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Random perturbations of hyperbolic dynamics
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Abstract

A sequence of large invertible matrices given by a small random perturbation around
a fixed diagonal and positive matrix induces a random dynamics on a high-dimensional
sphere. For a certain class of rotationally invariant random perturbations it is shown
that the dynamics approaches the stable fixed points of the unperturbed matrix up
to errors even if the strength of the perturbation is large compared to the relative
increase of nearby diagonal entries of the unperturbed matrix specifying the local
hyperbolicity.

Keywords: Furstenberg measure; random matrices; random dynamical systems.
AMS MSC 2010: 37H10; 37H15; 37A50; 60B20.
Submitted to EJP on November 5, 2018, final version accepted on July 7, 2019.
Supersedes arXiv:1805.11064v2.

1 Model, main results and comments

Let us consider the random dynamics on the L-dimensional sphere SL, L ≥ 2, given by

vn = Tn · vn−1 , n ∈ N , (1.1)

where the action · : GL(L + 1,R)× SL → SL of the general linear group is

T · v =
T v
‖T v‖

, (1.2)

and the random matrices Tn are of the form

Tn = R (1 + λrnUn) , n ∈ N . (1.3)

Here R = diag(κL+1, . . . , κ1) is a fixed unperturbed positive diagonal matrix whose
entries satisfy κ1 ≥ · · · ≥ κL+1 > 0 and a random perturbation λrnUn is given by a
coupling constant λ ∈ [0, 1), a scalar radial randomness rn and an angular randomness
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Random perturbations of hyperbolic dynamics

induced by orthogonal matrices Un. The main assumption is that both the Un and rn are
independent and identically distributed (i.i.d.) with O(L+ 1)-valued and Haar distributed
Un and [0, 1]-valued rn 6≡ 0. This includes, e.g., the case rn ≡ 1. Hence the object of study
is a particular Markov process on the continuous state space SL.

The above is the standard set-up of the theory of products of random matrices [3]
except that usually the action is studied on the projective space and not its double cover
by SL, but for sake of simplicity we suppress this difference. By Furstenberg’s Theorem
the random action has a unique invariant probability measure µr,λ on SL if λ 6= 0 (see [3],
Part A, Theorem III.4.3). This paper is about obtaining further quantitative information
about this invariant measure in the special case described above. Hence the paper
is thematically located at the interface between random matrix theory, the theory of
products of random matrices and random dynamical systems. One of the key technical
elements in the proofs is a stochastic order underlying the process (1.1) with R = 1, see
Proposition 2.11 below.

Let us begin by describing the dynamics (1.1) heuristically. The unperturbed deter-
ministic dynamics R· induced by R is maximally hyperbolic if the deterministic local
expansion rates

δRi =
κi − κi+1

κi+1

are strictly positive for all i = 1, . . . , L. Then there is a simple stable fixed point given
by the unit vector eL+1 corresponding to the last component (the fixed point is unique
only on projective space). The deterministic dynamics RN · v0 converges to the unit
vector ej if j is the largest index such that the jth component of the initial condition v0
does not vanish. However, ej is an unstable fixed point of R· if j ≤ L. All these facts are
elementary to check. In the following, we also speak of the unit eigenvector eL+2−j of
the eigenvalue κj as the jth channel specified by the unperturbed dynamics. We will not
assume maximal hyperbolicity in the following.

If now the strength of the perturbation is non-zero and satisfies λ < 2−4 min{δR1,
1
2
},

one can prove that the random dynamics leaves any unstable fixed point and is driven
to the vicinity of the stable fixed point in which it then remains. Thus in this case the
Furstenberg invariant measure µr,λ is supported only by a strict subset of SL, which
is a neighborhood of the stable fixed point. More generally, the theorem below states
that if λ < 2−4 min{δRi, 1

2
} for some i, then supp(µr,λ) is a strict subset of SL. From the

proof one can infer that the support is a small (in a quantitative manner) neighborhood
of {0}L+1−i × Si−1. The main interest of this paper is, however, to analyze the situation
where several of the δRi vanish or are at least all smaller than λ. Hence the unperturbed
dynamics may be merely partially hyperbolic. In this situation the random perturbation
is not small compared to the local hyperbolicity of R. Intuitively, it is clear that the
random dynamics may then visit all points on SL because the randomness can overcome
the hyperbolic character of R and lead to significant escapes from anywhere. This just
means that the support of the invariant measure is the whole sphere SL. This last fact is
precisely part of the following first result.

Theorem 1.1. Suppose that λ ∈ (0, 1), that the i.i.d. rn 6≡ 0 are [0, 1]-valued and that
the i.i.d. Un are Haar distributed on O(L + 1). Then the Furstenberg measure µr,λ is
absolutely continuous w.r.t. the normalized surface measure νL. If P(r = 0) = 0 holds,
then the random variables vN ∈ SL are distributed absolutely continuously w.r.t. νL on SL
even for any N ≥ 1 and initial condition v0. Provided that λ < 2−4 min{δRi, 1

2
} for some

i = 1, . . . , L, the support of µr,λ is a strict subset of SL. If λ > δRi for all i = 1, . . . , L and
1 ∈ supp(r), then the support of µr,λ is the whole sphere SL.

Now let us suppose that the randomness, while being large compared to the local
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expansion rates λ > δRi, is small compared to the expansion rates

δRi,j =
κi − κj
κj

,

from channel i to channel j for some j > i. Then if λ < δRi,j , there is some contraction
hyperbolicity on this larger scale, even though the local hyperbolicity is dominated
by the randomness. Hence a finer analysis of the interplay between the randomness
and the hyperbolic unperturbed dynamics is needed. Intuitively, one certainly expects
the random dynamics to spend little time in the channel j and this should lead to a
small weight of the Furstenberg measure on this channel. Roughly this is what we
actually prove below. To state our main result more precisely, we need some further
notations. Let us partition the channels into three parts (La, Lb, Lc) ∈ N× N× N, namely
La + Lb + Lc = L + 1. Each vector v = (v1, . . . , vL+1)ᵀ ∈ RL+1 is split into its upper part
a(v) ∈ RLa , middle part b(v) ∈ RLb and lower part c(v) ∈ RLc via

a(v) = (v1, . . . , vLa
)ᵀ , b(v) = (vLa+1, . . . , vLa+Lb

)ᵀ , c(v) = (vLa+Lb+1, . . . , vL+1)ᵀ .

Moreover, let us introduce the macroscopic gap γ = γ (R, Lb, Lc) between the upper and
lower parts by

γ = min

{
1 ,

κ2Lc

κ2Lb+Lc+1

− 1

}
∈ [0, 1] . (1.4)

Note that the macroscopic gap γ is positive provided that κLc
> κLb+Lc+1. Now the

deviation of the random path (vn)n∈N defined by (1.1) and (1.3) from the attractive part
{0}La × SLb+Lc−1 of the phase space can be measured as the norm of the upper part
‖a(vN )‖. The main result provides a quantitative bound on the expectation value of
‖a(vN )‖2 for sufficiently large N when the expectation is taken over the randomness
contained in Tn for n = 1, . . . , N .

Theorem 1.2. Suppose that the i.i.d. rn 6≡ 0 are [0, 1]-valued and that the i.i.d. Un are
Haar distributed on O(L + 1). Furthermore suppose (La, Lb) 6= (1, 1) and γ > 0. Then, for
all 0 < λ ≤ 1

4 there exist N0 = N0(L, Lc, λ) ∈ N such that

E ‖a(vN )‖2 ≤ 2

(
L + 1

La + Lb

) La+Lb−2

Lc+2
(

6

γ

La
Lc
λ2
) Lc

2+Lc

(1.5)

for all N ≥ N0 and v0 ∈ SL.

Using the invariance property of the Furstenberg measure µr,λ, one deduces the
following

Corollary 1.3. Under the same hypothesis as in Theorem 1.2,

∫
dµr,λ(v) ‖a(v)‖2 ≤ 2

(
L + 1

La + Lb

) La+Lb−2

Lc+2
(

6

γ

La
Lc
λ2
) Lc

2+Lc

(1.6)

The estimates (1.5) and (1.6) strongly differ from the behavior for R = 1 where no
hyperbolicity is present. Then E‖a(vN )‖2 ∼ LaL

−1 holds for large N independent of
λ > 0 which just reflects the equidistribution of the random dynamics on all channels
(this follows from Proposition 2.14 below). To us, the most interesting regime is that of
large La, Lb and Lc, say all a fraction of L, and of γ of the order of 1 (but possibly less
than 1). Then the r.h.s. in (1.5) and (1.6) is approximately proportional to λ2 which is
the expected behavior. Indeed, the random kicks of order λ are uniform and thus do not
distinguish between channels, and hence the drift into each channel is given by their
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variance or λ2, so that E‖a(v)‖2 should be of the order λ2 times the proportion LaL
−1 of

channels in a(v).

