superior performance in estimation of posterior uncertainty
than does the pseudo posterior.

3. Posterior consistency

We proceed to construct conditions on the population generating model and
sample inclusion probabilities that guarantee the contraction of our fully Bayes
estimator to the true joint generating distribution, Pλ0 . The conditions con-
structed for the sample inclusion probabilities define a class of sampling designs
for which we would expect asymptotically unbiased estimation of our population
model parameters on the observed data. Our approach will be to create a novel
estimator / likelihood for our adjusted likelihood in Equation (5) that allows to
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apply the approach of Savitsky and Toth (2016) in formulating and proving the
frequentist consistency result.

3.1. Set-up

Let ν ∈ Z
+ index a sequence of finite populations, {Uν}ν=1,...,Nν , each of size,

|Uν | = Nν , such that Nν < Nν′ , for ν < ν
′
, so that the finite population size

grows as ν increases. We employ subscript, ν, because the process of rendering
a sample involves the generation of a population followed by the assignment
of sample inclusion probabilities and the taking of a sample from that pop-
ulation using the sampling weights. The entire sequence is repeated on each
increment of ν. A sampling design is defined by placing a distribution on a
vector of inclusion indicators, δν = (δν1, . . . , δνNν ), linked to the units compris-
ing the population, Uν , that we use to draw a sample of size nν < Nν . We
construct a sampling distribution by specifying marginal inclusion probabili-
ties, πνi = Pr{δνi = 1|Yν,i = yνi} for all i ∈ Uν and the second-order pairwise
probabilities, πνij = Pr{δνi = 1 ∩ δνj = 1|Yν,i = yνi, Yν,j = yνj} for i, j ∈ Uν ,
where Yν,1, . . . , Yν,Nν index random variables that are independently distributed
according to some unknown distribution Pθ (with density, pθ) defined on the
sample space, (Yν ,Aν).

In the usual survey sampling set-up, the inclusion probabilities are treated
as fixed. Under the Bayesian paradigm, however, Yν is random variable drawn
from a super-population, such that if a new population, Uν , with associated
observed values (yνi), is drawn, the marginal inclusion probabilities, (πνi), will
update. So we condition the inclusion probabilities explicitly on the population
response values for emphasis, unlike in Savitsky and Toth (2016). We envision
both inclusion probabilities, (πνi), and our data, (yν,i), as generated from a
super-population under some true model. We construct the joint density of the
model for (yνi, πνi) for each i = 1, . . . , Nν as,

pλ (yνi, πνi) = pθ (yνi)× pκ (πνi|Yνi = yνi) , (12)

where λ = (θ, κ) denotes our model parameters.
We use the Bayes rule construction we earlier illustrated to formulate a sam-

pling design-adjusted fully Bayesian joint likelihood for the unknown population
value, λ0, which we suppose generates the finite population values that we ob-
serve in our sample, (yν,i, πν,i)i∈Uν :δνi=1,

pπλ (xνiδνi) (13)

:=

[
πνi × pλ (yνi, πνi)

Eθ {Prκ (δνi = 1|Yνi = yνi)}

]δνi

(14)

:=

[
πνi

Eθ (πκ
νi)

× pλ (yνi, πνi)

]δνi

(15)

:=

[
πνi

πλ
νi

pλ (yνi, πνi)

]δνi

, i ∈ Uν , (16)
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where we collect, xνi = (yνi, πνi),
and define πκ

νi := Prκ (δνi = 1|Yνi = yνi) = Eκ (πνi|Yνi = yνi), where the sec-
ond equality is derived in Pfeffermann et al. (1998). We further define πλ

νi :=
Eθ (π

κ
νi) = Eθ {Eκ (πνi|Yνi = yνi)} for ease-of-reading. Our construction of our

joint likelihood in Equation (16) will allow us to follow the approach of Sav-
itsky and Toth (2016) in our main result after adding a new condition for the
consistency of πλ

νi in Section 3.2.
We conduct Bayesian inference under the likelihood of Equation (16) by as-

signing prior, Π, on the parameter space, Λ, such that λ0 ∈ Λ, which produces
the sampling design-adjusted posterior mass,

Ππ (B|xν1δν1, . . . , xνNν δνNν ) =

∫
λ∈B

∏Nν

i=1
pπ
λ

pπ
λ0

(xνiδνi)dΠ(λ)∫
λ∈Λ

∏Nν

i=1
pπ
λ

pπ
λ0

(xνiδνi)dΠ(λ)
, (17)

that we use to formulate our theoretical result. We define pπλ0
(xνiδνi)=pπλ0

(xνi)
δνi ,

that confines evaluation to the observed sample.
We will utilize the empirical distribution construction to establish a bound

used to prove our result,

P
π
Nν

=
1

Nv

Nν∑
i=1

δνi
πλ
νi

δ (Xi) , (18)

which is nearly identical to Savitsky and Toth (2016), only now the denominator
is a modeled quantity dependent on λ. We construct the associated expectation
functional, Pπ

Nν
f = 1

Nv

∑Nν

i=1
δνi

πλ
νi

f (Xi). We make a similar adjustment to the

Hellinger distance,
dπ,2Nν

(pλ1 , pλ2) =
1
Nν

∑Nν

i=1
δνi

πλ
νi

d2 (pλ1(xνi), pλ2(xνi)),

where d (pλ1 , pλ2) =
[∫ (√

pλ1 −
√
pλ2

)2
dμ
] 1

2

(for dominating measure, μ).

3.2. Main result

We outline the 6 conditions and our result for completeness, though they are
very similar to Savitsky and Toth (2016) save for the replacement of πνi with
the modeled πλ

νi. The first 3 conditions place restrictions on the generating
distribution and prior, while the following three do the same for the sampling
design distribution. Suppose we have a sequence, ξNν ↓ 0 and Nνξ

2
Nν

↑ ∞ and
nνξ

2
Nν

↑ ∞ as ν ∈ Z
+ ↑ ∞ and any constant, C > 0.

(A1) (Local entropy condition - Size of model)

sup
ξ>ξNν

logN (ξ/36, {λ ∈ ΛNν : dNν (Pλ, Pλ0) < ξ}, dNν ) ≤ Nνξ
2
Nν

,

(A2) (Size of space)

Π (Λ\ΛNν ) ≤ exp
(
−Nνξ

2
Nν

(2(1 + 2C))
)
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(A3) (Prior mass covering the truth)

Π

(
Pλ :

(
−Eλ0 log

pλ
pλ0

≤ ξ2Nν

)
∩
(
Eλ0

[
log

pλ
pλ0

]2
≤ ξ2Nν

))
≥ exp

(
−Nνξ

2
Nν

C
)

(A4) (Non-zero Inclusion Probabilities)

sup
ν

⎡
⎣ 1

min
i∈Uν

πλ
νi

⎤
⎦ ≤ γ, with Pλ0−probability 1.

(A5) (Asymptotic Independence Condition)

lim sup
ν↑∞

max
i �=j∈Uν

∣∣∣∣ πνij

πνiπνj
− 1

∣∣∣∣ = O(N−1
ν ), with Pλ0−probability 1

such that πνij factors to πνiπνj for Nν sufficiently large where there exists
some C3 > 0,

Nν sup
ν

max
i �=j∈Uν

[
πνij

πνiπνj
− 1

]
≤ C3.

