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Functional inequalities for marked point processes

Ian Flint* Nicolas Privault† Giovanni Luca Torrisi‡

Abstract

In recent years, a number of functional inequalities have been derived for Poisson
random measures, with a wide range of applications. In this paper, we prove that
such inequalities can be extended to the setting of marked temporal point processes,
under mild assumptions on their Papangelou conditional intensity. First, we derive a
Poincaré inequality. Second, we prove two transportation cost inequalities. The first
one refers to functionals of marked point processes with a Papangelou conditional
intensity and is new even in the setting of Poisson random measures. The second one
refers to the law of marked temporal point processes with a Papangelou conditional
intensity, and extends a related inequality which is known to hold on a general Poisson
space. Finally, we provide a variational representation of the Laplace transform of
functionals of marked point processes with a Papangelou conditional intensity. The
proofs make use of an extension of the Clark-Ocone formula to marked temporal point
processes. Our results are shown to apply to classes of renewal, nonlinear Hawkes
and Cox point processes.
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1 Introduction

Point processes with a Papangelou conditional intensity ([6], [9], [18], [20], [21])
constitute an important class of point process models, which generalizes the Poisson
process. Roughly speaking, the intuitive meaning of this notion of conditional intensity,
denoted by πx(ω), is that, for a suitable state space S and reference measure σ on S,
πx(ω)σ(dx), x ∈ S, is the conditional probability of having a particle in the infinitesimal
region dx when the configuration ω is given outside dx.
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Functional inequalities for marked point processes

In this paper we provide several functional inequalities for marked temporal point
processes having a Papangelou conditional intensity, with times in R+ and marks in a
complete separable metric space E.

Our main achievements are (i) a Poincaré inequality for square-integrable functionals
of marked point processes with a Papangelou conditional intensity (Theorem 3.1); (ii)

transportation cost inequalities for the law of functionals of marked point processes with
a Papangelou conditional intensity (Theorem 3.12) and for the law of the marked point
process itself (Theorem 3.20); (iii) a variational representation of the Laplace transform
of functionals, bounded from above, of marked point processes with a Papangelou
conditional intensity (Theorem 3.26).

The Poincaré inequality and variational representations of the Laplace transform
for functionals on the Poisson space have attracted a lot of interest (see [16], [22], [27]
for the Poincaré inequality and [4], [29] for variational representations of the Laplace
transform). Our results in this direction show that such functional relations hold in a
non-Poissonian setting. We emphasize that the Poincaré inequality proved in this paper
concerns one-dimensional marked point processes and it holds under different conditions
than the Poincaré inequality for Gibbs point processes provided in [13] (we refer the
reader to Remark 3.6 for a more detailed discussion). On the one hand, to the best of our
knowledge, the transportation cost inequality for functionals of marked point processes
with a Papangelou conditional intensity is new even in the Poisson setting. On the other
hand, the transportation cost inequality for the law of the marked point process itself
generalizes a related relation proved in [19].

A key ingredient in the proofs is a new Clark-Ocone formula for square-integrable
functionals of marked point processes with a Papangelou conditional intensity (Theo-
rem 3.28), which generalizes the corresponding formula in [8] in two directions. First,
we allow for point processes with values on an unbounded time interval and marks
in a complete separable metric space. Second, we prove the square integrability of
the Clark-Ocone integrand, which is crucial in the proofs of the functional inequalities
mentioned above since it enables the application of the isometry formula provided by
Proposition 2.6.

Deviation bounds, which are a classical application of transportation cost inequalities,
are presented in Remarks 3.14 and 3.21. The variational representation of the Laplace
transform for functionals of marked point processes with a Papangelou conditional
intensity can also be useful to derive large deviation principles for those functionals,
along the lines of [4] and more generally relying on the theory developed in [7]. Further
applications of our results to various classes of non-Poissonian point processes such as
renewal, nonlinear Hawkes and Cox are presented in Corollaries 3.7, 3.9, 3.11, 3.17,
3.18, 3.19, 3.22, 3.23, 3.24 and in Remark 3.27.

The proof of the Poincaré inequality is based on the evaluation of the variance of the
functional by a combination of the Clark-Ocone formula and the isometry formula for
marked point processes with a stochastic intensity. The proof of the transportation cost
inequality exploits its characterization via exponential moments proved in [10]. Such
exponential moments are controlled by a stochastic convex inequality for functionals
of marked point processes with a Papangelou conditional intensity (Proposition 4.2),
which is based on the Clark-Ocone formula and generalizes the corresponding result
in [12]. The proof of the variational representation of the Laplace transform uses a
localization argument to deal with the unbounded case, which is out of the reach of the
techniques in [29], and relies on the Clark-Ocone formula in order to take into account
the non-Poissonian dynamics of the point process. The proof of the Clark-Ocone formula
is based on the representation theorem for square-integrable martingales, on the use
of an integration by parts formula for functionals of point processes with a Papangelou
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Functional inequalities for marked point processes

conditional intensity, and on an isometry formula for point processes with stochastic
intensity, which allows us to identify the integrand appearing in the representation
theorem.

We note once again that, in contrast to the corresponding result in [8], the Clark-
Ocone formula of Theorem 3.28 guarantees the square integrability of the integrand
(3.36). This integrability property is crucial to the proofs of our main results due to a
pervasive use of the isometry formula provided by Proposition 2.6.

The paper is organized as follows. In Section 2 we give some preliminaries on point
processes including the notions of Papangelou conditional intensity, classical stochastic
intensity and an important relation between them. In Section 3 we describe the main
results of the paper and give their proofs in Section 4. We also include an appendix,
where we prove a technical lemma and a technical proposition.

2 Preliminaries on point processes

Let E be a complete separable metric space and E the corresponding Borel σ-field.
Let Ω be the set of all integer-valued measures ω on (R+ ×E,B(R+)⊗ E), where B(R+)

is the Borel σ-field on R+, such that ω({0} ×E) = 0, ω({t} ×E) ≤ 1 for any t ∈ R+, and
ω(K × E) < ∞ for any compact set K ⊂ R+ (in Remark 2.1, we shall explain in what
sense our results apply under a more general definition of Ω). We define

N(ω) := ω, ω ∈ Ω

and for a Borel set B ∈ B(R+) we shall consider the σ-field

FB := σ{N(A×D) : A ∈ B(B), D ∈ E},

where B(B) denotes the restriction of B(R+) to B. For ease of notation we set Ft := F[0,t]

and Ft− := F[0,t) =
∨

0≤s<t Fs for t ∈ R+.

We set F∞ :=
∨
t∈R+

Ft, let P be a probability measure on (Ω,F∞) and consider
the canonical probability space (Ω,F∞,P). The elements of (Ω,F∞,P) are known in
the literature as simple and locally finite marked point processes on R+ with marks in
E. Throughout the paper we denote by E and Var the expectation and the variance
operators with respect to P, respectively.

By analogy with the un-marked setting, a mapping X : R+ × Ω × E → R which is
measurable with respect to the σ-fields (B(R+)⊗F∞⊗E ,B(R)), where B(R) is the Borel
σ-field on R, is called a stochastic process. Let G := {Gt}t∈R+

be a filtration such that
F∞ ⊃ Gt ⊇ Ft, t ∈ R+. The G-predictable σ-field on R+ × Ω, denoted by P(G), is the
σ-field generated by the sets (a, b] × A with A ∈ Ga, a, b ∈ R+. Throughout the paper,
for any ω ∈ Ω and (t, x) ∈ R+ × E, we define ω − ε(t,x) := ω if (t, x) /∈ Supp(ω), where
ε(t,x) is the Dirac measure at (t, x) and Supp(ω) denotes the support of ω. A stochastic
process X : R+ × Ω× E → R is said to be G-predictable if it is measurable with respect
to the σ-fields (P(G) ⊗ E ,B(R)). We say that X is predictable if it is measurable with
respect to the σ-fields (P(F)⊗ E ,B(R)), where F := {Ft}t∈R+ . For ease of notation, we
set X(t,x)(ω) := X(t, ω, x) and for later purposes, we mention that if X is predictable,
then for fixed t ∈ R+ and x ∈ E the random variable X(t,x) is measurable with respect to
Ft− (and therefore with respect to Ft), and so X(t,x)(ω) = X(t,x)(ω − ε(t,x)). This claim
follows by an obvious modification of the proof of Lemma A3.3.I p. 425 in [5], see also
Proposition 3.3 in [15].

We shall consider two different notions of conditional intensity for marked point
processes: the Papangelou conditional intensity and the classical stochastic intensity.
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2.1 Marked point processes with a Papangelou conditional intensity

Let ν denote a locally finite measure on (E, E). A non-negative stochastic process
π : R+ × Ω× E → R+ is said to be a Papangelou conditional intensity of N with respect
to dtν(dx) if, for any non-negative stochastic process X : R+ × Ω× E → R+,

E

[∫
R+×E

X(t,x)(N − ε(t,x))N(dt× dx)

]
= E

[∫
R+×E

X(t,x)(N)π(t,x)(N) dtν(dx)

]
.

(2.1)
Intuitively, π(t,x)(ω) dtν(dx) is the probability that the point process has a point in the
infinitesimal region dtdx given that it agrees with the configuration ω outside of dtdx.
Point processes with a Papangelou conditional intensity are fully characterized in [20]
(see Section 3) and [21] (see Theorem 2’).

Remark 2.1. Some texts (e.g. [5, Definitions 6.4.I.]) use a more general definition of a
marked point process which allows for N to have atoms ε(t,x), ε(t,y) for the same t ∈ R+

and x 6= y. We considered a more restrictive set Ω in Section 2 since all our main results
hold for marked point processes with a Papangelou conditional intensity. In such case,
there exists a version of the more general marked point process which takes its values
in the set Ω, see the following Lemma 2.2.

Lemma 2.2. Let Ω′ be the set of all integer-valued measures ω on (R+ × E,B(R+)⊗ E),
such that ω({0} × E) = 0, ω({t} × {x}) ≤ 1 for any (t, x) ∈ R+ × E, and ω(K × E) < ∞
for any compact set K ⊂ R+ (note that Ω ⊂ Ω′). Assume that the marked point
process N is defined on Ω′ instead of Ω and define the quantities from Section 2 in an
analogous manner. In particular, if P is a probability measure on (Ω′,F∞), where F∞
is appropriately defined and N has a Papangelou conditional intensity, then N takes its
values in Ω P-almost surely, i.e. P(Ω) = 1.

We postpone the proof of this lemma to Section 5.1 in the appendix in order to
improve the flow of the article.

Throughout this paper we shall often consider locally stable point processes, i.e.
point processes N with a Papangelou conditional intensity π such that

π(s,x)(ω) ≤ β(s, x), dsν(dx)P(dω)-almost everywhere (2.2)

for a function β : R+ × E → R which is integrable with respect to dsdν, on [0, t] × E
for every t ∈ R+. The local stability is known to be satisfied by a wide range of point
processes (see e.g. [18]).

In [17], the author provides a condition guaranteeing the existence of the predictable
projection of a bounded stochastic process. In the following proposition, we specialize
this result to our setting while relaxing the boundedness assumption.

Proposition 2.3. Assume that N has a Papangelou conditional intensity π, i.e. (2.1)
holds. Let X : R+×Ω×E → R be a stochastic process which is such that either (i) X ≥ 0

or (ii) for dtν(dx)-almost all (t, x) ∈ R+ × E, X(t,x) ∈ L1(Ω,F∞,P). Then there exists a
predictable stochastic process p(X) : R+ × Ω × E → R called predictable projection,
which is such that for dtν(dx)-almost all (t, x) ∈ R+ × E, we have

p(X)(t,x) = E
[
X(t,x)

∣∣Ft−], P-almost surely.

Additionally, under (ii) the predictable projection p(X) is such that, for dtν(dx)-almost
all (t, x) ∈ R+ × E,

p(X)(t,x) <∞, P-almost surely.

The proof is rather technical and therefore postponed to Section 5.2 in the appendix.
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Throughout this paper we will use the discrete Malliavin derivative of F : Ω → R,
defined as

D(t,x)F (ω) := F+
(t,x)(ω)− F (ω), (t, x) ∈ R+ × E, ω ∈ Ω,

where

F+
(t,x)(ω) := F (ω + ε(t,x)) =

{
F (ω) if (t, x) ∈ Supp(ω),

F (ω + ε(t,x)) if (t, x) /∈ Supp(ω).

Under suitable integrability conditions on X and π, we shall consider the stochastic
integral

∆(X) :=

∫
R+×E

X(t,x) (N(dt× dx)− π(t,x) dtν(dx)), P-almost surely.

If X is predictable, then X(t,x) = X(t,x)(N) = X(t,x)(N − ε(t,x)), and so this integral
can be rewritten as

∆(X) =

∫
R+×E

X(t,x)(N − ε(t,x)) (N(dt× dx)− π(t,x) dtν(dx)).

We conclude this paragraph with the following integration by parts formula, see
Corollary 3.1 in [25].

Lemma 2.4. Assume that N has a Papangelou conditional intensity π. Then, for any
predictable stochastic process X : R+ × Ω×E → R and any random variable G : Ω→ R

such that

E

[∫
R+×E

∣∣GX(t,x)

∣∣π(t,x) dtν(dx)

]
<∞ and E

[∫
R+×E

∣∣X(t,x)D(t,x)G
∣∣π(t,x) dtν(dx)

]
<∞,

(2.3)
we have

E
[
G∆(X)

]
= E

[∫
R+×E

X(t,x)π(t,x)D(t,x)Gdtν(dx)

]
.

2.2 Marked point processes with a classical stochastic intensity

A non-negative and G-predictable stochastic process λ : R+ × Ω × E → R+ such
that for all t ∈ R+

∫
[0,t]×E λ(s,x) dsν(dx) <∞ P-almost surely is said to be a G-stochastic

intensity of N (see [1], [5] and [14]) if for any non-negative and G-predictable stochastic
process X : R+ × Ω× E → R+ we have

E

[∫
R+×E

X(t,x)N(dt× dx)

]
= E

[∫
R+×E

X(t,x)λ(s,x) dsν(dx)

]
. (2.4)

Additionally, we call λ a (classical) stochastic intensity if G := F . Roughly speaking,
the quantity λ(t,x)(ω) dtν(dx) is the probability that the point process has a point in the
infinitesimal region dtdx given that it agrees with the configuration ω on [0, t)× E.

Hereafter, we assume that N has a G-stochastic intensity λ and, given two G-
predictable stochastic processes X,Y : R+ × Ω × E → R, we write X ∼ Y if X and Y

are equal λ(t,x)(ω) dtP(dω)ν(dx)-almost everywhere on R+ × Ω× E.
For p ∈ [1,+∞), we denote by Pp(λ) the family of equivalence classes (with respect

to the equivalence relation ∼) formed by G-predictable stochastic processes X such that

‖X‖pPp(λ) := E

[∫
R+×E

|X(t,x)|p λ(t,x) dtν(dx)

]
<∞

and, for ease of notation, we set P1,2(λ) := P1(λ) ∩ P2(λ). Note that ‖ · ‖Pp(λ) is a norm
on Pp(λ).
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For any X ∈ P1(λ) we define the stochastic integral

δ(X) :=

∫
R+×E

X(t,x) (N(dt× dx)− λ(t,x) dtν(dx)), P-almost surely,

which is well defined P-almost everywhere as the difference of two finite terms by
(2.4). The next proposition provides a fundamental isometry formula for marked point
processes with a G-stochastic intensity.

