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Abstract

Λ-coalescents model genealogies of samples of individuals from a large population by
means of a family tree. The tree’s leaves represent the individuals, and the lengths
of the adjacent edges indicate the individuals’ time durations up to some common
ancestor. These edges are called external branches. We consider typical external
branches under the broad assumption that the coalescent has no dust component and
maximal external branches under further regularity assumptions. As it transpires, the
crucial characteristic is the coalescent’s rate of decrease µ(b), b ≥ 2. The magnitude
of a typical external branch is asymptotically given by n/µ(n), where n denotes the
sample size. This result, in addition to the asymptotic independence of several typical
external lengths, holds in full generality, while convergence in distribution of the
scaled external lengths requires that µ(n) is regularly varying at infinity. For the
maximal lengths, we distinguish two cases. Firstly, we analyze a class of Λ-coalescents
coming down from infinity and with regularly varying µ. Here, the scaled external
lengths behave as the maximal values of n i.i.d. random variables, and their limit is
captured by a Poisson point process on the positive real line. Secondly, we turn to
the Bolthausen-Sznitman coalescent, where the picture changes. Now, the limiting
behavior of the normalized external lengths is given by a Cox point process, which
can be expressed by a randomly shifted Poisson point process.
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External branch lengths of Λ-coalescents

1 Introduction and main results

In population genetics, family trees stemming from a sample out of a big population
are modeled by coalescents. The prominent Kingman coalescent [22] found widespread
applications in biology. More recently, the Bolthausen-Sznitman coalescent, originating
from statistical mechanics [3], has gained in importance in analyzing genealogies of
populations undergoing selection [5, 8, 26, 32]. Unlike Kingman’s coalescent, the
Bolthausen-Sznitman coalescent allows multiple mergers. The larger class of Beta-
coalescents has found increasing interest, e.g., in the study of marine species [34, 27].
All these instances are covered by the notion of Λ-coalescents as introduced by Pitman
[28] and Sagitov [30] in 1999. Today, general properties of this extensive class have
become more transparent [20, 12].

In this paper, we deal with the lengths of external branches of Λ-coalescents under
the broad assumption that the coalescent has no dust component, which applies to
all the cases mentioned above. We shall treat external branches of typical and, under
additional regularity assumptions, of maximal length. For the total external length, see
the publications [24, 17, 7, 18, 11].

Λ-coalescents are Markov processes (Π(t), t ≥ 0) taking values in the set of partitions
of N, where Λ denotes a non-vanishing finite measure on the unit interval [0, 1]. Its
restrictions (Πn(t), t ≥ 0) to the sets {1, . . . , n} are called n-coalescents. They are
continuous-time Markov chains characterized by the following dynamics: Given the
event that Πn(t) is a partition consisting of b ≥ 2 blocks, k specified blocks merge at rate

λb,k :=

∫

[0,1]

pk(1− p)b−kΛ(dp)

p2
, 2 ≤ k ≤ b,

to a single one. In this paper, the crucial characteristic of Λ-coalescents is the sequence
µ = (µ(b))b≥2 defined as

µ(b) :=

b∑

k=2

(k − 1)

(
b

k

)
λb,k, b ≥ 2.

We call this quantity the rate of decrease as it is the rate at which the number of blocks is
decreasing on average. Note that a merger of k blocks corresponds to a decline of k − 1

blocks. The importance of µ also became apparent from other publications [31, 23, 12].
In particular, the assumption of absence of a dust component may be expressed in this
term. Originally characterized by the condition

∫

[0,1]

Λ(dp)

p
= ∞

(see [28]), it can be equivalently specified by the requirement

µ(n)

n
→ ∞

as n→∞ (see Lemma 1 (iii) of [12]).
An n-coalescent can be thought of as a random rooted tree with n labeled leaves

representing the individuals of a sample. Its branches specify ancestral lineages of the
individuals or their ancestors. The branch lengths give the time spans until the occur-
rence of new common ancestors. Branches ending in a leaf are called external branches.
If mutations under the infinite sites model [21] are added in these considerations, the
importance of external branches is revealed. This is due to the fact that mutations on
external branches only affect a single individual of the sample. Longer external branches
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External branch lengths of Λ-coalescents

result, thereby, in an excess of singleton polymorphisms [36] and are known to be a
characteristic for trees with multiple mergers [13]; e.g., external branch lengths have
been used to discriminate between different coalescents in the context of HIV trees [37]
(see also [35]). Of course, such considerations have rather theoretical value as long as
singleton polymorphisms cannot be distinguished from sequencing errors.

Now, we turn to the main results of this paper. For 1 ≤ i ≤ n, the length of the
external branch ending in leaf i within an n-coalescent is defined as

Tni := inf {t ≥ 0 : {i} /∈ Πn(t)}.

In the first theorem, we consider the length Tn of a randomly chosen external branch.
Based on the exchangeability, Tn is equal in distribution to Tni for 1 ≤ i ≤ n. The result
clarifies the magnitude of Tn in full generality.

Theorem 1.1. For a Λ-coalescent without a dust component, we have for t ≥ 0,

e−2t + O(1) ≤ P

(
µ(n)

n
Tn > t

)
≤ 1

1 + t
+ O(1)

as n→∞.

Among others, this theorem excludes the possibility of Tn converging to a positive
constant in probability. In [19] the order of Tn was interpreted as the duration of a
generation, namely, the time at which a specific lineage, out of the n present ones, takes
part in a merging event. In that paper, only Beta(2 − α, α)-coalescents with 1 < α < 2

were considered and the duration was given as n1−α. Our theorem shows that for
this quantity the term n/µ(n) is a suitable measure for Λ-coalescents without a dust
component.

Asymptotic independence of the external branch lengths holds as well in full general-
ity for dustless coalescents. In light of the waiting times, which the different external
branches have in common, this may be an unexpected result. However, this dependence
vanishes in the limit. Then it becomes crucial whether two external branches end in the
same merger. Such an event is asymptotically negligible only in the dustless case. This
heuristic motivates the following result.

Theorem 1.2. A Λ-coalescent has no dust component if and only if for fixed k ∈ N and
for any sequence of numbers tn1 , . . . , t

n
k ≥ 0, n ≥ 2, we have

P (Tn1 ≤ tn1 , . . . , T
n
k ≤ tnk ) = P (Tn1 ≤ tn1 ) · · · P (Tnk ≤ tnk ) + O(1)

as n→∞.

In the dustless case, one has Tni → 0 in probability for 1 ≤ i ≤ k and one reasonably
restricts to the case tni → 0 as n→∞. The statement that the asymptotic independence
fails for coalescents with a dust component goes back to Möhle (see equation (10) of
[24]).

In order to achieve convergence in distribution of the scaled lengths, stronger
assumptions are required on the rate of decrease, namely that µ is a regularly varying
sequence. A characterization of this property is given in Proposition 3.2 below. Let δ0
denote the Dirac measure at zero.

Theorem 1.3. For a Λ-coalescent without a dust component, there is a sequence (γn)n∈N
such that γn Tn converges in distribution to a probability measure unequal to δ0 as n→∞
if and only if µ is regularly varying at infinity. Then its exponent α of regular variation
fulfills 1 ≤ α ≤ 2 and we have

(i) for 1 < α ≤ 2,

P

(
µ(n)

n
Tn > t

)
−→ 1

(1 + (α− 1) t)
α
α−1

, t ≥ 0,
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(ii) for α = 1,

P

(
µ(n)

n
Tn > t

)
−→ e−t, t ≥ 0,

as n→∞.

In particular, this theorem includes the special cases known from the literature.
Blum and François [2], as well as Caliebe et al. [6], studied Kingman’s coalescent.
For the Bolthausen-Sznitman coalescent, Freund and Möhle [15] showed asymptotic
exponentiality of the external branch length. This result was generalized by Yuan [38]. A
class of coalescents containing the Beta(2−α, α)-coalescent with 1 < α < 2 was analyzed
by Dhersin et al. [9].

Combining Theorem 1.2 and 1.3 yields the following corollary:

Corollary 1.4. Suppose that the Λ-coalescent lacks a dust component and has regularly
varying rate of decrease µ with exponent α ∈ [1, 2]. Then, for fixed k ∈ N, we have

µ(n)

n
(Tn1 , . . . , T

n
k )

d−→ (T1, . . . , Tk)

as n→∞, where T1, . . . , Tk are i.i.d. random variables each having the density

f(t) dt =
α

(1 + (α− 1) t)
1+ α

α−1
dt , t ≥ 0, (1.1)

for 1 < α ≤ 2 and a standard exponential distribution for α = 1.

Example 1.5. For k ∈ N, let T1, . . . , Tk be the i.i.d. random variables from Corollary 1.4.

(i) If Λ ({0}) = 2, then µ(n) ∼ n2 and, consequently,

n (Tn1 , . . . , T
n
k )

d−→ (T1, . . . , Tk)

as n→∞. This statement covers (after scaling) the Kingman case. Note that Λ|(0,1]

does not affect the limit.

(ii) If Λ(dp) = ca p
a−1(1 − p)b−1dp for 0 < a < 1, b > 0 and ca := (1 − a)(2 − a)/Γ(a),

then µ(n) ∼ n2−a and, therefore,

n1−a (Tn1 , . . . , T
n
k )

d−→ (T1, . . . , Tk)

as n→∞. After scaling, this includes the Beta(2− α, α)-coalescent with 1 < α < 2

(see Theorem 1.1 of Siri-Jégousse and Yuan [33]). Note that the constant b does
not appear in the limit.

(iii) If Λ(dp) = (1− p)b−1dp with b > 0, then we have µ(n) ∼ n log n, implying

log n (Tn1 , . . . , T
n
k )

d−→ (T1, . . . , Tk) (1.2)

as n→∞. This contains the Bolthausen-Sznitman coalescent (see Corollary 1.7 of
Dhersin and Möhle [10]). Again, the constant b does not show up in the limit.

In the second part of this paper, we change perspective and examine the external
branch lengths ordered by size downwards from their maximal value. In this context, an
approach via a point process description is appropriate. Here, we consider Λ-coalescents
having regularly varying rate of decrease µ, additionally to the absence of a dust
component. It transpires that one has to distinguish between two cases.
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First, we treat the case of µ being regularly varying with exponent α ∈ (1, 2] (implying
that the coalescent comes down from infinity). We introduce the sequence (sn)n≥2 given
by

µ(sn) =
µ(n)

n
. (1.3)

Note that µ(n)/n is a strictly increasing and, in the dustless case, diverging sequence
(see Lemma 3.1 (ii) and (iv) below), which directly transfers to the sequence (sn)n≥2.
Also note in view of Lemma 3.1 (ii) below that

sn = O(n) (1.4)

as n→∞.

Example 1.6. (i) If µ(n) ∼ nα with α ∈ (1, 2], then we have sn ∼ n(α−1)/α as n→∞.

(ii) If µ is regularly varying with exponent α ∈ (1, 2], then the sequence sn is regularly
varying with exponent (α− 1)/α.

We define point processes Φn on (0,∞) via

Φn(B) := #

{
i ≤ n :

µ(n)

nsn
Tni ∈ B

}

for Borel sets B ⊂ (0,∞).

Theorem 1.7. Assume that the Λ-coalescent has a regularly varying rate of decrease µ
with exponent α ∈ (1, 2]. Then, as n→∞, the point process Φn converges in distribution
to a Poisson point process Φ on (0,∞) with intensity measure

φ(dx) =
α

((α− 1)x)
1+ α

α−1
dx.

Note that
∫ 1

0
φ(x)dx =∞, which means that the points from the limit Φ accumulate

at the origin. On the other hand, we have
∫∞

1
φ(x)dx <∞, meaning that the points can

be arranged in decreasing order. Thus, the theorem focuses on the maximal external
lengths, showing that the longest external branches differ from a typical one by the
factor sn in order of magnitude (see Corollary 1.4). For Kingman’s coalescent, this result
was obtained by Janson and Kersting [17] using a different method.

In particular, letting Tn〈1〉 be the maximal length of the external branches, we obtain
for x > 0,

P

(
µ(n)

nsn
Tn〈1〉 ≤ x

)
→ e−((α−1)x)

− α
α−1

as n→∞, i.e., the properly scaled Tn〈1〉 is asymptotically Fréchet-distributed.
Corollary 1.4 shows that the external branch lengths behave for large n as i.i.d.

random variables. This observation is emphasized by Theorem 1.7 because the maximal
values of i.i.d. random variables with the densities stated in Corollary 1.4 have the exact
limiting behavior as given in Theorem 1.7 (including the scaling constants sn).