(A6) (Constant Sampling fraction) For some constant, f ∈ (0, 1), that we term
the “sampling fraction”,

lim sup
ν

∣∣∣∣ nν

Nν
− f

∣∣∣∣= O(1), with P0−probability 1.

(A7) (Convergence of the Point Estimate)

lim sup
ν↑∞

max
i∈Uν

|Eλ [πνi]− Eλ0 [πνi]| = O(N−1
ν ), with P0−probability 1.

Condition (A1) restricts the growth in the size of the model space (Ghosal
et al., 2000) by bounding the growth in the logarithm of the covering number,
N (ξ/36, {λ ∈ ΛNν : dNν (Pλ, Pλ0)), defined as the minimum number of balls of
radius ξ/36 needed to cover {P ∈ PNν : dNν (P, P0) < ξ} under distance metric,
dNν . Condition (A2) allows, but restricts, the prior mass placed on the uncount-
able portion of the model space, such that we may direct our inference to an
approximating sieve, PNν . This sequence of spaces “trims” away a portion of the
space that is not entropy bounded (in condition (A1)). Condition (A3) ensures
the prior, Π, assigns mass to convex balls in the vicinity of Pλ0 .

The next three conditions, together, restrict the class of sampling designs
under which our result is guaranteed. Condition (A4) requires the sampling de-
sign to assign a positive probability for inclusion of every unit in the population
because the restriction bounds the sampling inclusion probabilities away from
0. Since the maximum inclusion probability is 1, the bound, γ ≥ 1. Unlike in
Savitsky and Toth (2016), however, πλ

νi is a smoothed model estimator under
our fully Bayes construction, which discards the variation in πνi that is unre-
lated to yνi, such that the value of γ, in practice, is expected to be lower than
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in Savitsky and Toth (2016). Condition (A5) restricts the result to sampling
designs where the dependence among lowest-level sampled units attenuates to 0
as ν ↑ ∞. Dependence in a multistage design is driven the higher level sampling
stages; for example, PSUs. Since the number of PSUs increases in the limit of
Nν , this condition is not very restrictive and admits nearly all sampling designs
used, in practice. Condition (A6) ensures that the observed sample size, nν ,
limits to ∞ along with the size of the partially-observed finite population, Nν .
The denominator of our Bayes rule posterior estimator of Equation (16) is a
conditional expectation with respect to our model, Pλ. We require convergence
of this point estimate in order to achieve the bound specified in condition (A5).
Condition (A7) is not needed in Savitsky and Toth (2016), since the inclusion
probabilities, (πν), are assumed fixed.

Theorem 2. Suppose conditions (A1)-(A7) hold. Then for sets ΛNν ⊂ Λ,
constants, K > 0, and M sufficiently large,

EPλ0
,PνΠ

π
(
λ : dπNν

(Pλ, Pλ0) ≥ MξNν |xν1δν1, . . . , xνNν δνNν

)
≤

16γ2 [γ + C3]

(Kf + 1− 2γ)
2
Nνξ2Nν

+ 5γ2 exp

(
−
Knνξ

2
Nν

2γ

)
, (19)

which tends to 0 as (nν , Nν) ↑ ∞.

The rate of convergence is injured for a sampling distribution, Pν , that assigns
relatively low inclusion probabilities to some units in the finite population such
that γ will be relatively larger. Our result differs from Savitsky and Toth (2016)
in that 5γ that multiplies the second term is replaced by 5γ2, here, though the
value γ is expected to be substantially lower, as earlier discussed, for our modeled
estimate, πλ

νi, than for the raw, πνi. In practice, γ will be much lower for the
fully Bayes method than for the pseudo posterior due to the weight smoothing
(in the modeled πλ

νi), such that convergence will be faster. We illustrate this
point in the simulation study for the spline model in Section 4. Similarly, the
larger the dependence among the finite population unit inclusions induced by
Pν , the higher will be C3 and the slower will be the rate of contraction.

The proof of our main result proceeds by bounding the numerator of Equa-
tion (17) (on the set{
λ : dπNν

(Pλ, Pλ0) ≥ MξNν

}
), from above, and the denominator, from below,

and is the same as that outlined in Savitsky and Toth (2016). So we do not
repeat it here. The proof relies two enabling results, which express some differ-
ences in this work, however, from Savitsky and Toth (2016). So those Lemma
are reformulated and proved in an Appendix section C.

4. Simulation study

We explore the bias and coverage performance of our fully Bayes formulation
and compare it to the plug-in pseudo posterior model under employment of
an informative, probability proportional-to-size (PPS) sampling design; first in
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a simple linear regression and later in a nonlinear, spline model setting. We
construct a synthetic population in each iteration of our Monte Carlo simulation,
from which we draw two samples: 1. An informative sample (IS) taken under the
PPS design; 2. A simple random sample (SRS). The IS is analyzed using both the
fully Bayes and the pseudo posterior methods. The SRS is estimated using our
population model with no needed correction. The SRS serves as a something of a
gold standard comparator to assess the efficacy of bias removal and uncertainty
estimations using the methods that correct for informative sampling, which
are estimated on the IS. Of course, an informative sampling design can be more
efficient (lower variance) than an SRS, though an IS is often constructed as much
for convenience (and cost) as for efficiency. We estimate bias, mean square error
(MSE), coverage of central 95% credible interval (CI) and its average length
by repeating this this process M = 1, 000 times in a Monte Carlo framework.
The three analysis methods (that we label, “Full” (fully Bayesian), “Pseudo”
(Pseudo Posterior) and “SRS” (simple random sampling)) will use the same
population distribution for yi | θ, . . . and prior for θ. The true value of the
generic simulation model parameter, η, is denoted by ηTRUE.

We conclude our simulation study with a test of the robustness of the lognor-
mal population model specification for π|y in a real world setting by treating
our observed NHANES sample as a population and drawing samples from it
using the inverse of published unit sampling weights as inclusion probabilities.
Since the multistage NHANES sampling design is constructed algorithmically,
we don’t expect the resulting distribution for π|y to be lognormal.

4.1. Simple linear regression (SLR): PPS design

We focus on estimating the population generating for the intercept coefficient,
β0, specified for the linear regression framework in Section 2.1. The fully Bayes
estimation model assumes a lognormal conditional likelihood for πi | yi, · · · ,
which is right skewed. We explore three simulation scenarios; In the first two,
the true generating distribution of the inclusion probabilities is a gamma distri-
bution and, therefore, skewed as in the the fully Bayes analysis model. In the
third simulation scenario, we explore the robustness of the fully Bayes model
to this assumption by generating the inclusion probabilities from a (symmetric)
beta distribution. The difference between the first and second scenarios is that
we vary the rate hyperparameter of the gamma distribution to induce more vari-
ance (and skewness) into the generated (πi) in the second scenario. To explore
the effect of not correcting for IS, we also analyze the informative sample with
the population model ignoring the weights (label“Pop”).