Our main motivation for the present study are potential applications to the field
of discrete random Schrödinger operators like the Anderson model, see [3, 4, 1] for
general mathematical background information. Little is known rigorously about the
so-called weak localization regime of such operators in space dimension higher than
or equal to 3. In this regime, the eigenfunctions are not expected to be exponentially
localized and the quantum dynamics is believed to be diffusive like in a Brownian
motion. Furthermore, random matrix theory is expected to provide a good description
of the eigenvalues and eigenfunctions locally in space and within a suitable range of
energies. In infinite volume the spectral measures likely have an absolutely continuous
component. The approach to this problem closest to the present study is the transfer
matrix method. It allows to construct (generalized) eigenfunctions and Green functions
of finite volume approximations. Best understood is then the quasi-one-dimensional
limit in which one has strong Anderson localization, that is, pure-point spectrum with
exponentially localized eigenfunctions with a rate called the inverse localization length
[3, 4, 5]. In a perturbative regime of small coupling of the randomness, one can calculate
this localization length [14, 10] and, more generally, the whole Lyapunov spectrum
[11, 12] provided the random dynamics of the transfer matrices is well understood. For
such systems, one can also derive flow equations for the finite volume growth exponents,
the so-called DMPK-equations [2, 15, 13]. Beneath these works, only [14, 13] address
the hyperbolic character of the unperturbed dynamics (corresponding to the R above),
however, only in the regime λ� δRi of very small randomness [14] or even a randomness
vanishing at a suitable rate in the system size, namely the number of random matrices
Tn involved [13].

In order to apply the results of this paper (notably Theorem 1.2) to the transfer
matrices of the Anderson model and extract relevant information on its eigenfunctions,
several non-trivial extensions have to be worked out. First of all, the transfer matrices at
real energies have a symplectic symmetry that has to be implemented and then leads, in
particular, to a supplementary symmetry in the Lyapunov spectrum. This can be done
as in [3, 14, 8]. Then one has to consider the dynamics not only on unit vectors, but
rather on the whole flag manifold [3, 14]. Furthermore, while the transfer matrices
can be brought in the form (1.3) [14], the random matrices Un stemming from the
Anderson model are not Haar distributed and contain much fewer random entries. In
the quasi-one-dimensional regime, this can be dealt with using commutator methods,
see [5] and [12] for a perturbative result when R is elliptic, that is, of unit norm.

Theorem 1.2 also has some short-comings by itself. First of all, it and its proof do
not provide a good quantitative estimate on N0. Furthermore, the proof does not readily
transpose to the case where 1 + λrU is replaced by exp(λrU). Actually, many of the
arguments below depend heavily on geometric considerations and explicit calculations
exploring formulas for averages over the Haar measure.

2 Outline of the proofs of Theorems 1.1 and 1.2

Throughout the remainder of the paper we assume that λ ∈ (0, 1) and that (rn)n∈N
are i.i.d., [0, 1]-valued and satisfy P(rn = 0) < 1. Furthermore (Un)n∈N are supposed to be
O(L+ 1)-valued and i.i.d. according to the Haar measure. The one-dimensional Lebesgue
measure will be denoted by x. We also abbreviate absolutely continuous and absolute
continuity by a.c..

Lemma 2.1. The random variable 〈v, (1+ λrU) · v〉 is
[√

1− λ2, 1
]
-valued for all v ∈ SL.

Moreover, its distribution is independent of v ∈ SL.
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Let us denote the Borel probability distribution of 〈v, (1+ λrU) · v〉 by

$r,λ(A) = P(〈v, (1+ λrU) · v〉 ∈ A) , A ∈ B(
[√

1− λ2, 1
]
) .

The aim of the next lemma is to analyze its canonical decomposition into pure-point,
singular continuous and absolutely continuous component:

$r,λ = $pp
r,λ + $sc

r,λ + $ac
r,λ .

Lemma 2.2. One has $pp
r,λ = P(r = 0) δ1 and $sc

r,λ = 0.

The next lemma states an elementary invariance property.

Lemma 2.3. For all v ∈ SL the random variable (1 + λrU) · v is distributed axially
symmetrically w.r.t. v. More precisely, for all Borel subsets A ∈ B(SL), any orthogonal
V ∈ O(L + 1) and all pairs (V , v) ∈ O(L + 1)× SL with V v = v, one has

P ((1 + λrU) · v ∈ A) = P ((1 + λrU) · V v ∈ V A) (2.1)

= P ((1 + λrU) · v ∈ V A) . (2.2)

Lemmata 2.2 and 2.3 allow to consider the Borel probability distribution on SL of the
random variable (1 + λrU) · v:

%r,λ,v(A) = P((1 + λrU) · v ∈ A) , A ∈ B(SL) .

The next lemma analyzes its canonical decomposition %r,λ,v = %pp
r,λ,v+%sc

r,λ,v+%ac
r,λ,v w.r.t. νL.

Lemma 2.4. Let v, w ∈ SL. Then

%pp
r,λ,v = P(r = 0) δv , %sc

r,λ,v = 0 , (2.3)

and the Radon-Nikodym derivative of the absolutely continuous part %ac
r,λ,v w.r.t. νL obeys

the following symmetry property:

d%ac
r,λ,v

dνL
(w) =

d%ac
r,λ,w

dνL
(v) . (2.4)

The final preparatory result involves the deterministic hyperbolic part R· of the
dynamics.

Lemma 2.5. The absolute continuity of Borel measures on SL w.r.t. νL is preserved
under (R·)∗.

Once all these lemmata are proved (once again, see Section 3), it is possible to
complete the proof of the first part of Theorem 1.1, namely to prove the absolute
continuity stated therein.

Proof of Theorem 1.1. For n ∈ N, let us denote the distribution of vn for some given
initial condition v0 ∈ SL by ςn. It can be computed iteratively by

ςn =

∫
SL

dςn−1(w) ((R·)∗(%r,λ,w))(·) , ς0 = δv0 . (2.5)

Now, let ℵ ∈ B(SL) be a νL-nullset. Then, ℵ is also an ((R·)∗(%ac
r,λ,w))-nullset by Lemma 2.5.

Therefore (2.5) combined with (2.3) implies that

ςn(ℵ) =

∫
SL

dςn−1(w) ((R·)∗(%r,λ,w))(ℵ)

=

∫
SL

dςn−1(w) ((R·)∗(%pp
r,λ,w))(ℵ)

= P(r = 0)

∫
SL

dςn−1(w) ((R·)∗(δw))(ℵ)

= P(r = 0) ((R·)∗(ςn−1))(ℵ) .

(2.6)
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By iteratively applying (2.6) from n = 1 to some N ≥ 1 and inserting ς0 = δv0 one obtains

ςN (ℵ) = P(r = 0)N ((RN ·)∗(ς0))(ℵ) = P(r = 0)N ((RN ·)∗(δv0))(ℵ) . (2.7)

An iterative application of the invariance property of the Furstenberg measure µr,λ yields

µr,λ =

∫
SL

dµr,λ(v) ςN
∣∣
v0=v

,

which implies together with (2.7) that

µr,λ(ℵ) =

∫
SL

dµr,λ(v) ςN (ℵ)
∣∣
v0=v

= P(r = 0)N ((RN ·)∗(µr,λ))(ℵ) ≤ P(r = 0)N . (2.8)

Due to the assumption r 6≡ 0, i.e., P(r = 0) < 1, the absolute continuity of µr,λ w.r.t. νL
follows from (2.8) in the limit N →∞. If P(r = 0) = 0 holds, then (2.7) implies that even
the distribution of vN is absolutely continuous w.r.t. νL for all N ≥ 1.

The penultimate statement of Theorem 1.1 is Lemma 2.6 below. Let us now focus
on the last claim, namely the fact that the support of the Furstenberg measure is the
whole sphere SL if λ > δRi for all i. More precisely, we show that µr,λ(Bε(w)) > 0 holds
for every ball of radius ε > 0 around any arbitrary point w ∈ SL. For this purpose, let
us pick some u ∈ supp(µr,λ). In view of Lemma 2.7 (see also below), there exists a

path of finite length from u to w, i.e., there exists N ∈ N and {sn}Nn=1 ⊂ supp(r) and

{Un}Nn=1 ⊂ O(L + 1) = supp(U) such that

w =

N∏
n=1

R(1 + λsnUn) · u

holds. Obviously, the event

∥∥∥ N∏
n=1

R(1 + λrnUn)−
N∏
n=1

R(1 + λsnUn)
∥∥∥ < ζ

has positive probability for all ζ > 0 and the map (A, v) 7→ A · v is continuous. Therefore,
there exists some ξ > 0 such that P(vN ∈ Bε(w)) > 0 for all v0 ∈ Bξ(u). Now every ball
Bξ(u) of radius ξ > 0 around u ∈ supp(µr,λ) satisfies µr,λ(Bξ(u)) > 0. This allows to infer
that

µr,λ(Bε(w)) =

∫
SL

dµr,λ(v0) P(vN ∈ Bε(w)) ≥
∫

Bξ(u)

dµr,λ(v0) P(vN ∈ Bε(w)) > 0 ,

which proves the claim.

Lemma 2.6. If λ < 2−4 min{δRi, 1
2
} for some i = 1, . . . , L, then supp(µr,λ) 6= SL.

Lemma 2.7. Suppose that λ > maxi=1,...,L δRi and that 1 ∈ supp(r). Then for every
couple u,w ∈ SL there exist N ∈ N and s1, . . . , sN ∈ supp(r) and U1, . . . ,UN ∈ O(L + 1)

such that

w =

N∏
n=1

R(1 + λsnUn) · u .

