
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Electron. J. Probab. 24 (2019), no. 76, 1–27.
ISSN: 1083-6489 https://doi.org/10.1214/19-EJP334

First passage time of the frog model has a sublinear
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Abstract

In this paper, we show that the first passage time in the frog model on Zd with
d ≥ 2 has a sublinear variance. This implies that the central limit theorem does not
hold at least with the standard diffusive scaling. The proof is based on the method
introduced in [4, 11] combined with a control of the maximal weight of paths in a
locally dependent site-percolation. We also apply this method to get the linearity of
the lengths of optimal paths.
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1 Introduction

Frog models are simple but well-known models in the study of the spread of infection.
In these models, individuals (also called frogs) move on the integer lattice Zd, which
have one of two states infected (active) and healthy (passive). We assume that at the
beginning, there is only one infected frog at the origin, and there are healthy frogs at
other sites of Zd. When a healthy frog encounters with an infected one, it becomes
infected forever. While the healthy frogs do not move, the frogs perform independent
simple random walks once they get infected. We are interested in the long time behavior
of the infected individuals.

To the best of our knowledge, the first result on frog models is due to Tecls and
Wormald [23], where they proved the recurrence of the model (more precisely, they
showed that the origin is visited infinitely often a.s. by infected frogs). Since then,
there are numerous results on the behavior of the model under various settings of initial
configurations, mechanism of walks, or underlying graphs, see [1, 3, 6, 13, 14, 15, 16, 18].
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Sublinear variance of first passage time of frog model

In particular, Popov and some authors study the phase transition of the recurrence versus
transience for the model with Bernoulli initial configurations and for the model with
drift, see [2, 12, 14, 22]. Another interesting feature in the frog model is that it can be
described in the first passage percolation context, which is explained below. In fact,
Alves, Machado and Popov used this property to prove a shape theorem [1]. Moreover,
the large deviation estimate for the first passage time is derived in [8, 19] recently.

The frog model can be defined formally as follows. Let d ≥ 2 and {(Sxj )j∈N, x ∈ Zd}
be independent SRWs such that Sx0 = x for any x ∈ Zd. For x, y ∈ Zd, let

t(x, y) = inf{j ∈ N≥0 : Sxj = y}.

The first passage time from x to y is defined by

T(x, y) = inf
{ k∑
i=1

t(xi−1, xi) : x = x0, . . . , xk = y for some k
}
.

The quantity T(x, y) can be seen as the first time when the frog at y becomes infected
assuming that the frog at x was the only infected one at the beginning. For the simplicity
of notation, we write T(x) instead of T(0, x). A path γ = (xi)

`
i=0 with x0 = x and x` = y is

said to be optimal if T(x, y) =
∑`
i=1 t(xi−1, xi). For any x, y ∈ Zd, such a path certainly

exists since T(x, y) is a finite natural number almost surely by Lemma 2.1.
It has been shown in [1] that the first passage time is subadditive, i.e., for any

x, y, z ∈ Zd
T(x, z) ≤ T(x, y) + T(y, z). (1.1)

The authors of [1] also show that the sequence {T((k − 1)z, kz)}k≥1 is stationary and
ergodic for any z ∈ Zd. As a consequence of Kingman’s subadditive ergodic theorem
(see [17] or [1, Theorem 3.1]), one has

lim
n→∞

T(nz)

n
→ κz a.s., (1.2)

with

κz = inf
n∈N≥1

E(T(nz))

n
.

Furthermore, a shape theorem for the set of active frogs has been also proved, see [1,
Theorem 1.1]. The convergence (1.2), which can be seen as a law of large numbers,
implies that for any x ∈ Zd the first passage time T(x) grows linearly in |x|1. A natural
question is whether the standard central limit theorem holds for T(x). The first task is
to understand the behavior of variance of T(x). In [19], the author proves some large
deviation estimates for T(x), see in particular Lemma 2.2 below. As a consequence, one
can show that Var(T(x)) = O(|x|1(1 + log |x|1)2A), for some constant A, see Corollary 2.3.
However, this result is not enough to answer the question on the standard central limit
theorem.

Our main result is to show that the first passage time has sublinear variance and thus
the central limit theorem with the standard diffusive scaling1 is not true.

Theorem 1.1. Let d ≥ 2. Then there exists a positive constant C = C(d) such that for
any x ∈ Zd,

Var(T(x)) ≤ C|x|1
log |x|1

.

1Indeed, it follows from Theorem 1.1 and Chebyshev’s inequality that P

(
T (x)−E(T (x))√

E(T (x))
≥ t

)
≤ C

t2 log |x|1
→

0 as |x|1 →∞. This rules out the possibility of holding the standard central limit theorem.
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The frog model on Z (i.e., d = 1 in our setting) has been carefully investigated
by many authors, see e.g., [6, 4, 14]. In particular, Commets, Quastel and Ramírez
[10] proved the standard Gaussian fluctuation for the first passage time T(x). As a
consequence, Var(T(x)) � |x|1 and the standard central limit theorem for T(x) holds.
We also notice that not only the fluctuation but also the large deviation behavior of T(x)

in one dimension is different from that in higher dimensions. Indeed, in the forthcoming
paper [8], we and Kubota prove that ϕ(x) = − logP(T(x) ≥ (1 + ε)E(T(x)) behaves
differently when the dimension increases. More precisely, we show that if d = 1 then
ϕ(x) is of order

√
|x|1, if d = 2 then ϕ(x) is of order |x|1/ log |x|1 and if d ≥ 3 then ϕ(x) is

of order |x|1 as |x|1 →∞.
The sublinearity of variance as in Theorem 1.1, which is also called the supercon-

centration, was first discovered in the first passage percolation with Bernoulli edge
weights by Benjamini, Kalai and Schramm [5]. Hence, this result is sometimes called
BKS-inequality. Chatterjee [9] found the connection among properties of superconcen-
tration, chaos and multiple valleys in, for example, the gaussian polymer model and
Sherrington-Kirkpatrick model (see Chapter 5 and 10 in [9]). This relation is expected
to hold in general models. Therefore, the superconcentration is not only an interesting
result itself but also an important property to study the structure of optimal paths and
the energy landscape.