Proposition 2.5 (Theorem 3 of [3] and p. 62 of [11]). Assume that N has a G-stochastic
intensity λ. Then:
(i) E

[
δ(X)

]
= 0, for any X ∈ P1(λ);

(ii) E
[
δ(X)δ(Y )

]
= E

[∫
R+×E X(t,x)Y(t,x)λ(t,x) dtν(dx)

]
, for any X,Y ∈ P1,2(λ);

(iii) If {1[0,t](s)X(s,x)}(s,x)∈R+×E , {1[0,t](s)Y(s,x)}(s,x)∈R+×E ∈ P1,2(λ) for any t ∈ R+, then
the stochastic process

δ(1[0,t]X)δ(1[0,t]Y )−
∫

[0,t]×E
X(s,x)Y(s,x)λ(s,x) dsν(dx), t ∈ R+

is a G-martingale.

For later purposes, we extend the operator δ to P1(λ) ∪ P2(λ) and prove that the
isometry formula of Proposition 2.5-(ii) holds on P2(λ) for the extension of δ.

Proposition 2.6. Assume that N has a G-stochastic intensity λ and that E
[
N([0, t] ×

E)
]
<∞, for all t ∈ R+. The operator δ with domain P1(λ) can be uniquely extended to

an operator with domain P1(λ) ∪ P2(λ), which we still denote by δ. Additionally, for any
X,Y ∈ P2(λ) we have

E
[
δ(X)δ(Y )

]
= E

[∫
R+×E

X(t,x)Y(t,x)λ(t,x) dtν(dx)

]
.

The proof of this proposition follows a standard Cauchy sequence argument, along
the lines of Section II.2 in [11]. For this reason, it is omitted.

2.3 A relation between the Papangelou conditional intensity and the classical
stochastic intensity

In the next lemma we show that the Papangelou conditional intensity of a marked
point process N determines its stochastic intensity.

Lemma 2.7. If N has a Papangelou conditional intensity π and∫
[0,t]×E

p(π)(s,x) dsν(dx) <∞, P-almost surely, for all t ∈ R+ (2.5)

then N has a stochastic intensity p(π).

Proof. Let X be a non-negative and predictable stochastic process. As recalled at the
beginning of Section 2, we have X(t,x)(ω) = X(t,x)(ω−ε(t,x)) and X(t,x) is Ft− -measurable,
for any t ∈ R+ and x ∈ E. So by Fubini’s theorem, standard properties of the conditional
expectation and Proposition 2.3-(i),

E

[∫
R+×E

X(t,x)N(dt× dx)

]
=

∫
R+×E

E
[
X(t,x)π(t,x)(N)

]
dtν(dx)

= E

[∫
R+×E

X(t,x)p(π)(t,x) dtν(dx)

]
.
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As already mentioned, the proofs of our main results are based on a Clark-Ocone
formula for marked point processes, which, in turn, exploits the representation theorem
of square integrable martingales (see e.g. [1]). For this reason, we shall consider the
P-completed filtration F ≡ {F t}t∈R+

, defined by F t := Ft∨N = σ({A∪H : A ∈ Ft, H ∈
N}), where N is the family of P-null events of F∞.

The next lemma guarantees that the notion of stochastic intensity is equivalent to
that of F -stochastic intensity. Its proof is standard, and therefore omitted.

Lemma 2.8. Let λ : R+ × Ω×E → R+ be a predictable stochastic process. Then N has
a stochastic intensity λ if and only if N has a F -stochastic intensity λ.

3 Main results

In this section we state our main achievements, i.e. a Poincaré inequality for square-
integrable functionals of marked point processes with a Papangelou conditional intensity,
a transportation cost inequality for functionals of marked point processes with a Pa-
pangelou conditional intensity, a transportation cost inequality for the law of a marked
point process with a Papangelou conditional intensity, and a variational representation
formula for the Laplace transform of (bounded from above) functionals of marked point
processes with a Papangelou conditional intensity. All these functional relations are ob-
tained by applying a Clark-Ocone formula for square-integrable functionals of space-time
point processes with a Papangelou conditional intensity, which generalizes in various
directions the corresponding formula in [8].

Hereafter, we work under the convention 0/0 := 0. Moreover, in order to be more
precise, from now on we shall write PGp (λ) in place of Pp(λ), p ≥ 1, to stress that the
stochastic processes therein are predictable with respect to some specific filtration G.

3.1 Poincaré inequality

The following Poincaré inequality holds for functionals of marked point processes
with a Papangelou conditional intensity.

Theorem 3.1. Assume

E
[
N([0, t]× E)2

]
<∞, for all t ∈ R+, (3.1)

and that N has a Papangelou conditional intensity π such that

E

[(∫
[0,t]×E

π(s,x) dsν(dx)

)2]
<∞, for all t ∈ R+, (3.2)

and

γ :=

∥∥∥∥∥
∫
R+×E

Var
[
π(t,x) | Ft−

]
E
[
π(t,x) | Ft−

] dtν(dx)

∥∥∥∥∥
L∞(Ω,F∞,P)

< 1, (3.3)

where Var
[
π(t,x)

∣∣Ft−] := E
[
π2

(t,x)

∣∣Ft−]− E[π(t,x)

∣∣Ft−]2. Then, for any G ∈ L2(Ω,F∞,P)

we have

Var(G) ≤
(
1−√γ

)−2
E

[∫
R+×E

π(t,x)

∣∣D(t,x)G
∣∣2 dtν(dx)

]
. (3.4)

Remark 3.2. Note that if E
[
π(t,x)

∣∣Ft−] = 0 P-almost surely, then P(π(t,x) = 0 | Ft−) = 1

P-almost surely. Therefore Var
[
π(t,x)

∣∣Ft−] = 0 P-almost surely and the ratio Var[π(t,x) |
Ft− ]/E[π(t,x) | Ft− ] vanishes P-almost surely by the convention 0/0 := 0.
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Remark 3.3. If N is a Poisson process with locally integrable intensity function σ(t, x)

then π ≡ σ and all the assumptions of Theorem 3.1 hold. In particular, γ = 0 and we
recover the well-known Poincaré inequality for Poisson functionals (see e.g. [15], [16]
and [27]).

Remark 3.4. If N is locally stable in the sense of (2.2), then assumptions (3.1) and (3.2)
hold. Indeed, it is clear that (2.2) implies (3.2). As far as the implication of (3.1), note
that under assumption (2.2) we have

E
[
N([0, t]× E)2

]
= E

[∫
([0,t]×E)2

π(u,x)(N)π(s,y)(N + ε(u,x)) dsduν(dx)ν(dy)

]

+ E

[∫
[0,t]×E

π(s,x)(N) dsν(dx)

]

≤
∫

([0,t]×E)2

β(u, x)β(s, y) dsduν(dx)ν(dy) +

∫
[0,t]×E

β(s, x) dsν(dx) <∞, (3.5)

where the first equality follows by the iterated Georgii-Nguyen-Zessin equation, see e.g.
Proposition 15.5.II in [6]. We finally remark that one can check that (3.2) is verified if
(3.1) holds and the marked point process is attractive (see e.g. equation (3.7) in [18] for
a definition of this notion).

Remark 3.5. Let N be a point process on R+×E with a Papangelou conditional intensity
π such that (2.2) holds with dominating function β, for some measurable non-negative
function α : R+ × E → R,

p(π)(t,x) ≥ α(t, x) dtν(dx)P(dω)-almost everywhere

and ∫
R+×E

(β(t, x)− α(t, x)) dtν(dx) < 1. (3.6)

Consequently, all assumptions of Theorem 3.1 are satisfied. In particular, we note that

0 ≤
Var

[
π(t,x)

∣∣Ft−]
E
[
π(t,x)

∣∣Ft−] ≤ β(t, x)− α(t, x), P-almost surely

which, combined with (3.6), guarantees (3.3).

Remark 3.6. As mentioned in the introduction, a Poincaré inequality for Gibbs point
processes was proved in [13] (see Corollaries 5.1 and 5.2 therein). Basically, Corollary 5.1
in [13] (of which Corollary 5.2 is a small improvement) states and proves the following.
If N is a grand canonical Gibbs point process on Rd with activity parameter z > 0 and
non-negative pair potential φ such that

δ := z

∫
Rd

(1− e−φ(x)) dx < 1,

then, for any square-integrable functional F of the point process, we have

Var(F ) ≤ (1− δ)−1E

[∫
Rd
|DxF |2πx dx

]
,

where Dx is the usual discrete Malliavin derivative,

πx(ω) := z exp(−E(x, ω))
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is the Papangelou conditional intensity of N and E denotes the relative energy. On
the one hand, the Poincaré inequality provided by Theorem 3.1 can be applied e.g. to
square-integrable functionals of renewal, non-linear Hawkes and Cox point processes,
and these processes do not belong to the class of Gibbs point measures for which the
inequality in [13] applies. On the other hand, we were not able to apply our Poincaré
inequality to the Gibbs measures considered in [13].

The next three corollaries, whose proofs are given in Section 4, provide classes of
non-Poissonian point processes which satisfy the Poincaré inequality (3.4).

Corollary 3.7 (Renewal point processes). Let N be a renewal point process on [0, T ],
T < ∞, with points T0 := 0 < T1 < T2 < · · · < TN([0,T ]) and a spacing density f such
that f is continuous on [0,+∞) and f > 0 on (a,C) for some a ∈ [0, T ] and C ∈ (T,+∞].
Assume further that

h(z) := sup
x∈[z,T ]

f(x− z)
f(x)

<∞, (3.7)

for any z ∈ [0, T ], as well as

γ :=

∫ T

0

sup
z∈[0,t]

f(z)

[
F (T − t)2

F (T − t+ z)
+ h(z)2

(
F (z)− F (T − t+ z)

)
− 1

F (z)

]
dt < 1, (3.8)

where F is the tail function of f . Then, for any square integrable functional G of N ,

Var(G) ≤
(
1−√γ

)−2
E

[∫ T

0

πt |DtG|2 dt

]
, (3.9)

where the Papangelou conditional intensity π of N is given by

πt =

{
f(Ti − t)f(t− Ti−1)

/
f(Ti − Ti−1) if Ti−1 ≤ t < Ti,

f(t− TN([0,T ]))F (T − t)
/
F (T − TN([0,T ])) if TN([0,T ]) ≤ t ≤ T.

Next, we give some illustrating examples of renewal point processes which satisfy
the assumptions of Corollary 3.7.

Example 3.8. First, assume that the spacing density function f is given by f(x) :=

λ exp(−λx) for λ > 0, i.e. N is a Poisson process on [0, T ] with intensity λ > 0. Then
all assumptions of Corollary 3.7 are satisfied. In particular h(z) := exp(λz), πt ≡ λ and
γ = 0.

Second, consider the Weibull spacing density function

f(x) := βxβ−1 exp
(
−xβ

)
, β > 1, x ∈ R+.

The corresponding tail function is F (x) = exp
(
−xβ

)
, x ∈ R+, and since x 7→ xβ is

Lipschitz continuous on [0, T ], for any z ∈ [0, T ] we have

h(z) = sup
x∈[z,T ]

(
1− z

x

)β−1

exp
(
xβ − (x− z)β

)
≤ exp

(
βT β−1z

)
.

With the aim to check condition (3.8), we remark that by Lipschitz continuity, we have

γ ≤
∫ T

0

sup
z∈[0,t]

βzβ−1 exp
(
−zβ

)[
exp
(
−2(T − t)β + (T − t+ z)β

)
+ exp

(
2βT β−1z

)[
exp
(
−zβ

)
− exp

(
−(T − t+ z)β

)]
− exp

(
zβ
)]

dt

≤
∫ T

0

sup
z∈[0,t]

βzβ−1 exp
(
−zβ

)[
exp
(
2βT β−1z − (T − t+ z)β

)
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+ exp
(
2βT β−1z

)[
exp
(
−zβ

)
− exp

(
−(T − t+ z)β

)]
− exp

(
zβ
)]

dt

=

∫ T

0

sup
z∈[0,t]

βzβ−1
[
exp
(
2z
(
(β − 1)T β−1 + T β−1 − zβ−1

))
− 1
]
dt

≤
∫ T

0

sup
z∈[0,t]

βzβ−1
[
exp
(
2z
(
(β − 1)T β−1 + (β − 1)T β−2(T − z)

))
− 1
]
dt

≤
[

sup
u∈[0,T ]

exp
(
2(β − 1)T β−2u(2T − u)

)
− 1
] ∫ T

0

sup
z∈[0,t]

βzβ−1dt

= T β
[
exp
(
2(β − 1)T β

)
− 1
]

=: γ∗(β).

Hence for fixed T > 0 and β0 satisfying the inequality γ∗(β0) < 1 (in particular, note that
it suffices to take β0 close to one) the corresponding renewal point process satisfies the
Poincaré inequality (3.9).

Next, consider the generalized Pareto spacing density function

f(x) := λ(1 + ξλx)−(1+1/ξ), λ, ξ > 0, x ∈ R+,

whose tail function is F (x) = (1 + ξλx)−1/ξ, x ∈ R+. For any z ∈ [0, T ] we have

h(z) = sup
x∈[z,T ]

(
1 +

ξλz

1 + ξλ(x− z)

)1+1/ξ

= (1 + ξλz)1+1/ξ

and

γ =

∫ T

0

sup
z∈[0,t]

λ(1 + ξλz)−(1+1/ξ)

[
(1 + ξλ(T − t))−2/ξ

(1 + ξλ(T − t+ z))−1/ξ

+ (1 + ξλz)2+2/ξ
(
(1 + ξλz)−1/ξ − (1 + ξλ(T − t+ z))−1/ξ

)
− 1

(1 + ξλz)−1/ξ

]
dt

=

∫ T

0

sup
z∈[0,t]

λ(1 + ξλz)−1

[(
1 + ξλ(T−t)

1+ξλz

1 + ξλ(T − t)

)2/ξ

(1 + ξλz)1/ξ(1 + ξλ(T − t+ z))−1/ξ

+ (1 + ξλz)2
(
1− (1 + ξλz)1/ξ(1 + ξλ(T − t+ z))−1/ξ

)
− 1

]
dt

≤
∫ T

0

sup
z∈[0,t]

λ(1 + ξλz)−1

[
(1 + ξλz)1/ξ(1 + ξλ(T − t+ z))−1/ξ

+ (1 + ξλz)2
(
1− (1 + ξλz)1/ξ(1 + ξλ(T − t+ z))−1/ξ

)
− 1

]
dt

=

∫ T

0

sup
z∈[0,t]

λ(1 + ξλz)−1
(

1− (1 + ξλz)1/ξ(1 + ξλ(T − t+ z))−1/ξ
)(

(1 + ξλz)2 − 1
)

dt

≤ λ
∫ T

0

sup
z∈[0,t]

(
(1 + ξλt)2 − 1

)
1 + ξλz

dt = ξλ2T 2
(

1 +
ξλT

3

)
=: γ∗(ξ).

Hence for fixed T, λ > 0 and ξ0 satisfying the inequality γ∗(ξ0) < 1 (in particular, note
that it suffices to take ξ0 close to zero) the corresponding renewal point process satisfies
the Poincaré inequality (3.9).