This heuristic fails for the Bolthausen-Sznitman coalescent, which we shall now
address. For n ∈ N, define the quantity

tn := log log n− log log log n+
log log log n

log log n
,

where we put tn := 0 if the right-hand side is negative or not well-defined. Here, we
consider the point processes Ψn on the whole real line given by

Ψn(B) := # {i ≤ n : log log (n)(Tni − tn) ∈ B}

for Borel sets B ⊂ R. As before, we focus on the maximal values of Ψn.
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Theorem 1.8. For the Bolthausen-Sznitman coalescent, the point process Ψn converges
in distribution as n→∞ to a Cox point process Ψ on R directed by the random measure

ψ (dx) = E e−xdx,

where E denotes a standard exponential random variable.

Observe that this random density may be rewritten as

e−x+logEdx.

This means that the limiting point process can also be considered as a Poisson point
process with intensity measure e−xdx shifted by the independent amount logE. This
alternative representation will be used in the theorem’s proof (see Theorem 9.1 below).
Recall that G := − logE has a standard Gumbel distribution.

Again, letting Tn〈1〉 be the maximum of Tn1 , . . . , T
n
n , we obtain

P
(

log log (n)(Tn〈1〉 − tn) ≤ x
)
−→

∫ ∞

0

e−ye
−x
e−y dy =

1

1 + e−x
(1.5)

as n→∞. Notably, we arrive at a limit that is non-standard in the extreme value theory
of i.i.d. random variables, namely, the so-called logistic distribution.

We point out that the limiting point process Ψ no longer coincides with the limiting
Poisson point process as obtained for the maximal values of n independent exponential
random variables. The same turns out to be true for the scaling sequences. In order to
explain these findings, note that (1.5) implies

Tn〈1〉

log log n
= 1 + Op(1)

as n → ∞, where Op(1) denotes a sequence of random variables converging to 0 in
probability. In particular, Tn〈1〉 → ∞ in probability. Hence, we pass with this theorem
to the situation where very large mergers affect the maximal external lengths. Then
circumstances change and new techniques are required. For this reason, we have to
confine ourselves to the Bolthausen-Sznitman coalescent in the case of regularly varying
µ with exponent α = 1.

It is interesting to note that an asymptotic shift by a Gumbel distributed variable also
shows up in the absorption time τ̃n (the moment of the most recent common ancestor) of
the Bolthausen-Sznitman coalescent:

τ̃n − log log n
d−→ G

as n → ∞ (see Goldschmidt and Martin [16]). However, this shift remains unscaled.
Apparently, these two Gumbel distributed variables under consideration build up within
different parts of the coalescent tree.

Before closing this introduction, we provide some hints concerning the proofs. For
the first three theorems, we make use of an asymptotic representation for the tail
probabilities of the external branch lengths. Remarkably, this representation involves,
solely, the rate of decrease µ, though in a somewhat implicit, twofold manner. The proofs
of the three theorems consist in working out the consequences of these circumstances.
The representation is given in Theorem 4.1 and relies largely on different approximation
formulae derived in [12]. We recall the required statements in Section 2.

The proofs of the last two theorems incorporate Corollary 1.4 as one ingredient.
The idea is to implement stopping times ρ̃c,n with the property that, at that moment, a
positive number of external branches is still extant that is of order 1 uniformly in n. To
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these remaining branches, the results of Corollary 1.4 are applied, taking the strong
Markov property into account. More precisely, let

Nn = (Nn(t), t ≥ 0)

be the block counting process of the n-coalescent, where

Nn(t) := #Πn(t)

states the number of lineages present at time t ≥ 0. For definiteness, we put Nn(t) = 1

for t > τ̃n. In the case of regularly varying µ with exponent 1 < α ≤ 2, we will show that

ρ̃c,n := inf {t ≥ 0 : Nn(t) ≤ csn}

with arbitrary c > 0 is the right choice. Next, we split the external lengths Tni into the
times qTni up to the moment ρ̃c,n and the residual times T̂ni . Formally, we have

qTni := Tni ∧ ρ̃c,n and T̂ni := Tni − qTni .

We shall see that qTni is of negligible size compared to T̂ni for large values of c. On the
other hand, with increasing c, also the number of extant external branches tends to
infinity uniformly in n. Corollary 1.4 tells us that the T̂ni behave approximately like i.i.d.
random variables. Therefore, one expects that the classical extreme value theory applies
in our context. These are the ingredients of the proof of Theorem 1.7.

qTn
iT̂n

i

0ρ̃c,nTn
iτ̃n

n

i

1

Figure 1: The stopping time ρ̃c,n subdividing the external branch ending in leaf i into

two parts of length qTni and T̂ni , respectively.

The approach for the Bolthausen-Sznitman coalescent is essentially the same. How-
ever, new obstacles appear. In contrast to the previous case α > 1, the lengths of the
maximal branches now diverge in probability. As a consequence, in the case α = 1, we
have in general no longer control over the stopping times ρ̃c,n as defined above. Fortu-
nately, Möhle [25] provides for the Bolthausen-Sznitman coalescent a precise asymptotic
description of the block counting process Nn by means of the Mittag-Leffler process,
which applies also in the large time regime. Adapted to this result, the role of ρ̃c,n is
taken by tc,n ∧ τ̃n, where

tc,n := tn −
log c

log logn

for some c > 1. Thus, for the Bolthausen-Sznitman coalescent, the external lengths Tni
are split into

qTni := Tni ∧ tc,n and T̂ni := Tni − qTni .
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In contrast to the case α > 1, the part qTni does not disappear for c→∞ but is asymptoti-
cally Gumbel-distributed and shows up in the above mentioned independent shift.

The paper is organized as follows: In Section 2 we recapitulate some laws of large
numbers from [12]. Section 3 summarizes several properties of the rate of decrease.
The fundamental asymptotic expression of the external tail properties is developed in
Section 4. Sections 5 and 6 contain the proofs of Theorem 1.1 to 1.3. In Section 7 we
prepare the proofs of the remaining theorems by establishing a formula for factorial
moments of the number of external branches. Sections 8 and 9 include the proofs of
Theorem 1.7 and 1.8.

2 Some laws of large numbers

In this section, we report on some laws of large numbers from the recent publication
[12], which are a main tool in the subsequent proofs. Let X = (Xj)j∈N0 denote the
Markov chain embedded in the block-counting process Nn, i.e., Xj denotes the number
of branches after j merging events. (For convenience, we suppress n in the notation of
X.) Also, let

ρr := min{j ≥ 0 : Xj ≤ r}

for numbers r > 0. We are dealing with laws of large numbers for functionals of the form

ρrn−1∑

j=0

f(Xj)

with some suitable positive function f and some sequence (rn)n≥1 of positive numbers.
These laws of large numbers build on two approximation steps. First, letting

∆Xj+1 := Xj −Xj+1 and ν(b) := E[∆Xj+1 | Xj = b]

for j ≥ 1, we notice that for large n,

ρr−1∑

j=0

f(Xj) ≈
ρr−1∑

j=0

f(Xj)
∆Xj+1

ν(Xj)
.

The rationale of this approximation consists in the observation that the difference of both
sums stems from the martingale difference sequence f(Xj)(1 −∆Xj+1/ν(Xj)), j ≥ 0,
and, therefore, is of a comparatively negligible order. Second, we remark that

ρr−1∑

j=0

f(Xj)

ν(Xj)
∆Xj+1 ≈

∫ n

r

f(x)

ν(x)
dx,

with ν(x) extending the numbers ν(b) to real numbers x ≥ 2. Here, we regard the
left-hand sum as a Riemann approximation of the right-hand integral and take Xρr ≈ r
into account. Altogether,

ρr−1∑

i=0

f(Xi) ≈
∫ n

r

f(x)

ν(x)
.

In order to estimate the errors and, in particular, the martingale’s quadratic variation,
different assumptions are required. For details we refer to [12] and deal here only with
the two cases that we use later in our proofs.

The first case concerns the time

ρ̃r := inf{t ≥ 0 : Nn(t) ≤ r},
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when the block-counting process drops below r. Letting Wj be the period of stay of Nn
at state Xj (again suppressing n in the notation), we have

ρ̃r =

ρr−1∑

j=0

Wj ≈
ρr−1∑

j=0

E[Wj | Nn] =

ρr−1∑

j=0

1

λ(Xj)
,

where λ(b) :=
∑

2≤k≤b λb,k is the jump rate of the block counting process. Also, ν(b) =

µ(b)/λ(b). Therefore, putting f(x) = λ(x)−1, we are led to the approximation formula

ρr ≈
∫ n

r

dx

µ(x)
.

More precisely, we have the following law of large numbers.

Proposition 2.1. Assume that the Λ-coalescent is dustless. Let γ < 1 and let 2 ≤ rn ≤
γn, n ≥ 1, be numbers such that ∫ n

rn

dx

µ(x)
→ 0

as n→∞. Then

ρ̃rn = (1 + OP (1))

∫ n

rn

dx

µ(x)

as n→∞.

The role of the assumptions is easily understood: The condition
∫ n
rn

dx
µ(x) → 0 implies

that ρ̃rn → 0 in probability, i.e., we are in the small time regime. This is required to
avoid very large jumps ∆Xj+1 of order Xj+1, which would ruin the above Riemann
approximation. The condition rn ≤ γn guarantees that ρ̃rn is sufficiently large to allow
for a law of large numbers.

Secondly, we turn to the case f(x) = x−1. Here, we point out that, as x→∞,

1

ν(x)
∼ x

d

dx
log

µ(x)

x
,

which follows from [12, Lemma 1 (ii)]. Hence,
∫ n

r

dx

xν(x)
≈ log

(
µ(n)

n

r

µ(r)

)

and we have the following law of large numbers.

Proposition 2.2. Under the assumptions of the previous proposition, we have

ρrn−1∑

j=0

1

Xj
= (1 + OP (1)) log

(
µ(n)

n

rn
µ(rn)

)
and

ρrn−1∑

j=0

1

Xj
= log

(
µ(n)

n

rn
µ(rn)

)
+ OP (1)

as n→∞.

For the proofs of these propositions, see [12, Section 3].

3 Properties of the rate of decrease

We now have a closer look at the rate of decrease µ introduced in the first section.
Defining

µ(x) :=

∫

[0,1]

(xp− 1 + (1− p)x)
Λ(dp)

p2
, (3.1)

we extent µ to all real values x ≥ 1, where the integrand’s value at p = 0 is understood
to be x(x− 1)/2.

The next lemma summarizes some required properties of µ.
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Lemma 3.1. The rate of decrease and its derivatives have the following properties:

(i) µ(x) has derivatives of any order with finite values, also at x = 1. Moreover, µ and
µ′ are both non-negative and strictly increasing, while µ′′ is a non-negative and
decreasing function.

(ii) For 1 < x ≤ y,

x(x− 1)

y(y − 1)
≤ µ(x)

µ(y)
≤ x

y
.

(iii) For x > 1,

µ′(1) ≤ µ(x)

x− 1
≤ µ′(x) and µ′′(x) ≤ µ′(x)

x− 1
.

(iv) In the dustless case,
µ(x)

x
→ ∞

as x→∞.

Proof. (i) Let

µ2(x) :=

∫

[0,1]

(1− p)x log2 (1− p)Λ(dp)

p2
,

which is a C∞-function for x > 0. Set

µ1(x) :=

∫ x

1

µ2(y)dy +

∫

[0,1]

(p+ (1− p) log (1− p)) Λ(dp)

p2

=

∫

[0,1]

((1− p)x log (1− p) + p)
Λ(dp)

p2
.

Note that the second integral in the first line is finite and non-negative just as its
integrand. Then we have

µ(x) =

∫ x

1

µ1(y)dy.

Thus, µ1(x) = µ′(x) and µ2(x) = µ′′(x) for x ≥ 1. From these formulae our claim follows.

(ii) The inequalities are equivalent to the fact that µ(x)/x is increasing and that
µ(x)/(x(x− 1)) is decreasing, as follows from formulae (7) and (8) of [12].

(iii) The monotonicity properties from (i) and µ(1) = 0 yield for x ≥ 1,

µ′(1)(x− 1) ≤ µ(1) +

∫ x

1

µ′(y)dy ≤ µ′(x)(x− 1).

Similarly, we get µ′′(x)(x− 1) ≤ µ′(x) because µ′(1) ≥ 0.

(iv) See Lemma 1 (iii) of [12].

In order to characterize regular variation of µ, we introduce the function

H(u) :=
Λ({0})

2
+

∫ u

0

h(z)dz , 0 ≤ u ≤ 1,

where

h(z) :=

∫ 1

z

∫

(y,1]

Λ (dp)

p2
dy , 0 ≤ z ≤ 1.

Note that H is a finite function because we have

H(1) =
Λ({0})

2
+

∫ 1

0

∫ p

0

∫ y

0

dz dy
Λ(dp)

p2
=

Λ ([0, 1])

2
< ∞ . (3.2)
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Proposition 3.2. For a Λ-coalescent without a dust component, the following statements
hold:

(i) µ(x) is regularly varying at infinity if and only if H(u) is regularly varying at the
origin. Then µ has an exponent α ∈ [1, 2] and we have

µ(x) ∼ Γ(3− α)x2H
(
x−1

)
(3.3)

as x→∞.