The method in [5] has been improved by Benaïm and Rossignol in [4] to show the
sublinearity of the variance of T(x) in the first passage percolation with a wide class of
edge weight distributions, which they called “nearly gamma”. Finally, Damron, Hanson
and Sosoe in [11] generalized the result to all edge weight distributions with 2+log finite
moment. In this paper, we closely follows the method given in [5, 4, 11]. However, there
are some other difficulties to prove the sublinear variance in the frog models, which will
be explained in a sketch of the proof below.

1.1 Sketch of the proof

First, we define Fm the spatial average of T(x) as

Fm =
1

#B(m)

∑
z∈B(m)

T(z, z + x),

with m = [|x|1/41 ] and we prove in Proposition 3.1 that |Var(T(x))−Var(Fm)| = O(|x|3/4+ε
1 )

for any ε > 0. That means we only need to study Var(Fm). As in [4, 11] we consider the
martingale decomposition of Fm,

Fm − E(Fm) =

∞∑
k=1

∆k,

where
∆k = E(Fm | Fk)− E(Fm | Fk−1),

with Fk the sigma-algebra generated by SRWs {(Sxi
j )j∈N, i = 1, . . . , k} and F0 the trivial

sigma-algebra. Note that here we enumerate Zd as {x1, x2, . . .}. As we will see later,
with the help of the weighted logarithmic Sobolev inequality (Lemma 2.8) and the Falik-
Smorodnisky inequality (Lemma 3.2), our problem is reduced to prove a series of lemmas
3.4, 3.7 and 3.8. For illustration, we sketch here the proof of Lemma 3.4, where we show
that as L→∞,

E

(
max

γ=(yi)`i=1∈PL

`−1∑
i=1

T1(yi, yi+1)

)
= O(L), (1.3)
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where T1 is a modified first passage time, and PL is the set of paths in the box [−L,L]d

with length less than L (see (3.19) and section 1.3 for precise definitions). Although
the passage times {T1(yi, yi+1)}i are concentrated around their means, the correlation
among them makes the above problem difficult and interesting. Fortunately, the passage
times have the local-dependency property. Indeed, we will show in Lemma 3.9 that

(O1) for any u, v ∈ Zd, M ≥ 1, the event {T1(u, v) = M} depends only on SRWs
{(Sx. ) : |x− u|1 ≤M},

(O2) there exist an integer C1 ≥ 1 and a constant ε1 > 0 such that for any u, v ∈ Zd,

P(T1(u, v) ≥ C1|u− v|1) ≤ exp(|u− v|ε11 ).

Starting from these observations, for any path γ = (yi)
`
i=1, we consider the following

bound
`−1∑
i=1

T1(yi, yi+1) ≤
∑
M≥1

∑
k≥0

(C1M + k)aγM,k, (1.4)

where
aγM,0 =

∑
yi∈γ

I(|yi − yi+1|1 = M, T1(yi, yi+1) ≤ C1M),

and for k ≥ 1,

aγM,k =
∑
yi∈γ

I(|yi − yi+1|1 = M, T1(yi, yi+1) = C1M + k).

Hence
`−1∑
i=1

T1(yi, yi+1) ≤ C1|γ|1 +
∑
M≥1

∑
k≥1

kaγM,k, (1.5)

with |γ|1 =
∑`−1
i=1 |yi − yi+1|. It is obvious that

aγM,k ≤ XM,k(γ) :=
∑
y∈γ

IM,k
y , (1.6)

where
IM,k
y = I(∃z : |z − y|1 ≤M,T1(y, z) = C1M + k).

Now we arrive at

max
γ=(yi)`i=1∈PL

`−1∑
i=1

T1(yi, yi+1) ≤ C1L+ max
γ=(yi)`i=1∈PL

∑
M≥1

∑
k≥1

kXM,k(γ). (1.7)

Here considering the site-percolation on Zd generated by the collection of Bernoulli
random variables {IM,k

y , y ∈ Zd}, XM,k(γ) is the total weight of γ on this percolation.
Thanks to the observation (O1), the site-percolation is (C1M + k)-dependent and by the
union bound and (O2),

qM,k := sup
y∈Zd

E(IM,k
y ) ≤ (2(C1M + k) + 1)d exp(−(C1M + k)ε1).

In the next section, we prove Lemma 2.6 to control the maximal weight of paths in locally
dependent site-percolation by using a known result for independent site-percolation and
tessellation arguments. In particular, we can show that, with some constant C > 0,

E

(
max
γ∈PL

XM,k(γ)

)
≤ CL(C1M + k)dq

1/d
M,k

≤ CL(C1M + k)d+1 exp(−(C1M + k)ε1/d).
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Plugging this estimate into (1.7), we get (1.3).