A nonlinear Hawkes process on [0, T ] with parameters (h, φ) is a point process N on
[0, T ] with stochastic intensity

λt := φ

(∫
(0,t)

h(t− s)N(ds)

)
, t ∈ [0, T ],
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where φ : R→ R+ and h : [0, T ]→ R are two measurable functions, see e.g. [2], [3], [5]
and [6].

Corollary 3.9 (Nonlinear Hawkes processes). Assume that N is a nonlinear Hawkes pro-
cess on [0, T ], T <∞, with parameters (h, φ) such that h is non-negative and integrable
on [0, T ], and φ is Lipschitz continuous and non-increasing with φ(0) > 0. Additionally,
assume

γ := φ(0)

∫ T

0

(
exp
(

2‖φ‖Lip

∫ τ

0

h(z) dz
)
− 1
)

dτ < 1,

where ‖φ‖Lip denotes the Lipschitz constant of φ. Then, for any square-integrable
functional G of N ,

Var(G) ≤
(
1−√γ

)−2
E

[∫ T

0

πt |DtG|2 dt

]
, (3.10)

where the Papangelou conditional intensity π of N is given by

πt := λtEt(N) (3.11)

and

Et(N) := exp

(∫ T

t

[
φ

(∫
(0,s)

h(s− u)N(du)

)
− φ

(
h(s− t) +

∫
(0,s)

h(s− u)N(du)

)]
ds

)

× exp

(∫ T

t

[
log φ

(
h(s− t) +

∫
(0,s)

h(s− u)N(du)

)

− log φ

(∫
(0,s)

h(s− u)N(du)

)]
N(ds)

)
.

In particular, we have

πt ≤ φ(0) exp

(
‖φ‖Lip

∫ T−t

0

h(s) ds

)
≤ φ(0) exp

(
‖φ‖Lip‖h‖L1([0,T ],B([0,T ]),dt)

)
, (3.12)

dtP(dω)-almost everywhere.

Next, we give an example of nonlinear Hawkes processes which satisfies the assump-
tions of Corollary 3.9.

Example 3.10. Assume that N is a nonlinear Hawkes process with parameters φ(x) :=

αmin(max(K − x, 0), 1) and h := 1[0,z] for some α,K, z > 0, K integer. This is a notable
example of nonlinear Hawkes process since N([0, t]), t ∈ [0, T ], is the total number
of customers who have entered, in the time interval [0, t], the Erlang loss system (or
M/D/K/0 queue) with arrival rate α, deterministic service time z and number of servers
equal to K, see [2] for details. An easy computation shows that γ defined in Corollary 3.9
is equal to

γ(z) := α

[
e2αmin(z,T )

2α
− 1

2α
−min(z, T ) +

(
e2αz − 1

)
(T − z)1{z≤T}

]
.

Therefore, for fixed α, T > 0, and z0 satisfying the inequality γ(z0) < 1 (in particular, note
that it suffices to take z0 close to zero), the corresponding nonlinear Hawkes process
satisfies the Poincaré inequality (3.10).

We conclude this subsection by providing a class of Cox processes which satisfy the
Poincaré inequality.
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Corollary 3.11 (Cox processes). Assume ν(E) < ∞ and let N be a Cox process on
[0, T ] × E, T < ∞, with stochastic intensity {λ(t,x)}(t,x)∈[0,T ]×E such that, for some
non-negative functions α, β ∈ L1([0, T ]× E,B([0, T ])⊗ E ,dtν(dx)),

α(t, x) ≤ λ(t,x) ≤ β(t, x), dtν(dx)P(dω)-almost everywhere (3.13)

and

γ := ‖β‖L1([0,T ]×E,B([0,T ])⊗E,dtν(dx)) − ‖α‖L1([0,T ]×E,B([0,T ])⊗E,dtν(dx)) < 1. (3.14)

Then, for any square-integrable functional G of N we have

Var(G) ≤
(
1−√γ

)−2
E

[∫
[0,T ]×E

π(t,x)

∣∣D(t,x)G
∣∣2 dtν(dx)

]
,

where the Papangelou conditional intensity π of N is given, for fixed ω ∈ Ω, by

π(t,x)(ω) := E[R(λ, ω)λ(t,x)] (3.15)

where

R(λ, ω) :=
exp

(
−
∫

[0,T ]×E λ(s,z) dsν(dz)
)∏

(s,z)∈Supp(ω) λ(s,z)

E
[
exp

(
−
∫

[0,T ]×E λ(s,z) dsν(dz)
)∏

(s,z)∈Supp(ω) λ(s,z)

] .
In particular, we have

π(t,x)(ω) ≤ β(t, x)

dtP(dω)ν(dx)-almost everywhere.

3.2 Transportation cost inequalities

Let χ be a Polish space equipped with its Borel σ-field B(χ) and let d be a lower
semi-continuous metric on χ (which does not necessarily generates the topology on χ).
Letting σ1 and σ2 denote a couple of probability measures on (χ,B(χ)), we define the
transportation cost

Td(σ1, σ2) := inf
ρ

∫
χ×χ

d(x, y) ρ(dx× dy) ∈ [0,∞],

where the infimum is taken over all the probability measures ρ on χ × χ with first
marginal σ1 and second marginal σ2. We denote by M1(χ, d) the set of all probability
measures σ on (χ,B(χ)) such that

∫
d(x0, x)σ(dx) <∞, for some x0 ∈ χ and we remark

that for σ1, σ2 ∈M1(χ, d), Td(σ1, σ2) <∞. The relative entropy of σ1 with respect to σ2 is
defined by

H(σ1 | σ2) :=

∫
χ

log

(
dσ1

dσ2

)
dσ1

if σ1 is absolutely continuous with respect to σ2 and H(σ1 | σ2) := +∞ otherwise (the
reader is referred to [26] for more insight into the theory of optimal transportation).

In the following, we denote by

g�(x) := sup
θ≥0

(θx− g(θ)), x ∈ R+

the monotone conjugate of a measurable function g : R+ → [0,∞].
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3.2.1 A transportation cost inequality for functionals of N

In this subsection we take χ := R, suppose that there exists a norm on χ, say ‖ · ‖d, such
that d(x, y) = ‖x − y‖d, x, y ∈ R, and denote by L(X) the law of a real-valued random
variable X. The following theorem holds.

Theorem 3.12. Suppose that N satisfies (2.2) for a measurable function β and let G be
an integrable random variable such that

‖D(t,x)G(ω)‖d ≤ g1(t, x) and
E
[
‖G− E[G | Ft− ]‖d|π(t,x) − p(π)(t,x)| | Ft−

]
(ω)

p(π)(t,x)(ω)
≤ g2(t, x)

for dtdPdν-almost all (t, ω, x) and some deterministic functions g1, g2 such that∫
R+×E

|h(t, x)|2β(t, x) dtν(dx) <∞ (3.16)

where h := g1 + g2. Then

c(Td(σ,L(G))) ≤ H(σ | L(G)), for any σ ∈M1(R, d) (3.17)

where
c(x) := Λ�(x), x ∈ R+ (3.18)

and

Λ(θ) :=

∫
R+×E

(
eθh(t,x) − θh(t, x)− 1

)
β(t, x) dtν(dx), θ ∈ R+. (3.19)

If additionally we assume that there exists M > 0 such that h(t, x) ≤M for dtdν-almost
all (t, x), then

c(x) ≥ c̃(x), x ∈ R+, (3.20)

where

c̃(x) :=
x+M−1

∫
R+×E h(t, z)2β(t, z)dtν(dz)

M
ln

(
1 +

x

M−1
∫
R+×E h(t, z)2β(t, z)dtν(dz)

)
− x

M
.

Remark 3.13. As noticed in Remark 3.2, if E
[
π(t,x)

∣∣Ft−] = 0 P-almost surely, then
P(π(t,x) = 0 | Ft−) = 1 P-almost surely. Consequently, the ratio

E
[
‖G− E[G | Ft− ]‖d|π(t,x) − p(π)(t,x)|

∣∣Ft−]
p(π)(t,x)

is always well-defined under the convention 0/0 := 0.

Remark 3.14 (Deviation inequality). From the point of view of the applications, it is
important to remark that a transportation cost inequality is often equivalent to a deviation
bound. More precisely, in the context of Theorem 3.12, one has that the transportation
cost inequality (3.17) is equivalent to the deviation bound

P

(
1

n

n∑
i=1

f(Gi) ≥ E
[
f(G)

]
+ r

)
≤ e−nc(r), for any n ≥ 1 and r ∈ R+ (3.21)

for any measurable function f : R→ R which is Lipschitz continuous (with respect to d)
with Lipschitz constant less than or equal to 1, i.e. such that

sup
x6=y

|f(x)− f(y)|
d(x, y)

≤ 1,

where {Gn}n≥1 is a sequence of independent random variables with the same law as G
(see [10] and Theorem 1.1(c) in [19]).
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To the best of our knowledge, the transportation cost inequality provided by Theo-
rem 3.12 is new even in the Poisson case, which we state in a separate corollary.

Corollary 3.15 (Poisson processes). Suppose that N is a Poisson process on R+ × E
with mean measure β(t, x) dtν(dx) and let G be an integrable random variable such that

‖D(t,x)G(ω)‖d ≤ h(t, x)

for dtdPdν-almost all (t, ω, x) and some deterministic function h which satisfies (3.16).
Then the transportation cost inequality (3.17) holds. If additionally we assume that
there exists M > 0 such that h(t, x) ≤M for dtdν-almost all (t, x), then (3.20) holds, and
provides a more explicit bound on the corresponding deviation inequality (3.21).

In the following proposition, we specialize Theorem 3.12 to first order integrals. The
subsequent corollaries concern applications to renewal, nonlinear Hawkes and Cox point
processes.

Proposition 3.16 (First order integrals). Suppose that N satisfies (2.2) for a measurable
function β, d(x, y) := |x− y|, take

G :=

∫
R+×E

g(s, y)N(ds× dy),

for some measurable and deterministic function g, and let g1, g2 be deterministic functions
such that

|g(t, x)| ≤ g1(t, x)

and

√
2

[∫
[t,∞)×E

g(s, y)2β(s, y) dsν(dy) +

(∫
[t,∞)×E

|g(s, y)|β(s, y) dsν(dy)

)2]1/2

×

∥∥∥∥∥
√
Var

[
π(t,x) | Ft−

]
p(π)(t,x)

∥∥∥∥∥
L∞(Ω,F∞,P)

≤ g2(t, x), (3.22)

for (t, x) ∈ R+ × E. Assuming that h := g1 + g2 satisfies the corresponding assumption
(3.16), the transportation cost inequality (3.17) holds. If additionally we assume that
there exists M > 0 such that h(t, x) ≤M for dtdν-almost all (t, x), then (3.20) holds, and
provides a more explicit bound on the corresponding deviation inequality (3.21).

In the next corollaries, we provide classes of point processes which satisfy the
assumptions of Proposition 3.16. We point out that we do not aim to optimize the
assumptions, favoring instead clarity and conciseness. The proofs are quite elementary,
and provided in Section 4.4 for the readers’ convenience.

Corollary 3.17 (Renewal point processes). Let N be a renewal point process on [0, T ],
T <∞, with a spacing density f such that f is continuous on [0,+∞) and f > 0 on (a,C)

for some a ∈ [0, T ] and C ∈ (T,+∞], and let G be defined by

G :=

∫ T

0

g(s)N(ds), g ∈ L2([0, T ]). (3.23)

Assume further that there exists h > 0 such that

sup
z∈[0,T ]

sup
x∈[z,T ]

f(x− z)
f(x)

≤ h (3.24)
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(note that this condition is always satisfied if f > 0 on [0, T ].) After straightforward
adjustments due to the unmarked setting, the transportation cost inequality (3.17) holds
with g1 ∈ L2([0, T ]) such that |g(t)| ≤ g1(t), t ∈ [0, T ], and g2 ∈ L2([0, T ]) such that√√√√2

(
h

2
+

(∫ C

T

f(x) dx

)−2

− 1

)[
β

∫ T

t

g(s)2 ds+β2

(∫ T

t

|g(s)|ds
)2]1/2

≤ g2(t), (3.25)

for t ∈ [0, T ], where

β := max

(
supx∈[0,T ] f(x)∫ C

T
f(x) dx

, sup
x∈[0,C)

f(x) +

(
supx∈[0,T ] f(x)

)2
minx∈[a,T ] f(x)

)
. (3.26)

For any M > 0 such that ‖g1 + g2‖∞ ≤M , we have that (3.20) holds, which yields a more
explicit bound on the corresponding deviation inequality (3.21).

Corollary 3.18 (Nonlinear Hawkes processes). Assume that N is a nonlinear Hawkes
process on [0, T ], T < ∞, with parameters (h, φ) such that h is non-negative and inte-
grable on [0, T ], φ is Lipschitz continuous and non-increasing with φ(0) > 0, and let G be
defined by (3.23). After straightforward adjustments due to the unmarked setting, the
transportation cost inequality (3.17) holds with g1 ∈ L2([0, T ]) such that |g(t)| ≤ g1(t),
t ∈ [0, T ], and g2 ∈ L2([0, T ]) such that

g2(t) ≥
√

2

[
φ(0)

∫ T

t

g(s)2 exp

(
‖φ‖Lip

∫ T−s

0

h(z) dz

)
ds

+

(
φ(0)

∫ T

t

|g(s)| exp

(
‖φ‖Lip

∫ T−s

0

h(z) dz

)
ds

)2]1/2
√

exp

(
2‖φ‖Lip

∫ T−t

0

h(z)dz

)
− 1,

(3.27)

t ∈ [0, T ]. For any M > 0 such that ‖g1 + g2‖∞ ≤ M , we have that (3.20) holds, which
yields a more explicit bound on the corresponding deviation inequality (3.21).

Corollary 3.19 (Cox processes). Assume ν(E) < ∞ and let N be a Cox process on
[0, T ]×E, T <∞, with stochastic intensity {λ(t,x)}(t,x)∈[0,T ]×E satisfying (3.13), for some
non-negative functions α, β with β ∈ L1([0, T ] × E,dtν(dx)) and β3α−2 ∈ L1([0, T ] ×
E,dtν(dx)). If G is defined by

G :=

∫
[0,T ]×E

g(s, y)N(ds× dy), g ∈ L2([0, T ]× E, β(t, x)dtν(dx)),

then the transportation cost inequality (3.17) holds with g1 ∈ L2([0, T ]×E, β(t, x)dtν(dx))

such that |g(t, x)| ≤ g1(t, x), (t, x) ∈ [0, T ]×E, and g2 ∈ L2([0, T ]×E, β(t, x)dtν(dx)) such
that

√
2

[∫
[t,T ]×E

g(s, y)2β(s, y) dsν(dy) +

(∫
[t,T ]×E

|g(s, y)|β(s, y) dsν(dy)

)2]1/2

×

√
β(t, x)2

α(t, x)2
− 1 ≤ g2(t, x),

for (t, x) ∈ [0, T ] × E. For any M > 0 such that ‖g1 + g2‖∞ ≤ M , we have that (3.20)
holds, which yields a more explicit bound on the corresponding deviation inequality
(3.21).
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3.2.2 A transportation cost inequality for the law of N

In this subsection we take χ := Ω and equip this set with the vague convergence
topology, that is, the coarsest topology such that the map ω 7→

∫
R+×E f(t, x)ω(dt× dx) is

continuous, where f : R+ ×E → R is a continuous function with compact support. It is
well-known that this topology makes Ω a Polish space (see e.g. [5]). In this subsection,
we let ϕ : R+ × E → R+ be a continuous function and define the following metric on Ω:

dϕ(ω, ω′) :=

∫
R+×E

ϕ(t, x)|ω − ω′|(dt× dx), ω, ω′ ∈ Ω

where, for κ ∈ Ω, |κ| := κ+ + κ−, and κ+ and κ− denote respectively the positive and
the negative parts of κ in the Hahn-Jordan decomposition. It is known that dϕ is a lower
semi-continuous metric on Ω (see Lemma 2.2 in [19]). The following theorem holds.