4.1.1. Scenarios SLR: π-skewed.

We call the first two simulation scenarios “SLR: π-skewed with low variance”
and “SLR: π-skewed with high variance”. Both set πi

iid∼ gamma(2, rate = bTRUE
π )

(See 1 (b) below) where bTRUE
π = 2, in the former, and bTRUE

π = 1, in the latter.
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We set M = 103 to be the total number of synthetic population datasets or
Monte Carlo iterations, and N = 105 to be the number of individuals / units in
the population, and we set n = 103 to be the sample size.
Let θTRUE = (βTRUE

0 , βTRUE
1 , βTRUE

2 , σ2,TRUE
y ) = (0, 1, 1, 0.12) under the following

simulation procedure:

• For m = 1, . . . ,M , Monte Carlo iterations

1. Generate the population, i.e., for i = 1, . . . , N ,

(a) Draw ui
iid∼ uniform(0, 1)

(b) Draw πi
iid∼ gamma(2, rate = bTRUE

π ) (which produces unnormal-
ized πi).

(c) Generate the population response:

yi | ui, πi,θ
TRUE ∼ normal(βTRUE

1 ui + βTRUE

2 πi, σ
2,TRUE

y )

2. Draw two samples of size n = 103:

(a) Take an IS with, Pr[(yi, πi) ∈ sample] = πi/
∑N

i′=1 πi′ .

(b) Take an SRS sample.

3. Conduct estimation using the priors given in Equation (8).

(a) The informative sample is estimated using,

i. Full: the fully Bayes linear regression approach outlined in
Subsection 2.1 with parameters, θ = (β0, β1, σ

2
y), κ = (κy, σ

2
π),

where we note there is no v or κx.

ii. Pseudo: the pseudo posterior linear regression formulation.

iii. Pop: linear regression ignoring informative sampling.

(b) SRS: The SRS is estimated using the linear regression population
model of Equation (6).

4. (a) Store the posterior expected values of β0 and β1 under the anal-
yses 3(a) i-iii and 3(b).

(b) Also compute the central 95% credible interval (CI) for β0 and
β1 under the three analyses and store their lengths and indicator
of whether they contain the true intercept coefficient under the
SLR model, βSLR

0 := βTRUE
0 +E(πi) (see below) and slope βTRUE

1 .

• Using the values stored in step 4, (a) estimate the Bias and MSE of the
estimate of the true intercept coefficient under the SLR model and, (b), es-
timate the coverage and average length of the central 95% credible interval
(CI) for βSLR

0 . Do the same for the estimate of βTRUE
1 .

Note that the synthetic data generating likelihood, πi | yi,vi,κ, is not the
lognormal distribution for the population estimation model; that is, the fully
Bayes (estimation) model is misspecified. Also note that the fully Bayes popula-
tion model in (6) is misspecified under the three analyses. More specifically, the
expected value yi | ui,θ, after integrating out πi, matches that corresponding
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Fig 2. Estimation of intercept coefficient under SLR: π skewed with low variance. Here,

πi
iid∼ gamma(2, bTRUE

π = 2) in step 1(a) in Section 4.1.1. Box plots of posterior expected values
of β0 are displayed under IS for the fully Bayes, pseudo posterior approaches, ignoring the
informative design (Pop), and under SRS. The horizontal dashed line represents simulation
value of the intercept under the SLR model, i.e., βSLR

0 = βTRUE
0 + E(πi) = 1.

to a simple linear regression model with intercept βSLR
0 = βTRUE

0 + E(πi) =
0+2/bTRUE

π , slope coefficient βTRUE
1 = 1, but the error, yi−E(yi | ui,θ), though

having mean zero and constant variance, var(πi)+σ2,TRUE
y = 2/(bTRUE

π )2+0.12,
is not normally distributed.

Figure 2 displays a boxplot of the M posterior expected values of the in-
tercept under each analysis under scenario SLR: π-skewed with low variance,
where we observe a large bias for estimation of the population model on the
informative sample without including the sampling weights (Pop). Tables 1 and
2 present the bias, MSE, coverage of central 95% CIs and average lengths under
both scenarios for each of the slope coefficient and the intercept, respectively.
The figure and the left-hand columns 2 to 5 of the Table 1 show that when
the true variance of π is relatively low the pseudo posterior yields a good point
estimator of the slope coefficient with MSE lower even than under SRS. There is
a trade-off of some bias for improved efficiency. The right-hand columns of the
table, reporting the results under scenario SLR: π-skewed with relatively high
variance, show that this property does not hold when the variance of π is large;
the MSE for the pseudo posterior is now the highest, as is the bias, so there
is no trade-off of one for the other. In other words, the point estimate of the
fully Bayes model is robust against high variability of the inclusion probabilities
while pseudo posterior estimator is not. In both scenarios, the average length of
the CI is notably shorter under SRS than for the fully Bayesian approach under
an IS because there is more variation in the realized samples drawn under an
informative design, Pν , than under SRS. Changing our focus to Table 2, the
pseudo posterior underestimates the uncertainty (of the point estimate for the
intercept); its CI fails to capture the nominal 95% coverage. In contrast, the
fully Bayes model estimates the uncertainty appropriately; its CI maintains a
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coverage similar to the model under SRS. The population model without cor-
rection using the sampling weights (Pop) is unbiased for the slope coefficient,
β1 (but not the intercept), so it performs relatively well in Table 1. The Pop
model expresses a huge bias, however, for the intercept, which is expected.

Table 1

Estimation of slope coefficient, βTRUE
1 = 1, under SLR: Bias, MSE, coverage of central 95%

CI and its average length with three analyses under simulation scenarios SLR: π-skewed
with low variance and with high variance.

True variance Low (bTRUE
π = 2) High (bTRUE

π = 1)
of πi Full Pseudo Pop SRS Full Pseudo Pop SRS
Bias -0.006 0.020 -0.007 0.011 0.002 1.034 0.002 0.005
MSE 0.213 0.098 0.213 0.199 0.489 1.259 0.489 0.400

95% CI coverage 0.940 0.876 0.943 0.940 0.946 0.885 0.942 0.935
95% CI length 1.818 1.682 1.818 1.683 2.741 2.390 2.738 2.380

Table 2

Estimation of intercept, βTRUE
0 + E(π) = 0 + 2/bTRUE

π , under SLR: Bias, MSE, coverage of
central 95% CI and its average length with four analyses under simulation scenarios SLR:

π-skewed with low variance and with high variance.

True variance Low (bTRUE
π = 2) High (bTRUE

π = 1)
of πi Full Pseudo Pop SRS Full Pseudo Pop SRS
Bias -0.007 0.020 0.504 -0.005 -0.016 0.034 1.001 -0.002
MSE 0.317 0.368 1.077 0.312 0.164 0.191 1.157 0.137

95% CI coverage 0.953 0.876 0.522 0.941 0.962 0.892 0.285 0.928
95% CI length 1.123 0.966 1.048 0.971 1.710 1.371 1.577 1.373

All posterior sampling computations - for both the fully Bayes and pseudo
posterior computations - were performed in Stan and there is no notable dif-
ference in the computation time between them because Stan does not leverage
conjugacy. Were one to use a custom-built sampler, it would be likely that the
computation per effective sample size would be lower for the pseudo posterior
than the fully Bayes, though such would depend on the particular population
model and the particular samplers.