Our approach seems to be robust and useful for other problems. In particular, using
a similar method, we also prove the linearity of the length of optimal paths.

1.2 The linearity of the lengths of optimal paths

Given x, y ∈ Zd, let us denote by O(x, y) the set of all optimal paths from x to y. We
simply write O(x) for O(0, x). For any path γ = (yi)

`
i=1 ⊂ Zd, we denote the length of γ

as l(γ) = `. We will prove that the lengths of optimal paths from 0 to x grow linearly in
|x|1 despite of the fact that optimal paths may have jumps with size tending to infinity as
|x|1 →∞.

Proposition 1.2. Let d ≥ 2. Then there exist positive constants ε, c and C such that for
any x ∈ Zd

P

(
c|x|1 ≤ min

γ∈O(x)
l(γ) ≤ max

γ∈O(x)
l(γ) ≤ C|x|1

)
≥ 1− e−|x|

ε
1 .

1.3 Notation

• If x = (x1, . . . , xd) ∈ Zd, we denote |x|1 = |x1|+ . . .+ |xd|.
• For any n ≥ 1, we denote B(n) = [−n, n]d.

• For any ` ≥ 1, we call a sequence of ` distinct vertices γ = (yi)
`
i=1 in Zd a path of

length `, we denote |γ|1 = |y2 − y1|1 + . . .+ |y` − y`−1|1.

• Given y = yi ∈ γ, we define ȳ = yi+1 the next point of y in γ with the convention
that ȳ` = y`.

• We write y ∼ ȳ ∈ γ if ȳ is the next point of y in γ.

• For L ≥ 1, we write

PL = {γ = (yi)
`
i=1 ⊂ B(L)| |γ|1 ≤ L, yi 6= yj if i 6= j}.

• If f and g are two functions, we write f = O(g) if there exists a positive constant C
such that f(x) ≤ Cg(x) for any x.

• We use C > 0 for a large constant and ε for a small constant. Note that they may
change from line to line.

• Given a set A ⊂ Zd, we denote by |A| the number of elements of A.

1.4 Organization of this paper

The paper is organized as follows. In Section 2, we present some preliminary results
including large deviation estimates on the first passage time and an estimate to control
the tail distribution of maximal weight of paths in site-percolation, the introduction
and properties of entropy. In Sections 3 and 4, we prove the main theorem 1.1 and
Proposition 1.2, respectively.

2 Preliminaries

2.1 Large deviation estimates on first passage times

We present here some useful estimates on the deviation of first passage times.

Lemma 2.1. [19, Proposition 2.4] There exists an integer C1 ≥ 1 and a positive constant
ε1 such that for any x, y ∈ Zd and t ≥ C1|x− y|1,

P (T(x, y) ≥ t) ≤ e−t
ε1
.
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We notice that Lemma 2.1 was first proved in [1, Lemma 4.2] for the case t = C1|x−y|1.
It follows from Lemma 2.1 that there exists C > 0 such that for any x ∈ Zd,

ET(x) ≤ C|x|1. (2.1)

The following concentration inequality is derived in [19].

Lemma 2.2. [19, Theorem 1.4] For any C > 0, there exist positive constants a, b and A
such that for any x ∈ Zd and (2 + log |x|1)A ≤ t ≤ C

√
|x|1,

P(|T(x)− ET(x)| ≥ t
√
|x|1) ≤ e−bt

a

.

As a direct consequence of Lemmas 2.1 and 2.2, we have the following.

Corollary 2.3. There exists a positive constant A such that

Var(T(x)) = O(|x|1(1 + log |x|1)2A).

Proof. We take a positive constant C sufficiently large such that Lemma 2.1 and (2.1)
hold. By using the fact E(X2) =

∫∞
0

2tP(X ≥ t)dt for any non-negative random variable
X, we get

Var(T(x)) =

∫ ∞
0

2tP(|T(x)− ET(x)| ≥ t)dt

=

∫ (2+log |x|1)A
√
|x|1

0

2tP(|T(x)− ET(x)| ≥ t)dt

+

∫ 2C|x|1

(2+log |x|1)A
√
|x|1

2tP(|T(x)− ET(x)| ≥ t)dt

+

∫ ∞
2C|x|1

2tP(|T(x)− ET(x)| ≥ t)dt. (2.2)

The first term of the right hand side (2.2) can be bounded from above by∫ (2+log |x|1)A
√
|x|1

0

2tdt ≤ (2 + log |x|1)2A|x|1.

By Lemma 2.2, the second term is bounded from above by

|x|1
∫ ∞

0

2te−bt
a

dt = O(|x|1).

Finally, by (2.1) and Lemma 2.1, the third term is bounded from above by∫ ∞
2C|x|1

2tP(T(x) ≥ t/2)dt ≤
∫ ∞

2C|x|1
2te−(t/2)ε1dt = O(1).

Combining these estimates, we get the conclusion.

Lemma 2.4. There exists a positive constant ε2 such that for any x, y ∈ Zd and M ≥ 1,

P(T(x, y) = t(x, y) = M) ≤ e−M
ε2
.