(ii) µ(x) is regularly varying at infinity with some exponent α ∈ (1, 2) if and only if the
function

∫
(y,1]

p−2Λ(dp) is regularly varying at the origin with an exponent α ∈ (1, 2).
Then we have

µ(x) ∼ Γ(2− α)

α− 1

∫ 1

x−1

Λ(dp)

p2

as x→∞.

The last statement brings the regular variation of µ together with the notion of
regularly varying Λ-coalescents as introduced in [12].

For the proof of this proposition, we apply the following characterization of regular
variation.

Lemma 3.3. Let V (z), z > 0, be a positive function with an ultimately monotone deriva-
tive v(z) and let η 6= 0. Then V is regularly varying at the origin with exponent η if and
only if |v| is regularly varying at the origin with exponent η − 1 and

z v(z) ∼ η V (z)

as z → 0+.

Proof. For η > 0, we have V (0+) = 0 and, therefore, V (z) =
∫ z

0
v(y)dy. For η < 0, we

use the equation V (z) =
∫ 1

z
(−v(y))dy + V (1) instead; here it holds V (0+) =∞. Now, our

claim follows from well known results for regularly varying functions at infinity (see [29]
and Theorem 1 (a) and (b) in Section VIII.9 [14]). The proofs translate one-to-one to
regularly varying functions at the origin.

Proof of Proposition 3.2. (i) From the definition (3.1), we obtain by double partial inte-
gration (see formula (8) of [12]) that

µ(x)

x(x− 1)
=

Λ({0})
2

+

∫ 1

0

(1− z)x−2h(z) dz. (3.4)

If Λ({0}) > 0, then our claim is obvious because the first term of the right-hand side
of (3.4) dominates the integral as x → ∞, implying µ(x)/x2 ∼ Λ({0})/2 = H(0) and,
therefore, α = 2. Thus, let us assume that Λ({0}) = 0. Let

L(x) :=

∫ 1

0

e−zxh(z) dz

be the Laplace transform of H. In view of a Tauberian theorem (see Theorem 3 and
Theorem 2 in Section XIII.5 of [14]), it is sufficient to prove that

L(x) ∼ µ(x)

x2
(3.5)

as x→∞. For 1
2 < δ < 1, let us consider the decomposition

µ(x)

x(x− 1)
=

∫ x−δ

0

(1− z)x−2h(z) dz +

∫ 1

x−δ
(1− z)x−2h(z) dz. (3.6)
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Because of δ < 1 and (3.2), we have
∫ 1

x−δ
(1− z)x−2h(z) dz ≤ (1− x−δ)x−2

∫ 1

x−δ
h(z) dz ≤ e−x

−δ(x−2)H(1) = O
(
x−1

)
(3.7)

as x→∞. In particular, the second integral in the decomposition (3.6) can be neglected
in the limit x→∞ since µ(x)/(x(x− 1)) ≥ µ′(1)/x in view of Lemma 3.1 (iii). As to the
first integral in (3.6), observe for δ > 1

2 that

− log
(1− z)x−2

e−zx
= O(x1−2δ) → 0

uniformly for z ∈ [0, x−δ] as x→∞ and, therefore,

∫ x−δ

0

(1− z)x−2h(z) dz ∼
∫ x−δ

0

e−zxh(z) dz. (3.8)

Also, note that
∫ 1

x−δ
e−zxh(z)dz ≤ e−x

1−δ
H(1) = O

(
x−1

)
(3.9)

as x→∞. Combining (3.6) to (3.9) entails
∫ 1

0

(1− z)x−2h(z)dz ∼ L(x).

Hence, along with formula (3.4), this proves the asymptotics in (3.5). Moreover, from
Lemma 3.1 (ii), we get 1 ≤ α ≤ 2.

(ii) If 1 < α < 2, then Λ({0}) = 0. Lemma 3.3 provides that for α < 2 the function
H(u) is regularly varying with exponent 2− α iff h(u) is regularly varying with exponent
1− α and then

(2− α)H(u) ∼ uh(u)

as u → 0+. Applying Lemma 3.3 once more for α > 1, h(u) is regularly varying with
exponent 1− α iff

∫
(u,1]

Λ(dp)
p2 is regularly varying with exponent −α and then

(α− 1)h(u) ∼ u

∫

(u,1]

Λ(dp)

p2

as u→ 0+. Bringing both asymptotics together with statement (i) finishes the proof.

4 The length of a random external branch

Recall that Tn denotes the length of an external branch picked at random. The
following result on its distribution function does not only play a decisive role in the
proofs of Theorem 1.1 and 1.2 but is also of interest on its own. It shows that the
distribution of Tn is primarily determined by the rate function µ.

Theorem 4.1. For a Λ-coalescent without a dust component and a sequence (rn)n∈N
satisfying 1 < rn ≤ n for all n ∈ N, we have

P

(
Tn >

∫ n

rn

dx

µ(x)

)
=

µ(rn)

µ(n)
+ O(1) (4.1)

as n→∞. Furthermore,
(rn
n

)2

+ O(1) ≤ P

(
Tn >

∫ n

rn

dx

µ(x)

)
≤ rn

n
+ O(1) (4.2)

as n→∞.
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Observe that, according to Proposition 2.1, the integral
∫ n
rn

dx
µ(x) is the asymptotic

time needed to go from n to rn lineages.
For the proof, we recall our notations. Nn = (Nn(t))t≥0 denotes the block counting

process, with the embedded Markov chain X = (Xj)j∈N0
. In particular, we have Nn(0) =

X0 = n and we set Xj = 1 for j ≥ τn, where τn is defined as the total number of merging
events. The waiting time of the process Nn in state Xj is again referred to as Wj for
0 ≤ j ≤ τn − 1. The number of merging events until the external branch ending in leaf
i ∈ {1, . . . , n} coalesces is given by

ζni := max {j ≥ 0 : {i} ∈ Πn(W0 + · · ·+Wj−1)}.

Similarly, ζn denotes the corresponding number of a random external branch with length
Tn.

Proof of Theorem 4.1. For later purposes, we show the stronger statement

P

(
Tn >

∫ n

rn

dx

µ(x)

∣∣∣∣Nn
)

=
µ(rn)

µ(n)
+ OP (1) (4.3)

as n → ∞. It implies (4.1) by taking expectations and using dominated convergence.
Also note that, in view of Lemma 3.1 (ii), the statement (4.2) is a direct consequence of
(4.1).

In order to prove (4.3), note that, by the standard subsubsequence argument and the
metrizability of the convergence in probability, we can assume that rn/n converges to
some value q with 0 ≤ q ≤ 1. We distinguish three different cases of asymptotic behavior
of the sequence rn/n:

(a) We begin with the case rn ∼ qn as n → ∞, where 0 < q < 1. Then there exist
q1, q2 ∈ (0, 1) such that q1n ≤ rn ≤ q2n for all n ∈ N but finitely many.

Let us first consider the discrete embedded setting and afterwards insert the time
component. Since there are ∆X0 + 1 branches involved in the first merger, we have

P (ζn ≥ 1 | Nn) = 1− ∆X0 + 1

X0
=

X1 − 1

X0
a.s.

Iterating this formula, it follows

P (ζn ≥ k | Nn) =

k−1∏

j=0

Xj+1 − 1

Xj
=

Xk − 1

n− 1

k−1∏

j=0

(
1− 1

Xj

)
a.s.

for k ≥ 1. For a combinatorial treatment of this formula, see [12, Lemma 4]. Note that∑k−1
j=0 X

−2
j ≤

∑∞
m=Xk−1

m−2 ≤ 2 (Xk−1)
−1 to obtain via a Taylor expansion that

P (ζn ≥ k |Nn) =
Xk − 1

n− 1
exp

(
−
k−1∑

j=0

1

Xj
+O

(
X−1
k−1

)
)

a.s. (4.4)

as n→∞.
We like to evaluate this quantity at the stopping times

ρrn := min{j ≥ 0 : Xj ≤ rn}.

From Lemma 3.1 (i) and (iii), we know that the function µ(x) is increasing in x and that
x/µ(x) converges in the dustless case to 0 as x→∞. In view of rn ≥ q1n, therefore, we
have ∫ n

rn

dx

µ(x)
≤ n− rn

µ(rn)
≤
(

1

q1
− 1

)
rn

µ(rn)
= O(1).
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Hence, we may apply Proposition 2.2 and obtain

ρrn−1∑

j=0

1

Xj
= log

(
µ(n)

n

Xρrn

µ(Xρrn
)

)
+ OP (1).

Also, Lemma 3 of [12] implies

Xρrn
= rn +OP

(
∆Xρrn

)
= rn + OP (Xρrn

).

Inserting these two estimates into equation (4.4) and using Lemma 3.1 (ii), it follows

P (ζn ≥ ρrn |Nn) =
Xρrn

− 1

n− 1

µ
(
Xρrn

)

Xρrn

n

µ (n)
(1 + OP (1)) =

µ (rn)

µ (n)
+ OP (1). (4.5)

In order to transfer this equality to the continuous-time setting, we first show that
for each ε ∈ (0, 1) there is an δ > 0 such that

(1 + δ)

∫ n

(1+ε)rn

dx

µ(x)
<

∫ n

rn

dx

µ(x)
< (1− δ)

∫ n

(1−ε)rn

dx

µ(x)
(4.6)

for large n ∈ N. For the proof of the left-hand inequality, note by Lemma 3.1 (ii) that

1

n− (1 + ε)rn

∫ n

(1+ε)rn

dx

µ(x)
≤ 1

n− rn

∫ n

rn

dx

µ(x)

implying, with q1n ≤ rn,

1

1− ε q1
1−q1

∫ n

(1+ε)rn

dx

µ(x)
≤ 1

1− ε rn
n−rn

∫ n

(1+ε)rn

dx

µ(x)
≤
∫ n

rn

dx

µ(x)
.

These inequalities show how to choose δ > 0. The right-hand inequality in (4.6) follows
along the same lines.

Now, recalling the notion

ρ̃rn := inf{t ≥ 0 : Nn(t) ≤ rn},

Proposition 2.1 gives for sufficiently small ε > 0 the formula

ρ̃rn(1+ε) =

∫ n

rn(1+ε)

dx

µ (x)
(1 + OP (1)) (4.7)

as n→∞. Combining (4.5) to (4.7) yields

P
(
Tn >

∫ n

rn

dx

µ(x)

∣∣∣∣Nn
)

≤ P

(
Tn ≥ (1 + δ)

∫ n

rn(1+ε)

dx

µ(x)

∣∣∣∣Nn
)

≤ P
(
Tn ≥ ρ̃rn(1+ε)

∣∣Nn
)

+ P

(
(1 + δ)

∫ n

rn(1+ε)

dx

µ(x)
< ρ̃rn(1+ε)

∣∣∣∣Nn
)

= P
(
ζn ≥ ρrn(1+ε)

∣∣Nn
)

+ OP (1)

=
µ(rn(1 + ε))

µ(n)
+ OP (1)

≤ µ(rn)

µ(n)
(1 + ε)

2
+ OP (1),
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where we used Lemma 3.1 (ii) for the last inequality. With this estimate holding for all
ε > 0, we end up with

P

(
Tn >

∫ n

rn

dx

µ(x)

∣∣∣∣Nn
)
≤ µ(rn)

µ(n)
+ OP (1)

as n → ∞. The reverse inequality can be shown in the same way so that we obtain
equation (4.3).

(b) Now, we turn to the two remaining cases rn ∼ n and rn = O(n). In view of
Lemma 3.1 (ii), the asymptotics rn ∼ n implies µ(rn) ∼ µ(n), i.e., the right-hand side of
(4.3) converges to 1. Furthermore, the sequence (r′n)n∈N := (qrn)n∈N, 0 < q < 1, fulfills
the requirements of part (a). With respect to Lemma 3.1 (ii), part (a), therefore, entails
for all q ∈ (0, 1),

P

(
Tn >

∫ n

rn

dx

µ(x)

∣∣∣∣Nn
)
≥ P

(
Tn >

∫ n

r′n

dx

µ(x)

∣∣∣∣∣Nn
)
≥ µ(qn)

µ(n)
+ OP (1) ≥ q2 + OP (1)

as n→∞. Hence, the left-hand side of (4.3) also converges to 1 in probability. Similarly,
the convergence of both sides of (4.3) to 0 can be shown for rn = O(n).

5 Proofs of Theorem 1.1 and 1.2

Proof of Theorem 1.1. Let rn be as required in Theorem 4.1. Applying Lemma 3.1 (ii),
we obtain ∫ n

rn

dx

x
≤ µ(n)

n

∫ n

rn

dx

µ(x)
≤
∫ n

rn

n− 1

x(x− 1)
dx.