4.1.2. Scenario SLR: π-symmetric.

We explore the robustness of our approach in the case where the inclusion
probabilities are generated as symmetric but modeled as skewed. To do so, we

repeat the simulation study in subsection 4.1.1, but now with πi
iid∼ beta(1.2, 1.2)

in 1 (b). We call this simulation scenario: “SLR: π-symmetric”. Notice that
the fully Bayes approach, as in simulation scenario scenario SLR: π-skewed,
misspecifies the distribution of πi | yi,κ. As in scenario SLR: π-skewed, in
subsection 4.1.1, the regression model for yi | ui,θ is misspecified; in particular
the distribution of the error is not normally distributed.

Figure 3 and Table 3 are constructed in the same formats as Figure 2 and
Table 2, for scenario: SLR: π-symmetric. The fully Bayesian and pseudolikeli-
hood methods perform similarly in terms of bias, MSE but Pseudo credibitily
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Fig 3. Estimation of intercept regression coefficient under simulation scenario, SLR π-

symmetric. Here, πi
iid∼ beta(1.2, 1.2) in step 1(a) in Section 4.1.1. Box plots of posterior

expected values of β0 are displayed under IS for the fully Bayes, pseudo posterior approaches,
ignoring the informative design (Pop), and under SRS. The horizontal dashed line represents
simulation value of the intercept under the SLR model, i.e., βTRUE

0 + E(π) = 0 + 1/2.

Table 3

Estimation of intercept, βTRUE
0 + E(π) = 0 + 1/2, under SLR: Bias, MSE, coverage of

central 95% CI and its average length with four analyses under simulation scenario SLR:
π-symmetric.

Full Pseudo Pop SRS
Bias 0.041 0.003 0.146 0.011
MSE 0.196 0.201 0.284 0.168

95% CI coverage 0.930 0.858 0.874 0.942
95% CI length 0.839 0.817 0.812 0.816

intervals undercover. Fully Bayes outperforms Pseudo, even though, by design,
the population model for the inclusion probabilities is misspecified under the
fully Bayes method because we have drawn the inclusion probabilities from a
symmetric distribution and modeled them with a skewed distribution. The anal-
ysis ignoring IS, Pop, yields an estimator with higher bias and MSE. In both
scenarios, SLR:π-skewed and SLR:π-symmetric, the fully Bayes CI mantains its
nominal coverage and has average length wider than under SRS. That is, fully
Bayes maintains its nominal coverage at the cost of wider credible intervals.

4.1.3. Scenario non-linear: π-skewed.

Our next simulation study explores the situation where the relationship between
the predictor and the response is not linear. As before, the superindex TRUE

indicates the simulation model parameters. To ease the computational burden,
we simulate only one synthetic population dataset with N = 105 individuals. We
run this simulation twice, first with sample size n = 100 and last with n = 1000.
The objective is to estimate the curve E(y | u) on a regular grid, u ∈ (0, 2).
The analysis model is the splines regression model described in Subsection 2.3.
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• Generate the population (once)

1. Draw ui
iid∼ uniform(0, 2)

2. Draw πi
iid∼ gamma(2, rate = 1)

3. Generate the population response:

yi | ui, πi, (β
TRUE
u , βTRUE

π , βTRUE
u,u , σ2,TRUE

y ) ∼ normal(βTRUE
u ui+

βTRUE
π πi + βTRUE

u,u u2
i ,

σ2,TRUE
y ),

with (βTRUE
u , βTRUE

π , βTRUE
u,u , σ2,TRUE

y ) = (1, 1,−0.5, 0.12)

• For m = 1, . . . ,M :

1. Generate an IS and SRS of size n in the same fashion as in the SLR
simulation study and, subsequently, estimate the model described in
Section 2.3, using cubic B-splines, with the first and last internal
knots equal to, respectively, the minimum and the maximum of the
uis in the sample.

2. Compute the central 95% credible intervals for E(y | u) = B(u)E(β |
y,π), pointwise on a grid, i.e., u = 0, 1/40, 2/40, . . . , 80/40, under
the three analyses and store their credible interval lengths and an
indicator for whether or not they contain the true curve given by

βTRUE

u u+ βTRUE

π E(πi) + βTRUE

u,u u2 = u+ 2− 0.5u2

• Based on the values stored in step 3 (a), estimate the (pointwise) Bias
and MSE curves and based on the values stored in step 3 (b), estimate the
coverage and average length of the central 95% CI for the curve E(y | u)
with u ∈ (0, 2).

Figure 4 shows the results of the simulation under this scenario with sample
size, n = 100. The first plot panel (from the top) displays the simulation curve
and those estimated under the three methods. The next four panels (from top-
to-bottom) display the MSE, Bias, coverage of central 95% CI and the average
length of the CI for the three methods, respectively. The SRS method performs
uniformly the best in terms of fit, bias, MSE and coverage. It is followed by
the fully Bayes approach. As in scenario SLR:π-skewed the pseudo posterior
approach fails to maintain a 95% coverage for its central 95% CI. The bottom
panel shows that the cost of having an IS is a wider CI for the same coverage due
to the larger variation in information about the population in samples drawn
under an informative design, as earlier discussed. The credibility intervals of the
fully Bayes method achieve nominal coverage, even at the relatively low sample
size of n = 100 with little-to-no bias, while the pseudo posterior expresses a
relatively large amount of bias at n = 100. Figure 5 is the same as Figure 4
after increasing the sample size to n = 1000. The results are qualitatively the
same as when n = 100 except that the pseudo posterior performs better in
terms of bias; in agreement with the result that the pseudo posterior approach
produces asymptotically unbiased estimators (Savitsky and Toth, 2016). Even
at n = 1000, the pseudo posterior continues to under-cover.
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Fig 4. Simulation scenario non-linear: π-skewed with sample size n = 100. From top to
bottom, average estimated curve, MSE, bias, coverage probability of 95% central credible in-
tervals and their average length. The black curve in the upper panel is the true curve. For
visual purposes the horizontal (discontinuous) lines at 0 and 0.95 in third and fourth panels,
respectively, are depicted.

Fig 5. Simulation scenario non-linear:π-skewed with sample size n = 1000. Same as Figure
4 but with n = 1000.
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4.2. Robustness of population model for π|y

In Section (4.1.2) we generate the conditional distribution for π|y from a sym-
metric beta distribution, rather than the skewed lognormal distribution that
we assume for the population generating model. Our intent is to examine the
robustness of the fully Bayes method to misspecification of the population gen-
erating model for π|y. This set-up demonstrates excellent robustness for the
coverage of the credibility intervals under a simple misspecification of the pop-
ulation model for π|y. We next conduct a further assessment of robustness of
lognormal population model specification for π|y under a real world condition
where we don’t know the population generating model for π|y. Most sampling
designs are multistage. While a distribution for the inclusion probabilities may
be specified at each stage (e.g., based on a proportion-to-size design for the inclu-
sion probabilities in each stage), the resulting induced population distribution
of the π|y may not conform to a simple lognormal due to the algorithmic con-
struction of the sampling design. We construct a test of robustness of the fully
Bayes method under this set-up by treating our 6847 sample of individuals from
the 2013-2014 National Health and Nutrition Examination Survey (NHANES)
(which we more fully explain in Section (5)) as a population. So N = 6847. The
NHANES sampling design is multistage with the sampling of geographically-
indexed primary sampling units under unequal inclusion probabilities. We pro-
ceed to draw samples from this putative population using the inverse of pub-
lished unit sampling weights as inclusion probabilities. Our variable of interest
is the log transformed systolic blood pressure (SBP) measurements of partic-

ipants. Here, we focus on estimation of βTRUE
0 = (1/N)

∑N
i=1 yi = 4.762395,

the putative population mean. We use a particular case of the linear regression
model in Subsection (2.1) for our analysis. Specifically, the population model is
constructed as, yi | θ ∼ normal(β0, σ

2
y) with θ = (β0, σ

2
y). The full estimation

model assumes πi | yi,κ ∼ lognormal(κ0 + κyyi, σ
2
π), this is κ = (κ0, κy, σ

2
π),

which is misspecified. As in Subsection 4.1, we compare the estimators yielded
by the fully Bayesian, pseudoposterior and ignoring IS (Pop) using SRS as gold
standard.