Proof. If |x−y|1 ≤M2/3, then the result follows from Lemma 2.1. Assume that |x−y|1 ≥
M2/3. Then a well-known estimate for the trajectory of random walk (see [20, Proposition
2.1.2]) shows that for some positive constants c and C,

P

(
max

0≤j≤k
|Sxj − x|1 ≥ r

)
≤ Ce−cr

2/k. (2.3)

Therefore,

P(t(x, y) = M) ≤ P
(

max
0≤j≤M

|Sxj − x|1 ≥M2/3

)
≤ Ce−cM

1/3

.
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2.2 The maximal weight of paths in site-percolation

2.2.1 The case of independent percolation

Let {Ix}x∈Zd be a collection of independent random variables such that P(Ix = 1) =

1 − P(Ix = 0) = px ≤ p with a parameter p ∈ [0, 1] for all x ∈ Zd. For any A ⊂ Zd, we
define the weight of A as X(A) =

∑
x∈A Ix. The maximal weight of paths in PL is defined

as

XL = max
γ∈PL

X(γ).

The tail distribution and expectation of XL can be controlled by the following lemma.

Lemma 2.5. There exist positive constants A1 and A2 such that the following statements
hold.

(i) If min{sLp1/d, s} ≥ A1 then

P
(
XL ≥ sLp1/d

)
≤ exp

(
−sLp1/d/2

)
.

(ii) For any p ∈ (0, 1) and L ≥ 1,

E (XL) ≤ A2Lp
1/d.

Proof. We start by recalling a result in [11] on the maximal weight of lattice animals
(i.e., connected sets containing 0). Define

NL = sup{X(A) : 0 ∈ A,A is connected, |A| ≤ L+ 1}. (2.4)

In Lemma 6.8 in [11], the authors show that there exist positive constants A′1 and A′2
such that

(a) if Lp1/d > 1 and s ≥ A′1, then

P
(
NL ≥ sLp1/d

)
≤ exp

(
−sLp1/d/2

)
,

(b) for any p ∈ (0, 1) and L ≥ 1,

E (NL) ≤ A′2Lp1/d.

Let γ = (yi)
`
i=1 ∈ PL. Then γ ⊂ B(L) and

∑`
i=2 |yi − yi−1|1 ≤ L. Thus

∑`
i=1 |yi − yi−1|1 ≤

(d+ 1)L with y0 = 0. Considering shortest paths from yi−1 to yi for 1 ≤ i ≤ ` in the lattice
Zd, there exists a connected set A ⊂ Zd such that γ ⊂ A and |A| ≤ 1+

∑`
i=1 |yi−yi−1|1 ≤

(d+ 1)L+ 1. Therefore X(γ) ≤ X(A) ≤ N(d+1)L for all γ ∈ PL. Hence

XL ≤ N(d+1)L. (2.5)

Using (2.5) and (b), we obtain (ii). We now prove that (i) holds for A1 = (d+ 1)A′1 with
A′1 as in (a). Let us denote by Pp the probability measure of site-percolation with density
p. Using (2.5),

Pp

(
XL > sLp1/d

)
≤ Pp

(
N(d+1)L > sLp1/d

)
= Pp

(
N(d+1)L >

s
d+1 (d+ 1)Lp1/d

)
. (2.6)

Suppose min{sLp1/d, s} ≥ A1. If (d+ 1)Lp1/d > 1, then using (a) and s
d+1 ≥ A

′
1,

Pp

(
N(d+1)L >

s
d+1 (d+ 1)Lp1/d

)
≤ exp

(
−sLp1/d/2

)
. (2.7)
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For the case (d+ 1)Lp1/d ≤ 1, we define q = L−d. Then p < q and (d+ 1)Lq1/d > 1. Thus
using the monotonicity of Pp in p and (a),

Pp

(
N(d+1)L > sLp1/d

)
≤ Pq

(
N(d+1)L > sLp1/d

)
= Pq

(
N(d+1)L >

sLp1/d

d+1 (d+ 1)Lq1/d
)

≤ exp
(
−sLp1/d/2

)
, (2.8)

since sLp1/d

d+1 ≥ A′1. Combining (2.7) and (2.8) we get (i).

Given M ≥ 1, let {Ix, x ∈ Zd} be a collection of Bernoulli random variables such that

(E1) {Ix, x ∈ Zd} is M -dependent, i.e., for all x ∈ Zd, the variable Ix is independent of
all variables {Iy : |y − x|1 > M},

(E2) qM = supx∈Zd E(Ix) ≤ (3M + 1)−d.

For any path γ in Zd, we also define

X(γ) =
∑
x∈γ

Ix, XL = max
γ∈PL

X(γ). (2.9)

Lemma 2.6. Let M ≥ 1 and {Ix, x ∈ Zd} be a collection of random variables satisfying
(E1) and (E2). Then there exists a positive constant C = C(d) such that

(i) for any L ≥ 1,
E (XL) ≤ CLMd+1q

1/d
M , (2.10)

(ii) if n ≥ CMd max{1,MLq
1/d
M }, then

P (XL ≥ n) ≤ 2d exp(−n/(16M)d). (2.11)

Proof. For each M ≥ 1, let us consider a standard tessellation of Zd constructed as
follows. Enumerate {0, 1}d as {wi, i = 1, . . . , 2d}. Then for any i ∈ {1, . . . , 2d} and z ∈ Zd,
we define

BMi,z = 3M(wi + 2z) + [0, 3M ]d. (2.12)

Then (BMi,z)i,z are boxes of side length 3M satisfying

(a) for all y ∈ Zd, there exists BMi,z containing y,

(b) for any i = 1, . . . , 2d, the boxes in the i-th group, (BMi,· ) satisfy that the distance | · |1
between two arbitrary boxes is larger than 3M .