Observing ∫ n

rn

dx

x
= log

n

rn

and ∫ n

rn

n− 1

x(x− 1)
dx = (n− 1) log

rn − nrn
n− nrn

,

Theorem 4.1 entails

P

(
µ(n)

n
Tn > log

n

rn

)
≥
(rn
n

)2

+ O(1) (5.1)

and

P

(
µ(n)

n
Tn > (n− 1) log

rn − nrn
n− nrn

)
≤ rn

n
+ O(1) (5.2)

as n→∞, respectively.
Now, let t ≥ 0. Using equation (5.1) for

rn = ne−t,

while choosing

rn =
net/(n−1)

1 + n(et/(n−1) − 1)

in (5.2), we arrive at

e−2t + O(1) ≤ P

(
µ(n)

n
Tn > t

)
≤ et/(n−1)

1 + n(et/(n−1) − 1)
+ O(1) =

1

1 + t
(1 + O(1)) ,

as required.
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Proof of Theorem 1.2. First, we treat the dustless case. Similar to the proof of Theo-
rem 4.1, we initially consider the discrete version ζni of Tni for 1 ≤ i ≤ k to prove

P (ζn1 ≥ In1 , . . . , ζnk ≥ Ink |Nn) = P (ζn1 ≥ In1 |Nn) · · · P (ζnk ≥ Ink |Nn) + OP (1) (5.3)

as n→∞, where 0 =: In0 ≤ In1 ≤ · · · ≤ Ink are random variables measurable with respect
to the σ-fields σ (Nn). Denote by ζA the number of mergers until some external branch
out of the set A ⊆ {1, . . . , n} coalesces and let a := #A. Given ∆Xj , the j-th merging
amounts to choosing ∆Xj + 1 branches uniformly at random out of the Xj present ones,
implying

P (ζA ≥ m |Nn) =
(Xm − 1) · · · (Xm − a)

(n− 1) · · · (n− a)

m−1∏

j=0

(
1− a

Xj

)
a.s. (5.4)

for m ≥ 1 (for details see (28) of [12]). Let ζ̄{1,...,k} := ζ{1,...,k} and ζ̄{i,...,k} := ζ{i,...,k} −
ζ{i−1,...,k} for 2 ≤ i ≤ k. Furthermore, let sNXj (t) := Nn(t+W0 + · · ·+Wj−1), in particular,
sNX0

(t) := Nn(t). The Markov property and (5.4) provide

P
(
ζn1 ≥ In1 , . . . , ζnk ≥ Ink

∣∣∣Nn
)

=

k∏

i=1

P
(
ζ̄{i,...,k} ≥ Ini − Ini−1

∣∣∣ sNXIn
i−1

)

=

k∏

i=1


 (XIni

− 1) · · · (XIni
− k + i− 1)

(XIni−1
− 1) · · · (XIni−1

− k + i− 1)

Ini −1∏

j=Ini−1

(
1− k − i+ 1

Xj

)


=

k∏

i=1


 (XIni

− k + i− 1)

(n− k + i− 1)

Ini −1∏

j=Ini−1

(
1− k − i+ 1

Xj

)
 a.s.

For 1 ≤ i ≤ k, note that

(
1− k − i+ 1

Xj

)
=

(
1− 1

Xj

)k−i+1

+O
(
X−1
j

)

and
XIni
− k + i− 1

n− k + i− 1
=

XIni
− 1

n− 1
+O

(
n−1

)

to obtain

P
(
ζn1 ≥ In1 , . . . , ζnk ≥ Ink |Nn

)

=

k∏

i=1



(
XIni
− 1

n− 1
+O

(
n−1

))



Ini −1∏

j=Ini−1

(
1− 1

Xj

)k−i+1

+O
((
XIni

− 1
)−1
)





=

k∏

i=1


XIni

− 1

n− 1

Ini −1∏

j=Ini−1

(
1− 1

Xj

)k−i+1

+ OP (1)

=

k∏

i=1


XIni

− 1

n− 1

Ini −1∏

j=0

(
1− 1

Xj

)
+ OP (1)
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as n → ∞, where the rightmost O(·)-term in the first line stems from the fact that
XIni

< Xj for all j < Ini . Furthermore, from (5.4) with A = {i}, we know that

P (ζni ≥ Ini | Nn) =
XIni

− 1

n− 1

Ini −1∏

j=0

(
1− 1

Xj

)
a.s.

so that we arrive at equation (5.3).
Now, based on exchangeability, it is no loss to assume that 0 ≤ tn1 ≤ · · · ≤ tnk . So

inserting

Ini := min

{
k ≥ 1 :

k−1∑

j=0

Wj > tni

}
∧ τn

in (5.3) yields

P (Tn1 > tn1 , . . . , T
n
k > tnk |Nn) = P (ζn1 ≥ In1 , . . . , ζnk ≥ Ink |Nn)

=

k∏

i=1

P (ζni ≥ Ini |Nn) + OP (1)

=

k∏

i=1

P (Tni > tni |Nn) + OP (1)

as n→∞. For 1 ≤ i ≤ k, let 1 < rni ≤ n be defined implicitly via

tni =

∫ n

rni

dx

µ(x)
.

From Lemma 3.1 (iii), we know that
∫ n

1
dx
µ(x) =∞ ; therefore, rni is well-defined. In the

dustless case, consequently, we may apply formula (4.3) to obtain

P (Tn1 > tn1 , . . . , T
n
k > tnk |Nn) =

k∏

i=1

P (Tni > tni |Nn) + OP (1)

=

k∏

i=1

µ(rni )

µ(n)
+ OP (1)

as n→∞. Taking expectations in this equation yields, via dominated convergence, the
theorem’s claim for Λ-coalescents without a dust component.

For Λ-coalescents with dust, we use for t > 0 the formula

lim
n→∞

P (Tn1 > t, . . . , Tnk > t) = E
[
Skt
]
,

with non-degenerative positive random variables St (see (10) in [24]). For k ≥ 2, Jensen’s
inequality implies

lim
n→∞

P (Tn1 > t, . . . , Tnk > t) > E [St]
k

= lim
n→∞

P (Tn1 > t, . . . , Tnk > t) .

This finishes the proof.

6 Proof of Theorem 1.3

(a) First, suppose that µ(x) is regularly varying with exponent α ∈ [1, 2], i.e., we have

µ(x) = xαL(x), (6.1)
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External branch lengths of Λ-coalescents

where L is a slowly varying function. Let rn := qn with 0 < q ≤ 1. The statement of
Theorem 4.1 then boils down to

P

(
µ(n)

n
Tn >

1

n

∫ n

qn

µ(n)

µ(x)
dx

)
= qα + O(1) (6.2)

as n→∞. From (6.1) we obtain

n−1

∫ n

qn

µ (n)

µ (x)
dx ∼




− log q for α = 1

1
α−1

(
q−(α−1) − 1

)
for 1 < α ≤ 2

as n→∞. Thus, choosing, for given t ≥ 0,

q =




e−t for α = 1

(1 + (α− 1) t)
− 1
α−1 for 1 < α ≤ 2

in equation (6.2) yields the claim.

(b) Now, suppose that γn Tn converges for some positive sequence (γn)n∈N in distri-
bution as n → ∞ to a probability measure unequal to δ0 with cumulative distribution
function F = 1− sF , i.e.,

P (γn T
n > t)

n→∞−→ sF (t) (6.3)

for t ≥ 0, t /∈ D, where D denotes the set of discontinuities of sF . In view of Theorem 1.1,
note that 0 < sF (t) < 1 for all t > 0. In order to prove that µ is regularly varying, we
bring together the assumption (6.3) with the statement of Theorem 4.1, which requires
several steps.

For this purpose, similar to the proof of Theorem 1.2, we define the numbers rn(t) for
t ≥ 0 implicitly via

t = γn

∫ n

rn(t)

dx

µ(x)
. (6.4)

Let us first solve this implicit equation. Applying formula (4.3) and (6.3), we obtain

µ(rn(t))

µ(n)
= sF (t) + O(1) (6.5)

for all t ≥ 0, t /∈ D, as n → ∞. Differentiating both sides of (6.4) with respect to t and
using Lemma 3.1 (i) yields

∣∣∣∣
γn r

′
n(t)

µ(n)

∣∣∣∣ =
µ(rn(t))

µ(n)
≤ 1.

In conjunction with (6.5), it follows that

γn r
′
n(t)

µ(n)
= − sF (t) + O(1)

and, by dominated convergence,

rn(t) = n− µ(n)

γn

(∫ t

0

sF (s)ds+ O (1)

)
(6.6)

as n→∞.

EJP 24 (2019), paper 134.
Page 18/36

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP354
http://www.imstat.org/ejp/


External branch lengths of Λ-coalescents

Next, we show that γn ∼ cµ′(n) for some c > 0. By Theorem 1.1, it follows that there
exist 0 < c1 ≤ c2 <∞ with

c1
µ(n)

n
≤ γn ≤ c2

µ(n)

n
, n ≥ 2. (6.7)

Furthermore, from equation (6.6) and a Taylor expansion, we get

µ(rn(t)) = µ(n) + µ′(n) (rn(t)− n) +
1

2
µ′′ (ξn) (rn(t)− n)

2
,

where rn(t) ≤ ξn ≤ n. Dividing this equation by µ(n), using (6.5) and (6.6), and rearrang-
ing terms, we obtain

∣∣∣∣1− sF (t) + O(1)− µ′(n)

γn

∫ t

0

sF (s)ds (1 + O(1))

∣∣∣∣ =
µ′′(ξn)µ(n)

2γ2
n

(∫ t

0

sF (s)ds

)2

(1 + O(1))

as n→∞. From Lemma 3.1 (iii) and (i), we get µ′′(ξn) ≤ µ′(ξn)/(ξn−1) ≤ µ′(n)/(rn(t)−1).
Moreover, equation (6.6) with (6.7) yields rn(t)− 1 ≥ n/2 + O(n) for t sufficiently small.
Taking (6.7) once more into account, we obtain that, for given ε > 0 and t sufficiently
small,

∣∣∣∣1− sF (t) + O(1)− µ′(n)

γn

∫ t

0

sF (s)ds (1 + O(1))

∣∣∣∣ ≤
µ′(n)

c1γn

(∫ t

0

sF (s)ds

)2

(1 + O(1))

≤ ε
µ′(n)

γn

(∫ t

0

sF (s)ds

)
(1 + O(1))

or, equivalently for t > 0,

∣∣∣∣
γn
µ′(n)

−
∫ t

0
sF (s)ds

1− sF (t)
(1 + O(1))

∣∣∣∣ ≤ ε

∫ t
0

sF (s)ds

1− sF (t)
(1 + O(1)) .

The right-hand quotient is finite and positive for all t > 0, which implies our claim
γn ∼ cµ′(n) for some c > 0.

We now remove γn from our equations by setting γn = µ′(n), without loss of generality.
With this choice, (6.7) changes into

c1
µ(n)

n
≤ µ′(n) ≤ c2

µ(n)

n
, n ≥ 2.

Also, inserting (6.6) and (6.7) in (6.5) yields

µ(n) sF (t) (1 + O(1)) = µ (rn(t)) = µ

(
n− µ(n)

µ′(n)

∫ t

0

sF (s)ds+ O(n)

)

as n→∞. Let us suitably remodel these formulae. By the monotonicity properties of µ
and µ′ in view of Lemma 3.1 (i), we may proceed to

c3
µ(x)

x
≤ µ′(x) ≤ c4

µ(x)

x
, x ≥ 2, (6.8)

for suitable 0 < c3 ≤ c4 <∞, and

µ(x) sF (t) = µ

(
x− µ(x)

µ′(x)

∫ t

0

sF (s)ds+ O(x)

)
(1 + O(1))

= µ

(
x− µ(x)

µ′(x)

∫ t

0

sF (s)ds+ O(x)

)
(6.9)
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as x→∞, where we pushed the (1 + O(1))-term into µ by means of Lemma 3.1 (ii). This
equation suggests to pass to the inverse of µ. From Lemma 3.1 (i) we know that µ(x)

has an inverse ν(y). For this function, formula (6.8) translates into

ν(y)

c4y
≤ ν′(y) ≤ ν(y)

c3y
. (6.10)

Also, applying ν to equation (6.9), both inside and outside, we get

ν
(
y sF (t)

)
= ν(y)− y ν′(y)

∫ t

0

sF (s)ds+ O(ν(y)).

This equation allows us, in a next step, to further analyse sF . With 0 ≤ u < v, u, v /∈ D, it
follows that

ν
(

sF (u)y
)
− ν

(
sF (v)y

)
= y ν′(y)

∫ v

u

sF (s)ds (1 + O(1)) (6.11)

as y → ∞. This equation immediately implies that sF (v) < sF (u) for all u < v. It also
shows that sF has no jump discontinuities, i.e., D = ∅. Indeed, by the mean value theorem
and because ν′(y) = 1/µ′(ν(y)) is decreasing in view of Lemma 3.1 (i), we have for
0 ≤ u < v that

ν
(

sF (u)y
)
− ν

(
sF (v)y

)
≥ ν′(y sF (u))y

(
sF (u)− sF (v)

)
≥ ν′(y)y

(
sF (u)− sF (v)

)
.