• For m = 1, . . . ,M = 103, Monte Carlo iterations

1. Draw two samples with replacement of size n:

(a) Take an IS with, Pr[(yi, πi) ∈ sample] = πi/
∑N

i′=1 πi′ .

(b) Take an SRS sample.

2. Conduct estimation using the priors given in Equation (8).

(a) The informative sample is estimated using,

i. Full: the fully Bayes approach.

ii. Pseudo: the pseudo posterior formulation.

iii. Pop: the population model (ignoring IS).

(b) SRS: The SRS is estimated using the population model.

3. (a) Store the posterior expected values of β0 under the analyses 2(a)
i-iii and 2(b).
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(b) Also compute the central 95% credible interval (CI) for β0 under
the four analyses and store their lengths and indicator of whether
they contain βTRUE

0 .

• Using the values stored in step 3, (a) estimate the Bias and MSE of the
estimate of βTRUE

0 and, (b), estimate the coverage and average length of
the central 95% credible interval (CI) for βTRUE

0 .

Table 4 compares bias, MSE and coverage properties among the fully Bayes
estimator, the pseudo posterior (Pseudo), estimation of the population model on
the informative sampling without weighting (Pop) and a simple random sample
(SRS) taken from the same population. We employ an increasing sequence of low
sample sizes, (20, 50, 100), to examine convergence properties. The results in Ta-
ble 4, as before, demonstrate that the fully Bayes (Full) model achieves nominal
frequentist coverage of the credibility interval at the expense of a longer interval,
while the credibility intervals for the pseudo posterior (Pseudo) and estimation
of the populating generating model without correcting for informative sampling
both under cover. The improvement rate in MSE contracts somewhat faster for
the fully Bayes than it does for the pseudo posterior, which would be predicted
by our theory since the convergence rate is injured by γ = maxi πi, which is a
smoothed (modeled) quantity in the fully Bayes case and an unmodeled, raw,
quantity for the pseudo posterior.

Table 4

Simulation study result using the N = 6874 NHANES observations as a population from
which are drawn samples of size, n = 20, 50 and 100. For visual purposes the MSE×103, as

opposed to the MSE, is reported.

Full Pseudo Pop SRS
n = 20

Bias 0.012 0.000 -0.023 -0.000
MSE ×103 2.170 1.905 1.586 0.972
95% CI coverage 0.953 0.851 0.870 0.958
95% CI length 0.199 0.131 0.135 0.136

n = 50
Bias 0.007 -0.001 -0.023 0.000
MSE ×103 0.792 0.795 0.990 0.385
95% CI coverage 0.942 0.841 0.770 0.957
95% CI length CI 0.109 0.080 0.082 0.082

n = 100
Bias 0.007 -0.000 -0.024 0.000
MSE ×103 0.390 0.406 0.762 0.218
95% CI coverage 0.939 0.845 0.631 0.946
95% CI length 0.075 0.056 0.057 0.057

5. Application

As an illustration we explore the relationship between caffeine and systolic blood
pressure (SBP), applying our methodology to data from the 2013-2014 National
Health and Nutrition Examination Survey (NHANES). We will perform two
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analyses. In the first analysis we do not adjust for any other covariate and in
the second we adjust for age and gender.

Due in part to technical, budget and logistic considerations, the survey design
of the NHANES is complex. NHANES is designed to assess the health and nu-
tritional status of adults and children in the United States (CDC-A, 2016). Data
are collected from a sample of individuals from the non-institutionalized, civilian
US population. Although nationally representative, the NHANES is designed
to oversample specific subpopulations of interest (e.g. minorities, low income
groups, pregnant women) for population-based studies using a complex, mul-
tistage, cluster sampling design (CDC-B, 2016). To correct for informativeness
(partly induced by the correlation between response values and group member-
ships), the NHANES survey data are released with observation-indexed sam-
pling weights (based on marginal inclusion probabilities) corresponding to the
sampled participants. These sampling weights are computed based on the sam-
pling design (i.e. probability of the individual of being included in the sample),
non-response and the masking of the individual for confidentiality (CDC-D,
2016).

NHANES participants are required to visit a mobile examination center where
Health and nutrition information are collected during these visits. In particular,
SBP is measured for participants of ages 8 years and older. A 24-hour dietary
recall interview is taken. The results of this interview are used to estimate
the participant’s intakes of nutrients during the 24-hour period preceding their
interview (from the period of midnight to midnight). Our dataset consists of
systolic blood pressure (SBP) (mm Hg) measurements of n = 6847 participants
8 or older and 24-hour caffeine consumption (mg), along with their sampling
weights, as estimated from the first 24-hour dietary recall interview. See Ap-
pendix D for details regarding our data preprocessing.

We fit the spline basis model introduced in Subsection 2.3 with response,
y = log(SBP), inclusion probability, π, designed to be proportional to the inverse
of the NHANES sampling weight, and predictor, x = log(caffeine consumption+
1). We fit both the fully Bayesian (Full) and the pseudo posterior (Pseudo)
models. Additionally, against the recommendation stated in NHANES, we fit
the splines model for the population that ignores IS (label “Pop”, equivalent to
the pseudo posterior model with all sampling weights equal to 1 ). The cubic
B-spline model is constructed with the priors and hyperparameters described in
Section 2.3.

After a burn-in period of 104 iterations, a Monte Carlo posterior sample of
size 104 was retained for each of the model parameters and used to estimate
E(y | x), together with 95% credible intervals on a pointwise basis under the
three models. Figure 6 displays these curves. There is a positive relationship
between caffeine consumption and blood pressure that levels off in higher ranges
of caffeine consumption. The Pseudo posterior estimates a gradually increasing
relationship, while the fully Bayes estimates 3 distinct regions in the support
of log(caffeine+1), where each expresses a different sensitivity to log(SBP); in
particular, the credible intervals for these two models do not overlap in parts
of the second region (from left-to-right) in a range of 2.5 ≤ x ≤ 4, where the
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Fig 6. Caffeine consumption (mg) v.s. SBP (mm Hg) under the Full, Pseudo and Pop (Ig-
noring IS) models.

fully Bayes model shows a notably greater sensitivity. In this case, then, the
inferences performed under these two models would differ.