For i = 1, . . . , 2d, z ∈ Zd and γ ∈ PL, define

Xi,z(γ) = X(γ ∩ BMi,z) =
∑

x∈γ∩BM
i,z

Ix.

Then by (a),

X(γ) ≤
2d∑
i=1

∑
z∈Zd

Xi,z(γ). (2.13)

It is clear that for all i = 1, . . . , 2d,∑
z∈Zd

Xi,z(γ) ≤ (3M + 1)d
∑

z∈ηi,M
Y iz , (2.14)
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where ηi,M is the projected path of γ defined by

ηi,M = {z ∈ Zd : γ ∩ BMi,z 6= ∅},

and
Y iz = I

(
∃x ∈ BMi,z such that Ix = 1

)
.

Since γ ∈ PL, we have
ηi,M ∈ PdL/(3M)e.

Hence, ∑
z∈ηi,M

Y iz ≤ max
η∈PdL/(3M)e

∑
z∈η

Y iz =: Xi
L,M . (2.15)

Combining this inequality with (2.13) and (2.14) yields that

XL = max
γ∈PL

2d∑
i=1

∑
z∈Zd

Xi,z(γ) ≤ (3M + 1)d
2d∑
i=1

Xi
L,M . (2.16)

By (b) and (E1), (Y iz )z∈Zd are independent Bernoulli random variables. Moreover, by the
union bound and (E2)

pM := sup
(i,z)

E(Y iz ) = sup
(i,z)

P(∃x ∈ BMi,z : Ix = 1)

≤ (3M + 1)dqM ≤ 1.
(2.17)

Now applying Lemma 2.5 to the set of random variables (Y iz )z∈Zd and the set of paths
PdL/(3M)e, we get

E(Xi
L,M ) ≤ A2dL/(3M)ep1/d

M , (2.18)

with A2 as in Lemma 2.5 (ii). Combining (2.16), (2.17) and (2.18) gives

E(XL) ≤ A22ddL/(3M)e(3M + 1)dp
1/d
M

≤ CLMd+1q
1/d
M , (2.19)

for some C = C(d). This proves (ii). We now turn to prove (i). Observe that by (2.16), for
all n

P (XL ≥ n) ≤ P

 2d∑
i=1

Xi
L,M ≥ n/(4M)d

 ≤ 2d∑
i=1

P
(
Xi
L,M ≥ n/(8M)d

)
. (2.20)

By Lemma 2.5 (i), for all i = 1, . . . , 2i,

P
(
Xi
L,M ≥ n/(8M)d

)
= P

(
Xi
L,M ≥

n

(8M)ddL/(3M)ep1/d
M

dL/(3M)ep1/d
M

)
≤ exp

(
−n/(2(8M)d)

)
,

provided that

min
{ n

(8M)d
,

n

(4M)ddL/(3M)ep1/d
M

}
≥ A1, (2.21)

with A1 as in Lemma 2.5 (i). Using (2.17), the condition (2.21) follows if

n ≥ A1(8M)d max{1, dL/(3M)e(3M + 1)q
1/d
M }, (2.22)
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Sublinear variance of first passage time of frog model

which is satisfied if
n ≥ CMd max{1,MLq

1/d
M }, (2.23)

for some C = C(A1, d). In conclusion, if (2.23) holds then

P (XL ≥ n) ≤ 2d exp(−n/(16M)d). (2.24)

2.3 Entropy

Let (Ω,F , µ) be a probability space andX ∈ L1(Ω, µ) an non-negative random variable.
Then the entropy of X with respect to µ is defined as

Entµ(X) = Eµ(X logX)− Eµ(X) logEµ(X).

Note that by Jensen’s inequality, Entµ(X) ≥ 0. The following tensorization property of
entropy is well-known and we refer the reader to [7] for the proof.

Lemma 2.7. [7, Theorem 4.22] Let X be a non-negative L2 random variable on a product
space ( ∞∏

i=1

Ωi,F , µ =

∞∏
i=1

µi

)
,

where F =
∨∞
i=1 Gi, and each triple (Ωi,Gi, µi) is a probability space. Then

Entµ(X) ≤
∞∑
i=1

EµEnti(X),

where Enti(X) is the entropy of X(ω) = X((ω1, . . . , ωi, . . .)) with respect to µi, as a
function of the i-th coordinate (with all other values fixed).

The following weighted logarithmic Sobolev inequality will be useful for estimating
the entropy of martingale difference.

Lemma 2.8. [21, Lemma 2.6] Assume that k ≥ 2. Let f : {1, . . . , k} 7→ R be a function
and ν be the uniform distribution on {1, . . . , k}. Then

Entν(f2) ≤ kE((f(U)− f(Ũ))2),

where E is the expectation with respect to two independent random variables U, Ũ , which
have the same distribution ν.

3 Proof of Theorem 1.1

3.1 Spatial average of the first passage time

We consider a spatial average of T(x) defined as

Fm =
1

#B(m)

∑
z∈B(m)

T(z, z + x), (3.1)

where
m = [|x|1/41 ].