Theorem 3.20. Assume that N satisfies (2.2) for a measurable function β, that there
exists a deterministic measurable function ψ which verifies (3.22) with ϕ in place of g
and ψ in place of g2 and that∫

R+×E
|hϕ(t, x)|2β(t, x) dtν(dx) <∞, (3.28)

where hϕ := ϕ+ ψ. Then

c(Tdϕ(Q,P)) ≤ H(Q | P), for any Q ∈M1(Ω, dϕ) (3.29)

where
c(x) := Λ�ϕ (x), x ∈ R+

and

Λϕ(θ) :=

∫
R+×E

(
eθhϕ(t,x) − θhϕ(t, x)− 1

)
β(t, x) dtν(dx), θ ∈ R+.

In particular, when N is a Poisson process with mean measure β(t, x) dtν(dx) we recover
the sharp transportation cost inequality in Remark 2.7 of [19].

Remark 3.21 (Deviation inequality). Here again, it turns out (see [10] and Theo-
rem 1.1(c) in [19]) that, in the context of Theorem 3.20, the transportation cost inequality
(3.29) is equivalent to the deviation bound

P

(
1

n

n∑
i=1

F (Ni) ≥ E
[
F (N)

]
+ r

)
≤ e−nc(r), for any n ≥ 1 and r ∈ R+ (3.30)

for any measurable function F : Ω→ R which is Lipschitz continuous (with respect to
dϕ) with Lipschitz constant less than or equal to 1, i.e. such that

sup
ω 6=ω′

|f(ω)− f(ω′)|
dϕ(ω, ω′)

≤ 1,

where {Nn}n≥1, Nn : Ω→ Ω, is a sequence of independent marked point processes with
the same law as N . As in the previous Subsection 3.2.1, if additionally we assume that
there exists M > 0 such that hϕ(t, x) ≤M for dtdν-almost all (t, x), then (3.20) with hϕ
in place of h holds, and provides a more explicit bound on the deviation inequality (3.30).

Arguing as in the proofs of Corollaries 3.17, 3.18 and 3.19, one can show that
Theorem 3.20 and the deviation bound in Remark 3.21 apply to renewal, nonlinear
Hawkes and Cox point processes. Similarly to the previous Subsection 3.2.1, we do not
aim to optimize the assumptions, favoring instead clarity and conciseness.
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Corollary 3.22 (Renewal point processes). Let N be a renewal point process on [0, T ],
T < ∞, with a spacing density f such that f is continuous on [0,+∞) and f > 0 on
(a,C) for some a ∈ [0, T ] and C ∈ (T,+∞]. Assume further that there exists h > 0

satisfying (3.24). Then, after straightforward adjustments due to the unmarked setting,
the transportation cost inequality (3.29) holds with ψ ∈ L2([0, T ]) such that√√√√2

(
h

2
+

(∫ C

T

f(x) dx

)−2

− 1

)[
β

∫ T

t

ϕ(s)2 ds+ β2

(∫ T

t

|ϕ(s)|ds
)2]1/2

≤ ψ(t),

for t ∈ [0, T ], where β is defined by (3.26).

Corollary 3.23 (Nonlinear Hawkes processes). Assume that N is a nonlinear Hawkes
process on [0, T ], T < ∞, with parameters (h, φ) such that h is non-negative and in-
tegrable on [0, T ], φ is Lipschitz continuous and non-increasing with φ(0) > 0. Then,
after straightforward adjustments due to the unmarked setting, the transportation cost
inequality (3.29) holds with ψ ∈ L2([0, T ]) such that

ψ(t) ≥
√

2

[
φ(0)

∫ T

t

ϕ(s)2 exp

(
‖φ‖Lip

∫ T−s

0

h(z) dz

)
ds

+

(
φ(0)

∫ T

t

|ϕ(s)| exp

(
‖φ‖Lip

∫ T−s

0

h(z)dz

)
ds

)2]1/2
√

exp

(
2‖φ‖Lip

∫ T−t

0

h(z)dz

)
− 1,

for t ∈ [0, T ].

Corollary 3.24 (Cox point processes). Assume ν(E) < ∞ and let N be a Cox process
on [0, T ] × E, T < ∞, with stochastic intensity {λ(t,x)}(t,x)∈[0,T ]×E satisfying (3.13),
for some non-negative functions α, β with β ∈ L1([0, T ] × E,dtν(dx)) and β3α−2 ∈
L1([0, T ]× E,dtν(dx)). Assume further that ϕ ∈ L2([0, T ]× E, β(t, x)dtν(dx)). Then, the
transportation cost inequality (3.29) holds with ψ ∈ L2([0, T ] × E, β(t, x)dtν(dx)) such
that

√
2

[∫
[t,T ]×E

ϕ(s, y)2β(s, y) dsν(dy) +

(∫
[t,T ]×E

|ϕ(s, y)|β(s, y) dsν(dy)

)2]1/2

×

√
β(t, x)2

α(t, x)2
− 1 ≤ ψ(t, x),

for (t, x) ∈ [0, T ]× E.

3.3 Variational representation of the Laplace transform

The following Theorem 3.26 generalizes to functionals of marked point processes
with Papangelou conditional intensity the variational representation formula for the
Laplace transform of Poisson functionals given by Theorem 4.4 of [29]. Note also that, in
contrast to [29], here the marked point process is defined on the whole half-line.

Hereafter, we suppose that N satisfies (3.1) and (3.2), and denote by H the subset
of PF2 (p(π)) formed by the real-valued processes φ ∈ L∞(R+ × Ω × E,B(R+) ⊗ F∞ ⊗
E ,dtdPdν) such that

φ(t,x) ≥ cφ > −1, for some constant cφ, dtdPν(dx)-almost surely, (3.31)

E

[(∫
R+×E

|φ(s,x)|2 p(π)(s,x) dsν(dx)

)2]
<∞ (3.32)
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and
for any T > 0, (t, x) 7→ 1[0,T ](t)Et(φ) ∈ PF2 (p(π)), (3.33)

where

Et(φ) := exp

(∫
[0,t]×E

log
(
1 + φ(s,x)

)
(N(ds× dx)− p(π)(s,x) dsν(dx))

+

∫
[0,t]×E

(
log
(
1 + φ(s,x)

)
− φ(s,x)

)
p(π)(s,x) dsν(dx)

)
, t ∈ R+.

The following lemma ensures that {Et(φ)}t∈R+ is a square-integrable F -martingale.
Its proof is postponed to Section 4 (see Subsection 4.6).

Lemma 3.25. Assume that N satisfies (3.1) and (3.2). Then, for any φ ∈ H, the
stochastic process {Et(φ)}t∈R+

is a square-integrable F -martingale.

Under the assumptions of Lemma 3.25, for φ ∈ H, we define a new probability
measure Pφ on (Ω,F∞) by

dPφ
dP

∣∣∣∣
Ft

= Et(φ), t ∈ R+. (3.34)

The following variational representation of the Laplace transform holds.

Theorem 3.26. Suppose that N satisfies (3.1), (3.2),

K :=

∫ ∞
0

∥∥∥∥∫
E

p(π)(t,x) ν(dx)

∥∥∥∥
L∞(Ω,F∞,P)

dt <∞, (3.35)

and let G be a random variable on (Ω,F∞,P) which is upper bounded. Then

− log
(
E
[
e−G

])
= inf
φ∈H

Eφ
[
G+ L(φ)

]
,

where Eφ denotes the expectation under Pφ and

L(φ) :=

∫
R+×E

(
(1 + φ(s,x)) log

(
1 + φ(s,x)

)
− φ(s,x)

)
p(π)(s,x) dsν(dx).

Additionally, if G ∈ L∞(Ω,F∞,P), then the infimum is uniquely attained at

φ
(F )
(t,x) :=

ϕ
(F )
(t,x)

p(F )(t,x)
, (t, x) ∈ R+ × E

where F := e−G and

ϕ
(F )
(t,x) :=

p(πF+)(t,x) − p(F )(t,x)p(π)(t,x)

p(π)(t,x)
, (t, x) ∈ R+ × E. (3.36)

Here, we limit ourselves to note that ϕ(F ) is well-defined and belongs to PF2 (p(π)),
and refer the reader to Theorem 3.28 and Remark 3.30 for details.

Remark 3.27. Assumptions (3.1), (3.2) and (3.35) are satisfied if the inequality (2.2)
holds with β ∈ L1(R+ × E,B(R+)⊗ E ,dtν(dx)), see also Remark 3.4. As such, Theorem
3.26 applies to (i) renewal point processes on [0, T ], T < ∞, with a spacing density
f such that f is continuous on [0,+∞) and f > 0 on (a,C) for some a ∈ [0, T ] and
C ∈ (T,+∞]; (ii) nonlinear Hawkes processes on [0, T ], T <∞, with parameters (h, φ)

such that h is non-negative and integrable on [0, T ], φ is Lipschitz continuous and non-
increasing with φ(0) > 0; (iii) if ν(E) < ∞, Cox processes on [0, T ] × E, T < ∞, with
stochastic intensity {λ(t,x)}(t,x)∈[0,T ]×E such that λ(t,x) ≤ β(t, x), (t, x) ∈ [0, T ]× E, with
β ∈ L1([0, T ]× E,dtν(dx)).
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3.4 Clark-Ocone formula

As already mentioned, the proofs of Theorems 3.1, 3.12, 3.20 and 3.26 are based on
a Clark-Ocone formula for marked point processes with Papangelou conditional intensity
which generalizes the one derived in [8] (see Remark 3.29).

Theorem 3.28. Suppose thatN satisfies (3.1) and (3.2). Then, for anyG ∈ L2(Ω,F∞,P),

G = E[G] +

∫
R+×E

ϕ
(G)
(t,x) (N(dt× dx)− p(π)(t,x) dtν(dx)), P-almost surely, (3.37)

where ϕ(G) is defined by (3.36) with G in place of F . Additionally, ϕ(G) ∈ PF2 (p(π)).

Remark 3.29. The Clark-Ocone formula (3.37) generalizes the corresponding formula
in [8] to point processes on R+ with marks in E and guarantees that the integrand ϕ(G)

is square integrable with respect to p(π)(t,x)(ω)dtP(dω)ν(dx). This integrability property
is crucial in our proofs since it allows one to apply the isometry formula of Proposition
2.6. We also remark that the proof of formula (3.37) provided in this paper is shorter
than the proof of the corresponding Clark-Ocone formula in [8].

Remark 3.30. Under the assumptions of Theorem 3.28, by Proposition 2.3 we have that
p(G)(t,x) exists and it is finite P-almost surely. Additionally, we have π(t,x)(N)G+

(t,x)(N) ∈
L1(Ω,F∞,P), for dtν(dx)-almost all (t, x). Indeed, on any interval [t1, t2] ⊂ R+ we have∫

[t1,t2]×E
E
[∣∣∣π(t,x)(N)G+

(t,x)(N)
∣∣∣]dtν(dx) = E

[∫
R+×E

|G(N)|1[t1,t2](t)N(dt× dx)

]
≤ ‖G‖L2(Ω,F∞,P)‖N([t1, t2]× E)‖L2(Ω,F∞,P)

<∞.

Here, the first equality follows from (2.1). Therefore, again by Proposition 2.3, for
dtν(dx)-almost all (t, x), p(πG+)(t,x) exists and it is finite P-almost surely. We also note
that the difference p(πG+)(t,x) − p(G)(t,x)p(π)(t,x) is well-defined and finite P-almost
surely. Indeed, for any T ≥ 0,∫

[0,T ]×E
E
[
p(π)(t,x)

]
dtν(dx) = E

[∫
[0,T ]×E

π(t,x) dtν(dx)

]
= E

[
N([0, T ]× E)

]
<∞.

(3.38)
So, for dtν(dx)-almost all (t, x), p(π)(t,x) is finite P-almost surely. As noticed in Remark 3.2
if p(π)(t,x) = 0 P-almost surely then P(π(t,x) = 0 | Ft−) = 1 P-almost surely. Consequently,

p(πG+)2
(t,x) = E

[
π(t,x)G

+
(t,x)

∣∣Ft−]2 = 0 P-almost surely. Thus, if p(π)(t,x) = 0 P-almost

surely then, by the convention 0/0 := 0, ϕ(G)
(t,x) = 0 P-almost surely. Consequently, ϕ(G) is

well-defined by (3.36). Finally, we note that it is clearly predictable.

Remark 3.31. As mentioned in Remark 3.4, one can exhibit a more explicit condition
(i.e. the local stability of N ) which guarantees that (3.1) and (3.2) are satisfied.

4 Proofs of the main results

In this section we prove Theorems 3.1, 3.12, 3.20, 3.26, 3.28, and Corollaries 3.7, 3.9,
3.11, 3.17, 3.18 and 3.19.

4.1 Proof of Theorem 3.1

By Lemma 2.7, Theorem 3.28 and Proposition 2.6, we have

Var(G) = E

(∫
R+×E

ϕ
(G)
(t,x)(N(dt× dx)− p(π)(t,x)dtν(dx))

)2

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= E

[∫
R+×E

(ϕ
(G)
(t,x))

2p(π)(t,x) dtν(dx)

]

= E

[∫
R+×E

(
p(πG+)(t,x) − p(G)(t,x)p(π)(t,x)

)2
p(π)(t,x)

dtν(dx)

]

= E

∫
R+×E

(
E
[
G+

(t,x)π(t,x) −GE
[
π(t,x)

∣∣Ft−] ∣∣Ft−])2

E
[
π(t,x)

∣∣Ft−] dtν(dx)

 . (4.1)

Note that

E
[
G+

(t,x)π(t,x) −GE
[
π(t,x)

∣∣Ft−] ∣∣Ft−]
= E

[
π(t,x)

(
G+

(t,x) −G
) ∣∣Ft−]+ E

[
(G− E[G])

(
π(t,x) − E

[
π(t,x)

∣∣Ft−]) ∣∣Ft−] .
Thus, for any 0 < q < 1− γ, by (4.1) and the convexity inequality

(a+ b)2 ≤ a2/q + b2/(1− q), a, b ∈ R,

we have

Var(G) ≤ 1

q
E

[∫
R+×E

(
E
[
π(t,x)

(
G+

(t,x) −G
) ∣∣Ft−])2

E
[
π(t,x)

∣∣Ft−] dtν(dx)

]

+
1

1− q
E

[∫
R+×E

(
E
[
(G− E[G])

(
π(t,x) − E

[
π(t,x)

∣∣Ft−]) ∣∣Ft−])2
E
[
π(t,x)

∣∣Ft−] dtν(dx)

]
. (4.2)

By the Cauchy-Schwarz inequality(
E
[
π(t,x)

(
G+

(t,x) −G
)∣∣Ft−])2

≤ E
[
π(t,x)

∣∣Ft−]E [π(t,x)

(
G+

(t,x) −G
)2∣∣Ft−]

and so

E

[∫
R+×E

(
E
[
π(t,x)

(
G+

(t,x) −G
)∣∣Ft−])2

E
[
π(t,x)

∣∣Ft−] dtν(dx)

]

≤ E

[∫
R+×E

∣∣D(t,x)G
∣∣2 π(t,x) dtν(dx)

]
. (4.3)

By the Cauchy-Schwarz inequality(
E
[
(G− E[G])

(
π(t,x) − E

[
π(t,x)

∣∣Ft−]) ∣∣Ft−])2
≤ E

[
(G− E[G])2

(
E
[
π2

(t,x)

∣∣Ft−]− E [π(t,x)

∣∣Ft−]2) ∣∣Ft−] .
So, by assumption (3.3) and the inequality

(E
[
π2

(t,x)

∣∣Ft−]/E [π(t,x)

∣∣Ft−])− E [π(t,x)

∣∣Ft−] ≥ 0

which follows from Jensen’s inequality, we have

E

[∫
R+×E

(
E
[
(G− E[G])

(
π(t,x) − E

[
π(t,x)

∣∣Ft−]) ∣∣Ft−])2
E
[
π(t,x)

∣∣Ft−] dtν(dx)

]

EJP 24 (2019), paper 116.
Page 20/40

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP369
http://www.imstat.org/ejp/


Functional inequalities for marked point processes

≤ E

[
(G− E[G])2

∫
R+×E

(
E
[
π2

(t,x)

∣∣Ft−]
E
[
π(t,x)

∣∣Ft−] − E [π(t,x)

∣∣Ft−]
)

dtν(dx)

]
≤ γ Var(G).