Thus, also assuming u, v /∈ D, (6.11) yields

sF (u)− sF (v) ≤
∫ v

u

sF (s)ds ≤ v − u,

which implies D = ∅.
Now, we are ready to show that ν and, therefore, µ is regularly varying. By a Taylor

expansion, we get

ν( sF (v)y)− ν( sF (u)y) = −ν′( sF (u)y)y( sF (u)− sF (v)) +
1

2
ν′′(ξy)y2( sF (u)− sF (v))2,

where sF (v)y ≤ ξy ≤ sF (u)y. Dividing this equation by yν′(y), using formula (6.11) and
rearranging terms, it follows for y →∞ that
∣∣∣∣
∫ v

u

sF (s)ds(1 + O(1)) − ν′( sF (u)y)

ν′(y)

(
sF (u)− sF (v)

)∣∣∣∣ =
1

2

ν′′(ξy)y

ν′(y)
( sF (u)− sF (v))2. (6.12)

Next, let us bound the right-hand term. Note that from Lemma 3.1 (iii) we have, for y
sufficiently large,

|ν′′(y)| = ν′(y)2µ
′′(ν(y))

µ′(ν(y))
≤ ν′(y)2

ν(y)− 1
≤ 2ν′(y)2

ν(y)
.

Hence, using (6.10) twice and sF (v)y ≤ ξy ≤ sF (u)y, it follows for y sufficiently large that

1

2
ν′′(ξy) ≤ ν′(ξy)2

ν(ξy)
≤ 1

c23

ν(ξy)

ξ2
y

≤ ν( sF (u)y)
sF (v)2y2

≤ c4
c23

ν′( sF (u)y) sF (u)
sF (v)2y

.

Now, for given u > 0 and ε > 0, because of the continuity and strict monotonicity of sF ,
we get

1

2
ν′′(ξy) ≤ ε

ν′( sF (u)y)

y( sF (u)− sF (v))
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if only the (positive) difference v − u is sufficiently small. Inserting into (6.12), we get
∣∣∣∣
∫ v

u

sF (s)ds(1 + O(1)) − ν′( sF (u)y)

ν′(y)

(
sF (u)− sF (v)

)∣∣∣∣ ≤ ε
ν′( sF (u)y)

ν′(y)
( sF (u)− sF (v))

or, equivalently for y →∞,

∣∣∣ ν′(y)

ν′( sF (u)y)
−

sF (u)− sF (v)∫ v
u

sF (s)ds
(1 + O(1))

∣∣∣ ≤ ε
sF (u)− sF (v)∫ v
u

sF (s)ds
(1 + O(1)).

Again, since the right-hand quotient is finite and positive for all u < v, this estimate
implies that ν′(y)/ν′( sF (u)y) has a positive finite limit as y →∞. Because sF (u) takes all
values between 0 and 1, ν′(y) is regularly varying. From the Lemma in Section VIII.9
of [14], we then obtain the regular variation of ν with some exponent η ≥ 0. It fulfills
1
2 ≤ η ≤ 1 as Lemma 3.1 (ii) yields

a
√
y ≤ ν(y) ≤ by

for some a, b > 0. Hence, µ (as the inverse function of ν) is regularly varying with
exponent α ∈ [1, 2] (see Theorem 1.5.12 of [1]).

7 Moment calculations for external branches of Λ-coalescents

In this section, we consider the number of external branches Yj after j merging
events:

Yj := # {1 ≤ i ≤ n : {i} ∈ Πn (W0 + · · ·+Wj−1)} .

In particular, we set Y0 = n and Yj = 0 for j > τn. (Again, we suppress n in the notation,
for convenience.) We provide a representation of the conditional moments of the number
of external branches for general Λ-coalescents (also covering coalescents with a dust
component). For this purpose, we use the notation (x)r := x (x− 1) · · · (x− r + 1) for
falling factorials with x ∈ R and r ∈ N. Recall that τn is the total number of merging
events.

Lemma 7.1. Consider a general Λ-coalescent and let ρ be a σ(Nn)-measurable random
variable with 0 ≤ ρ ≤ τn a.s.

(i) For a natural number r, the r-th factorial moment, given Nn, can be expressed as

E
[
(Yρ)r |Nn

]
= (Xρ)r

ρ∏

j=1

(
1− r

Xj

)
= (Xρ − 1)r

n

n− r

ρ−1∏

j=0

(
1− r

Xj

)
a.s.

(ii) For the conditional variance, the following inequality holds:

Var (Yρ |Nn ) ≤ E [Yρ |Nn ] a.s.

Proof. (i) First, we recall a link between the external branches and the hypergeometric
distribution based on the Markov property and exchangeability properties of the Λ-
coalescent, as already described for Beta-coalescents in [7]:
Given Nn and Y0, . . . , Yρ−1, the ∆Xρ+1 lineages coalescing at the ρ-th merging event are
chosen uniformly at random among the Xρ−1 present ones. For the external branches,
this means that, given Nn and Y0, . . . , Yρ−1, the decrement ∆Yρ := Yρ−1 − Yρ has a
hypergeometric distribution with parameters Xρ−1, Yρ−1 and ∆Xρ+ 1. From the formula
of the i-th factorial moment of a hypergeometric distributed random variable, we obtain

E
[
(∆Yρ)i |Nn, Y0, . . . , Yk−1

]
= (∆Xρ + 1)i

(Yρ−1)i
(Xρ−1)i

a.s. (7.1)
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Next, we look closer at the falling factorials. We have the following binomial identity

(a− b)r = (a)r

r∑

i=0

(
r

i

)
(−1)

i (b)i
(a)i

(7.2)

for a, b ∈ R and r ∈ N. It follows from the Chu–Vandermonde identity (formula 1.5.7 in
[4])

(x+ y)r =

r∑

i=0

(
r

i

)
(x)i(y)r−i

with x, y ∈ R and the calculation

(a− b)r = (−1)r(b+ r − 1− a)r

= (−1)r
r∑

i=0

(
r

i

)
(b)i (r − 1− a)r−i

= (−1)r
r∑

i=0

(
r

i

)
(b)i (−1)r−i

(a)r
(a)i

.

Returning to the number of external branches, we obtain from the identity (7.2) that

(Yρ)r = (Yρ−1)r

r∑

i=0

(
r

i

)
(−1)

i (∆Yρ)i
(Yρ−1)i

.

With equation (7.1), we arrive at

E
[
(Yρ)r |Nn, Y0, . . . , Yρ−1

]
= (Yρ−1)r

r∑

i=0

(
r

i

)
(−1)

i (∆Xρ + 1)i
(Xρ−1)i

a.s.

Furthermore, combining the binomial identity (7.2) with the definition of ∆Xρ, we have

(Xρ − 1)r = (Xρ−1)r

r∑

i=0

(
r

i

)
(−1)

i (∆Xρ + 1)i
(Xρ−1)i

.

Thus,

E
[
(Yρ)r |Nn, Y0, . . . , Yρ−1

]
= (Yρ−1)r

(Xρ − 1)r
(Xρ−1)r

a.s.

and, finally,

E
[
(Yρ)r |Nn

]

(Xρ)r
=

E
[
(Yρ−1)r |Nn

]

(Xρ−1)r

(Xρ − 1)r
(Xρ)r

=
E
[
(Yρ−1)r |Nn

]

(Xρ−1)r

(
1− r

Xρ

)
a.s.

The proof now finishes by iteration and taking E [Y0 |Nn ] = Y0 = X0 into account.

(ii) The inequality for the conditional variance follows from the representation in (i)
with r = 1 and r = 2:

Var (Yρ |Nn ) = Xρ (Xρ − 1)

ρ∏

j=1

(
1− 2

Xj

)
−X2

ρ

ρ∏

j=1

(
1− 1

Xj

)2

+Xρ

ρ∏

j=1

(
1− 1

Xj

)

≤ X2
ρ

ρ∏

j=1

(
1− 2

Xj

)
−X2

ρ

ρ∏

j=1

(
1− 1

Xj

)2

+Xρ

ρ∏

j=1

(
1− 1

Xj

)

≤ Xρ

ρ∏

j=1

(
1− 1

Xj

)
= E [Yρ |Nn ] a.s.

This finishes the proof.
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8 Proof of Theorem 1.7

In order to study Λ-coalescents having a regularly varying rate of decrease µ with
exponent α ∈ (1, 2], we define

κ(x) :=
µ(x)

x
, x ≥ 1,

for convenience. For k ∈ N and for real-valued random variables Z1, . . . , Zk, denote the
reversed order statistics by

Z〈1〉 ≥ · · · ≥ Z〈k〉.

We now prove the following theorem that is equivalent to Theorem 1.7. Recall the
definition of sn in (1.3).

Theorem 8.1. Suppose that the Λ-coalescent has a regularly varying rate µ with expo-
nent 1 < α ≤ 2 and fix ` ∈ N. Then, as n→∞, the following convergence holds:

κ(sn)
(
Tn〈1〉, . . . , T

n
〈`〉

)
d−→ (U1, . . . , U`) ,

where U1 > · · · > U` are the points in decreasing order of a Poisson point process Φ on
(0,∞) with intensity measure φ(dx) = α ((α− 1)x)

−1−α/(α−1)
dx.

For the rest of this section, keep the stopping times

ρ̃c,n := inf {t ≥ 0 : Nn(t) ≤ csn} (8.1)

in mind and define their discrete equivalents

ρc,n := min {j ≥ 0 : Xj ≤ csn} (8.2)

for c > 0. Later, we shall apply Proposition 2.2 to the latter stopping times, in view of
(1.4) and

∫ n

csn

dx

µ(x)
= O

(∫ n

csn

x−α+εdx

)
= O

(
s1−α+ε
n

)
= O(1) (8.3)

for 0 < ε < α− 1 (because of µ being regularly varying with exponent α).
The next proposition deals with properties of the stopping times from (8.1) and (8.2).

It justifies the choice of sn, it shows that Xρc,n diverges at the same rate as sn and that
Yρc,n is uniformly bounded in n. In particular, it reveals that for large c there are with
high probability external branches still present up to the times ρ̃c,n.

Proposition 8.2. Assume that the Λ-coalescent has a regularly varying rate µ with
exponent α ∈ (1, 2]. Then we have:

(i) For each ε > 0, there exists cε > 0 such that for all c ≥ cε,

lim
n→∞

P (κ(sn) ρ̃c,n ≥ ε) = 0.

(ii) For each c > 0, as n→∞,

Xρc,n = csn + OP (sn).

(iii) For each ε > 0,

lim sup
n→∞

P
(∣∣c−α Yρc,n − 1

∣∣ ≥ ε
) c→∞−→ 0.
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Proof. (i) Because µ is regularly varying with exponent α > 1, we have
∫ ∞

csn

dx

µ(x)
∼ 1

α− 1

csn
µ(csn)

∼ 1

α− 1
c1−α

1

κ(sn)

as n→∞. Now, Proposition 2.2 implies that

κ(sn) ρ̃c,n ≤
1

α− 1
c1−α(1 + OP (1)),

which entails the claim.

(ii) Because of (8.3), we may use Lemma 3 (ii) of [12]. Hence, in conjunction with the
definition of ρc,n, we obtain

Xρc,n

Xρc,n−1
= 1−

∆Xρc,n

Xρc,n−1
= 1 + OP (1)

as n→∞. This implies the statement because of Xρc,n ≤ csn < Xρc,n−1.

(iii) We first prove that

E
[
Yρc,n |Nn

]
= cα + OP (1) (8.4)

as n→∞. Lemma 7.1 (i), together with a Taylor expansion as in (4.4), provides

E
[
Yρc,n |Nn

]
= (Xρc,n − 1) exp


−

ρc,n−1∑

j=0

1

Xj
+O

(
X−1
ρc,n−1

)



as n→∞. Furthermore, (1.4) and (8.3) allow us to apply Proposition 2.2, yielding

ρc,n−1∑

j=0

1

Xj
= log

(
κ(n)

κ(Xρc,n)

)
+ OP (1) (8.5)

as n→∞. Combining statement (ii) with Lemma 3.1 (ii), therefore, we arrive at

E
[
Yρc,n |Nn

]
= n

µ
(
Xρc,n

)

µ(n)
(1 + OP (1)) = n

µ(csn)

µ(n)
(1 + OP (1))

so that the regular variation of µ and the definition of sn imply (8.4). Thus, in the upper
bound

P
(∣∣Yρc,n − cα

∣∣ ≥ ε cα
)
≤ P

(∣∣E
[
Yρc,n |Nn

]
− cα

∣∣ ≥ ε

2
cα
)

+ P
(∣∣Yρc,n −E

[
Yρc,n |Nn

]∣∣ ≥ ε

2
cα
)

with ε > 0, the first right-hand probability converges to 0. For the second one, Cheby-
shev’s inequality and Lemma 7.1 (ii) imply that

P
(∣∣Yρc,n −E

[
Yρc,n

∣∣Nn
]∣∣ ≥ ε cα

)
= E

[
P
(∣∣Yρc,n −E

[
Yρc,n |Nn

]∣∣ ≥ ε cα |Nn
)]

≤ E

[
Var

(
Yρc,n |Nn

)

ε2c2α
∧ 1

]

≤ E

[
E
[
Yρc,n | Nn

]

ε2 c2α
∧ 1

]
.