Proposition 3.1. For any ε > 0, it holds that

|Var(T(x))−Var(Fm)| = O(|x|3/4+ε
1 ).
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Sublinear variance of first passage time of frog model

Proof. For any variables X and Y , by writing X̂ = X − E(X) and ||X||2 = (E(X2))1/2

and using the Cauchy-Schwarz inequality, we get

|Var(X)−Var(Y )| = |E(X̂2 − Ŷ 2)| ≤ ||X̂ + Ŷ ||2||X̂ − Ŷ ||2
≤ (||X̂||2 + ||Ŷ ||2)||X̂ − Ŷ ||2. (3.2)

We aim to apply (3.2) for T(x) and Fm. Observe that

||F̂m||2 ≤
1

#B(m)

∑
z∈Bm

||T̂(z, z + x)||2 = ||T̂(0, x)||2, (3.3)

by translation invariance. By Corollary 2.3,

||T̂(0, x)||2 =
√

Var(T(x)) = O(|x|1/21 (1 + log |x|1)A). (3.4)

Using the subadditivity (1.1),

||T̂(0, x)− F̂m||22 = ||T(x)− Fm||22

=
1

#B(m)2

∥∥∥∥∥∥
∑

z∈B(m)

(T(x)− T(z, z + x))

∥∥∥∥∥∥
2

2

≤ 1

#B(m)2

∥∥∥∥∥∥
∑

z∈B(m)

(T(z) + T(x, z + x) + T(z, 0) + T(z + x, x))

∥∥∥∥∥∥
2

2

.

≤ 4

#B(m)

∑
z∈B(m)

[
ET(z)2 + ET(x, z + x)2 + ET(z, 0)2 + ET(z + x, x)2

]
≤ 16 max

z∈B(m)
ET(z)2, (3.5)

where we used the following inequality in the 4-th line,(∑
j∈Λ

aj + bj + cj + dj

)2

≤ 4|Λ|
∑
j∈Λ

(a2
j + b2j + c2j + d2

j ),

and we used the translation invariant in the last line.
Since ET(z)2 = Var(T(z)) + (ET(z))2, by using (3.5), (2.1) and Corollary 2.3,

||T̂(0, x)− F̂m||22 = O(m2) = O(|x|1/21 ). (3.6)

Combining (3.2)–(3.6), we get the desired result.

3.2 Martingale decomposition of Fm and the proof of Theorem 1.1

Enumerate the vertices of Zd as x1, x2, . . .. We consider the martingale decomposition
of Fm as follows

Fm − E(Fm) =

∞∑
k=1

∆k, (3.7)

where
∆k = E(Fm | Fk)− E(Fm | Fk−1),

with Fk the sigma-algebra generated by SRWs {(Sxi
j )j∈N, i = 1, . . . , k} and F0 the trivial

sigma-algebra. In [11], using the Falik-Samorodnitsky lemma, the authors give an upper
bound for the variance of Fm in term of Ent(∆2

k), and E(|∆k|).
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Lemma 3.2. [11, Lemma 3.3] We have

∑
k≥1

Ent(∆2
k) ≥ Var(Fm) log

[
Var(Fm)∑

k≥1(E(|∆k|))2

]
.

Now, our main task is to estimate Ent(∆2
k) and E(|∆k|).

Proposition 3.3. As |x|1 tends to infinity,

(i) ∑
k≥1

Ent(∆2
k) = O(|x|1).

(ii) ∑
k≥1

(E(|∆k|))2 = O
(
|x|

5−d
4

1

)
.

Proof of Theorem 1.1 assuming Proposition 3.3. Since d ≥ 2, Proposition 3.3 (ii)

implies that
∑
k≥1(E(|∆k|))2 = O

(
|x|3/41

)
. Therefore, using Propositions 3.1, 3.3 and

Lemma 3.2, for any ε > 0, there exists a positive constant C such that

Var(T(x)) ≤ Var(Fm) + C|x|3/4+ε
1

≤ C

|x|3/4+ε
1 + |x|1

[
log

[
Var(Fm)

|x|3/41

]]−1
 . (3.8)

If Var(Fm) ≤ |x|7/81 , then Var(T(x)) = O(|x|7/81 ) and Theorem 1.1 follows. Otherwise, if

Var(Fm) ≥ |x|7/81 , using (3.8) we get that Var(T(x)) = O(|x|1/ log |x|1) and Theorem 1.1
also follows. �

3.3 Proof of Proposition 3.3

By the definition of ∆k, we have

|∆k| =
1

#B(m)

∣∣∣∣∣∣E
 ∑
z∈B(m)

T(z, z + x) | Fk

− E
 ∑
z∈B(m)

T(z, z + x) | Fk−1

∣∣∣∣∣∣
≤ 1

#B(m)

∑
z∈B(m)

∣∣∣E [T(z, z + x) | Fk]− E [T(z, z + x) | Fk−1]
∣∣∣. (3.9)

We precise the dependence of first passage times on trajectories of SRWs by writing

T(u, v) = T(u, v, (Sxi
. )i∈N).

For any k, let us define
Xk(u, v) = E(T(u, v) | Fk).

Then Xk(u, v) is a function of trajectories of (Sxi
. )i≤k, so we write

Xk(u, v) = Xk(u, v)[(Sxi
. )i<k, (S

xk
. )].