(4.4)

Combining (4.2) with the bounds (4.3) and (4.4), we obtain

Var(G) ≤ q−1E

[∫
R+×E

∣∣D(t,x)G
∣∣2 π(t,x) dtν(dx)

]
+ γ(1− q)−1Var(G),

i.e.

Var(G) ≤ 1/q

1− γ/(1− q)
E

[∫
R+×E

∣∣D(t,x)G
∣∣2 π(t,x) dtν(dx)

]
, for any 0 < q < 1− γ.

(4.5)

Finally, we note that the choice q = 1 − √γ minimizes the multiplicative constant
appearing in (4.5), and the proof is complete.

4.2 Proofs of Corollaries 3.7, 3.9 and 3.11

Proof of Corollary 3.7. It is well-known that N has Papangelou conditional intensity
{πt}t∈[0,T ] defined in the statement (see [24] and Corollary 2.9 in [8]). By Proposition 2.10
in [8] N is locally stable, and so by Remark 3.4 the corresponding assumptions (3.1) and
(3.2) are satisfied. We recall that the points of N are denoted by T0 := 0 < T1 < T2 <

· · · < TN([0,T ]). For any t ∈ [0, T ], we have

E
[
π2
t | Ft−

]
= E

[
f(t− TN([0,t)))

2f(TN([0,t))+1 − t)2

f(TN([0,t))+1 − TN([0,t)))2
1{N((t,T ])>0}

+
f(t− TN([0,t)))

2F (T − t)2

F (T − TN([0,t)))2
1{N((t,T ])=0}

∣∣∣ Ft−]

= f(t− TN([0,t)))
2E

[
f
(
TN([0,t))+1 − TN([0,t)) − (t− TN([0,t)))

)2
f(TN([0,t))+1 − TN([0,t)))2

1{N((t,T ])>0}

∣∣∣ Ft−]
+
f(t− TN([0,t)))

2F (T − t)2

F (T − TN([0,t)))2
P
(
N((t, T ]) = 0 | Ft−

)
≤ f(t− TN([0,t)))

2h(t− TN([0,t)))
2
(
1− P

(
N((t, T ]) = 0 | Ft−

))
+
f(t− TN([0,t)))

2F (T − t)2

F (T − TN([0,t)))2
P
(
N((t, T ]) = 0 | Ft−

)
. (4.6)

Hence by Lemma 2.7 and Lemma 1 in [2], we have∫ T

0

Var[πt | Ft− ]

E
[
πt | Ft−

] dt

=

∫ T

0

(
E
[
π2
t | Ft−

]
E
[
πt | Ft−

] − E[πt | Ft−])dt

=

∫ T

0

f(t− TN([0,t)))

F (t− TN([0,t)))

[
F (t− TN([0,t)))

2E
[
π2
t | Ft−

]
f(t− TN([0,t)))2

− 1

]
dt

≤
∫ T

0

f(t− TN([0,t)))

F (t− TN([0,t)))

[
F (t− TN([0,t)))

2h(t− TN([0,t)))
2
(
1− P

(
N((t, T ]) = 0 | Ft−

))
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+
F (t− TN([0,t)))

2F (T − t)2

F (T − t+ (t− TN([0,t))))2
P
(
N((t, T ]) = 0 | Ft−

)
− 1

]
dt

=

∫ T

0

f(t− TN([0,t)))

F (t− TN([0,t)))

[
F (t− TN([0,t)))

2F (T − t)2

F (T − t+ (t− TN([0,t))))2
exp

(
−
∫ T

t

f(s− t+ (t− TN([0,t))))

F (s− t+ (t− TN([0,t))))
ds

)
+ F (t− TN([0,t)))

2h(t− TN([0,t)))
2

(
1− exp

(
−
∫ T

t

f(s− t+ (t− TN([0,t))))

F (s− t+ (t− TN([0,t))))
ds

))
− 1

]
dt

≤
∫ T

0

sup
z∈[0,t]

f(z)

F (z)

[
F (z)2F (T − t)2

F (T − t+ z)2
exp

(
−
∫ T

t

f(s− t+ z)

F (s− t+ z)
ds

)
+ F (z)2h(z)2

(
1− exp

(
−
∫ T

t

f(s− t+ z)

F (s− t+ z)
ds

))
− 1

]
dt,

P-almost surely. It remains to notice that since f(u) = −dF (u) /du, u ≥ 0, we have

exp

(
−
∫ T

t

f(s− t+ z)

F (s− t+ z)
ds

)
=
F (T − t+ z)

F (z)
,

and so, by (3.8), the corresponding assumption (3.3) holds and the claim follows by
Theorem 3.1.

Proof of Corollary 3.9. By Lemma 2.7 in [8], N has a Papangelou conditional intensity
πt defined by (3.11). The assumptions on the parameters (h, φ) guarantee λt ≤ φ(0) and

Et(N) ≤ e‖φ‖Lip

∫ T−t
0

h(s) ds ≤ e‖φ‖Lip‖h‖L1([0,T ],B([0,T ]),dt) . (4.7)

Consequently, the inequalities in (3.12) hold and by Remark 3.4 the corresponding
conditions (3.1) and (3.2) are satisfied. A straightforward computation gives∫ T

0

Var
[
πt
∣∣Ft−]

E
[
πt
∣∣Ft−] dt =

∫ T

0

λt
(
E
[
(Et(N))2

∣∣Ft−]− 1
)

dt

≤ φ(0)

∫ T

0

(
e2‖φ‖Lip

∫ τ
0
h(z) dz − 1

)
dτ < 1,

and therefore the corresponding assumption (3.3) holds. The claim follows by Theorem
3.1.

Proof of Corollary 3.11. It is well-known (see e.g. [18]) that N has Papangelou condi-
tional intensity π(t,x) defined by (3.15). The inequality π(t,x)(ω) ≤ β(t, x) easily follows by
λ(t,x) ≤ β(t, x) and so N is locally stable. Since λ(t,x) ≥ α(t, x), condition (3.6) is implied
by (3.14). So, by Remark 3.5, Theorem 3.1 can be applied and the claim follows.

4.3 Proof of Theorem 3.12

The proof of Theorem 3.12 is based on two preliminary propositions. The first
one consists in a result from [10] (see Theorem 3 therein, as well as Theorem 1.1 in
[19]). The second one, whose proof is given at the end of this subsection, provides a
stochastic convex inequality for functionals of marked point processes and generalizes
Theorem 4.1-(ii) in [12]. We recall that in general, χ denotes a Polish space equipped
with its Borel σ-field B(χ) and d denotes a lower semi-continuous metric on χ which does
not necessarily generate the topology on χ.

Proposition 4.1. Let c : [0,∞)→ [0,∞] be a non-decreasing, left-continuous and convex
function with c(0) = 0, and let µ ∈M1(χ, d). Then

c(Td(σ, µ)) ≤ H(σ | µ), for any σ ∈M1(χ, d)
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if and only if, for any function f : χ → R which is measurable, bounded, Lipschitz
continuous (with respect to the metric d) with Lipschitz constant less than or equal to 1,
i.e. supx 6=y

|f(x)−f(y)|
d(x,y) ≤ 1, we have∫

χ

eθ(f(x)−
∫
χ
f(z)µ(dz))µ(dx) ≤ ec

�(θ), for any θ ∈ R+.

Proposition 4.2. Let the notation of Theorem 3.28 prevail. Assume that N satisfies
(2.2) with a dominating function β, G ∈ L2(Ω,F∞,P) and

∣∣ϕ(G)
(t,x)

∣∣ ≤ h(t, x), dtP(dω)ν(dx)-
almost everywhere, for some deterministic function h such that∫

R+×E
|h(t, x)|2β(t, x) dtν(dx) <∞.

Then, letting E′ denote the expectation corresponding to a probability measure P′ on
(Ω,F∞) under which N is a Poisson process on R+ × E with intensity function β,

E
[
φ(G− E[G])

]
≤ E′

[
φ

(∫
R+×E

h(t, x)
(
N(dt× dx)− β(t, x) dtν(dx)

))]
, (4.8)

for all twice continuously differentiable convex functions φ : R → R such that φ′ is
convex.

Proof of Theorem 3.12. We take χ = R and let f : R→ R be bounded and Lipschitz con-
tinuous with Lipschitz constant less than or equal to 1 (i.e supx6=y |f(x)−f(y)|/d(x, y) ≤ 1).
We note that for dtν(dx)P(dω)-almost every (t, x, ω),

p(πf ◦G+)(t,x) − p(f ◦G)(t,x)p(π)(t,x)

= E[π(t,x)D(t,x)(f ◦G) | Ft− ] +E
[(
f ◦G− f(E[G | Ft− ])

)(
π(t,x) −E

[
π(t,x)

∣∣Ft−]) | Ft−],
and so∣∣∣ϕ(f◦G)

(t,x) (ω)
∣∣∣

≤
E
[
π(t,x)

∣∣f ◦G+
(t,x) − f ◦G

∣∣+
∣∣f ◦G− f(E[G | Ft− ])

∣∣∣∣π(t,x) − E
[
π(t,x) | Ft−

]∣∣ ∣∣ Ft−](ω)

E
[
π(t,x) | Ft−

]
(ω)

≤
E
[
π(t,x)‖D(t,x)G‖d + ‖G− E[G | Ft− ]‖d

∣∣π(t,x) − E
[
π(t,x) | Ft−

]∣∣ ∣∣ Ft−] (ω)

E
[
π(t,x) | Ft−

]
(ω)

≤ h(t, x).

So, for any θ ≥ 0, by Proposition 4.2 with φ(x) := eθx and f(G) in place of G, we have

E
[
eθ(f(G)−E[f(G)])

]
≤ E′

[
exp

(
θ

∫
R+×E

h(t, x)
(
N(dt× dx)− β(t, x) dtν(dx)

))]
= eΛ(θ),

where Λ is defined by (3.19). A straightforward computation shows that Λ is non-negative,
non-decreasing, left-continuous and convex, with Λ(0) = 0. Thus, by Proposition 1 in
[10] Λ�� = Λ. The transportation cost inequality (3.17) then follows by Proposition 4.1.
Now, assuming that h is bounded by M > 0, we have

Λ(θ) ≤ eθM − θM − 1

M2

∫
R+×E

h(t, z)2β(t, z) dtν(dz),

and as in the proof of Theorem 2.6 in [19], we get the inequality (3.20).
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Proof of Proposition 4.2. This proof is inspired by that of Lemma 3.2 of [28]. Through-
out this proof all the random quantities are defined on the product probability space
(Ω2,F∞ ⊗ F∞,P ⊗ P′), and we let N ′(ω, ω′) = ω′ and N(ω, ω′) = ω. With an abuse of

notation, we set p(π)(t,x)(ω, ω
′) := p(π)(t,x)(ω), ϕ(G)

(t,x)(ω, ω
′) := ϕ

(G)
(t,x)(ω), and we denote by

Ẽ the expectation with respect to P⊗ P′.
Let {Mt}t∈R+

and {M∗t }t∈R+
be the stochastic processes defined, respectively, by

Mt(ω, ω
′) :=

∫
[0,t]×E

ϕ
(G)
(s,x)(ω)(ω(ds× dx)− p(π)(s,x)(ω) dsν(dx))

and

M∗t (ω, ω′) :=

∫
[t,∞)×E

h(s, x)(ω′(ds× dx)− β(s, x) dsν(dx)).

Let {Ht}t≥0 and {H∗t }t≥0 be, respectively, the forward and backward filtrations defined
by

Ht := Ft ⊗F∞ and H∗t := F∞ ⊗F[t,∞), t ∈ R+.

By Corollary C4 p. 235 in [1] and standard properties of the conditional expectation,
we have that {Mt}t≥0 is an H∗-adapted H-martingale and {M∗t }t≥0 is an H-adapted
H∗-backward martingale. Letting ε(t,u) and εt denote, respectively, the Dirac measure at
(t, u) ∈ R+ ×R and at t ∈ R+, we define the jump measures of {Mt}t∈R+

and {M∗t }t∈R+

respectively by

µ(ds× dτ) :=
∑

t>0 : ∆Mt 6=0

ε(t,∆Mt)(ds× dτ) =
∑

(t,x)∈Supp(N)

ε(
t,ϕ

(G)

(t,x)

)(ds× dτ)

and
µ∗(ds× dτ) :=

∑
(t,x)∈Supp(N ′)

ε(t,h(t,x))(ds× dτ),

where ∆Mt := Mt −Mt− . For any fixed t ∈ R+, denote by νt(dτ) the (random) image

measure on (R,B(R)) of p(π)(t,x)ν(dx) by the mapping E 3 x 7→ ϕ
(G)
(t,x) ∈ R, i.e. for any

bounded and measurable f : R→ R,∫
R

f(τ) νt(dτ) :=

∫
E

f
(
ϕ

(G)
(t,x)(ω)

)
p(π)(t,x)(ω) ν(dx),

and similarly let ν∗t be the measure on (R,B(R)) defined by∫
R

f(τ) ν∗t (dτ) :=

∫
E

f
(
h(t, x)

)
β(t, x) ν(dx).

It turns out that νt(dτ) dt is the dual H-predictable projection of µ and ν∗t (dτ) dt is the
dual H∗-predictable projection of µ∗. Indeed focusing e.g. on µ, again by Corollary C4
p. 235 in [1] and standard properties of the conditional expectation, for any t,∆t ≥ 0 and
A ∈ B(R),

Ẽ

[
µ([t, t+ ∆t]×A)−

∫ t+∆t

t

νs(A) ds
∣∣Ht]

= Ẽ

[∫
[t,t+∆t]×E

1{
ϕ

(G)

(s,x)
∈A
}(N(ds× dx)− p(π)(s,x)dsν(dx))

∣∣Ht] = 0.