Next let us outline the proof of Theorem 1.2. It will be useful to split each Tn into the
unperturbed, deterministic action R and a random perturbation 1 + λrU , and analyze
the action of both factors separately. The unperturbed action R· leads to a decrease of
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the norm of the upper part and an increase of the norm of the lower part. More precisely,
provided that κLc

> κLb+Lc+1, one has for any v ∈ SL obeying ‖a(v)‖ 6= 0 6= ‖c(v)‖ the
bounds

‖a(R · v)‖ < ‖a(v)‖ , ‖c(R · v)‖ > ‖c(v)‖ . (2.9)

The former inequality is now strengthened.

Lemma 2.8. For all v ∈ SL,

‖a (R · v)‖2 ≤
(

1− ‖c(v)‖2 γ
2

)
‖a(v)‖2 . (2.10)

This implies that the unperturbed dynamics obeys

lim
N→∞

a(RN · v0) = 0

if ‖c(v0)‖ > 0 and κLc
> κLb+Lc+1. The random perturbation, on the other hand, may aug-

ment ‖a(v)‖. However, in expectation this growth is bounded by a term of order O(λ2).

Lemma 2.9. Let λ ∈ (0, 14 ] and L ≥ 3. Then for all v ∈ SL,

E ‖a ((1 + λrU) · v)‖2 ≤ ‖a(v)‖2 + λ2
3 La
L + 1

. (2.11)

At first glance, it may now appear straightforward to prove upper bounds on
E‖a(vN )‖2 for large N by combining Lemmata 2.8 and 2.9. An iterative application
turns out to be more involved, however. The core task is to deal with the expectation
value of products ‖a(vn)‖2 ‖c(vn)‖2 in (2.10). This is tackled by the following elementary
lemma.

Lemma 2.10. SL-valued random variables u with arbitrary distribution satisfy

E ‖a(u)‖2 ‖c(u)‖2 ≥ δ
[
E ‖a(u)‖2 − P

(
‖c(u)‖2 < δ

)]
(2.12)

for all δ ∈ [0, 1].

Consequently the next aim is to bound

P
(
‖c ((1 + λrU) · vn)‖2 ≤ δ

)
(2.13)

from above so that inequalities (2.10) and (2.12) can be used. This turns out to be
possible by comparing the random dynamics (1.1) generated by (1.3) with the random
dynamics generated by 1 + λrnUn instead of Tn, that is, the case of R = 1 which has no
hyperbolicity. The comparison of the cumulative distribution function (2.13) under these
two random dynamics is based on the next result.

Proposition 2.11. Let (La, Lb) 6= (1, 1) and v, w ∈ SL be such that ‖c(v)‖ ≥ ‖c(w)‖. For
all ε ∈ [0, 1] and λ ∈ (0, 14 ], one then has

P
(
‖c ((1 + λrU) · v)‖ ≤ ε

)
≤ P

(
‖c ((1 + λrU) · w)‖ ≤ ε

)
. (2.14)

Remark 2.12. Since ‖c ((1 + λrU) · v)‖ and ‖c ((1 + λrU) · w)‖ are R-valued, the validity
of (2.14) for all ε ∈ [0, 1] is equivalent to the stochastic order

P
(
‖c ((1 + λrU) · v)‖ ∈ ·

)
≥st P

(
‖c ((1 + λrU) · w)‖ ∈ ·

)
, (2.15)

as defined, e.g., in Section 17.7 of [6].

Now one can iteratively combine the second part of (2.9) and Proposition 2.11. For
ordered products, we use the following notation:

k∏
i=j

Fi =

{
Fk · · ·Fj , j ≤ k ,
1 , j > k .
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Corollary 2.13. Let (La, Lb) 6= (1, 1). Then for all v ∈ SL, ε ∈ [0, 1], N ∈ N and λ ∈ (0, 14 ],

P
(∥∥∥c((1+λrNUN )

N−1∏
n=1

R(1+λrnUn)·v
)∥∥∥ ≤ ε) ≤ P

(∥∥∥c( N∏
n=1

(1+λrnUn)·v
)∥∥∥ ≤ ε) . (2.16)

Corollary 2.13 allows to bound (2.13) by the r.h.s. of (2.16) with δ = ε2. This r.h.s.
can readily be estimated if one knows the invariant probability measure on SL under
the dynamics (1 + λrU)· (it is again unique and given by the Furstenberg measure).
The following proposition shows that this invariant measure is equal to the normalized
invariant surface measure νL on SL. In the terminology of [12, 11] this means that the
dynamics (1 + λrU)· has the so-called random phase property.

Proposition 2.14. For all λ ∈ (0, 14 ] and h ∈ L∞(SL), one has∫
SL

dνL(v) Eh ((1 + λrU) · v) =

∫
SL

dνL(v) h(v) . (2.17)

At large N , the r.h.s. of (2.16) therefore approaches νL({v ∈ SL : ‖c(v)‖2 < δ}) (see [3],
Part A, Theorem 4.3). Therefore the following geometric identity will be needed.

Lemma 2.15. For all δ ∈ [0, 1],

νL

({
v ∈ SL : ‖c(v)‖2 < δ

})
=

Γ(L+1
2 )

Γ(Lc

2 )Γ(La+Lb

2 )

∫ δ

0

dx(x) x
Lc
2 −1(1− x)

La+Lb
2 −1 , (2.18)

which just means that ‖c(v)‖2 is distributed according to the beta distribution with
parameters (La+Lb

2 , Lc

2 ). For (La, Lb) 6= (1, 1) this can, moreover, be bounded as follows:

νL

({
v ∈ SL : ‖c(v)‖2 < δ

})
≤
( L + 1

La + Lb

) La+Lb
2 −1(L + 1

Lc
δ
) Lc

2
(

1− δ

6

)
. (2.19)

The following Corollary 2.16 combines Proposition 2.14 and Lemma 2.15 and con-
cludes the transient focus on the special case of R = 1.

Corollary 2.16. Let (La, Lb) 6= (1, 1) and δ ∈ (0, 1). Then there exist Ñ0 = Ñ0(L, Lc, δ) ∈ N
and η = η(L, Lc, δ) > 0 such that

P
(∥∥∥c( N∏

n=1

(1 + λrnUn) · v
)∥∥∥2 < δ

)
≤
( L + 1

La + Lb

) La+Lb
2 −1(L + 1

Lc
δ
) Lc

2 − η (2.20)

holds for all N ≥ Ñ0 and v ∈ SL.

Lemmata 2.8, 2.9, 2.10 and Corollaries 2.13 and 2.16 now allow to conclude.

Proof of Theorem 1.2. Let δ ∈ (0, 1) and η = η(L, Lc, δ) > 0 and Ñ0 = Ñ0(L, Lc, δ) ∈ N be
as in Corollary 2.16. Moreover, let us choose Ñ ≥ Ñ0. Then Lemmata 2.8, 2.9, 2.10 and
Corollaries 2.13 and 2.16 imply the estimate

E ‖a(vÑ+1)‖2 = E ‖a(R(1 + λrÑ+1UÑ+1) · vÑ )‖2

≤
(
1− γδ

2

)
E ‖a((1 + λrÑ+1UÑ+1) · vÑ )‖2 +

γδ

2
P
(
‖c((1 + λrÑ+1UÑ+1) · vÑ )‖2 < δ

)
≤
(
1− γδ

2

)[
E ‖a(vÑ )‖2 + λ2

3 La
L + 1

]
+
[( L + 1

La + Lb

) La+Lb
2 −1(L + 1

Lc
δ
) Lc

2 − η
]γδ

2

≤
(
1− γδ

2

)
E ‖a(vÑ )‖2 + Mδ −

γδη

2
,
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where

Mδ = λ2
3 La
L + 1

+
γLc

2(L + 1)

( L + 1

La + Lb

) La+Lb
2 −1(L + 1

Lc
δ
) Lc

2 +1

.

An iterative application of this inequality from Ñ = Ñ0 to N − 1 yields

E‖a(vN )‖2 ≤
(
1− γδ

2

)N−Ñ0E‖a(vÑ0
)‖2 +

[
Mδ −

γδη

2

] N−1∑
Ñ=Ñ0

(
1− γδ

2

)Ñ−Ñ0

≤
(
1− γδ

2

)N−Ñ0
+

2

γδ

[
Mδ −

γδη

2

]
for all N ≥ Ñ0. Thus for all

N ≥ Ñ0 +
log(η)

log
(
1− γδ

2

)
one has

E‖a(vN )‖2 ≤ 2Mδ

γδ
. (2.21)

Now, the right side of (1.5) is larger than 1 if

d =
Lc

L + 1

(6λ2La
γLc

) 2
Lc+2

(La + Lb
L + 1

) La+Lb−2

Lc+2

satisfies d ≥ 1. If this is violated, the choice δ = d is possible and optimizes the order of
the right side of (2.21) in λ and proves (1.5).

3 Details of the proof of Theorem 1.1

Proof of Lemma 2.1. The first item is obvious. As for the dependence of the distribution
of 〈v, (1+ λrU) · v〉 on v ∈ SL, let w ∈ SL and W ∈ O(L + 1) be such that W w = v. For all
s ∈ [0, 1] and U ∈ O(L + 1) one has

〈v, (1 + λsU ) · v〉 = ‖(1 + λsU )v‖−1 〈v, (1 + λsU )v〉

= ‖(1 + λsW ∗U W )w‖−1 〈w, (1 + λsW ∗U W )w〉
= 〈w, (1 + λsW ∗U W ) · w〉 ,

but W ∗UW is distributed identically to U due to the invariance of the Haar measure.