Let (S̃x. )x∈Zd be an independent copy of (Sx. )x∈Zd . We observe that

E(|Xk(u, v)− Ek(Xk(u, v))|) ≤ E<kEkẼk(|Xk(u, v)− X̃k(u, v)|), (3.10)

where
X̃k(u, v) = Xk(u, v)[(Sxi

. )i<k, (S̃
xk
. )],
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and E<k,Ek, and Ẽk denote the expectations with respect to SRWs (Sxi
. )i<k, (Sxk

. ) and
(S̃xk
. ) respectively. Then the inequality (3.10) becomes

E

∣∣∣E [T(z, z + x) | Fk]−E [T(z, z + x) | Fk−1]
∣∣∣ ≤ EẼk∣∣∣T(z, z + x)− T̃xk

(z, z + x)
∣∣∣, (3.11)

where for u, v ∈ Zd and k ≥ 1

T̃xk
(u, v) = T(u, v)[(Sxi

. )i<k, (S̃
xk
. ), (Sxi

. )i>k].

By the symmetry T(z, z + x)− T̃xk
(z, z + x),

EẼk
∣∣∣T(z, z + x)− T̃xk

(z, z + x)
∣∣∣

= 2EẼk
(

(T̃xk
(z, z + x)− T(z, z + x))I(T̃xk

(z, z + x) ≥ T(z, z + x))
)
. (3.12)

For any u, v ∈ Zd, we choose an optimal path for T(u, v) with a deterministic rule
breaking ties and denote it by γu,v. We observe that if xk 6∈ γu,v then T̃xk

(u, v) ≤ T(u, v).
Otherwise, if xk ∈ γu,v, then

T(u, v) = T(u, xk) + T(xk, x̄k) + T(x̄k, v), (3.13)

where x̄k is the next point of xk in γu,v (recall also that we denote by y ∼ ȳ ∈ γ if ȳ is the
next point of y in γ). Due to the subadditivity,

T̃xk
(u, v) ≤ T̃xk

(u, xk) + T̃xk
(xk, x̄k) + T̃xk

(x̄k, v). (3.14)

It is clear that any optimal path for T(u, xk) does not use the simple random walk (Sxk
· ).

Hence,
T̃xk

(u, xk) ≤ T(u, xk). (3.15)

In addition, since x̄k is the next point of xk in γu,v, the optimal path for T(x̄k, v) does not
use the simple random walk (Sxk

· ). Thus

T̃xk
(x̄k, v) ≤ T(x̄k, v). (3.16)

It follows from (3.13)–(3.16) that

T̃xk
(u, v)− T(u, v) ≤ T̃xk

(xk, x̄k).

Therefore, we have

(T̃xk
(z, z + x)− T(z, z + x))I(T̃xk

(z, z + x) ≥ T(z, z + x))

≤ T̃xk
(xk, x̄k)I(xk ∈ γz,z+x). (3.17)

We notice here that the complete notation of x̄k should be x̄k(γz,z+x) to highlight the
dependence of x̄k on the path γz,z+x. However, for the simplicity of notation, we shortly
write it by x̄k when the fact xk ∈ γz,z+x is precise. Combining (3.9), (3.11), (3.12) and
(3.17), we get

E(|∆k|) ≤ 2

#B(m)
E⊗2

 ∑
z∈B(m)

T̃xk
(xk, x̄k)I(xk ∈ γz,z+x)


=

2

#B(m)
E⊗2

 ∑
z∈B(m)

T̃xk−z(xk − z, xk − z)I(xk − z ∈ γ0,x)


=

2

#B(m)
E⊗2

 ∑
y∈xk−B(m)

T̃y(y, ȳ)I(y ∈ γ0,x)


=

2

#B(m)

∑
L≥0

E⊗2

 ∑
y∈xk−B(m)

T̃y(y, ȳ)I(y ∈ γ0,x)I(Ek,L)

 , (3.18)
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where E⊗2 is the expectation with respect to two independent collections of SRWs
(Sxi
. )i∈N and (S̃xi

. )i∈N, and we define

Ek,L =

 ∑
y∈γ0,x∩(xk−B(m))

|y − ȳ|1 = L

 .

Notice that for the second equation, we have used the invariant translation. Let us define

T[z](u, v) = inf
{ k∑
l=1

t(yl−1, yl) : u = y0, . . . , yk = v, yl 6= z ∀ l ≥ 1, for some k
}
,

as the first passage time from u to v not using the frog at z, and set

T1(u, v) = max
z: |z−u|1=1

T[u](z, v) + 1. (3.19)

Then, it holds that
T̃u(u, v) ≤ T1(u, v). (3.20)

Using (3.20), we obtain

∑
y∈(xk−B(m))

T̃y(y, ȳ)I(y ∈ γ0,x)I(Ek,L) ≤ max
γ=(yi)

`
i=1⊂(xk−B(m+L))
|γ|1≤L

`−1∑
i=1

T̃yi(yi, yi+1)I(Ek,L)

≤ max
γ=(yi)

`
i=1⊂(xk−B(m+L))
|γ|1≤L

`−1∑
i=1

T1(yi, yi+1)I(Ek,L).