Consequently, conditions (3.1), (3.2) and (3.3) of [12] are verified. We also note that
condition (3.4) of [12] is trivially satisfied with H ≡ H∗ ≡ 0. For any t ∈ R+, we define
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the following (random) measures on (R,B(R)):

ν̃t(dτ) := |τ |2νt(dτ) and ν̃∗t (dτ) := |τ |2ν∗t (dτ).

For any u ∈ R, we have

ν̃t([u,∞)) =

∫
E

1[u,∞)

(
ϕ

(G)
(t,x)

)∣∣ϕ(G)
(t,x)

∣∣2p(π)(t,x) ν(dx)

≤
∫
E

1[u,∞)

(
h(t, x)

)∣∣h(t, x)
∣∣2β(t, x) ν(dx)

= ν̃∗t ([u,∞)).

Furthermore, for any u ∈ R,∫ ∞
0

ν̃∗t ([u,∞)) dt ≤
∫
R+×E

∣∣h(t, x)
∣∣2β(t, x) dtν(dx) <∞.

Therefore, for any u ∈ R and any (ω, ω′) ∈ Ω2, ν̃∗t ([u,∞)) <∞ dt-almost everywhere, and
so by Theorem 3.3 in [12] we have

Ẽ[φ(Mt +M∗t )] ≤ Ẽ[φ(M∗0 )],

for all t ∈ R+ and any function φ as in the statement. By Theorem 3.28 and Proposi-
tion 2.5 we have

Ẽ[(Mt +M∗t + E[G]−G)2] ≤ 2

(
Ẽ

[(∫
[t,∞)×E

h(s, x)
(
N ′(ds× dx)− β(s, x) dsν(dx)

))2]
+ Ẽ

[(∫
[t,∞)×E

ϕ
(G)
(s,x)

(
N(ds× dx)− p(π)(s,x) dsν(dx)

))2])
= 2

∫
[t,∞)×E

|h(s, x)|2β(s, x) dsν(dx)

+ 2E

[∫
[t,∞)×E

∣∣ϕ(G)
(s,x)

∣∣2p(π)(s,x) dsν(dx)

]
−−−→
t→∞

0.

Thus, there exists a sequence {tn}n≥1 such that Mtn +M∗tn → G− EG, P̃-almost surely,
and therefore by Fatou’s lemma

Ẽ[φ(G− E[G])] = Ẽ
[
lim inf
n→∞

φ(Mtn +M∗tn)
]
≤ lim inf

n→∞
Ẽ[φ(Mtn +M∗tn)] ≤ Ẽ[φ(M∗0 )],

which is exactly (4.8).

4.4 Proofs of Proposition 3.16 and Corollaries 3.17, 3.18, 3.19

Proof of Proposition 3.16. We shall apply Theorem 3.12. For any (t, x) ∈ R+ × E, we
have

∣∣D(t,x)G
∣∣ = |g(t, x)| ≤ g1(t, x), and by the Cauchy-Schwarz inequality

E
[∣∣G− E[G | Ft− ]

∣∣|π(t,x) − p(π)(t,x)| | Ft−
]
(ω)

p(π)(t,x)(ω)

≤ E
[
(G− E[G | Ft− ])2 | Ft−

]1/2∥∥∥∥∥
√
Var

[
π(t,x) | Ft−

]
p(π)(t,x)

∥∥∥∥∥
L∞(Ω,F∞,P)

.

Additionally, by (2.4)

E[G | Ft− ] =

∫
(0,t)×E

g(s, y)N(ds× dy) +

∫
[t,∞)×E

g(s, y)E[λ(s,y) | Ft− ] dsν(dy),
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and so by Proposition 2.5(ii)

E
[
(G− E[G | Ft− ])2 | Ft−

]
= E

[(∫
[t,∞)×E

g(s, y)N(ds× dy)−
∫

[t,∞)×E
g(s, y)E[λ(t,y) | Ft− ] dsν(dy)

)2 ∣∣∣ Ft−]
≤ 2E

[(∫
[t,∞)×E

g(s, y) (N(ds× dy)− λ(s,y)dsν(dy)

)2

+

(∫
[t,∞)×E

g(s, y)(λ(s,y) − E[λ(s,y) | Ft− ]) dsν(dy)

)2 ∣∣∣ Ft−]
= 2

[∫
[t,∞)×E

g(s, y)2E[λ(s,y) | Ft− ] dsν(dy)

+ E

[(∫
[t,∞)×E

g(s, y)(λ(s,y) − E[λ(s,y) | Ft− ]) dsν(dy)

)2 ∣∣∣ Ft−]]
≤ 2

[∫
[t,∞)×E

g(s, y)2β(s, y) dsν(dy) +

(∫
[t,∞)×E

|g(s, y)|β(s, y) dsν(dy)

)2]
. (4.9)

The claim follows by Theorem 3.12.

Proof of Corollary 3.17. By the proof of Proposition 2.10 in [8] we have πt ≤ β, where β
is given by (3.26). Additionally, by (3.24), (4.6) and the form of the stochastic intensity
for renewal processes,√

Var
[
πt | Ft−

]
λt

=

√
E

[
π2
t

λ2
t

∣∣∣ Ft−]− 1

≤

√
h

2
F (t− TN([0,t)))2 +

F (T − t)2F (t− TN([0,t)))2

F (T − TN([0,t)))2
− 1

≤

√
h

2
+

(∫ T

C

f(x) dx

)−2

− 1.

The claim follows by Proposition 3.16.

Proof of Corollary 3.18. By the first inequality in (3.12) we can take as dominating
function of πt

β(t) = φ(0) exp

(
‖φ‖Lip

∫ T−t

0

h(z) dz

)
.

Additionally, by the first inequality in (4.7),√
Var

[
πt | Ft−

]
λt

=

√
E

[
π2
t

λ2
t

∣∣∣ Ft−]− 1 ≤

√
exp

(
2‖φ‖Lip

∫ T−t

0

h(z) dz

)
− 1.

The claim follows by Proposition 3.16.

Proof of Corollary 3.19. We already noticed in the proof of Corollary 3.11 that β is a
dominating function of the Papangelou conditional intensity. The claim easily follows by
Proposition 3.16 noticing that√

Var
[
π(t,x) | Ft−

]
λ(t,x)

=

√√√√E[π2
(t,x)

λ2
(t,x)

∣∣∣ Ft−]− 1 ≤

√
β(t, x)2

α(t, x)2
− 1.
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4.5 Proof of Theorem 3.20

Since the proof is conceptually similar to that of Theorem 3.12, we only emphasize
the main differences. We take χ = Ω, d := dϕ and let F : (Ω, dϕ) → R be bounded and
Lipschitz continuous with Lipschitz constant less than or equal to one. We have for
dtν(dx)-almost every (t, x),∣∣∣ϕ(F )

(t,x)

∣∣∣
≤
E
[
π(t,x)

∣∣F (N + ε(t,x))− F (N)
∣∣+
∣∣F (N)− F (N |[0,t)×E)

∣∣∣∣π(t,x) − E
[
π(t,x) | Ft−

]∣∣ | Ft−]
E
[
π(t,x) | Ft−

]
≤
E
[
π(t,x)dϕ(N + ε(t,x), N) + dϕ(N,N |[0,t)×E)

∣∣π(t,x) − E
[
π(t,x) | Ft−

]∣∣ | Ft−]
E
[
π(t,x) | Ft−

]
= ϕ(t, x) +

E
[(∫

[t,∞)×E ϕ(s, y)N(ds× dy)
) ∣∣π(t,x) − E

[
π(t,x) | Ft−

]∣∣ | Ft−]
E
[
π(t,x) | Ft−

]
≤ ϕ(t, x) +

∥∥∥∥∥
√
Var

[
π(t,x) | Ft−

]
p(π)(t,x)

∥∥∥∥∥
L∞(Ω,F∞,P)

√
E

[(∫
[t,∞)×E

ϕ(s, y)N(ds× dy)

)2 ∣∣∣ Ft−],
P(dω)-almost everywhere. Proceeding similarly to the series of inequalities (4.9), we
obtain∣∣∣ϕ(F )

(t,x)

∣∣∣ ≤ ϕ(t, x) +
√

2

[∫
[t,∞)×E

ϕ(s, y)2β(s, y) dsν(dy)

+

(∫
[t,∞)×E

ϕ(s, y)β(s, y) dsν(dy)

)2]1/2

×

∥∥∥∥∥
√
Var

[
π(t,x) | Ft−

]
p(π)(t,x)

∥∥∥∥∥
L∞(Ω,F∞,P)

.

So, for any θ ≥ 0, by Proposition 4.2 with φ(x) := eθx, we have

E
[
eθ(F−E[F ])

]
≤ E′

[
exp

(
θ

∫
R+×E

hϕ(t, x)
(
N(dt× dx)− β(t, x) dtν(dx)

))]
= eΛϕ(θ).

Note also that∫
Ω

dϕ(ω,0)P(dω) = E
[
dϕ(N,0)

]
= E

[∫
R+×E

ϕ(s, y)N(ds× dy)

]
≤
∫
R+×E

ϕ(s, y)β(s, y) dsν(dy) <∞.

The remainder of the proof is similar to that of the final part of Theorem 3.12.

4.6 Proof of Theorem 3.26

The proof of Theorem 3.26 is based on two preliminary propositions, which extend to
our setting Propositions 4.2 and 4.3 in [29], respectively.

Proposition 4.3. Let the assumptions and notation of Theorem 3.28 prevail and let G
be a random variable on (Ω,F∞,P) which satisfies 0 < c0 ≤ G ≤ c1 almost surely, for
some positive constants c0, c1 > 0. Setting

φ
(G)
(t,x) :=

ϕ
(G)
(t,x)

p(G)(t,x)
, t ∈ R+, x ∈ E, (4.10)
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we have φ(G) ∈ H. Additionally, for any t ∈ R+ we have

E
[
G
∣∣Ft] = E[G] · Et(φ(G)). (4.11)

Proposition 4.4. Let the assumptions and notation of Theorem 3.28 prevail and, for
φ ∈ H, let Pφ be defined by (3.34). For any predictable stochastic process ψ such that

E

[(∫
[0,T ]×E

|ψ(s,x)|2 p(π)(s,x) dsν(dx)

)2]
<∞, for any T > 0 (4.12)

we have that, under Pφ,{∫
[0,t]×E

ψ(s,x)(N(ds×dx)−p(π)(s,x) dsν(dx))−
∫

[0,t]×E
ψ(s,x)φ(s,x)p(π)(s,x) dsν(dx)

}
t∈R+

is a square-integrable F -martingale with null mean.

These propositions are proved at the end of this subsection, and we start proving
Lemma 3.25.

Proof of Lemma 3.25. By Itô’s formula (see e.g. Theorem 5.1 p. 66 of [11]) we have

Et(φ) = 1 +

∫
[0,t]×E

Es−(φ)φ(s,x)(N(ds× dx)− p(π)(s,x)dsν(dx)), t ∈ R+. (4.13)

Moreover, for any T > 0 we have

{1[0,T ](t)Et(φ)φ(t,x)}(t,x)∈R+×E ∈ P1,2(p(π)). (4.14)

Indeed, letting M > 0 denote a constant such that |φ(t,x)| ≤ M dtν(dx)dP-almost
everywhere, by the Cauchy-Schwarz inequality, (3.33) and the square integrability of
N([0, T ]× E), it follows

E

[∫
R+×E

|1[0,T ](t)Et(φ)φ(t,x)|p(π)(t,x) dtν(dx)

]

≤M

√
E

[∫
[0,T ]×E

Et(φ)2p(π)(t,x) dtν(dx)

]√
E
[
N([0, T ]× E)

]
<∞ (4.15)

and

E

[∫
R+×E

|1[0,T ](t)Et(φ)φ(t,x)|2p(π)(t,x) dtν(dx)

]
≤M2E

[∫
[0,T ]×E

Et(φ)2p(π)(t,x) dtν(dx)

]
<∞. (4.16)

By (4.13) and Proposition 2.5-(ii) we then have

E
[
Et(φ)2

]
= 1 + E

[ ∫
[0,t]×E

φ2
(s,x)Es(φ)2p(π)(s,x) dsν(dx)

]
, (4.17)
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which gives the square integrability of {Et(φ)}t∈R+
. The martingale property follows by

(4.13) and Corollary C4 p. 235 of [1].

Proof of Theorem 3.26. We divide the proof in three steps. In the first step we identify
dPφ/dP, in the second step we prove the claim when G ∈ L∞(Ω,F∞,P), in the third
step we prove the variational representation in the more general case of functionals G
which are bounded from above.
Step1 .

Letting M > 0 denote a constant such that |φ(s,x)| ≤M dsν(dx)dP-almost everywhere,
by (4.17) we have

E
[
Et(φ)2

]
≤ 1 +M2

∫ t

0

E
[
Es(φ)2

]∥∥∥∥∫
E

p(π)(s,x) ν(dx)

∥∥∥∥
L∞(Ω,F∞,P)

ds, t ∈ R+.

Let T > 0 be arbitrarily fixed. Again by (4.17) we have that s 7→ E
[
Es(φ)2

]
is non-

decreasing and continuous on [0, T ] and by (3.35)

s 7→
∥∥∥∥∫

E

p(π)(s,x) ν(dx)

∥∥∥∥
L∞(Ω,F∞,P)

is integrable on [0, T ]. Therefore, by Grönwall’s lemma

E
[
Et(φ)2

]
≤ exp

(
M2

∫ T

0

∥∥∥∥∫
E

p(π)(s,x) ν(dx)

∥∥∥∥
L∞(Ω,F∞,P)

ds

)
≤ eM

2K , for any t ∈ R+

and so supt∈R+
E
[
Et(φ)2

]
≤ eM

2K . By this latter relation, (4.13), Proposition 2.5-(ii) and
(3.35), we have

E
[(
Et+h(φ)− Et(φ)

)2] ≤M2

∫ t+h

t

E
[
Es(φ)2

]∥∥∥∥∫
E

p(π)(s,x) ν(dx)

∥∥∥∥
L∞(Ω,F∞,P)

ds

≤M2eM
2K

∫ t+h

t

∥∥∥∥∫
E

p(π)(s,x) ν(dx)

∥∥∥∥
L∞(Ω,F∞,P)

ds −−−−−→
t,h→∞

0,

and thus Et(φ) converges in L2(Ω,F∞,P) to a random variable X. Letting E∞(φ) denote
the P-almost sure limit of Et(φ) as t→∞, we necessarily have X = E∞(φ) almost surely,
and so

E∞(φ) ∈ L2(Ω,F∞,P). (4.18)

By the martingale property it follows that Et(φ) = E
[
En(φ)

∣∣Ft] for any t ∈ R+ and any
integer n > t. By the L2-convergence of Et(φ) to E∞(φ) we easily have that E

[
En(φ)

∣∣Ft]
converges to E

[
E∞(φ)

∣∣Ft] in L1 as n → ∞. This convergence holds almost surely
for a suitable subsequence {n′} and passing to the limit as n′ → ∞ in the equality
Et(φ) = E

[
En′(φ)

∣∣Ft] we get Et(φ) = E
[
E∞(φ)

∣∣Ft]. By this relation we finally deduce
dPφ/dP = E∞(φ).
Step2 .