The resulting negative sign of κy, with central 95% credible interval (-0.64,-
0.35) and Pr(κy < 0 | data) ≈ 1, in the model for πi | yi, xi indicates that the
sample design is informative for the logarithm of SBP (when not conditioned
on predictors). The higher the value of the response the lower is the inclusion
probability.

We next proceed to check if this positive association between SBP and caffeine
consumption still holds after controlling for age and gender. We categorized the
age into seven groups as shown in Table 5. The reference categories were the
8-17 age group and the male gender. We adjust the cubic B-spline model

yi ∼ normal
(
μ(ui) + βage

age(i) + βgender
gender(i), σ

2
y

)
with μ(ui) defined in Equation (10). βage

age(i) and βgender
gender(i) are the regression

coefficients associated with the age group and gender of the participant i for
groupings, age(i) ∈ {1, . . . , 7} and gender(i) ∈ {1, 2}. The regression coeffi-

cients associated to the reference groups are set to 0 (βage
1 = βgender

1 ≡ 0). We

employ vague priors βage
2 , . . . , βage

7 , βgender
2

iid∼ normal(0, 104). Age group and
gender were also included as covariates in πi | yi,vi, where vi is a vector of
dimension 9, by incorporating for an intercept, x ≡ log(caffeine + 1), seven age
groups and gender. The estimated curves along with their 95% credible inter-
vals for the reference group (males between 8 and 16 years old) under the three
models are shown in Figure 7. The positive association between caffeine con-
sumption and SBP vanishes when controlling for age and gender. The estimated
curves under the fully Bayes and Pseudo posterior models differ in shape but
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Table 5

Fully Bayes model parameter estimates for caffeine consumption versus SBP. (Caffeine)
spline parameters β2, . . . , β8 and σβ are not depicted to save space.

mean sd 2.5% 97.5%
Parameters of yi | · · ·
Regression coefficients

Gender (female) -0.03 0.00 -0.04 -0.03
Age 17-24 0.08 0.00 0.07 0.09
Age 25-34 0.09 0.01 0.08 0.10
Age 35-39 0.12 0.01 0.11 0.13
Age 40-49 0.14 0.01 0.13 0.15
Age 50-59 0.18 0.01 0.17 0.19

Age 60 or older 0.24 0.00 0.23 0.25
σy 0.11 0.00 0.11 0.12

(Caffeine) Spline parameters in yi | · · ·
β1 4.66 0.03 4.59 4.73
..
.

Parameters of πi | yi, · · ·
Intercept -0.91 0.41 -1.71 -0.11

κy 0.11 0.09 -0.06 0.28
Caffeine -0.05 0.01 -0.06 -0.04

Gender (Female) -0.03 0.02 -0.07 0.01
Age 17-24 -0.55 0.04 -0.62 -0.48
Age 25-34 -0.74 0.04 -0.81 -0.67
Age 35-39 -0.67 0.05 -0.77 -0.58
Age 40-49 -0.67 0.04 -0.75 -0.59
Age 50-59 -0.72 0.04 -0.80 -0.63

Age 60 or older -0.54 0.04 -0.62 -0.47
σπ 0.83 0.01 0.81 0.84

their bands overlap across all the range of x. The posterior mean curve for the
fully Bayes model is, however, more smoothly centered on the horizontal line
to more strongly indicate little-to-no association between systolic blood pres-
sure and caffeine consumption for the reference group. The credible intervals for
the fully Bayes model and Pop (ignoring IS) are almost perfectly overlapping,
which suggests a non-informative sampling design. The central 95% credible in-
terval for κy, (−.06, 0.28), contains zero, confirming that the sampling design is
non-informative for SBP when controlling for age and gender. Table 5 depicts
the posterior mean, standard deviation and 2.5% and 97.5% quantiles of the
marginal posterior distribution of the fully Bayes, adjusting for age and gen-
der, model parameters. The regression coefficients in the conditional model for
yi | ui indicate that mean SBP for females is lower and SBP increases with age.

When the sampling design is not informative for the chosen response (given
the available predictors), the fully Bayes model provides similar inference than
under SRS. By contrast, the pseudo posterior estimator is notably noisier than
under SRS, which in some cases may lead to incorrect inference.

Steffen et al. (2012) performed a meta-analysis of randomized clinical trials
and prospective studies and concluded that coffee consumption was not associ-
ated with a significant change in SBP. The fully Bayes and Pop curves in Fig-
ure 7 are nearly horizontal, which effectively reproduces this result. The pseudo
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Fig 7. Caffeine consumption (mg) v.s. SBP (mm Hg), for 8-16 years old males, under the
Full, Pseudo and Pop (Ignoring IS) models.

posterior result, however, expresses a lot more oscillation around around the
horizontal line.

6. Discussion

We have developed a novel fully Bayes approach to incorporate the sampling
weights into the estimation of population model parameters on data collected
under an informative sampling design by specifying a joint population distribu-
tion for the response of interest and sampling inclusion probabilities. The ap-
proach uses only quantities observed in sample, and discards variation in weights
not dependent on response. We have shown via simulation that the method per-
forms as well and often better in terms of bias, MSE and, the coverage of its
central 95% credible interval than the non-fully Bayesian plug-in pseudo poste-
rior. Our fully Bayes approach demonstrates a consistently superior ability to
accurately measure uncertainty, in contrast with the pseudo posterior method,
which is too confident such that is fails to achieve nominal coverage. The price
to be paid for the achievement of unbiased inference with correct coverage of
population model parameters from an informative sample is wider credible in-
tervals to achieve the same coverage relative to simple random sampling because
there is more variation in the information content around the population in in-
formative samples. Now that we have derived and established the utility of the
fully Bayesian method, we plan to examine multi-stage sampling designs that
include a cluster step (which induces dependence among sampled units under
Pν) in order to explore the coverage properties of the credibility intervals for our
fully Bayesian estimators. We will parameter random effects in our population
model for y in order to capture the within cluster dependence.
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We applied our fully Bayes approach to explore the relationship between
caffeine consumption and SBP analyzing NHANES data. We notice a (non lin-
ear) positive association between this two variables. This association vanishes
when controlling for age and gender. The fully Bayesian approach estimates a
smoother and closer to the horizontal line (indicating no association) caffeine
v.s. SBP curve as compared to the pseudo posterior approach, which better
agrees with previous research for the relationship between caffeine consumption
and SBP.

The unusual assumption of our approach, from the perspective of the sur-
vey sampler, is that it considers the weights (inclusion probabilities) as random
(with respect to P0). Although the fully Bayes approach requires specification
of a conditional population distribution for the inclusion probabilities, we have
shown that coverage properties are robust to misspecification of this distribu-
tion. A disadvantage of the proposed method is that it requires a customized
posterior sampler because the posterior sampler designed for simple random
sampling cannot easily be adapted to IS under the fully Bayes construction. We
cope with this problem by relying on Stan (Carpenter et al., 2016). A related
issue is the required integration step for every observation at every iteration of
the posterior sampler. This computation must be performed, numerically, in the
general case. Theorem 1 provides some conditions in the sampling distribution
and the conditional distribution of the weights given the response that allow a
closed form for the fully Bayes likelihood. We applied the theorem to illustrate
a collection of useful population joint distributions over the inclusion proba-
bilities and response that all allow for a closed form for the integration step.
More research is needed to apply our approach to more complicated settings.
Future work will focus on performing the computation of this expected value,
numerically, or circumventing it by introducing latent random variables.