Proof of Lemma 2.2. The normalized surface measure νL on SL is equal to the push-
forward (τv)∗ (θL) = θL ◦ (τv)

−1 of the Haar measure θL on O(L + 1) under the map
τv : O(L + 1) → SL given by τv(U) = Uv, independently of the choice of v ∈ SL (see [9],
Chapter 3). Considering, moreover, the projection ςv : SL → R into the direction v given
by ςv(w) = 〈v, w〉, it is also known that the push-forward (ςv)∗ (νL) = νL ◦ (ςv)

−1 of νL is
a.c. w.r.t. x with a Radon-Nikodym density given by

Γ(L+1
2 )

√
π Γ(L

2 )

(
1− (·)2

) L
2−1 χ[−1,1] . (3.1)

The action (1.2) can be spelled out explicitly in terms of the random variable Y = 〈v, Uv〉
as

〈v, (1 + λrU) · v〉 =
1 + λrY√

1 + 2λrY + λ2r2
. (3.2)
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Thus let us denote the r.h.s. of (3.2) by G(r, Y ). As Y is distributed according to (ςv)∗ (νL),
it is a.c. w.r.t. x on [−1, 1]. For s ∈ (0, 1], let Hs

± :
[√

1− λ2s2, 1
]
→ R be the two inverse

branches of y 7→ G(s, y). They are given by

Hs
±(z) =

[
z2 − 1± z

(
z2 − 1 + λ2s2

) 1
2

]
(λs)−1 .

For every x-nullset ℵ one thus has

G(s, ·)−1(ℵ) =
⋃
σ=±

Hs
σ

(
ℵ ∩

[√
1− λ2s2, 1

])
.

As a consequence,

G(s, ·)−1(ℵ) = Hs
±
(
ℵ ∩

{√
1− λ2s2

})
∪
⋃
σ=±

Hs
σ

(
ℵ ∩

(√
1− λ2s2, 1

])
=
(
Hs
±(ℵ) ∩ {−λs}

)
∪
⋃
σ=±

Hs
σ

(
ℵ ∩

(√
1− λ2s2, 1

])
.

Now Hs
± are locally Lipschitz continuous on

(√
1− λ2s2, 1

]
. This implies that also

G(s, ·)−1(ℵ) is an x-nullset. Due to the absolutely continuous distribution of Y w.r.t. x,
one therefore has

P (G(r, Y ) ∈ ℵ) =

∫
dP(r ∈ ·)(s) P (G(s, Y ) ∈ ℵ)

=

∫
(0,1]

dP(r ∈ ·)(s) P
(
Y ∈ G(s, ·)−1(ℵ)

)
+ χℵ(1) P(r = 0)

= χℵ(1) P(r = 0)

= P(r = 0) δ1(ℵ) ,

and this concludes the proof.

Proof of Lemma 2.3. Let (s,U ) ∈ [0, 1]× O(L + 1). Then,

(1 + λsU ) · v = ‖(1 + λsU )v‖−1 (1 + λsU )v

= ‖V (1 + λsU )v‖−1 V ∗V (1 + λsU )v

= ‖(1 + λsV U )v‖−1 V ∗(1 + λsV U )v

= V ∗(1 + λsV U ) · v

holds. But V U is distributed identically to U and this implies (2.2). As (1 + λsU ) · V v =

V (1 + λsV ∗U V ) · v, the proof of (2.1) follows in a similar manner.

Proof of Lemma 2.4. By Lemma 2.2, the pure point part of the probability distribu-
tion $r,λ of the

[√
1− λ2, 1

]
-valued random variable Z = 〈v, (1 + λrU) · v〉 is given by

$pp
r,λ = P(r = 0) δ1. This implies the first equality in (2.3), since Z = 1 is equivalent to

(1 + λrU) · v = v.
As for the continuous part of %r,λ,v, let us write

(1 + λrU) · v = Z v + (1− Z2)
1
2 v⊥ , (3.3)

where v⊥ ∈ SL is a random unit vector orthogonal to v. By Lemma 2.3, the dis-
tribution of v⊥ is invariant under the fixed point group of v, namely the action of
{V ∈ O(L + 1) : V v = v}. Thus the distribution of v⊥ is given by the push-forward of
(iv)∗(νL−1) under a natural embedding iv : SL−1 → {w ∈ SL : w ⊥ v}. Furthermore, Z

EJP 24 (2019), paper 89.
Page 10/23

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP340
http://www.imstat.org/ejp/


Random perturbations of hyperbolic dynamics

and v⊥ are independent. Indeed, by (3.2) Z only depends on the component Y = 〈v, Uv〉
of the vector Uv in the direction of v, while for Z 6= 1

v⊥ =
P⊥
(
(1 + λrU) · v

)
(1− Z2)

1
2

=
P⊥Uv

‖P⊥Uv‖
,

with P⊥ being the projection onto the orthogonal complement of the span of v, so that
v⊥ only depends on the direction of the component of Uv orthogonal to v, which is
independent of the component parallel to v.

Now by the above and Lemma 2.2 the distribution of (Z, (iv)
−1(v⊥)) is equal to

($pp
r,λ +$ac

r,λ)⊗ νL−1 and therefore

%r,λ,v = (Fv)∗
(
$pp
r,λ ⊗ νL−1

)
+ (Fv)∗

(
$ac
r,λ ⊗ νL−1

)
, (3.4)

where the function

Fv :
[√

1− λ2, 1
]
× SL−1 → SL , (z, w) 7→ z v + (1− z2)

1
2 iv(w)

maps the set {1} × SL−1 to the point v and the set
[√

1− λ2, 1
) × SL−1 bijectively onto{

u ∈ SL : 〈u, v〉 ∈ [√1− λ2, 1)}. Using

(Fv)∗
(
$pp
r,λ ⊗ νL−1

)
({v}) = P(r = 0)

and

(Fv)∗
(
$pp
r,λ ⊗ νL−1

)
(SL \ {v}) =

(
$pp
r,λ ⊗ νL−1

)([√
1− λ2, 1

)× SL−1
)

= $pp
r,λ

([√
1− λ2, 1

))
νL−1

(
SL−1

)
= 0 ,

combined with the first identity in (2.3), one infers that (Fv)∗
(
$pp
r,λ ⊗ νL−1

)
and %pp

r,λ,v

coincide. This, in turn, implies together with (3.4) that

(Fv)∗
(
$ac
r,λ ⊗ νL−1

)
= %ac

r,λ,v + %sc
r,λ,v (3.5)

holds and (3.5) is continuous. Now, since the restriction of Fv to any compact subset of[√
1− λ2, 1

)×SL−1 is bi-Lipschitz, the preimage of any νL-nullset contained in SL\{v} under
Fv is an x⊗ νL−1-nullset and hence, in particular, a $ac

r,λ ⊗ νL−1-nullset. Therefore, (3.5)
is even absoluely continuous, i.e., the second identity in (2.3) holds.

As for the proof of (2.4), one may assume that v 6= w, as (2.4) is trivial otherwise. Now
let V ∈ O(L+1) such that V v = w. Since 〈v, V v〉 = 〈v, V ∗v〉, the vectors V v and V ∗v have
the same projection in the direction of v. Hence there exists a V ∈ O(L + 1) satisfying
V v = v such that V V ∗v = V v. Now by applying both (2.1) and (2.2) one deduces that
for every ball Bε(v) ⊂ SL of radius ε > 0 around v

%r,λ,w(Bε(v)) = P ((1 + λrU) · w ∈ Bε(v))

= P ((1 + λrU) · v ∈ V V ∗Bε(v))

= P ((1 + λrU) · v ∈ Bε(w))

= %r,λ,v(Bε(w)) .

If ε < ‖v − w‖ and due to (2.3), this is equivalent to

%ac
r,λ,w(Bε(v)) = %ac

r,λ,v(Bε(w)) .

Taking the Radon-Nikodym derivatives now implies (2.4).
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Proof of Lemma 2.5. The map R−1· is Lipschitz because for all v1, v2 ∈ SL one has∥∥R−1 · v1 −R−1 · v2∥∥ =
1

‖R−1v2‖

∥∥∥∥(∥∥R−1v2∥∥− ∥∥R−1v1∥∥) R−1v1‖R−1v1‖
+R−1(v1 − v2)

∥∥∥∥
≤ ‖R‖

(∣∣∣ ∥∥R−1v2∥∥− ∥∥R−1v1∥∥ ∣∣∣+
∥∥R−1(v1 − v2)

∥∥)
≤ 2 ‖R‖

∥∥R−1(v1 − v2)
∥∥

≤ 2 ‖R‖
∥∥R−1∥∥ ‖v1 − v2‖ .

Thus R−1 · ℵ is a νL-nullset for any νL-nullset ℵ, which implies the claim.