Using the elementary inequality |(1 + x) log(1 + x) − x| ≤ x2/2, x > −1, for any φ ∈ H,
we have

Eφ[|L(φ)|] ≤ 1

2
E

[
E∞(φ)

∫
R+×E

|φ(s,x)|2 p(π)(s,x) dsν(dx)

]
≤ 1

2
‖E∞(φ)‖L2(Ω,F∞,P)

∥∥∥∥∫
R+×E

|φ(s,x)|2 p(π)(s,x) dsν(dx)

∥∥∥∥
L2(Ω,F∞,P)

<∞,

(4.19)
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where the finiteness of the L2-norms follows by (3.32) and (4.18). Let φ ∈ H and T > 0 be
arbitrarily fixed, and set ψ(s,x) := log(1+φ(s,x)), (s, x) ∈ [0, T ]×E. Clearly ψ is predictable.
Additionally, we note that there exists C > 0 such that

∣∣log
(
1 + φ(s,x)

)∣∣ ≤ C|φ(s,x)|,
(s, x) ∈ [0, T ]×E (since there exists cφ > −1 such that φ(s,x) ≥ cφ). Therefore, by (3.32)
we have (4.12). Note that

Eφ
[
log
(
E∞(φ)

)]
= Eφ

[∫
R+×E

log
(
1 + φ(s,x)

)
(N(ds× dx)− p(π)(s,x)dsν(dx))

+

∫
R+×E

(
log
(
1 + φ(s,x)

)
− φ(s,x)

)
p(π)(s,x) dsν(dx)

]
= Eφ[L(φ)] + Eφ

[∫
R+×E

log
(
1 + φ(s,x)

)
(N(ds× dx)− p(π)(s,x)dsν(dx))

−
∫
R+×E

φ(s,x) log
(
1 + φ(s,x)

)
p(π)(s,x) dsν(dx)

]
= Eφ[L(φ)], (4.20)

where we have used that the martingale provided by Proposition 4.4 has null mean. By
Jensen’s inequality and this relation it follows

− log
(
E
[
e−G

])
= − log

(
Eφ
[
exp
(
−G− log

(
E∞(φ)

))])
≤ Eφ

[
G+ log

(
E∞(φ)

)]
= Eφ[G+ L(φ)] <∞, (4.21)

and so

− log
(
E
[
e−G

])
≤ inf
φ∈H

Eφ
[
G+ L(φ)

]
. (4.22)

Setting F := e−G, we have 0 < e−‖G‖L∞(Ω,F∞,P) ≤ F ≤ e‖G‖L∞(Ω,F∞,P) , P-almost surely.
Therefore, by Proposition 4.3, Et(φ(F )) = E

[
F
∣∣Ft]/E[F ], for any t ∈ R+, and letting t go

to infinity we deduce

E∞(φ(F )) =
E
[
F
∣∣F∞]

E[F ]
=

F

E[F ]
,

where φ(F )
(t,x) := ϕ

(F )
(t,x)/p(F )(t,x) ∈ H, (t, x) ∈ R+ × E. Therefore

− log
(
E
[
e−G

])
= −Eφ(F )

[
log
(
FE∞(φ(F ))−1

)]
= Eφ(F )

[
G+ log

(
E∞(φ(F ))

)]
= Eφ(F )

[
G+ L(φ(F ))

]
, (4.23)

where the latter equality follows by (4.20). Combining (4.23) and (4.22) we deduce

− log
(
E
[
e−G

])
= inf
φ∈H

Eφ
[
G+ L(φ)

]
and the infimum is attained at φ(F ). It remains to show that the infimum is uniquely
attained at φ(F ), i.e. if φ ∈ H is a stochastic process at which the infimum is attained
then necessarily φ(t,x)(ω) = φ

(F )
(t,x)(ω) for p(π)(t,x)(ω)dtν(dx)dP(ω)-almost all (t, x, ω). So

let φ ∈ H be a process at which the infimum is attained. Then Jensen’s inequality (4.21)
holds as an equality and therefore we have

exp
(
−G− log

(
E∞(φ)

))
= E[F ], Pφ-almost surely.
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Similarly
exp
(
−G− log

(
E∞(φ(F ))

))
= E[F ], Pφ-almost surely.

Therefore E∞(φ) = E∞(φ(F )) Pφ-almost surely. Since the probability measures Pφ and P
are equivalent it follows that E∞(φ) = E∞(φ(F )) P-almost surely. Consequently, for any
t ∈ R+ we have Et(φ) = Et(φ(F )) P-almost everywhere, and so by (4.13) we find∫

[0,t]×E
Es−(φ)

(
φ(s,x) − φ

(F )
(s,x)

)
(N(ds× dx)− p(π)(s,x)dsν(dx)) = 0.

Taking the expectation of the square of this quantity, by Proposition 2.6 we have

E

[∫
[0,t]×E

Es−(φ)2
(
φ(s,x) − φ

(F )
(s,x)

)2
p(π)(s,x)dsν(dx)

]
= 0.

Since Es−(φ) > 0 dsdP-almost everywhere, we get φ = φ(F ) in P2(p(π)), and the proof is
complete.
Step3 .

For any integer n ≥ 1, define G(n) := max{G,−n}. Since G is upper bounded, we have
G(n) ∈ L∞(Ω,F∞,P). Therefore, by Step 2 we have

− log
(
E
[
e−G

(n)])
= inf
φ∈H

Eφ
[
G(n) + L(φ)

]
≥ inf
φ∈H

Eφ
[
G+ L(φ)

]
.

In addition, since the sequence {G(n)}n≥1 is non-increasing, taking the limit as n→∞,
by the monotone convergence theorem we obtain − log

(
E
[
e−G

])
≥ infφ∈HEφ

[
G+ L(φ)

]
.

For the reversed inequality we note that, for any ψ ∈ H,

− log
(
E
[
e−G

])
= lim
n→∞

inf
φ∈H

Eφ
[
G(n) + L(φ)

]
≤ lim
n→∞

Eψ
[
G(n) + L(ψ)

]
= Eψ

[
G+ L(ψ)

]
,

(4.24)
where the latter equality follows again by the monotone convergence theorem (note
that each G(n) is (for n large enough) bounded above by a same constant). Taking the
infimum on H in (4.24) yields the reversed inequality and the proof is complete.

Proof of Proposition 4.3. Since N has stochastic intensity p(π), the stochastic process{∫
[0,t]×E

ϕ
(G)
(s,x) (N(ds× dx)− p(π)(s,x) dsν(dx))

}
t∈R+

is an F -martingale, and by Theorem 3.28 we have

E
[
G
∣∣Ft] = E[G]+

∫
[0,t]×E

ϕ
(G)
(s,x) (N(ds×dx)−p(π)(s,x) dsν(dx)), P-almost surely. (4.25)

Letting φ be defined by (4.10) and suppressing the dependence of φ on G for ease of
notation we have, since 0 < c0 ≤ G ≤ c1,

φ(t,x) =
ϕ

(G)
(t,x)

p(G)(t,x)
=
p(πG+)(t,x) − p(G)(t,x)p(π)(t,x)

p(G)(t,x)p(π)(t,x)

≥ c0
c1
− 1 > −1, P-almost surely,

and φ is predictable and bounded with sup(t,x)∈R+×E |φ(t,x)| ≤ (c1/c0)+1, P-almost surely.
Set

Xt :=

∫
[0,t]×E

φ(s,x)(N(ds× dx)− p(π)(s,x) dsν(dx)), t ∈ R+.

EJP 24 (2019), paper 116.
Page 31/40

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP369
http://www.imstat.org/ejp/


Functional inequalities for marked point processes

By Proposition 2.5-(ii) we have

sup
t∈R+

E
[
X2
t

]
= E

[∫
R+×E

|φ(s,x)|2p(π)(s,x) dsν(dx)

]
<∞, (4.26)

where the finiteness of the latter quantity follows noticing that |φ(t,x)| ≤ |ϕ
(G)
(t,x)|/c0,

t ∈ R+, x ∈ E, and ϕ(G) ∈ P2(p(π)). So {Xt}t∈R+ is a square-integrable F -martingale.
By the definition of φ, the relation p(G)t = E

[
G
∣∣Ft−] P-almost surely and (4.25), we have

E
[
G
∣∣Ft] = E[G] +

∫ t

0

E
[
G
∣∣Fs−] dXs, P-almost surely. (4.27)

Note that
(c1/c0) + 1 ≥ ∆Xs := Xs −Xs− ≥ (c0/c1)− 1 > −1,

and so X is of finite variation (and càdlàg). Therefore, its quadratic variation process is
given by

[X,X]t =
∑

0<s≤t

(∆Xs)
2 =

∫
[0,t]×E

φ2
(s,x)N(ds× dx) (4.28)

and thus the path-by-path continuous part of [X,X] is equal to zero. By (4.27) and
Theorem 37 p. 84 in [23], we have

E
[
G
∣∣Ft]

E[G]
= exp(Xt)

∏
0<s≤t

(1 + ∆Xs) exp(−∆Xs)

= exp

(
Xt +

∑
0<s≤t

(log(1 + ∆Xs)−∆Xs)

)
. (4.29)

We note that∑
0<s≤t

(log(1 + ∆Xs)−∆Xs)

=

∫
[0,t]×E

(log(1 + φ(s,x))− φ(s,x))N(ds× dx)

=

∫
[0,t]×E

(log(1 + φ(s,x))− φ(s,x))(N(ds× dx)− p(π)(s,x) dsν(dx))

+

∫
[0,t]×E

(log(1 + φ(s,x))− φ(s,x))p(π)(s,x) dsν(dx)

= −Xt + log Et(φ).

Substituting this expression into (4.29) we deduce E
[
G
∣∣Ft] = E[G]Et(φ), t ∈ R+. In

particular, for any T > 0, we have (t, x) 7→ 1[0,T ](t)Et(φ) ∈ P2(p(π)) since

E

[∫
[0,T ]×E

Es(φ)2p(π)(s,x) dsν(dx)

]
≤
(c1
c0

)2

E
[
N([0, T ]× E)

]
<∞.

Finally, we prove that (3.32) holds (so that φ ∈ H). First, set

Yt :=

∫
[0,t]×E

ϕ
(G)
(s,x)(N(ds× dx)− p(π)(s,x) dsν(dx)), t ∈ R+,

and note that (by the same computation as in (4.28)) its quadratic variation process is

[Y, Y ]t =

∫
[0,t]×E

∣∣ϕ(G)
(s,x)

∣∣2N(ds× dx), t ∈ R+.
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By Burkholder-Davis-Gundy’s and Doob’s inequalities, there exists a positive constant
C > 0 such that, for all t ≥ 0, we have

E

[(∫
[0,t]×E

∣∣ϕ(G)
(s,x)

∣∣2N(ds× dx)

)2]
= E

[
[Y, Y ]2t

]
≤ CE

[(
sup
s∈[0,t]

|Ys|
)4
]
≤ C

(4

3

)4

E
[
|Yt|4

]
.

By (4.25) the right-most term of this relation is equal to C(4/3)4E
[
|E
[
G
∣∣Ft] − E[G]|4

]
,

which is in turn less than or equal to a positive constant, say C ′ > 0, which is independent
of t. Hence, for any t ∈ R+, we have

E

[(∫
[0,t]×E

|φ(s,x)|2 p(π)(s,x) dsν(dx)

)2]
≤ 2E

[(∫
[0,t]×E

|φ(s,x)|2N(ds× dx)

)2]
+ 2E

[(∫
[0,t]×E

|φ(s,x)|2(N(ds× dx)− p(π)(s,x) dsν(dx))

)2]
≤ 2

c40
E

[(∫
[0,t]×E

|ϕ(G)
(s,x)|

2N(ds× dx)

)2]
+ 2E

[(∫
[0,t]×E

|φ(s,x)|2(N(ds× dx)− p(π)(s,x) dsν(dx))

)2]
≤ C ′′ + 2E

[(∫
[0,t]×E

|φ(s,x)|2(N(ds× dx)− p(π)(s,x) dsν(dx))

)2]
= C ′′ + 2E

[∫
[0,t]×E

|φ(s,x)|4p(π)(s,x) dsν(dx)

]
≤ C ′′ + 2

(c1
c0

+ 1
)2

E

[∫
R+×E

|φ(s,x)|2p(π)(s,x) dsν(dx)

]
<∞,

where C ′′ := (2C ′)/c40 > 0 and we have applied Proposition 2.5 and (4.26). Taking the
limit as t goes to infinity in the above relations finally yields (3.32).

Proof of Proposition 4.4. For t ∈ R+ we put

δ(1[0,t]E(φ)φ) :=

∫
[0,t]×E

Es−(φ)φ(s,x)(N(ds× dx)− p(π)(s,x)dsν(dx)),

δ(1[0,t]ψ) :=

∫
[0,t]×E

ψ(s,x)(N(ds× dx)− p(π)(s,x)dsν(dx)),

and note that by Proposition 2.5-(iii) we have that

δ(1[0,t]ψ)δ(1[0,t]E(φ)φ)−
∫

[0,t]×E
ψ(s,x)Es(φ)φ(s,x)p(π)(s,x)dsν(dx), t ∈ R+

is an F -martingale since (4.12) implies (t, x) 7→ 1[0,T ](t)ψ(t,x) ∈ P2(p(π)) for any T > 0,
along a similar computation as in (4.15) we have (t, x) 7→ 1[0,T ](t)ψ(t,x) ∈ P1(p(π)) for any
T > 0, and (4.15) and (4.16) guarantee (4.14). Using the “angle bracket” notation (see p.
53 in [11] and pp. 122-123 in [23]), we have

〈Z, E(φ)〉t = 〈Z, E(φ)− 1〉t =

∫
[0,t]×E

Es(φ)φ(s,x)ψ(s,x)p(π)(s,x) dsν(dx), t ∈ R+,
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where we put Zt := δ(1[0,t]ψ) and used (4.13), i.e. Et(φ) − 1 = δ(1[0,t]E(φ)φ). Since
{Zt}t∈R+

is an F -martingale under P, with Z0 = 0, and Et(φ) is the Radon-Nikodym
derivative of Pφ with respect to P on Ft, by the Meyer-Girsanov theorem, see Theorem
36 p. 133 in [23], we have that

Zt −
∫

[0,t]×E
Es−(φ)−1 d〈Z, E(φ)〉s = Zt −

∫
[0,t]×E

φ(s,x)ψ(s,x)p(π)(s,x) dsν(dx), t ∈ R+

(4.30)
is a local F -martingale under Pφ. In the following, Eφ denotes the expectation with
respect to Pφ. In order to prove that the process defined in (4.30) is an F -martingale
under Pφ, it suffices to prove that the stochastic process {(1+φ(t,x))p(π)(t,x)}(t,x)∈R+×E is
a stochastic intensity of N under Pφ i.e., for any non-negative and predictable stochastic
process X : R+ × Ω× E → R+ we have

Eφ

[∫
R+×E

X(t,x)N(dt× dx)

]
= Eφ

[∫
R+×E

X(t,x)(1 + φ(s,x))p(π)(s,x) dsν(dx)

]
, (4.31)

and the integrability condition

Eφ

[∫
[0,T ]×E

|ψ(t,x)|(1 + φ(s,x))p(π)(s,x) dsν(dx)

]
<∞, T > 0. (4.32)

Indeed, the martingale property follows by Corollary C4 p. 235 in [1]. In order to prove
that the process defined in (4.30) is square integrable under Pφ, it suffices to prove

Eφ

[∫
[0,T ]×E

|ψ(t,x)|2(1 + φ(s,x))p(π)(s,x) dsν(dx)

]
<∞, T > 0. (4.33)

The square integrability then follows by Proposition 2.5-(ii). We start by proving (4.31).
Setting X(t,x) := 1(a,b](t)1A(ω)1L(x), a, b ∈ R+, A ∈ Fa, L ∈ E , and reasoning exactly
as in the first part of the proof we have that the process defined by (4.30) with X in
place of ψ is a local F -martingale under Pφ, as X ∈ P2(p(π)) since E

[
N((a, b]× L)

]
<∞.