Appendix A: Proof of Theorem 1

Recall that the vector of covariates xi has been split into two sets of covariates,
ui and vi, relevant for the distribution of yi | θ,ui, and πi | yi,vi,κ, respectively.
Further recall the definition for My(κ;ui,vi,θ) := Ey|ui,θ [exp {g(yi,vi,κ)}].
Using the fact that υ ∼ lognormal(m, v2) ⇒ E(υ) = exp(m+ v2/2), we obtain,

Ey|ui,θ {E [πi | y,vi,κ]} =Ey|ui,θ

[
exp{g(yi,vi,κ) + t(vi,κ) + σ2

π/2}
]

=exp
[
t(vi,κ) + σ2

π/2
]
× Ey|ui,θ [exp{g(yi,vi,κ)}]

= exp
[
t(vi,κ) + σ2

π/2
]
×My(κ;ui,vi,θ)

Noting that lognormal(π | m, v2) = normal(log π | m, v2) × 1/π, plugging the
expression above in equation (5) we obtain,

ps(yi,πi | ui,vi,θ,κ) =
πip(πi | yi,vi,κ)

Ey|ui,θ {E [π′
i | y,vi,κ]}

p(yi | ui,θ)
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=
πi × lognormal

(
πi | t(v,κ) + g(yi,v,κ), σ

2
π

)
exp [t(vi,κ) + σ2

π/2]×My(κ;ui,vi,θ)
× p(yi | ui,θ)

=
� πi × (1/ � πi)× normal(log πi | t(v,κ) + g(yi,v,κ), σ

2
π)

exp [t(vi,κ) + σ2
π/2]×My(κ;ui,vi,θ)

× p(yi | ui,θ),

proving the theorem.

Appendix B: Closed-Form for log likelihood of simple linear
regression model

log ps(yi, πi | ui,vi,θ,κ) ∝− 1

2
log(σ2

π)−
1

2σ2
π

[
log πi −

(
κyyi + vt

iκx

)]2
− 1

2
log(σ2

y)−
1

2σ2
y

[
yi − ut

iβ
]2

− vt
iκx − σ2

π/2− κyu
t
iβ − κ2

yσ
2
y/2

log ps(y,π | x,θ,κ) ∝− n

2
log(σ2

π)−
1

2σ2
π

∑
i

[
log πi −

(
κyyi + vt

iκx

)]2
− n

2
log(σ2

y)−
1

2σ2
y

∑
i

[
yi − ut

iβ
]2

−
∑
i

vt
iκx − nσ2

π/2− κy

∑
i

ut
iβ − nκ2

yσ
2
y/2

Appendix C: Enabling Lemmas for Theorem 2

We next construct two enabling results needed to prove Theorem 2 to account
informative sampling under (A4), (A5) and (A6). The first enabling result is
used to bound from above the numerator in the expression for the expectation
with respect to the joint distribution for population generation and the taking
of the informative sample, (Pλ0 , Pν), of the fully Bayesian, sampling-weighted
posterior distribution in Equation (17) on the restricted set of measures that
includes those Pλ that are at some minimum distance, δξNν , from Pλ0 under
pseudo Hellinger metric, dπNν

. The second result, Lemma 4, extends Lemma
8.1 of Ghosal et al. (2000) to bound the probability of the denominator of
Equation (17) with respect to (Pλ0 , Pν), from below. Given these 2 Lemmas,
the subsequent proof exposition for Theorem 2 is identical to Savitsky and Toth
(2016).

Lemma 3. Suppose conditions (A1) and (A4) hold. Then for every ξ > ξNν ,
a constant, K > 0, and any constant, δ > 0,

EP0,Pν

⎡
⎢⎣ ∫
P∈P\PNν

Nν∏
i=1

pπ

pπ0
(xνiδνi) dΠ(λ) (1− φnν )

⎤
⎥⎦ ≤ γΠ(Λ\ΛNν ) (20)
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EPλ0,Pν

⎡
⎢⎢⎣

∫
λ∈ΛNν :d

π
Nν

(Pλ,Pλ0)>δξ

Nν∏
i=1

pπ

pπ0
(xνiδνi) dΠ(θ) (1− φnν )

⎤
⎥⎥⎦ ≤

2γ2 exp

(
−Knνδ

2ξ2

γ

)
. (21)

This result is adjusted from that in Savitsky and Toth (2016) by multiply-
ing the upper bounds on the right-hand side of both equations by constant
multiplier, γ ≥ 1, defined in condition (A4).

Proof. The proof approach is the same as Savitsky and Toth (2016), where we
first bound the left-hand sides of Equations (20) and (21) from above by an
expectation of the test statistic, φnν . When then further refine this bound on
the the two subsets of measures outlined in those equations. The refinement step
is unchanged from Savitsky and Toth (2016), but the first step is revised due to
our unique form for our sampling-weighted, fully Bayesian estimator, outlined
in Equation (16). So we fully repeat the first step in the proof, below.

Fixing ν, we index units that comprise the population with, Uν = {1, . . . , Nν}.
Next, draw a single observed sample of nν units from Uν , indexed by subse-
quence,
{i� ∈ Uν : δνi� = 1, � = 1, . . . , nν}. Without loss of generality, we simplify nota-
tion to follow by indexing the observed sample, sequentially, with � = 1, . . . , nν .

We next decompose the expectation under the joint distribution with respect
to population generation, Pλ0 , and the drawing of a sample, Pν ,

Suppose we draw λ from some set B ⊂ Λ. By Fubini,

EPλ0
,Pν

⎡
⎣ ∫
P∈B

Nν∏
i=1

pπλ
pπλ0

(xνiδνi) dΠ(λ) (1− φnν )

⎤
⎦

≤
∫
λ∈B

[
EP0,Pν

Nν∏
i=1

pπλ
pπλ0

(xνiδνi) (1− φnν )

]
dΠ(λ) (22)

≤
∫
λ∈B

{ ∑
δν∈Δν

EPλ0

[
nν∏
�=1

[
πν�

πλ
ν�

pλ
pλ0

(xν�)

]
(1− φnν )

∣∣∣∣∣δν
]
PPν (δν)

}
dΠ(λ) (23)

≤
∫
λ∈B

{ ∑
δν∈Δν

EPλ0

[
nν∏
�=1

[
1

πλ
ν�

pλ
pλ0

(xν�)

]
(1− φnν )

∣∣∣∣∣δν
]
PPν (δν)

}
dΠ(λ) (24)

≤
∫
λ∈B

max
δν∈Δν

EPλ0

[
nν∏
�=1

[
1

πλ
ν�

pλ
pλ0

(xν�)

]
(1− φnν )

∣∣∣∣∣δν
]
dΠ(λ) (25)

≤
∫
λ∈B

EPλ0

[
nν∏
�=1

[
1

πλ
ν�

pλ
pλ0

(xν�)

]
(1− φnν )

∣∣∣∣∣δ∗ν
]
dΠ(λ) (26)
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≤ γ

∫
λ∈B

EPλ0

[
nν∏
�=1

[
pλ
pλ0

(xν�)

]
(1− φnν )

∣∣∣∣∣δ∗ν
]
dΠ(λ) (27)

≤ γ

∫
λ∈B

Eδ∗
ν
(1− φnν ) dΠ(λ) ,

where
∑

δν∈Δν

PPν (δν) = 1 (Särndal et al., 2003) and

δ∗ν ∈ Δν =
{
{δ∗νi}i=1,...,Nν

, δ∗νi ∈ {0, 1}
}

denotes that sample, drawn from the

space of all possible samples, Δν , which maximizes the probability under the
population generating distribution for the event of interest. The inequality in
Equation (27) results from the bound, 1

πλ
ν�

≤ γ, specified in Condition (A4).