Proof of Lemma 2.6. Let λ < 2−4δ′Ri where δ′Ri = min{δRi, 1
2
}. Let us denote the

orthogonal projections onto RL+1−i×{0}i and {0}L+1−i×Ri by P↑
i and P↓

i , respectively.
One has the estimates

‖P↑
i (R · w)‖2 =

(
1 + ‖P↓

i Rw‖
2‖P↑

i Rw‖
−2
)−1

≤
(

1 + κ2iκ
−2
i+1‖P

↓
i w‖

2‖P↑
i w‖

−2
)−1

= ‖P↑
i w‖

2
(

1 +
(
κiκ
−1
i+1 + 1

)
δRi‖P↓

i w‖
2
)−1

≤ ‖P↑
i w‖

2
(

1 + 2δRi‖P↓
i w‖

2
)−1

≤ ‖P↑
i w‖

2
(

1− δ′Ri‖P↓
i w‖

2
)
,

and

‖P↑
i ((1 + λsU ) · w)‖2 = 1 − ‖P↓

i (1 + λsU )w‖2‖(1 + λsU )w‖−2

≤ 1 − ‖P↓
i (1 + λsU )w‖2

[
2− ‖(1 + λsU )w‖2

]
= ‖P↑

i w‖
2 + 2λs

〈(
‖P↓

i (1 + λsU )w‖2 −P↓
i

)
w,U w

〉
+ λ2s2

〈
P↓
i w,

(
P↓
i + 2λsU

)
w
〉

≤ ‖P↑
i w‖

2 + 2λs(1 + λs)2 + λ2s2(1 + 2λs)

≤ ‖P↑
i w‖

2 +
7

2
λ

for all w ∈ SL, s ∈ [0, 1] and U ∈ O(L + 1). Combining these estimates leads to

‖P↑
i ((1 + λsU )R · v)‖2 − (1− λ/2)‖P↑

i v‖
2 ≤ δ′Ri‖P↑

i v‖
4 − δ′Ri‖P↑

i v‖
2 + 4λ , (3.6)

holding for all v ∈ SL, s ∈ [0, 1] and U ∈ O(L + 1). For these parameters, (3.6) now
implies the following statements:

(i) ‖P↑i v‖
2 ∈ 1

2

(
1 + [−1, 1]

√
1− 16λ(δ′Ri)−1

)
=⇒ ‖P↑i ((1+ λsU )R · v)‖2 ≤ (1− λ

2
)‖P↑i v‖

2 ,

(ii) ‖P↑i v‖
2 < 1

2

(
1−

√
1− 16λ(δ′Ri)−1

)
=⇒ ‖P↑i ((1+ λsU )R · v)‖2 < 1

2

(
1−
√

1−16λ(δ′Ri)−1
)
.

As for the dynamics {vn}n∈N defined by (1.1) and (1.3), statements (i) and (ii) guarantee
the existence of N ∈ N such that all n ∈ N satisfy

P
(
‖P↑

i vn+N‖
2 < 1

2

(
1−

√
1− 16λ(δ′Ri)−1

) ∣∣∣ ‖P↑
i vn‖

2 ≤ 1
2

(
1 +

√
1− 16λ(δ′Ri)−1

))
= 1 ,

and thus

P
(
‖P↑

i vn+N‖
2 < 1

2

(
1−

√
1− 16λ(δ′Ri)−1

))
≥ P

(
‖P↑

i vn‖
2 ≤ 1

2

(
1 +

√
1− 16λ(δ′Ri)−1

))
.

EJP 24 (2019), paper 89.
Page 12/23

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP340
http://www.imstat.org/ejp/


Random perturbations of hyperbolic dynamics

Therefore,

µr,λ

({
v ∈ SL : ‖P↑

i v‖
2 < 1

2

(
1−

√
1− 16λ(δ′Ri)−1

)})
=

∫
SL

dµr,λ(v0) P
(
‖P↑

i vN‖
2 < 1

2

(
1−

√
1− 16λ(δ′Ri)−1

))
≥
∫
SL

dµr,λ(v0) χ{
v∈SL:‖P↑i v‖2≤

1
2

(
1 +

√
1− 16λ(δ′Ri)−1

)}(v0)

= µr,λ

({
v ∈ SL : ‖P↑

i v‖
2 ≤ 1

2

(
1 +

√
1− 16λ(δ′Ri)−1

)})
,

which is equivalent to

µr,λ

({
v ∈ SL : 1

2

(
1−

√
1− 16λ(δ′Ri)−1

)
< ‖P↑

i v‖
2 ≤ 1

2

(
1 +

√
1− 16λ(δ′Ri)−1

)})
= 0 ,

which proves supp(µr,λ) 6= SL.

Proof of Lemma 2.7. The aim is to construct (sn)n=1,...,N in supp(r) and (Un)n=1,...,N in
O(L + 1) such that for a given couple u,w ∈ SL

N∏
n=1

R (1 + λsnUn) · u = w ,

where u is an initial condition which we may choose to be the stable fixed point eL+1, as
the motion from some arbitrary u towards this stable fixed point eL+1 via a finite path
is somewhat straightforward and is thus left to the reader. To accommodate notations,
let us use the unit vectors ẽj = eL+2−j so that Rẽj = κj ẽj . Then w =

∑L+1
j=1 wj ẽj =

(w1, . . . , wL+1)ᵀ. Further let us introduce K = max {J ∈ {1, . . . , L + 1} : wJ 6= 0}.

Step 1. There exist N1 ∈ N0 and (U ±n )n=1,...,N1
in O(L + 1) such that

N1∏
n=1

R
(
1 + λU ±n

)
· ẽ1 = ± ẽK .

One can assume K 6= 1 as the statement is trivial otherwise. Let us set

U ±1 =


1

. . .

1

0 ±1

1 0

 .

Then R
(
1 + λU ±1

)
ẽ1 = ±κ2λẽ2 +κ1ẽ1 . Next for n ∈ {2, . . . , N1−1} with N1 to be chosen

later, we choose U ±n = diag(1, . . . , 1,−1). It follows that R (1 + λU ±n ) = diag(κL+1(1 +

λ), . . . , κ2(1 + λ), κ1(1− λ)) so that

N1−1∏
n=1

R
(
1 + λU ±n

)
ẽ1 = ± [κ2(1 + λ)]

N1−1 κ2λẽ2 + [κ1(1− λ)]
N1−1 κ1ẽ1 .

The assumption on λ guarantees that κ2(1 + λ) > κ1(1− λ) and therefore one can choose
N1 such that

[κ1(1− λ)]
N1−1 κ1 ≤ λ

(
[κ2(1 + λ)]

N1−1 κ2λ
)
.
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Hence, there exists some ε ≤ λ such that the proportionality relation

N1−1∏
n=1

R
(
1 + λU ±n

)
ẽ1 ∝ ± ẽ2 + εẽ1

holds. Now, one can choose U ±N1
in such a way that〈

λU ±N1
(±ẽ2 + εẽ1), ẽ1

〉
= − ε

and 〈
λU ±N1

(±ẽ2 + εẽ1), ẽJ
〉

= 0 , ∀ J ∈ {3, . . . , L + 1} ,

are satisfied. It follows that

(
1 + λU ±N1

)N1−1∏
n=1

R
(
1 + λU ±n

)
ẽ1 ∝ ± ẽ2 ,

and thus
N1∏
n=1

R
(
1 + λU ±n

)
· ẽ1 = ± ẽ2

holds. In the same vein, one may construct paths from ẽJ−1 to ẽJ for J ∈ {3, . . . ,K}. This
finishes the proof of Step 1.

Next let us set K̃ = min {J ∈ {1, . . . ,K} : κJ = κK} .

Step 2. There exist N2 ∈ N0, sequences (sn)n=1,...,N2 in supp(r) and (Un)n=1,...,N2 in
O(L + 1) such that

N2∏
n=1

R (1 + λsnUn) · ẽK =

K∑
J=K̃

wJẽJ

∥∥∥ K∑
J=K̃

wJẽJ

∥∥∥−1 . (3.7)

Let ŨK−K̃+1 be an O(K− K̃+ 1)-valued random variable distributed according to the Haar

measure. It induces an O(L+1)-valued random variable by ŨK̃,K = 1L+1−K⊕ŨK−K̃+1⊕1K̃−1.

Since κK = · · · = κK̃, the action R· is trivial on the submanifold SK̃,K = {0}L+1−K ×
SK−K̃ × {0}K̃−1 and commutes with (1 + λrŨK̃,K)· which acts transitively on SK̃,K (see
Proposition 2.14 for a detailed proof). This shows Step 2. Combined with the above, the
next step concludes the proof.