From (8.4) and dominated convergence, we conclude

P
(∣∣Yρc,n −E

[
Yρc,n

∣∣Nn
]∣∣ ≥ ε cα

)
≤ ε−2c−α + O(1)

as n→∞, which provides the claim.
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For the following lemma, let us recall the subdivided external branch lengths

qTni := Tni ∧ ρ̃c,n and T̂ni := Tni − qTni

for 1 ≤ i ≤ n and let

β :=
α− 1

α
.

Lemma 8.3. Suppose that the Λ-coalescent has a regularly varying rate µ with exponent
α ∈ (1, 2]. Then, for `, y ∈ N, there exist random variables U1,y ≥ . . . ≥ U`,y such that the
following convergence results hold:

(i) For any bounded continuous function g : R` → R and for fixed y ≥ `, as n→∞,

E
[
g
(
κ(csn)T̂n〈1〉, . . . , κ(csn)T̂n〈`〉

) ∣∣Yρc,n = y,Xρc,n

]
−→ E [g (U1,y, . . . , U`,y)]

in probability.

(ii) For fixed ` ∈ N, as y →∞,

y−β (U1,y, . . . , U`,y)
d−→ (U1, . . . , U`) ,

where U1 > · · · > U` are the points of the Poisson point process of Theorem 8.1.

Proof. (i) Let

sgy(x, z) := E
[
g
(
κ(z)T̂n〈1〉, . . . , κ(z)T̂n〈`〉

) ∣∣Yρc,n = y,Xρc,n = x
]

for x > y, z ≥ 2. Observe that by the strong Markov property, given the events Xρc,n = x

and Yρc,n = y, the y remaining external branches evolve as y ordinary external branches
out of a sample of x many individuals. From these y external branches, we consider the
` largest ones. Hence, since κ is regularly varying, Corollary 1.4 yields that

sgy(x, z) −→ E [g (U1,y, . . . , U`,y)]

as x→∞ and z/x→ 1. From established formulae for order statistics of i.i.d random
variables, (U1,y, . . . , U`,y) has the density

`!

(
y

`

)
F (u`)

y−` ∏̀

i=1

f
(
ui
)
du1 · · · du`, (8.6)

with u1 ≥ · · · ≥ u` ≥ 0, where f is the density from formula (1.1) and F its cumulative
distribution function.

Now, it follows from Skorohod’s representation theorem that one can construct
random variables X ′n on a common probability space with the properties that X ′n and
Xρc,n have the same distribution for each n ≥ 1 and that, in view of Proposition 8.2 (ii),
the random variables X ′n/csn converge to 1 a.s. It follows

sgy(X ′n, csn) −→ E [g (U1,y, . . . , U`,y)] a.s.

and, therefore,
sgy(Xρc,n , csn) −→ E [g (U1,y, . . . , U`,y)]

in probability, which is our claim.

(ii) Note that

yβ+1f(yβu) = yβ+1α
(
1 + (α− 1)uyβ

)−1−1/β y→∞−→ α ((α− 1)u)
−1−1/β
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and

F (yβu)y−` =
[
1−

(
1 + (α− 1)yβu

)−1/β
]y−` y→∞−→ exp

(
− ((α− 1)u)

−1/β
)
.

Consequently,

`!

(
y

`

)
F
(
yβu`

)y−` ∏̀

i=1

[
f
(
yβui

)
yβdui

]
,

being the density of y−β (U1,y, . . . , U`,y), has the limit

exp
(
− ((α− 1)u`)

−1/β
) ∏̀

i=1

α ((α− 1)ui)
−1−1/β

du1 · · · du`

as y →∞. Indeed, this is the joint density of the rightmost points U1 > · · · > U` of the
Poisson point process given in Theorem 8.1.

Proof of Theorem 8.1. The proof consists of two parts. First, we consider (T̂n〈1〉, . . . , T̂
n
〈`〉)

in the limits n → ∞ and then c → ∞, which gives already the limit of our theorem.
Consequently, in the second step it remains to show that ( qTn〈1〉, . . . ,

qTn〈`〉) can asymptotically
be neglected.

In the first step, we normalize T̂n〈j〉 not by κ(sn) but by the factor Y −βρc,nκ(csn), which is
equivalent in the limit c→∞ because of Proposition 8.2 (iii). Thus, we set

Vc,n := κ(csn)
(
T̂n〈1〉, . . . , T̂

n
〈`〉

)
.

Let g : R` → R be a continuous function and assume that max |g| ≤ 1. For c > 0, we
obtain via the law of total expectation and Lemma 8.3 (i) that
∣∣∣E
[
g
(
Y −βρc,n Vc,n

) ∣∣∣Xρc,n

]
− E [g (U1, . . . , U`)]

∣∣∣

≤
∑

c/2≤y≤2c

∣∣∣E
[
g
(
y−β Vc,n

) ∣∣ Yρc,n = y, Xρc,n

]
−E [g (U1, . . . , U`)]

∣∣∣ ·P
(
Yρc,n = y |Xρc,n

)

+ 2P
(∣∣Yρc,n − cα

∣∣ ≥ cα/2 |Xρc,n

)

≤ max
c/2≤y≤2c

∣∣∣E
[
g
(
y−β Vc,n

) ∣∣ Yρc,n = y, Xρc,n

]
− E [g (U1, . . . , U`)]

∣∣∣

+ 2P
(∣∣Yρc,n − cα

∣∣ ≥ cα/2 |Xρc,n

)

≤ max
c/2≤y≤2c

∣∣∣E
[
g
(
y−βU1,y, . . . , y

−βU`,y
)]
− E [g (U1, . . . , U`)]

∣∣∣+ OP (1)

+ 2P
(∣∣Yρc,n − cα

∣∣ ≥ cα/2 |Xρc,n

)

as n → ∞. Without loss of generality, we may assume that the OP (·)-term is bounded
by 1. Hence, taking expectations, applying Jensen’s inequality to the left-hand side and
using dominated convergence, we obtain

∣∣∣E
[
g
(
Y −βρc,n Vc,n

)]
− E [g (U1, . . . , U`)]

∣∣∣

≤ max
c/2≤y≤2c

∣∣∣E
[
g
(
y−βU1,y, . . . , y

−βU`,y
)]
− E [g (U1, . . . , U`)]

∣∣∣ + O(1)

+ 2P
(∣∣Yρc,n − cα

∣∣ ≥ cα/2
)
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as n→∞. Then Lemma 8.3 (ii) and Proposition 8.2 (iii) entail

lim sup
n→∞

∣∣∣E
[
g
(
Y −βρc,n Vc,n

)]
−E [g (U1, . . . , U`)]

∣∣∣ c→∞−→ 0. (8.7)

This finishes the first part of our proof. For the second one, we additionally assume that
g is a Lipschitz continuous function with Lipschitz constant 1 (in each coordinate) and
prove that

E
[
g
(
κ(sn)Tn〈1〉, . . . , κ(sn)Tn〈`〉

)]
n→∞−→ E [g (U1, . . . , U`)] , (8.8)

which implies the theorem’s statement. For ε > 0, we have
∣∣E
[
g
(
κ(sn)Tn〈1〉, . . . , κ(sn)Tn〈`〉

)]
− E

[
g
(
U1, . . . , U`

)]∣∣

≤
∣∣∣E
[
g
(
κ(sn) T̂n〈1〉, . . . , κ(sn) T̂n〈`〉

)]
− E [g (U1, . . . , U`)]

∣∣∣+
∑̀

i=1

E
[
κ(sn) qTn〈i〉 ∧ 2

]

≤
∣∣∣E
[
g
(
Y −βρc,n Vc,n

)]
− E [g (U1, . . . , U`)]

∣∣∣

+
∑̀

i=1

E
[∣∣∣
(
Y −βρc,nκ(csn)− κ(sn)

)
T̂n〈i〉

∣∣∣ ∧ 2
]

+ `E
[
κ(sn) qTn〈1〉 ∧ 2

]

≤
∣∣∣E
[
g
(
Y −βρc,n Vc,n

)]
− E [g (U1, . . . , U`)]

∣∣∣

+ `E
[(
εκ(csn)Y −βρc,n T̂〈1〉

)
∧ 2
]

+ 2`P
(∣∣∣Y −βρc,nκ(csn)− κ(sn)

∣∣∣ ≥ εκ(csn)Y −βρc,n

)

+ `ε+ 2`P
(
κ(sn) qT〈1〉 ≥ ε

)

and, consequently,

lim sup
n→∞

∣∣E
[
g
(
κ(sn)Tn〈1〉, . . . , κ(sn)Tn〈`〉

)]
−E

[
g
(
U1, . . . , U`

)]∣∣

≤ lim sup
n→∞

∣∣∣E
[
g
(
Y −βρc,n Vc,n

)]
−E [g (U1, . . . , U`)]

∣∣∣

+ ` lim sup
n→∞

∣∣∣E
[(
εκ(csn)Y −βρc,n T̂〈1〉

)
∧ 2
]
−E [(εU1) ∧ 2]

∣∣∣+ `E [(εU1) ∧ 2]

+ 2` lim sup
n→∞

P

(∣∣∣∣1−
κ(sn)

κ(csn)
Y βρc,n

∣∣∣∣ ≥ ε
)

+ `ε+ 2` lim sup
n→∞

P (κ(sn) ρ̃c,n ≥ ε) .

We now use (8.7) for the first two right-hand terms and Proposition 8.2 (iii) for the first
probability also taking κ(csn)/κ(sn) ∼ cα−1 = cαβ into account. To the other probability,
we apply Proposition 8.2 (i). Hence, passing to the limit as c→∞ yields

lim sup
n→∞

∣∣E
[
g
(
κ(sn)Tn〈1〉, . . . , κ(sn)Tn〈`〉

)]
−E

[
g
(
U1, . . . , U`

)]∣∣ ≤ `E [(εU1) ∧ 2] + `ε.

Finally, taking the limit ε→ 0 and using dominated convergence provides the claim.

9 Proof of Theorem 1.8

Recall the notation of the reversed order statistics Z〈1〉 ≥ Z〈2〉 ≥ · · · of real-valued
random variables, as introduced in the previous section, and the definition

tn := log log n− log log log n+ log log log n/ log log n.
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In this section, we prove the following equivalent version of Theorem 1.8:

Theorem 9.1. For the Bolthausen-Sznitman coalescent, the following convergence
holds: For ` ∈ N,

log log n
(
Tn〈1〉 − tn . . . , T

n
〈`〉 − tn

)
d−→ (U1 −G, . . . , U` −G)

as n→∞, where U1 > · · · > U` are the ` maximal points in decreasing order of a Poisson
point process on R with intensity measure e−x dx and G is an independent standard
Gumbel distributed random variable.

Recall, for c > 1, the notion

tc,n := tn −
log c

log log n
.

Lemma 9.2. Let E be a standard exponential random variable. Then, as n → ∞, we
have for c > 1,

e−tc,nNn(tc,n)
d−→ cE.

Proof. We first consider Nn(t)(r) := Nn(t) (Nn(t) + 1) · · · (Nn(t) + r − 1) for r ∈ N. For
these ascending factorials, Lemma 3.1 of [25] provides

E
[
Nn(t)(r)

]
=

Γ (r + 1)

Γ (1 + re−t)

Γ (n+ re−t)

Γ (n)
.

The Sterling approximation with remainder term yields, uniformly in t ≥ 0,

Γ (n+ re−t)

Γ (n)
= nre

−t
(1 + O (1))

and, consequently,

E
[
Nn(t)(r)

]
=

Γ (r + 1)

Γ (1 + re−t)
nre

−t
(1 + O (1))

uniformly in t ≥ 0 as n→∞. Inserting tc,n in this equation entails

n−re
−tc,n

E
[
Nn(tc,n)(r)

]
→ r!

as n→∞.
Now, observe

e−tc,n log n = exp

(
− log log log n

log log n
+

log c

log log n

)
log log n

= log log n− log log log n+ log c+ O (1)

= tc,n + log c+ O(1).

Equivalently,

ne
−tc,n

= cetc,n (1 + O (1))

and, therefore,

e−rtc,nE
[
Nn(tc,n)(r)

]
→ crr! (9.1)

as n→∞.
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Furthermore, because of

Nn(t)r ≤ Nn(t)(r) ≤ Nn(t)r + 2rrrNn(t)r−1 ≤ Nn(t)r + 2rrrNn(t)(r−1),

we have
Nn(t)(r) − 2rrrNn(t)(r−1) ≤ Nn(t)r ≤ Nn(t)(r).