The remainder (second step) of the proof is the same as in Savitsky and
Toth (2016), except one multiplies their result by γ to compute the bounds for
Equations (20) and (21).

Lemma 4. For every ξ > 0 and measure Π on the set,

B =

{
λ : −Eλ0 log

(
pλ
pλ0

)
≤ ξ2,Eλ0

(
log

pλ
pλ0

)2

≤ ξ2

}

under the conditions (A2), (A3), (A4), and (A5), we have for every C > 0
and Nν sufficiently large,

Pr

⎧⎨
⎩

∫
λ∈Λ

Nν∏
i=1

pπλ
pπλ0

(xνiδνi) dΠ(λ) ≤ exp
[
−(1 + C)Nνξ

2
]⎫⎬⎭ ≤ γ + C3

C2Nνξ2
, (28)

where the above probability is taken with the respect to Pλ0 and the sampling
generating distribution, Pν , jointly.

The sum of positive constants, γ+C3, is greater than 1 and will be larger for
sampling designs where the (modeled) inclusion probabilities, {πλ

νi}, are more
variable.

Proof. The first part of the proof bounds the integral on the left-hand side of
the event over which we take the probability (in Equation (28)), from below,
by a centered and scaled empirical process. This first part is altered under our
construction for our sampling-weighted, fully Bayesian estimator, outlined in
Equation (16). So we specify this part, here.

By Jensen’s inequality,

log

∫
λ∈Λ

Nν∏
i=1

pπλ
pπλ0

(xνiδνi) dΠ(λ) ≥
Nν∑
i=1

∫
λ∈Λ

log
pπλ
pπλ0

(xνiδνi) dΠ(λ)

= Nν · PNν

∫
λ∈Λ

log
pπλ
pπλ0

dΠ(λ) ,
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where we recall that the last equation denotes the empirical expectation func-
tional taken with respect to the joint distribution over population generating
and informative sampling. By Fubini,

PNν

∫
λ∈Λ

log
pπλ
pπλ0

dΠ(λ) =

∫
λ∈Λ

[
PNν log

pπλ
pπλ0

]
dΠ(λ) (29)

=

∫
λ∈Λ

[
PNν δν log

{
πν

πλ
ν

pλ
pλ0

}]
dΠ(λ) (30)

≥
∫
λ∈Λ

[
PNν

δν
πλ
ν

log
pλ
pλ0

]
dΠ(λ) (31)

=

∫
λ∈Λ

[
P
π
Nν

log
pλ
pλ0

]
dΠ(λ) (32)

= P
π
Nν

∫
λ∈Λ

log
pλ
pλ0

dΠ(λ) , (33)

where we, again, apply Fubini. Equation (30) provides an upper bound for Equa-

tion (31) because πνi ≤ 1, 1
πλ
νi

> 0, while log
pπ
λ

pπ
λ0

(xνi) < 0.

The remainder of the proof, which uses Chebyshev to provide an upper bound
on the probability of the event in Equation (28), is specified by,

≤ ξ2 sup
ν

⎡
⎣ 1

min
i∈Uν

πλ
νi

⎤
⎦+ ξ2 (Nν − 1) sup

ν
max

i �=j∈Uν

[∣∣∣∣∣Eλ0 [πνij ]

πλ
νiπ

λ
νj

− 1

∣∣∣∣∣
]
, (34)

which is nearly identical to Savitsky and Toth (2016) with the raw, πνi, replaced
by the modeled, πλ

νi = EPθ
(πκ

νi), where π
κ
νi = Eκ (πνi|Yνi = yνi) in the first term

on the left of Equation (34). Under condition (A5), Eλ0 [πνij ] → Eλ0 [πνiπνj ] =

πλ0
νi π

λ0
νj . Condition (A7) guarantees convergence to 1 of the ratio in the second

term of Equation (34).

Appendix D: Data preprocessing in Section 5

Here we describe how we obtained our dataset of n = 6847 participants that we
used in analyses in Section 5. We downloaded the “Dietary Interview - Total Nu-
trient Intakes, First Day” and “Blood Pressure” datasets. These datasets, named
DR1TOT H.XPT and BPX H.XPT, are available at https://wwwn.cdc.gov/
Nchs/Nhanes/Search/DataPage.aspx?Component=Dietary&CycleBeginYear
=2013 and https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/BPX_H.htm, re-
spectively.

The first dataset includes the “Dietary day one sample weight” variable
(called WTDRD1) and its documentation states that this variable should be

https://wwwn.cdc.gov/Nchs/Nhanes/Search/DataPage.aspx?Component=Dietary&CycleBeginYear=2013
https://wwwn.cdc.gov/Nchs/Nhanes/Search/DataPage.aspx?Component=Dietary&CycleBeginYear=2013
https://wwwn.cdc.gov/Nchs/Nhanes/Search/DataPage.aspx?Component=Dietary&CycleBeginYear=2013
https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/BPX_H.htm
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Fig 8. Venn diagram the three sets of NHANES participants. The sets are with non-zero
weights, 8 years or older and SBP recorded at least once.

used as a sampling weight when analyzing it, as we did in our analyzes. The
dataset contains the nutrient intake information 9813 NHANES participants.
This dataset is derived from questionnaire data where each participant is asked
questions on salt, amounts of food and beverages consumed during the 24-hour
period prior to the interview (midnight to midnight). For more details see the
dataset documentation. 1152 participants have sampling weights equal to zero
leaving 9813-1152=8661 (the participants with weight 0 also had missing values
in all their nutrient consumption data) participants in this analysis.

The second dataset includes three consecutive blood pressure readings. Ac-
cording to its documentation, when a blood pressure measurement is interrupted
or incomplete, a fourth attempt may be made. In our analysis SBP was the av-
erage of the not missing values of these four reads. This dataset contains the
information of the 9813 participants in the first dataset but only 7818 are eight
years or older (by design their SBP was not measured for younger participants),
from these 807 have sampling weights equal to zero leaving 7818-807=7011. Out
of these 7011, 6847 at least one (out of four) SBP measure recorded. Figure 8
in an Appendix depicts the Venn diagram of the sets of NHANES participants
with non-zero sampling weights, 8 years or older and SBP recorded at least
once.

To obtain age and gender information of the participants we downloaded
the dataset DEMO H.XPT available at https://wwwn.cdc.gov/nchs/nhanes/
search/datapage.aspx?Component=Demographics&CycleBeginYear=2013.
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