Step 3. There exist N3 ∈ N0 and (Un)n=1,...,N3
in O(L + 1) such that

N3∏
n=1

R (1 + λUn) ·
K∑

J=K̃

wJẽJ

∥∥∥ K∑
J=K̃

wJẽJ

∥∥∥−1 = w . (3.8)

One can assume
(
wK̃−1, . . . , w1

)ᵀ 6= 0, as the statement is trivial otherwise. Let us
abbreviate

y = (wK, . . . , wK̃)ᵀ
∥∥∥ K∑

J=K̃

wJẽJ

∥∥∥−1 ∈ RK−K̃+1

and use the notation (xL+1, . . . , x1)ᵀ := U1(0, . . . , 0, y, 0, . . . 0)ᵀ with U1 to be chosen later.
Set Un = 1 for n ∈ {2, . . . , N3}, where N3 will also be chosen later. Now the l.h.s. of (3.8)
is proportional to

RN3 (1 + λU1) (0, . . . , 0, y, 0, . . . 0)ᵀ =

λ(κN3

L+1xL+1, . . . , κ
N3

K+1xK+1)ᵀ

κN3

K

(
y + λ(xK, . . . , xK̃)ᵀ

)
λ(κN3

K̃−1xK̃−1, . . . , κ
N3
1 x1)ᵀ

 ,
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which in turn has to be proportional to w so that, for some c ∈ (0,∞),λ(κN3

L+1xL+1, . . . , κ
N3

K+1xK+1)ᵀ

κN3

K

(
y + λ(xK, . . . , xK̃)ᵀ

)
λ(κN3

K̃−1xK̃−1, . . . , κ
N3
1 x1)ᵀ

 = c

(wL+1, . . . , wK+1)ᵀ

(wK, . . . , wK̃)ᵀ

(wK̃−1, . . . , w1)ᵀ

 . (3.9)

Now (wL+1, . . . , wK+1)ᵀ = (0, . . . , 0)ᵀ requires the choice (xL+1, . . . , xK+1)ᵀ = (0, . . . , 0)ᵀ.
Moreover, since y is proportional to (wK, . . . , wK̃)ᵀ, the middle part of (3.9) forces us to
set

(xK, . . . , xK̃)ᵀ = y
(
1− x21 − · · · − x2K̃−1

) 1
2 ,

where xK̃−1, . . . , x1 are given by the lower part of (3.9) as

xK̃−1 =
c

λ

wK̃−1

κN3

K̃−1

, . . . , x1 =
c

λ

w1

κN3
1

,

where c and N3 have still to be chosen appropriately in order to satisfy the remaining
middle part, which is now of the (scalar) form

κN3

K

[
1 + λ

(
1− c2

λ2

K̃−1∑
J=1

( wJ

κN3

J

)2) 1
2
]

= c
∥∥(wK, . . . , wK̃)ᵀ

∥∥ .
It hence suffices to demonstrate the existence of some N3 ∈ N such that the function

c ∈ (0,∞) 7→ fN3(c) = c
∥∥(wK, . . . , wK̃)ᵀ

∥∥ − κN3

K

[
1 + λ

(
1− c2

λ2

K̃−1∑
J=1

( wJ

κN3

J

)2) 1
2
]

has a zero. As fN3
(·) is continuous, it suffices to demonstrate that it attains both negative

and positive values. It is obvious that fN3
(0) < 0. Setting

cmax(N3) = λ
( K̃−1∑

J=1

( wJ

κN3

J

)2)−1/2
one observes that

fN3
(cmax(N3)) = κN3

K

[
λ
∥∥(wK, . . . , wK̃)ᵀ

∥∥( K̃−1∑
J=1

(
wJ

κN3

K

κN3

J

)2)−1/2
− 1
]
.

Since κK

κJ
< 1 for J ∈ {1, . . . , K̃ − 1}, positive values are reached for sufficiently

large N3.

4 Details of the proof of Theorem 1.2

This section contains the proofs of the preparatory lemmas for the proof of Theo-
rem 1.2.

Proof of Lemma 2.8. Inequality (2.10) is obviously satisfied if a(v) = 0, as in this case
a(R · v) = 0 holds. Now, let a(v) 6= 0. Then, its validity is demonstrated by the esti-
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mate

‖a (R · v)‖2 =

(
1 +
‖b (Rv)‖2 + ‖c (Rv)‖2

‖a (Rv)‖2

)−1

≤

(
1 +

(κLb+Lc+1)
2 ‖b(v)‖2 + (κLc

)
2 ‖c(v)‖2

(κLb+Lc+1)
2 ‖a(v)‖2

)−1

= ‖a(v)‖2
(

1 + ‖c(v)‖2
[(

κLc

κLb+Lc+1

)2

− 1

])−1

≤ ‖a(v)‖2
(

1 + ‖c(v)‖2 min

{
1,

(
κLc

κLb+Lc+1

)2

− 1

})−1

≤ ‖a(v)‖2
(

1− ‖c(v)‖2

2
min

{
1,

(
κLc

κLb+Lc+1

)2

− 1

})
,

in which we used that ‖a(v)‖2 + ‖b(v)‖2 + ‖c(v)‖2 = 1 in the third step. Due to the
definition (1.4) this implies the result.

Proof of Lemma 2.9. Let U ∈ O(L + 1) and s ∈ [0, 1]. We apply the bound (1 + x)−1 ≤
1− x+ 2x2 for x ≥ − 1

2 to x = 2λs 〈v, Uv〉+ λ2s2 where λ ≤ 1
4 . This yields the estimate

‖(1 + λsU ) v‖−2 =
(
1 + 2λs 〈v,U v〉+ λ2s2

)−1
≤ 1−

(
2λs 〈v,U v〉+ λ2s2

)
+ 2

(
2λs 〈v,U v〉+ λ2s2

)2
=
[
1− λ2s2 + 2λ4s4

]
− 2λs(1− 4λ2s2) 〈v,U v〉+ 8λ2s2 〈v,U v〉2 .

As any term of odd order in the entries of U is centered, this implies for the average
over U

E ‖a((1 + λsU) · v)‖2 = E ‖a ((1 + λsU) v)‖2 ‖(1 + λsU) v‖−2

≤
[
1− λ2s2 + 2λ4s4

] (
‖a(v)‖2 + λ2s2 E ‖a(Uv)‖2

)
− 4λ2s2(1− 4λ2s2)E 〈a(Uv), a(v)〉 〈v, Uv〉

+ 8λ2s2
(
‖a(v)‖2 E 〈v, Uv〉2 + λ2s2 E ‖a(Uv)‖2 〈v, Uv〉2

)
.

The averages on the r.h.s. can now be evaluated explicitly, e.g., using Lemma 2 in [8],

E ‖a(Uv)‖2 = E tr

[
U∗
(
1La

0

0 0

)
U |v〉〈v|

]
=

La
L + 1

,

E 〈v, Uv〉2 = E tr [U∗|v〉〈v|U |v〉〈v|] =
1

L + 1
,

E ‖a(Uv)‖2 〈v, Uv〉2 = E tr

[
U∗
(
1La

0

0 0

)
U |v〉〈v|U∗|v〉〈v|U |v〉〈v|

]
=

La + 2 ‖a(v)‖2

(L + 1) (L + 3)
,

E 〈a(Uv), a(v)〉 〈v, Uv〉 = E tr

[
U∗
(
1La

0

0 0

)
|v〉〈v|U |v〉〈v|

]
=
‖a(v)‖2

L + 1
.
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We obtain

E ‖a((1 + λsU) · v)‖2 ≤
[
1− λ2s2 + 2λ4s4

](
‖a(v)‖2 + λ2s2

La
L + 1

)
− 4λ2s2(1− 4λ2s2)

‖a(v)‖2

L + 1

+ 8λ2s2

(
‖a(v)‖2

L + 1
+ λ2s2

La + 2 ‖a(v)‖2

(L + 1) (L + 3)

)

=

(
1− λ2s2 L− 3

L + 1
+ λ4s4

16(L + 4)

(L + 1)(L + 3)

)
‖a(v)‖2

+

(
1− λ2s2 L− 5

L + 3
+ 2λ4s4

)
λ2s2

La
L + 1

.

This, in turn, implies (2.11), since λ ≤ 1
4 and L ≥ 3.

Proof of Lemma 2.10. Using conditional expectations, one obtains the estimate

E ‖a(v)‖2 ‖c(v)‖2 ≥ E
(
‖a(v)‖2 ‖c(v)‖2

∣∣ ‖c(v)‖2 ≥ δ) P(‖c(v)‖2 ≥ δ)
≥ δ E

(
‖a(v)‖2

∣∣ ‖c(v)‖2 ≥ δ) P(‖c(v)‖2 ≥ δ)
= δ

[
E ‖a(v)‖2 − E

(
‖a(v)‖2

∣∣ ‖c(v)‖2 < δ
)
P
(
‖c(v)‖2 < δ

)]
≥ δ

[
E ‖a(v)‖2 − P

(
‖c(v)‖2 < δ

)]
.

This proves (2.12).

Proof of Proposition 2.11. The proof is split into two intermediate steps. The first one is
similar to Lemma 2.3:

Step 1. Let v, w ∈ SL satisfy ‖c(v)‖ = ‖c(w)‖. Then the random variables ‖c ((1+λrU) · v)‖
and ‖c ((1 + λrU) · w)‖ are distributed identically, that is

P (‖c ((1 + λrU) · v)‖ ∈ ·) = P (‖c ((1 + λrU) · w)‖ ∈ ·) . (4.1)

For the proof, let us first note that the assumption of ‖c(v)‖ = ‖c(w)‖ guarantees the
existence of (W1,W2) ∈ O(La + Lb)× O(Lc) such that W = W1 ⊕W2 ∈ O(La + Lb)⊕ O(Lc)
satisfies w = W v. Next let L̃ be either equal to Lc or equal to L + 1. Furthermore let PL̃

denote the orthogonal projection onto {0}L+1−L̃ × RL̃. It is obvious that W ∗ commutes
with PL̃. Hence, all (s,U ) ∈ [0, 1]× O(L + 1) obey∥∥PL̃(1 + λsU )w

∥∥2 =
∥∥W ∗PL̃(1 + λsU )W v

∥∥2 =
∥∥PL̃(1 + λsW ∗U W )v

∥∥2 .
This identity is now used in the third equality in the following calculation:

‖c ((1 + λsU ) · w)‖ = ‖c ((1 + λsU )w)‖ ‖(1 + λsU )w‖−1

= ‖PLc
(1 + λsU )w‖ ‖PL+1(1 + λsU )w‖−1

= ‖PLc
(1 + λsW ∗U W )v‖ ‖PL+1(1 + λsW ∗U W )v‖−1

= ‖c ((1 + λsW ∗U W )v)‖ ‖(1 + λsW ∗U W )v‖−1

= ‖c ((1 + λsW ∗U W ) · v)‖ .