Therefore there exists a sequence of F -stopping times {Tn}n≥0 increasing to infinity
such that

Eφ

[∫
[0,min{T,Tn}]×E

X(t,x)N(dt× dx)

]
= Eφ

[∫
[0,min{T,Tn}]×E

X(t,x)(1 + φ(s,x))p(π)(s,x) dsν(dx)

]
,

for any T ∈ R+ and n ≥ 0. Letting n and T go to infinity in the above equation, by
the monotone convergence theorem we obtain (4.31) for simple predictable stochastic
processes. The result follows for a general non-negative predictable stochastic process
by a standard application of the monotone class theorem, see e.g. [1], Theorem T1
p. 260. Finally we prove (4.32) and (4.33). Letting M > 0 denote a constant such that
|φ(t,x)| ≤M dtν(dx)dP-almost everywhere, for any T > 0, since the probability measures
P and Pφ are equivalent we also have |φ(t,x)| ≤ M dtν(dx)dPφ-almost everywhere, for
any T > 0. Therefore,

Eφ

[ ∫
[0,T ]×E

|ψ(t,x)|2(1 + φ(s,x))p(π)(s,x) dsν(dx)

]

≤ (1 +M) ‖ET (φ)‖L2(Ω,F∞,P)

√
E

[(∫
[0,T ]×E

|ψ(t,x)|2p(π)(s,x) dsν(dx)

)2]
<∞,
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and

Eφ

[∫
[0,T ]×E

|ψ(t,x)|(1 + φ(s,x))p(π)(s,x) dsν(dx)

]

≤

√
(1 +M)Eφ

[∫
[0,T ]×E

|ψ(t,x)|2(1 + φ(s,x))p(π)(s,x) dsν(dx)

]√
Eφ[N([0, T ]× E)]

≤

√
(1 +M)Eφ

[∫
[0,T ]×E

|ψ(t,x)|2(1 + φ(s,x))p(π)(s,x) dsν(dx)

]
× E

[
ET (φ)2

]1/4
E
[
N([0, T ]× E)2

]1/4
<∞,

which concludes the proof.

4.7 Proof of Theorem 3.28

We divide the proof into two steps. In the first step we derive a predictable representa-
tion of G, in the second step we identify the integrand of the predictable representation.
Step 1.
By (3.38) we have that for all t ∈ R+,

∫
[0,t]×E p(π)(s,x) dsν(dx) < ∞ P-almost surely,

so by Lemma 2.7, p(π) is a stochastic intensity of N . Hence by Lemma 2.8, p(π) is
an F -stochastic intensity of N . Therefore, by the representation theorem for square
integrable functionals (see e.g. [1])

G = E[G] +

∫
R+×E

u
(G)
(s,x) (N(ds× dx)− p(π)(s,x) dsν(dx)), P-almost surely,

for some u(G) ∈ PF2 (p(π)). By Proposition 2.3 there exists an F -predictable stochastic
process p(u(G)) such that

p(u(G))(t,x) = E
[
u

(G)
(t,x)

∣∣F t−] = u
(G)
(t,x), P-almost surely, (4.34)

where the latter equality follows by the F -predictability of u(G) which guarantees that
u

(G)
(t,x) is F t− -measurable (as already noticed in Section 2, this follows by an obvious

modification of the proof of Lemma A3.3.I p. 425 in [5]). So finally, we deduce the
predictable representation

G = E[G]+

∫
R+×E

p(u(G))(s,x) (N(ds×dx)−p(π)(s,x) dsν(dx)), P-almost surely. (4.35)

Step 2.
Let u : R+ × Ω× E → R be a predictable stochastic process and, for any n ≥ 0, define

the (predictable) stochastic process u(n) by u(n)
(s,x) := u(s,x)1{u(s,x)∈[−n,n]}. For any n ≥ 0

and t ∈ R+, by the square integrability of G and N([0, t]× E) and (3.2), we have

E

[∫
R+×E

|u(n)
(s,x)1[0,t](s)G|π(s,x) dsν(dx)

]
≤ nE

[
|G|
∫

[0,t]×E
π(s,x) dsν(dx)

]
≤ n‖G‖L2(Ω,F∞,P)

∥∥∥∫
[0,t]×E

π(s,x) dsν(dx)
∥∥∥
L2(Ω,F∞,P)

<∞

EJP 24 (2019), paper 116.
Page 35/40

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP369
http://www.imstat.org/ejp/


Functional inequalities for marked point processes

and

E

[∫
R+×E

|u(n)
(s,x)1[0,t](s)G

+
(s,x)|π(s,x) dsν(dx)

]
≤ nE

[∫
[0,t]×E

|G+
(s,x)|π(s,x) dsν(dx)

]
= nE

[∫
[0,t]×E

|G(N)|N(ds× dx)

]
≤ n‖G‖L2(Ω,F∞,P)‖N([0, t]× E)‖L2(Ω,F∞,P)

<∞,

thus both conditions in (2.3) are verified for the predictable X(n)
(s,x) := u

(n)
(s,x)1[0,t](s) and

the random variable F := G. The stochastic process X(n) defined above is clearly
in PF1,2(p(π)) ⊂ PF1,2(p(π)), since it is bounded and E

[
N([0, t] × E)

]
< ∞. Hence by

Lemma 2.4, Proposition 2.6 and (4.34), we have

E

[∫
R+×E

X
(n)
(s,x)π(s,x)D(s,x)Gdsν(dx)

]
= E

[
G∆(X(n))

]
= E

[
G

∫
[0,t]×E

u
(n)
(s,x)(N(ds× dx)− p(π)(s,x) dsν(dx))

]

+ E

[
G

∫
[0,t]×E

u
(n)
(s,x)(p(π)(s,x) − π(s,x)) dsν(dx)

]

= E

[∫
[0,t]×E

u
(n)
(s,x)u

(G)
(s,x)p(π)(s,x) dsν(dx)

]

+ E

[
G

∫
[0,t]×E

u
(n)
(s,x)(p(π)(s,x) − π(s,x)) dsν(dx)

]

= E

[∫
[0,t]×E

u
(n)
(s,x)p(u

(G))(s,x)p(π)(s,x) dsν(dx)

]

+ E

[
G

∫
[0,t]×E

u
(n)
(s,x)(p(π)(s,x) − π(s,x)) dsν(dx)

]
.

Therefore we have

0 = E

[∫
[0,t]×E

u
(n)
(s,x)

(
π(s,x)D(s,x)G− p(u(G))(s,x)p(π)(s,x) −Gp(π)(s,x) +Gπ(s,x)

)
dsν(dx)

]
= E

[∫
[0,t]×E

u
(n)
(s,x)

(
E
[
π(s,x)G

+
(s,x) | Fs−

]
− p(u(G))(s,x)p(π)(s,x)

− E
[
G | Fs−

]
p(π)(s,x)

)
dsν(dx)

]
.

As discussed in Remark 3.30 the predictable projections p(πG+) and p(G) exist and so

E

[∫
[0,t]×E

u
(n)
(s,x)

(
p(πG+)(s,x) − p(u(G))(s,x)p(π)(s,x) − p(G)(s,x)p(π)(s,x)

)
dsν(dx)

]
= 0,

for all n ≥ 0 and t ∈ R+. As shown in Remark 3.30 the stochastic process ϕ(G) in (3.36)
is well-defined and predictable. So the above relation can be rewritten as

E

[∫ t

0

∫
E

u
(n)
(s,x)

(
ϕ

(G)
(s,x) − p(u

(G))(s,x)

)
p(π)(s,x) dsν(dx)

]
= 0, ∀n ≥ 0, ∀t ∈ R+. (4.36)
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Since u is an arbitrary predictable stochastic process, by choosing u = ϕ(G) − p(u(G)),
equation (4.36) reads as

E

[∫ t

0

∫
E

(
ϕ

(G)
(s,x) − p(u

(G))(s,x)

)2
1{ϕ(G)

(s,x)
−p(u(G))(s,x)∈[−n,n]}p(π)(s,x) dsν(dx)ds

]
= 0,

for all n ≥ 0 and t ∈ R+. By the monotone convergence theorem, letting n tend to infinity,
we get

E

[∫ t

0

∫
E

(
ϕ

(G)
(s,x) − p(u

(G))(s,x)

)2
p(π)(s,x) dsν(dx)

]
= 0, for all t ∈ R+

which implies that p(u(G))(s,x)(ω) = ϕ
(G)
(s,x)(ω) P(dω)p(π)(s,x)(ω) dsν(dx)-almost every-

where on (R+ × Ω× E,B(R+)⊗F∞ ⊗ E). Combining this with (4.35) we finally deduce
(3.37). Since u(G) is square integrable with respect to P(dω)p(π)(s,x)(ω) dsν(dx) by
Jensen’s inequality we easily have that p(u(G)) is square integrable with respect to
P(dω)p(π)(s,x)(ω) dsν(dx) and so ϕ(G) ∈ PF2 (p(π)).

5 Appendix

5.1 Proof of Lemma 2.2

We have

1− P(Ω) = P({ω ∈ Ω′ : ∃(t, x) ∈ Supp(ω), ω({t} × E) ≥ 2})
= E

[
1{∃(t,x)∈Supp(N), N({t}×E)≥2}

]
≤ E

[∫
1{N({t}×E)≥2}N(dt× dx)

]
= E

[∫
R+×E

1{(N+ε(t,x))({t}×E)≥2}π(t,x) dtν(dx)

]
= E

[∫
R+×E

1{N({t}×E)≥1}π(t,x) dtν(dx)

]
= 0,

where the last equality follows since for any ω ∈ Ω′, we have that 1{ω({t}×E)≥1} = 0

dt-almost surely. Indeed, for any ω ∈ Ω′ and any T > 0, we have ω([0, T ] × E) < ∞,
therefore the cardinal of {t ∈ [0, T ] : ω({t} × E) ≥ 1} is finite, and thus∫ T

0

1{t∈[0,T ] : ω({t}×E)≥1} dt = 0.

5.2 Proof of Proposition 2.3

The proof uses the following lemma which guarantees the existence of a predictable
version of a bounded stochastic process X.

Lemma 5.1. Assume that N has a Papangelou conditional intensity π, i.e. (2.1) holds,
and let X ∈ L∞(R+ ×Ω×E,B(R+)⊗F∞ × E ,dtν(dx)P(dω)) be a real-valued stochastic
process. Then there exists a predictable stochastic process p(X) : R+ ×Ω×E → R such
that, for all (t, x) ∈ R+ × E, we have

p(X)(t,x) = E
[
X(t,x)

∣∣Ft−], P-almost surely.

Proof of Proposition 2.3. If X is assumed to be non-negative, we set X(n) := min(X,n),
n ≥ 0. By Lemma 5.1, for any n and (t, x),

p(X
(n)
(t,x)) = E

[
X

(n)
(t,x)

∣∣Ft−], P-almost surely.
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By the monotone convergence theorem

lim
n→∞

p(X
(n)
(t,x)) = E

[
X(t,x)

∣∣Ft−], P-almost surely.

Since p(X(n)) is predictable for each n its limit exists and is predictable, completing the
proof under the assumption that X is non-negative.

If one assumes that, for dtν(dx)-almost all (t, x) ∈ R+×E, X(t,x) ∈ L1(Ω,F∞,P), then
we write X = X+ −X−, where X+ := max(X, 0) and X− := −min(X, 0). Applying the
first part of the proposition to X+ and X− we have that there exist two predictable
stochastic processes p(X+) and p(X−) such that

p(X+)(t,x) = E
[
X+

(t,x)

∣∣Ft−] and p(X−)(t,x) = E
[
X−(t,x)

∣∣Ft−], P-almost surely.

By taking the expectation of these two equalities, one has, for dtν(dx)-almost all (t, x),

p(X+)(t,x) <∞ and p(X−)(t,x) <∞,

and therefore

E
[
X(t,x)

∣∣Ft−] = E
[
X+

(t,x)

∣∣Ft−]− E[X−(t,x)

∣∣Ft−] = p(X+)(t,x) − p(X−)(t,x), (5.1)

P-almost surely. The claim follows by noticing that the right-hand side of (5.1) is a
predictable stochastic process.

Proof of Lemma 5.1. The idea is to apply the existence part of Theorem 3.3 in [17] and
the last displayed formula on p. 368 again in [17]. Following the notation of [17], we
consider the locally compact second countable Hausdorff space X := R+×E and the DC-
semiring S := {(a, b]×B : a, b ∈ R+, a < b, B ∈ E , B relatively compact}. Moreover, we
consider the system Γ := {Γ(t,x),ΓS : (t, x) ∈ R+×E, S ∈ S} defined by Γ(t,x) := [0, t)×E
and Γ(a,b]×B := [0, a]×E. It is readily checked that it satisfies conditions (2.3) and (2.4)
in [17]. In this setting, for (t, x) ∈ R+ × E, a, b ∈ R+: a < b, B ∈ E a relatively compact
set, the σ-fields F((t, x)) and F((a, b]×B) defined on p. 364 of [17] are given by

F((t, x)) := σ(N |[0,t)×E) = Ft− and F((a, b]×B) := σ(N |[0,a]×E) = Fa,

where N |A denotes the restriction of the random measure N to A ∈ B(R+)⊗E . One may
easily check that the predictable σ-algebra P in [17] coincides with the σ-field P(F)⊗ E ,
and that the point process N satisfies condition (2.5) on p. 364 of [17]. We note that
if condition Σ(Λ) on p. 367 of [17] holds, then the claim of the lemma follows by the
existence part of Theorem 3.3 in [17] and the last displayed formula on p. 368 again in
[17]. In our setting, condition Σ(Λ) on p. 367 of [17] reads

Σ(Λ) : P(N((a, b]× E) = 0 | Fa) > 0 P-a.s., a, b ∈ R+: a < b.

Since N has a Papangelou conditional intensity it satisfies condition (Σ) from Re-
mark 2.5(c) in [9] which, in our setting, reads

(Σ) : P(N((a, b]× E) = 0 | Fa ∨ F(b,∞)) > 0 P-a.s., a, b ∈ R+: a < b,

where F(b,∞) := σ(N |(b,∞)×E). Condition Σ(Λ) easily follows by (Σ) and the properties
of the conditional expectation, indeed

P(N((a, b ]× E) = 0 | Fa) = E
[
P(N((a, b ]× E) = 0

∣∣Fa ∨ F(b,∞))
]
> 0

P-a.s., for any a, b ∈ R+ such that a < b.
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