Thus, (9.1) transfers to
e−rtc,nE [Nn(tc,n)r] −→ crr!

as n→∞ and our claim follows by method of moments.

The following lemma provides the asymptotic behavior of the joint probability distri-
bution of the lengths of the longest external branches starting at time tc,n. Let

Mn(t) := # {i ≥ 1 : {i} ∈ Πn(t)} , t ≥ 0,

which is the number of external branches at time t. Also recall

T̂n〈i〉 := (Tn〈i〉 − tc,n)+.

Lemma 9.3. For `, y ∈ N, there exist random variables U1,y ≥ · · · ≥ U`,y such that the
following convergence results hold:

(i) For any bounded continuous function g : R` → R and for fixed natural numbers
` ≤ y, as n→∞,

E
[
g
(

log log (n)
(
T̂n〈1〉, . . . , T̂

n
〈`〉
)) ∣∣∣Nn(tc,n),Mn(tc,n) = y

]
−→ E [g (U1,y, . . . , U`,y)]

in probability.

(ii) For fixed `, as y →∞,

(U1,y − log y, . . . , U`,y − log y)
d−→ (U1, . . . , U`) ,

where U1 > · · · > U` are the points of the Poisson point process of Theorem 9.1.

Proof. (i) We proceed in the same vein as in the proof of Lemma 8.3 (i). The strong
Markov property, Corollary 1.4 (see also formula (1.2) in the first example) and
Lemma 9.2 yield that

E
[
g
(
z
(
T̂n〈1〉, . . . , T̂

n
〈`〉
)) ∣∣∣Nn(tc,n) = x,Mn(tc,n) = y

]
−→ E [g (U1,y, . . . , U`,y)]

as x→∞ and z/ log x→ 1, where (U1,y, . . . , U`,y) has the density

`!

(
y

`

)(
1− e−u`

)y−` ∏̀

i=1

e−uidu1 · · · du` (9.2)

for u1 ≥ · · · ≥ u`. Moreover, from Lemma 9.2, we obtain

log (Nn(tc,n)) = tc,n +OP (1) = log log n+ OP (log log n)

as n → ∞. Thus, replacing x and z above by Nn(tc,n) and log log n, respectively, and
invoking Skorohod’s representation theorem once more, our claim follows.

(ii) Shifting the distribution from (9.2) by log y, we arrive at the densities

`!

(
y

`

)(
1− e−u`

y

)y−`
y−`

∏̀

i=1

e−uidu1 · · · du`
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and their limit

e−e
−u`

∏̀

i=1

e−uidui

as y →∞, which is the joint density of U1, . . . , U`. This finishes the proof.

Next, we introduce the notion

ρc,n := min

{
k ≥ 1 :

k−1∑

j=0

Wj > tc,n

}
∧ τn.

It is important to note that in the case of the Bolthausen-Sznitman coalescent Propo-
sition 2.2 is no longer helpful and we may not simply apply (8.5). As a substitute, we
shall use the following lemma.

Lemma 9.4. As n→∞,
ρc,n−1∑

j=0

1

Xj
= tc,n + OP (1).

Proof. Let Fk := σ (X,W0, . . . ,Wk−1) and

Zk :=

k∧τn−1∑

j=0

(
Wj −

1

Xj − 1

)
, k ≥ 0.

In particular, we have Z0 = 0. Given Fj and Xj = b with b ≥ 2, the waiting time Wj

in the Bolthausen-Sznitman coalescent is exponential with rate parameter b − 1 (see
(47) in [28]). Thus, (Zk)k∈N is a martingale with respect to the filtration (Fk)k∈N with
(predictable) quadratic variation

〈Z〉k :=

k∧τn−1∑

j=0

E
[
(Zj+1 − Zj)2

∣∣Fj
]

=

k∧τn−1∑

j=0

1

(Xj − 1)2
a.s.

Applying Doob’s optional sampling theorem to the martingale Z2
k − 〈Z〉k yields

E
[
Z2
ρc,n

]
= E

[
〈Z〉ρc,n

]
= E



ρc,n−1∑

j=0

1

(Xj − 1)2


 ≤ E




∞∑

k=Xρc,n−1

1

(k − 1)2


 (9.3)

and, therefore, because of Xρc,n−1 = Nn(tc,n) a.s.,

E
[
Z2
ρc,n

]
≤ E

[
4

Nn(tc,n)

]
.

By Lemma 9.2 and dominated convergence, the right-hand term converges to 0 as
n→∞, implying

ρc,n−1∑

j=0

(
Wj −

1

Xj

)
= Zρc,n +OP

(
4

Xρc,n−1

)
= OP (1)

as n → ∞. Finally, the quantity
∑ρc,n−1
j=0 Wj − tc,n is the residual time the process Nn

spends in the state Nn(tc,n). Because of the property that exponential times lack memory,
the residual time is exponential with parameter Nn(tc,n). Thus, by Lemma 9.2, the
residual time converges to 0 in probability, which provides our claim.
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Lemma 9.5. For the number of external branches at time tc,n, we have the following
results:

(i) For c > 1,

E [Mn(tc,n) |Nn]
d−→ cE

as n→∞, where E denotes a standard exponential random variable.

(ii) For ε > 0, as c→∞,

lim sup
n→∞

P
(
|Mn(tc,n) − E [Mn(tc,n) |Nn ]| > c1/2+ε

)
→ 0

as well as

lim sup
n→∞

P
(
Mn(tc,n) > c1+ε

)
→ 0 and lim sup

n→∞
P
(
Mn(tc,n) < c1−ε

)
→ 0.

Proof. (i) Using the representation from Lemma 7.1 (i) and a Taylor expansion as in
(4.4), we get

E
[
Yρc,n−1 |Nn

]
= Xρc,n−1 exp

(
−
ρc,n−1∑

j=1

1

Xj
+OP

(
X−1
ρc,n−1

))

as n → ∞. Recall that the definition of ρc,n entails Nn(tc,n) = Xρc,n−1 and Mn(tc,n) =

Yρc,n−1 a.s. Thus, we obtain

E [Mn(tc,n) |Nn] = Nn(tc,n) exp

(
−
ρc,n−1∑

j=1

1

Xj
+OP

(
Nn (tc,n)

−1
))

. (9.4)

From Lemma 9.4 and Lemma 9.2, it follows

E [Mn(tc,n) |Nn] = Nn(tc,n) exp (−tc,n + OP (1)).

Hence, Lemma 9.2 implies our claim.

(ii) Chebyshev’s inequality and Lemma 7.1 (ii) provide

P
(
|Mn(tc,n)−E [Mn(tc,n) |Nn ]| > c1/2+ε

)

= E
[
P
(
|Mn(tc,n)−E [Mn(tc,n) |Nn ]| > c1/2+ε

∣∣Nn
)]

≤ E

[
Var (Mn(tc,n) |Nn)

c1+2ε
∧ 1

]

≤ E

[
E (Mn(tc,n) |Nn)

c1+2ε
∧ 1

]
.

From statement (i) it follows that

lim sup
n→∞

P
(
|Mn(tc,n)−E [Mn(tc,n) |Nn ]| > c1/2+ε

)
≤ E

[
cE

c1+2ε
∧ 1

]
≤ c−2ε ,

which entails the first claim.
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Similarly, Markov’s inequality yields

lim sup
n→∞

P
(
Mn(tc,n) > c1+ε

)
≤ lim sup

n→∞
E

[
E [Mn(tc,n) |Nn ]

c1+ε
∧ 1

]
≤ c−ε,

giving the second claim.

Furthermore, we have

P
(
Mn(tc,n) < c1−ε

)
≤ P

(
E [Mn(tc,n) |Nn ] < 2c1−ε

)

+ P
(
|Mn(tc,n)−E [Mn(tc,n) |Nn ]| > c1−ε

)

and, consequently, in view of part (i),

lim sup
n→∞

P
(
Mn(tc,n) < c1−ε

)
≤ P

(
E < 2c−ε

)

+ lim sup
n→∞

P
(
|Mn(tc,n)−E [Mn(tc,n) |Nn ]| > c1−ε

)
.

The first right-hand term converges to 0 as c→∞. Also, as we may assume ε < 1/2, the
second term goes to 0, by means of the first claim of part (ii).

With these preparations, we now turn to the proof of Theorem 9.1.

Proof of Theorem 9.1. The strategy of this proof resembles that of Theorem 8.1. How-
ever, additional care is required to separate the impact of the parts qTni and T̂ni . For this
purpose, we consider the functions

g(x1, . . . , x`) := exp (i (θ1x1 + · · ·+ θ`x`)) and h(x) := exp (i (θ1 + · · ·+ θ`)x),

where θi ∈ R for 1 ≤ i ≤ n. It is sufficient to prove

E
[
g
(

log log (n)
(
Tn〈1〉 − tn

)
, . . . , log log (n)

(
Tn〈`〉 − tn

))]
−→ E [g (U1 −G, . . . , U` −G)]

as n→∞. We bound the difference of the terms on both sides. Recalling

tn = tc,n +
log c

log log n
,

we see that, on the event {Mn(tc,n) ≥ `}, it holds Tn〈i〉 = T̂n〈i〉 + tc,n and, therefore,

log log (n)
(
Tn〈j〉 − tn

)
=
(

log log (n) T̂n〈j〉 − logMn(tc,n)
)

+ log
Mn(tc,n)

c
(9.5)

for 1 ≤ j ≤ `. In conjunction with the independence of (U1, . . . , U`) and the Gumbel
random variable G, it follows that

∣∣∣E
[
g
(

log log (n)
(
Tn〈1〉 − tn

)
, . . . , log log (n)

(
Tn〈`〉 − tn

))]
− E [g (U1 −G, . . . , U` −G)]

∣∣∣

≤
∣∣∣∣E
[
g (Vc,n)h

(
log

Mn(tc,n)

c

)]
− E [g (U1, . . . , U`)]E [h (−G)]

∣∣∣∣ (9.6)

+ 2P (Mn(tc,n) < `) ,

where, in view of (9.5), we now set
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Vc,n :=
(

log log (n) T̂n〈1〉 − logMn(tc,n), . . . , log log (n) T̂n〈`〉 − logMn(tc,n)
)
.

Let us estimate the first term on the right-hand side of (9.6). We have

∣∣∣E
[
g (Vc,n) h

(
log

Mn(tc,n)

c

)]
− E [g (U1, . . . , U`)]E [h (−G)]

∣∣∣

≤
∣∣∣∣E
[
g (Vc,n)h

(
log

Mn(tc,n)

c

)]
− E [g (U1, . . . , U`)]E

[
h

(
log

Mn(tc,n)

c

)]∣∣∣∣

+

∣∣∣∣E
[
h

(
log

Mn(tc,n)

c

)]
− E

[
h

(
log

E [Mn(tc,n) |Nn ]

c

)]∣∣∣∣

+

∣∣∣∣E
[
h

(
log

E [Mn(tc,n) |Nn ]

c

)]
− E [h (−G)]

∣∣∣∣

=: ∆′c,n + ∆′′c,n + ∆′′′c,n (say).

We bound ∆′c,n,∆
′′
c,n and ∆′′′c,n separately. For ∆′c,n, we first consider conditional expecta-

tions. For c > 1, we have

∣∣∣∣∣E
[
g (Vc,n)h

(
log

Mn(tc,n)

c

) ∣∣∣∣Nn(tc,n)

]

− E [g (U1, . . . , U`)]E

[
h

(
log

Mn(tc,n)

c

) ∣∣∣∣Nn(tc,n)

] ∣∣∣∣∣

≤
∑

√
c≤y≤c2

∣∣∣
(
E [g (Vc,n) | Nn(tc,n), Mn(tc,n) = y] − E [g (U1, . . . , U`)]

)
h
(

log
y

c

)∣∣∣

·P
(
Mn(tc,n) = y

∣∣Nn(tc,n)
)

+ 2P
(
Mn(tc,n) <

√
c
∣∣Nn(tc,n)

)
+ 2P

(
Mn(tc,n) > c2

∣∣Nn(tc,n)
)

≤ max√
c≤y≤c2

∣∣E [g (Vc,n) | Nn(tc,n), Mn(tc,n) = y] − E [g (U1, . . . , U`)]
∣∣

+ 2P
(
Mn(tc,n) <

√
c |Nn(tc,n)

)
+ 2P

(
Mn(tc,n) > c2 |Nn(tc,n)

)

≤ max√
c≤y≤c2

∣∣E [g (U1,y − log y, . . . , U`,y − log y)] − E [g (U1, . . . , U`)]
∣∣+ OP (1)

+ 2P
(
Mn(tc,n) <

√
c |Nn(tc,n)

)
+ 2P

(
Mn(tc,n) > c2 |Nn(tc,n)

)

as n→∞, where we used Lemma 9.3 (i) in the last step. Without loss of generality, we
may assume that the right-hand OP (·)-term is bounded by 1. Hence, taking expectations,
we obtain via dominated convergence that

∆′c,n ≤ max√
c≤y≤c2

∣∣E [g (U1,y − log y, . . . , U`,y − log y)] − E [g (U1, . . . , U`)]
∣∣ + O(1)

+ 2P
(
Mn(tc,n) <

√
c)
)

+ 2P
(
Mn(tc,n) > c2)

)
.