But W ∗UW is distributed identically to U so that (4.1) and thus Step 1 follows.
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In view of Step 1, (2.14) is equivalent to the existence of a path φ : [0, 1]→ SL such
that ‖c(·)‖ ◦ φ : [0, 1]→ [0, 1] is non-decreasing and surjective and that for all ε ∈ [0, 1] the
map t 7→ P

(
‖c ((1 + λrU) · φ(t))‖ ≤ ε

)
is non-increasing. Hence the proof of the lemma is

completed by the following

Step 2. The map fε : [0, π2 ] 7→ [0, 1] defined by

fε(t) = P
(
‖c ((1 + λrU) · (cos(t), 0, . . . , 0, sin(t))ᵀ)‖ ≤ ε

)
(4.2)

is non-increasing for all ε ∈ [0, 1].

To prove this monotonicity property, it is not necessary to calculate the probability
explicitly, but only proportionality is needed. As mentioned in the proof of Theorem 1.1,
the normalized surface measure νL is distributed identically to the pushforward (hv)∗ (θL)

of the Haar measure θL on O(L+1) under the map hv : O(L+1)→ SL given by hv(U) = Uv

for any v ∈ SL. Thus, (1 + λrU) · (cos(t), 0, . . . , 0, sin(t))ᵀ is distributed identically to

(cos(t) + λrz1, λrz2, . . . , λrzL, sin(t) + λrzL+1)ᵀ

‖(cos(t) + λrz1, λrz2, . . . , λrzL, sin(t) + λrzL+1)ᵀ‖
,

where (z1, . . . , zL+1)ᵀ is assumed to be distributed according to νL. It follows that

P
(
‖c ((1 + λrU) · (cos(t), 0, . . . , 0, sin(t))ᵀ)‖ ≤ ε

)
= P

(
W t
ε (r, z1, zLa+Lb+1, . . . , zL+1) ≤ 0

)
,

where

W t
ε (r, z1, zLa+Lb+1, . . . , zL+1) = λ2r2z2L+1 + 2λr(1− ε2) sin(t)zL+1 + sin2(t)

+ λ2r2‖(zLa+Lb+1, . . . , zL)ᵀ‖2 −
(
1 + λ2r2 + 2λr cos(t)z1

)
ε2 .

Now W t
ε (r, z1, zLa+Lb+1, . . . , zL+1) is a parabola in zL+1 with unique minimum. It attains

non-positive values if and only if[
1 + λ2r2 + 2λr cos(t)z1 − (2− ε2) sin2(t)

]
ε2 ≥ λ2r2‖(zLa+Lb+1, . . . , zL)ᵀ‖2 . (4.3)

Let us use the notation nc(z) = ‖(zLa+Lb+1, . . . , zL)ᵀ‖2. If (4.3) holds, then the inequality
W t
ε (r, z1, zLa+Lb+1, . . . , zL+1) ≤ 0 is equivalent to

atε,−(r, z1, nc(z)) ≤ λrzL+1 ≤ atε,+(r, z1, nc(z)) , (4.4)

where the two roots of the polynomial are

atε,±(r, z1, nc(z)) = (ε2−1) sin(t)±
[
(1+λ2r2+2λr cos(t)z1−(2−ε2) sin2(t))ε2−λ2r2nc(z)

] 1
2

.

For later use, let us note that atε,+(r, z1, nc(z)) is non-increasing in t.

Next let s, ũ ∈ [0, 1] and u ∈ [−1, 1] and set ρs,u,ũ = λs
√

1− u2 − ũ. Now r and
(z1, zLa+Lb+1, . . . , zL+1)ᵀ are independent, and, provided that ‖(z1, zLa+Lb+1, . . . , zL)ᵀ‖2 =

u2 + ũ is fixed, zL+1 is distributed equally to one component of a uniformly distributed
vector on the sphere

√
1− u2 − ũ SLa+Lb−1 of radius

√
1− u2 − ũ. Therefore one has the

proportionality for the derivative of the conditional distribution

d

dx
P
(
λrzL+1 ≤ x

∣∣∣ (r, z1, nc(z)) = (s, u, ũ)
)
∝
(
1− u2− ũ− x2

λ2s2

) La+Lb−3

2 χ[−ρs,u,ũ,ρs,u,ũ](x) .

This is similar to (3.1) for v = eL+1. Combining this proportionality relation with (4.4),
still under the assumption that (4.3) is satisfied, one deduces that

P
(
W t
ε (r, z1, zLa+Lb+1, . . . , zL+1) ≤ 0

∣∣∣ (r, z1, nc(z)) = (s, u, ũ)
)

∝
∫ atε,+(s,u,ũ)

atε,−(s,u,ũ)

dx(x)
(
1− u2 − ũ− x2

λ2s2

) La+Lb−3

2 χ[−ρs,u,ũ,ρs,u,ũ](x) . (4.5)
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On the other hand, the probability on the l.h.s. vanishes if (4.3) is violated. By using that
the l.h.s. of (4.3) is non-increasing in t as long as it is non-negative, this is equivalent
to t ∈ [bε(r, z1, zLa+Lb+1, . . . , zL), π2 ] for some bε(r, z1, zLa+Lb+1, . . . , zL) ∈ [0, π2 ]. Hence it
suffices to demonstrate that the r.h.s. of (4.5) is non-increasing in t under the condition
that (4.3) holds. As one has the inequality

∣∣atε,+(s, u, ũ)∣∣ ≤ −atε,−(s, u, ũ), it is sufficient
to consider the cases

(i) ρs,u,ũ ∈
[
0, |atε,+(s, u, ũ)|

]
,

(ii) ρs,u,ũ ∈
(
|atε,+(s, u, ũ

)
|,−atε,−(s, u, ũ)

]
,

(iii) ρs,u,ũ ∈
(
− atε,−(s, u, ũ), λs

]
.

In these cases the r.h.s. of (4.5) reads respectively:

(i) χ[0,∞)

(
atε,+(s, u, ũ)

) ∫ ρs,u,ũ

−ρs,u,ũ
dx(x)

(
1− u2 − ũ− x2

λ2s2

) La+Lb−3

2 ,

(ii)

∫ atε,+(s,u,ũ)

−ρs,u,ũ
dx(x)

(
1− u2 − ũ− x2

λ2s2

) La+Lb−3

2 ,

(iii)

∫ atε,+(s,u,ũ)

atε,−(s,u,ũ)

dx(x)
(
1− u2 − ũ− x2

λ2s2

) La+Lb−3

2 .

Now, still under the condition that (4.3) holds, atε,+(s, u, ũ) is non-increasing in t and,
thus so is (4.5) in the cases (i) and (ii). Moreover, one has the inequality

d

dt
atε,+(s, u, ũ) ≤ d

dt
atε,−(s, u, ũ) ≤ 0 .

If La + Lb ≥ 3, the case (iii) is therefore dealt with by(
1− u2 − ũ− atε,+(s,u,ũ)2

λ2s2

) La+Lb−3

2 ≥
(
1− u2 − ũ− atε,−(s,u,ũ)

2

λ2s2

) La+Lb−3

2 .

In conclusion, (4.5) is non-increasing in t for all s, ũ ∈ [0, 1] and u ∈ [−1, 1]. Due to
La + Lb ≥ 3, this finishes the proof of Step 2 and hence also the propostion.

Proof of Corollary 2.13. For w ∈ SL, N ∈ N, Ñ ∈ {1, . . . , N} and M ≥ Ñ + 1, let us
consider the stochastic order

P
(∥∥c([ M∏

n=Ñ+1

(1 + λrnUn)
]
R · w

)∥∥ ∈ ·) ≥st P
(∥∥c([ M∏

n=Ñ+1

(1 + λrnUn)
]
· w
)∥∥ ∈ ·) .

(4.6)

For M = Ñ + 1, it follows from Proposition 2.11 and the estimate

‖c(w)‖ =
[
1 + (κLc

)2
(
‖a(w)‖2 + ‖b(w)‖2

)
(κLc

)−2 ‖c(w)‖−2
]− 1

2

≤
[
1 +

(
‖a(Rw)‖2 + ‖b(Rw)‖2

)
‖c(Rw)‖−2

]− 1
2

= ‖c (R · w)‖ ,

holding true whenever ‖c(w)‖ > 0. Next we show by an iterative argument that (4.6)
also holds for larger M . This is based on the general fact that the expectations of any
non-decreasing function of a pair of stochastically ordered random variable is ordered
(see e.g. [6], p. 385). Due to (4.1), the map gε : [0, 1]→ [0, 1] given by

gε(x) = P
(
‖c((1 + λrU) · w̃)‖ > ε

∣∣ ‖c(w̃)‖ = x
)
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is well-defined for all ε ∈ [0, 1]. Moreover, it is non-decreasing by Proposition 2.11
and can be extended to a non-decreasing function on R. Thus if (4.6) holds for some
M ∈ {Ñ + 1, . . . , N − 1}, then all ε ∈ [0, 1] satisfy

E gε
(∥∥c([ M∏

n=Ñ+1

(1 + λrnUn)]R · w
)∥∥) ≥ E gε

(∥∥c( M∏
n=Ñ+1

(1 + λrnUn) · w
)∥∥) ,

or, equivalently,

P
(∥∥c([ M+1∏

n=Ñ+1

(1 + λrnUn)]R · w
)∥∥ ≤ ε) ≤ P

(∥∥c( M+1∏
n=Ñ+1

(1 + λrnUn) · w
)∥∥ ≤ ε) ,

namely (4.6) remains valid if M is replaced by M + 1 so that it also holds for M = N . As
w ∈ SL is arbitrary in the above, one infers that all (v, ε) ∈ SL × [0, 1] obey

P
(∥∥∥c( N∏

ñ=Ñ+1

(1 + λrñUñ)

Ñ∏
n=1

R(1 + λrnUn) · v
)∥∥∥ ≤ ε)

=

∫
SL

dP
((

1+ λrÑUÑ
)∏Ñ−1

n=1 R (1+ λrnUn) · v ∈ ·
)
(w)P

(∥∥∥c((∏N
n=Ñ+1

(1+ λrnUn)
)
R · w

)∥∥∥ ≤ ε)
≤
∫
SL

dP
((

1+ λrÑUÑ
)∏Ñ−1

n=1 R (1+ λrnUn) · v ∈ ·
)
(w)P

(∥∥∥c(∏N
n=Ñ+1

(1+ λrnUn) · w
)∥∥∥ ≤ ε)

= P
(∥∥∥c( N∏

ñ=Ñ

(1 + λrñUñ)

Ñ−1∏
n=1

R(1 + λrnUn) · v
)∥∥∥ ≤ ε) .

An iterative application of this bound yields (2.16).

Proof of Proposition 2.14. Let h ∈ L∞(SL). Using Tonelli’s theorem in the second step as
well as (2.4) in the penultimate step, one finds∫

SL
dνL(v)

∫
SL

d%ac
r,λ,v(w) h(w) =

∫
SL

dνL(v)

∫
SL

dνL(w)
d%ac

r,λ,v

dνL
(w) h(w)

=

∫
SL

dνL(w)

∫
SL

dνL(v)
d%ac

r,λ,v

dνL
(w) h(w)

=

∫
SL

dνL(w) h(w)

∫
SL

dνL(v)
d%ac

r,λ,v

dνL
(w)

=

∫
SL

dνL(w) h(w)

∫
SL

dνL(v)
d%ac

r,λ,w

dνL
(v)

= %ac
r,λ,v(SL)

∫
SL

dνL(w) h(w) .

Combining this with (2.3) yields∫
SL

dνL(v) E h ((1 + λrU) · v) =

∫
SL

dνL(v)

∫
SL

d%r,λ,v(w) h(w)

=

∫
SL

dνL(v)

∫
SL

d%pp
r,λ,v(w) h(w) +

∫
SL

dνL(v)

∫
SL

d%ac
r,λ,v(w) h(w)

= %pp
r,λ,v(S

L)

∫
SL

dνL(w) h(w) + %ac
r,λ,v(SL)

∫
SL

dνL(w) h(w)

= %r,λ,v(SL)

∫
SL

dνL(w) h(w) .

Since %r,λ,v is normalized, the claim (2.17) follows.
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Proof of Lemma 2.15. The measure νL is given by the normalized restriction of the L-
dimensional Hausdorff measure in RL+1 to the sphere SL (see e.g. [9]). Let L = L++L−+1.
Later on, we will choose L− = Lc − 1. Then let us decompose v ∈ RL+1 as follows

v = r

(
cos(θ)v+

sin(θ)v−

)
,

where r = ‖v‖, θ ∈ [0, π2 ] and v± ∈ SL± ⊂ RL±+1 are unit vectors which are then described

by angles (θ±1 , . . . , θ
±
L±) ∈ [0, 2π)× [0, π)×L

±−1 using the standard spherical coordinates,
namely v± = v±(θ±1 , . . . , θ

±
L±) has the components

v±1 =

L±∏
n=1

sin(θ±n ) , v±k = cos(θ±k−1)

L±∏
n=k

sin(θ±n ) , v±L±+1 = cos(θ±L±) .

This provides a bijection from RL+1 to (0,∞)× (0, π2 )× (0, 2π)×2 × (0, π)×L
++L−−2, up to

sets of zero measure. The Jacobian of the transformation is

J = det

(
cos(θ)v+ −r sin(θ)v+ r cos(θ)∂θ+v

+ 0

sin(θ)v− r cos(θ)v− 0 r sin(θ)∂θ−v
−

)
,

which can be evaluated explicitly

J = rL cos(θ)L
+

sin(θ)L
−
( L+∏
n=1

sin(θ+n )n−1
)( L−∏

n=1

sin(θ−n )n−1
)
.

Hence

νL({v ∈ SL : sin(θ)2 ≤ δ}) =

∫ arcsin(δ
1
2 )

0
dx(θ) sin(θ)L

−
cos(θ)L

+∫ π
2

0
dx(θ) sin(θ)L− cos(θ)L+

.

Setting L− = Lc− 1, substituting x = sin(θ)2 and evaluating the integral in the numerator
leads to the identity (2.18). The generalized binomial coefficient can be bounded as
follows:

Γ(L+1
2 )

Γ(Lc

2 )Γ(La+Lb

2 )
≤ Lc

2

( L + 1

La + Lb

) La+Lb
2 −1(L + 1

Lc

) Lc
2

.

Furthermore, as (La, Lb) 6= (1, 1), the factor (1− x)
La+Lb

2 −1 can be bounded by (1− x
2 ) so

that the numerator in (2.18) is bounded by∫ δ

0

dx(x) x
Lc
2 −1(1− x)

La+Lb
2 −1 ≤ δ

Lc
2

[ 2

Lc
− δ

Lc + 2

]
≤ 2

Lc
δ

Lc
2

[
1 − δ

6

]
.

This proves (2.19).

Proof of Corollary 2.16. Let δ ∈ (0, 1) and ε ∈ (0,min{δ, 1− δ}). Clearly

supp(1 + λrU) =
{
1 + λsU

∣∣ (s,U ) ∈ supp(r)× O(L + 1)
}

is both contracting and strongly irreducible (see [3], Part A, Definition III. 1.3 & III. 2.1),
since r 6≡ 0 and λ > 0. By Furstenberg’s theorem, it follows that there is a unique
invariant measure which due to Proposition 2.14 is given by the Haar measure νL on SL.
Furthermore, by Theorem III.4.3 in [3], one has for any continuous function h : SL → R
that

lim
N→∞

sup
v∈SL

∣∣∣∣∣E h
( N∏
n=1

(1 + λrnUn) · v
)
−
∫
SL

dνL(w) h(w)

∣∣∣∣∣ = 0 .
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Let us choose

hδ,ε(v) = min
{

1, ε−1
(
δ + ε− ‖c(v)‖2

)}
χ{‖c(v)‖2≤δ+ε}(v) .

By construction, hδ,ε is continuous. Thus there exists an Ñ0 = Ñ0(L, Lc, δ, ε) ∈ N such
that all N ≥ Ñ0 and v ∈ SL satisfy∣∣∣∣∣E hδ,ε

( N∏
n=1

(1 + λrnUn) · v
)
−
∫
SL

dνL(v) hδ,ε(v)

∣∣∣∣∣ ≤ ε . (4.7)

Further, hδ,ε can be bounded from below and above by indicator functions:

χ{‖c(v)‖2≤δ} ≤ hδ,ε ≤ χ{‖c(v)‖2≤δ+ε} . (4.8)

Now using (4.7), (4.8) as well as (2.19) with δ + ε instead of δ it follows that

P
(∥∥c( N∏

n=1

(1 + λrnUn) · v
)∥∥2 < δ

)
≤ E hδ,ε

( N∏
n=1

(1 + λrnUn) · v
)

≤
∫
SL

dνL(v) hLδ,ε(v) + ε

≤ νL
({
‖c(v)‖2 ≤ δ + ε

})
+ ε

≤
( L + 1

La + Lb

) La+Lb
2 −1(L + 1

Lc
(δ + ε)

) Lc
2
(

1− δ

6

)
+ ε

=
( L + 1

La + Lb

) La+Lb
2 −1(L + 1

Lc
δ
) Lc

2 − η(ε, δ) ,

the last equation simply by definition of η(ε, δ). Now one readily checks that limε↓0 η(ε, δ)

is positive and therefore, by continuity of η(ε, δ), there exists a positive ε for which the
bound (2.20) is satisfied for some positive η = η(L, Lc, δ) > 0.
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