Secondly, observe that the function h(log x) is Lipschitz on the interval [c−1/4,∞) with
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Lipschitz constant |θ1 + · · ·+ θ`|c1/4. Thus,

∆′′c,n

≤
∣∣∣∣E
[
h

(
log

Mn(tc,n)

c

)
− h

(
log

E [Mn(tc,n) |Nn ]

c

)
; Mtc,n ∧E [Mn(tc,n) |Nn ] ≥ c3/4

]∣∣∣∣

+ 2P
(
Mn(tc,n) < c3/4

)
+ 2P

(
E [Mn(tc,n) |Nn ] < c3/4

)

≤ 2P
(
|Mn(tc,n) − E [Mn(tc,n)|Nn]| > c2/3

)
+ |θ1 + · · ·+ θ`| c1/4−1/3 (9.7)

+ 2P
(
Mn(tc,n) < c3/4

)
+ 2P

(
E [Mn(tc,n) |Nn ] < c3/4

)
.

Lastly, Lemma 9.5 (i) provides the convergence of ∆′′′c,n to 0 as n → ∞. Consequently,
combining equation (9.6) to (9.7), using Lemma 9.5, and grouping terms yield

lim sup
n→∞

∣∣∣∣E
[
g (Vc,n)h

(
log

Mn(tc,n)

c

)]
− E [g (U1, . . . , U`)]E [h (−G)]

∣∣∣∣

≤ max√
c≤y≤c2

∣∣E [g (U1,y − log y, . . . , U`,y − log y)] − E [g (U1, . . . , U`)]
∣∣

+ 2 lim sup
n→∞

P (Mn(tc,n) < `) + 2 lim sup
n→∞

P
(
Mn(tc,n) <

√
c
)

+ 2 lim sup
n→∞

P
(
Mn(tc,n) < c3/4

)
+ 2 lim sup

n→∞
P
(
Mn(tc,n) > c2

)

+ 2 lim sup
n→∞

P
(
|Mn(tc,n) − E [Mn(tc,n)|Nn]| > c2/3

)

+ 2
(

1− e−c
−1/4

)
+ |θ1 + · · ·+ θ`| c−1/12.

Finally, taking the limit c→∞, the right-hand terms converge to 0 by Lemma 9.3 (ii) and
Lemma 9.5. This finishes the proof.

References

[1] Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1987). Regular Variation. Cambridge
University Press, Cambridge. MR-0898871

[2] Blum, M. G. B. and François, O. (2005). Minimal clade size and external branch length under
the neutral coalescent. Adv. in Appl. Probab. 37, 647–662. MR-2156553

[3] Bolthausen, E. and Sznitman, A.-S. (1998). On Ruelle’s probability cascades and an abstract
cavity method. Comm. Math. Phys. 197, 247–276. MR-1652734

[4] Boros, G. and Moll, V. (2004). Irresistible Integrals: Symbolics, Analysis and Experiments in
the Evaluation of Integrals. Cambridge University Press, Cambridge. MR-2070237

[5] Brunet, E., Derrida, B., Mueller, A. H. and Munier, S. (2007). Effect of selection on ancestry:
an exactly soluble case and its phenomenological generalization. Phys. Rev. E 76, 041104.
MR-2365627

[6] Caliebe, A., Neininger, R., Krawczak, M. and Rösler, U. (2007). On the length distribution of
external branches in coalescence trees: genetic diversity within species. Theor. Popul. Biol.
72, 245–252.

[7] Dahmer, I., Kersting, G. and Wakolbinger, A. (2014). The total external branch length of
Beta-coalescents. Combin. Probab. Comput. 23, 1010–1027. MR-3265836

EJP 24 (2019), paper 134.
Page 34/36

http://www.imstat.org/ejp/

http://www.ams.org/mathscinet-getitem?mr=0898871
http://www.ams.org/mathscinet-getitem?mr=2156553
http://www.ams.org/mathscinet-getitem?mr=1652734
http://www.ams.org/mathscinet-getitem?mr=2070237
http://www.ams.org/mathscinet-getitem?mr=2365627
http://www.ams.org/mathscinet-getitem?mr=3265836
https://doi.org/10.1214/19-EJP354
http://www.imstat.org/ejp/


External branch lengths of Λ-coalescents

[8] Desai, M. M., Walczak, A. M. and Fisher, D. S. (2013). Genetic diversity and the structure of
genealogies in rapidly adapting populations. Genetics 193, 565–585.

[9] Dhersin, J.-S., Freund, F., Siri-Jégousse, A. and Yuan, L. (2013). On the length of an external
branch in the Beta-coalescent. Stochastic Process. Appl. 123, 1691–1715. MR-3027896

[10] Dhersin, J.-S. and Möhle, M. (2013). On the external branches of coalescents with multiple
collisions. Electron. J. Probab. 18, 1–11. MR-3040550

[11] Dhersin, J.-S. and Yuan, L. (2015). On the total length of external branches for Beta-
coalescents. Adv. in Appl. Probab. 47, 693–714. MR-3406604

[12] Diehl, C. S. and Kersting, G. (2019). Tree lengths for general Λ-coalescents and the asymptotic
site frequency spectrum around the Bolthausen-Sznitman coalescent. Ann. Appl. Probab. 29,
2700–2743. MR-4019873

[13] Eldon, B., Birkner, M., Blath, J. and Freund, F. (2015). Can the site-frequency spectrum
distinguish exponential population growth from multiple-merger coalescents? Genetics 199,
841–856.

[14] Feller, W. (1971). An Introduction to Probability Theory and Its Applications, Vol. 2. John Wiley
& Sons, New York. MR-0270403

[15] Freund, F. and Möhle, M. (2009). On the time back to the most recent common ancestor and
the external branch length of the Bolthausen-Sznitman coalescent. Markov Process. Related
Fields 15, 7387–416. MR-2554368

[16] Goldschmidt, C. and Martin, J. (2005). Random recursive trees and the Bolthausen-Sznitman
coalescent. Electron. J. Probab. 10, 718–745. MR-2164028

[17] Janson, S. and Kersting, G. (2011). On the total external length of the Kingman coalescent.
Electron. J. Probab. 16, 2203–2218. MR-2861672

[18] Kersting, G., Pardo, J., and Siri-Jégousse, A. (2014). Total internal and external lengths of the
Bolthausen-Sznitman coalescent. J. Appl. Probab., 51, 73–86. MR-3317351

[19] Kersting, G., Schweinsberg, J. and Wakolbinger, A. (2014). The evolving beta coalescent.
Electron. J. Probab. 19, 1–27. MR-3238784

[20] Kersting, G., Schweinsberg, J. and Wakolbinger, A. (2018). The size of the last merger
and time reversal in Λ-coalescents. Ann. Inst. Henri Poincaré Probab. Stat. 54, 1527–1555.
MR-3825890

[21] Kimura, M. (1969). The number of heterozygous nucleotide sites maintained in a finite
population due to steady flux of mutations. Genetics 61, 893–903.

[22] Kingman, J. F. C. (1982). The coalescent. Stochastic Process. Appl. 13, 235–248. MR-0671034

[23] Limic, V. and Sturm, A. (2006). The spatial Λ-coalescent. Electron. J. Probab. 11, 363–393.
MR-2223040

[24] Möhle, M. (2010). Asymptotic results for coalescent processes without proper frequencies
and applications to the two-parameter Poisson-Dirichlet coalescent. Stochastic Process. Appl.
120, 2159–2173. MR-2684740

[25] Möhle, M. (2015). The Mittag-Leffler process and a scaling limit for the block counting
process of the Bolthausen-Sznitman coalescent. ALEA Lat. Am. J. Probab. Math. Stat. 12,
35–53. MR-3333734

[26] Neher, R. A. and Hallatschek, O. (2013). Genealogies of rapidly adapting populations. Proc.
Natl. Acad. Sci. USA 10, 437–442.

[27] Niwa, H.-S., Nashida, K. and Yanagimoto, T. (2016). Reproductive skew in Japanese sardine
inferred from DNA sequences. ICES J. Mar. Sci. 73, 2181–2189.

[28] Pitman, J. (1999). Coalescents with multiple collisions. Ann. Probab. 27, 1870–1902. MR-
1742892

[29] Seneta, E. (1973). A Tauberian theorem of E. Landau and W. Feller. Ann. Probab. 1, 1057–1058.
MR-0358133

[30] Sagitov, S. (1999). The general coalescent with asynchronous mergers of ancestral lines. J.
Appl. Probab. 36, 1116–1125. MR-1742154

EJP 24 (2019), paper 134.
Page 35/36

http://www.imstat.org/ejp/

http://www.ams.org/mathscinet-getitem?mr=3027896
http://www.ams.org/mathscinet-getitem?mr=3040550
http://www.ams.org/mathscinet-getitem?mr=3406604
http://www.ams.org/mathscinet-getitem?mr=4019873
http://www.ams.org/mathscinet-getitem?mr=0270403
http://www.ams.org/mathscinet-getitem?mr=2554368
http://www.ams.org/mathscinet-getitem?mr=2164028
http://www.ams.org/mathscinet-getitem?mr=2861672
http://www.ams.org/mathscinet-getitem?mr=3317351
http://www.ams.org/mathscinet-getitem?mr=3238784
http://www.ams.org/mathscinet-getitem?mr=3825890
http://www.ams.org/mathscinet-getitem?mr=0671034
http://www.ams.org/mathscinet-getitem?mr=2223040
http://www.ams.org/mathscinet-getitem?mr=2684740
http://www.ams.org/mathscinet-getitem?mr=3333734
http://www.ams.org/mathscinet-getitem?mr=1742892
http://www.ams.org/mathscinet-getitem?mr=1742892
http://www.ams.org/mathscinet-getitem?mr=0358133
http://www.ams.org/mathscinet-getitem?mr=1742154
https://doi.org/10.1214/19-EJP354
http://www.imstat.org/ejp/


External branch lengths of Λ-coalescents

[31] Schweinsberg, J. (2000). A necessary and sufficient condition for the Λ-coalescent to come
down from infinity. Electron. Commun. Probab. 5, 1–11. MR-1736720

[32] Schweinsberg, J. (2017). Rigorous results for a population model with selection II: genealogy
of the population. Electron. J. Probab. 38, 1–54. MR-3646064

[33] Siri-Jégousse, A. and Yuan, L. (2016). Asymptotics of the minimal clade size and related
functionals of certain Beta-coalescents. Acta Appl. Math. 142, 127–148. MR-3466919

[34] Steinrücken, M., Birkner, M. and Blath, J. (2013). Analysis of DNA sequence variation within
marine species using Beta-coalescents. Theor. Popul. Biol. 87, 15–24.

[35] Villandré, L., Labbe, A., Brenner, B., Roger, M. and Stephens, D. A. (2018). DM-PhyClus: a
Bayesian phylogenetic algorithm for infectious disease transmission cluster inference. BMC
Bioinformatics 19: 324.

[36] Wakeley, J., Nielsen, R., Liu-Cordero, S. N. and Ardlie, K. (2001). The discovery of single-
nucleotide polymorphisms—and inferences about human demographic history. Am. J. Hum.
Genet. 69, 1332–1347.

[37] Wallstrom, T., Bhattacharya, T., Wilkins, J. and Fischer, W. (2016). Generalized coalescents
may be necessary for modeling intrahost HIV evolution, presented at 23rd International
HIV Dynamics and Evolution, 2016-04-27 (Woods Hole, Massachusetts, United States).
https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-16-22791.

[38] Yuan, L. (2014). On the measure division construction of Λ-coalescents. Markov Process.
Related Fields. 20, 229–264. MR-3241525

Acknowledgments. We are grateful to the anonymous referees for their insightful
comments, which allowed us to improve the paper’s presentation.

EJP 24 (2019), paper 134.
Page 36/36

http://www.imstat.org/ejp/

http://www.ams.org/mathscinet-getitem?mr=1736720
http://www.ams.org/mathscinet-getitem?mr=3646064
http://www.ams.org/mathscinet-getitem?mr=3466919
https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-16-22791
http://www.ams.org/mathscinet-getitem?mr=3241525
https://doi.org/10.1214/19-EJP354
http://www.imstat.org/ejp/

	Introduction and main results
	Some laws of large numbers
	Properties of the rate of decrease
	The length of a random external branch
	Proofs of Theorem 1.1 and 1.2
	Proof of Theorem 1.3
	Moment calculations for external branches of -coalescents
	Proof of Theorem 1.7
	Proof of Theorem 1.8
	References