Therefore, with C1 ≥ 1 as in Lemma 2.1,

4dC1m∑
L=0

E⊗2

 ∑
y∈(xk−B(m+L))

T̃y(y, ȳ)I(y ∈ γ0,x)I(Ek,L)


≤ E

 max
γ=(yi)

`
i=1⊂(xk−B(8dC1m))
|γ|1≤4dC1m

`−1∑
i=1

T1(yi, yi+1)


= E

 max
γ=(yi)

`
i=1⊂B(8dC1m)
|γ|1≤4dC1m

`−1∑
i=1

T1(yi, yi+1)


≤ E

(
max

γ=(yi)`i=1∈P8dC1m

`−1∑
i=1

T1(yi, yi+1)

)
, (3.21)

and ∑
L≥4dC1m+1

max
γ=(yi)

`
i=1⊂(xk−B(m+L))
|γ|1≤L

`−1∑
i=1

T1(yi, yi+1)I(Ek,L)

≤
∑

L≥4dC1m+1

E

 max
γ=(yi)

`
i=1⊂(xk−B(2L))
|γ|1≤2L

`−1∑
i=1

T1(yi, yi+1)I(Ek,L)



≤
∑

L≥4dC1m+1

E
 max
γ=(yi)

`
i=1⊂(xk−B(2L))
|γ|1≤2L

`−1∑
i=1

T1(yi, yi+1)


2

1/2

P(Ek,L)1/2

EJP 24 (2019), paper 76.
Page 14/27

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP334
http://www.imstat.org/ejp/


Sublinear variance of first passage time of frog model

≤
∑

L≥4dC1m+1

E( max
γ=(yi)`i=1∈P2L

`−1∑
i=1

T1(yi, yi+1)

)2
1/2

P(Ek,L)1/2, (3.22)

where we have used the Cauchy-Schwarz inequality in the second inequality.
These yield that

E|∆k| ≤
2

#B(m)
E

(
max

γ=(yi)`i=1∈P8dC1m

`−1∑
i=1

T1(yi, yi+1)

)

+
2

#B(m)

∑
L≥4dC1m+1

E( max
γ=(yi)`i=1∈P2L

`−1∑
i=1

T1(yi, yi+1)

)2
1/2

P(Ek,L)1/2.

(3.23)

Using similar arguments for (3.18), (3.21) and (3.22), we can show that

∞∑
k=1

E(|∆k|) (3.24)

≤ 2

#B(m)

∞∑
k=1

∑
z∈B(m)

E⊗2T̃xk
(xk, x̄k)I(xk ∈ γz,z+x)

= 2E⊗2

∑
y∈Zd

T̃y(y, ȳ)I(y ∈ γ0,x)


≤ 2E

(
max

γ=(yi)`i=1∈PC1|x|1

`−1∑
i=1

T1(yi, yi+1)

)

+2
∑

L≥C1|x|1+1

E( max
γ=(yi)`i=1∈PL

`−1∑
i=1

T1(yi, yi+1)

)2
1/2

P(EL)1/2, (3.25)

where we define
EL = {|γ0,x|1 = L}.

Lemma 3.4. There exists a positive constant C such that for all L ≥ 1,

(i)

E

(
max

γ=(yi)`i=1∈PL

`−1∑
i=1

T1(yi, yi+1)

)
≤ CL.

(ii)

E

(
max

γ=(yi)`i=1∈PL

`−1∑
i=1

T1(yi, yi+1)

)2

≤ CL4.

We postpone the proof of this lemma to Section 3.4.

Lemma 3.5. Given a path γ = (yi)
`
i=1 ⊂ Zd, we define the maximal jump

M(γ) = max
1≤i≤`−1

|yi − yi+1|1.

Then, there exists ε > 0 independent of x such that for any L ≥ m = |x|1/41 ,

P(M(γ0,x) ≥ L) ≤ e−L
ε

.
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Proof. We write γ0,x = (yi)
`
i=1. If |yi − yi+1|1 ≥ L, then T(yi, yi+1) = t(yi, yi+1) ≥ L. By

the union bound, Lemma 2.1 and Lemma 2.4, we have

P(M(γ0,x) ≥ L)

≤ P(∃u, v ∈ B(C1|x|1 + L) s.t. T(u, v) = t(u, v) ≥ L) + P(|γ0,x|1 ≥ C1|x1|+ L)

≤ [#B(C1|x|1 + L)]2 max
u,v∈B(C1|x|1+L)

P(T(u, v) = t(u, v) ≥ L) + P(T(0, x) ≥ C1|x1|+ L)

≤ e−L
ε

,

(3.26)

for some constant ε > 0.

3.3.1 Proof of Proposition 3.3 (ii)

Fix k ≥ 1. We first estimate P(Ek,L). Assume that Ek,L occurs and γ0,x ∩ (xk − B(m)) =

(yi)
`
i=1. Then

L =
∑

y∈γ0,x∩xk−B(m)

|y − ȳ|1 ≤
`−1∑
i=1

t(yi, yi+1) + t(y`, ȳ`) = T(y1, ȳ`).

Moreover, ȳ` ∈ xk − B(m +M(γ0,x)), since |y` − ȳ`|1 ≤ M(γ0,x) and y` ∈ xk − B(m).
Therefore, using the union bound, Lemma 2.1 and Lemma 3.5, for L ≥ 4dC1m+ 1,

P(Ek,L) ≤ P (∃u, v ∈ xk − B(m+M(γ0,x)) such that T(u, v) ≥ L)

≤ P (∃u, v ∈ B(m+ (L/4dC1)) such that T(u, v) ≥ L) + P(M(γ0,x) ≥ L/4dC1)

≤ (2(m+ L))2de−L
ε

+ e−L
ε

≤ (4(m+ L))2de−L
ε

.

Combining this inequality with (3.23) and Lemma 3.4, we obtain that there exists C > 0

such that for any k ≥ 1

E(|∆k|) ≤ C

#B(m)

m+
∑

L≥4dC1m

L2(4(m+ L))de−L
ε/2


= O(m1−d) = O(|x|(1−d)/4

1 ). (3.27)

Since T(x) ≥ |γ0,x|1, by using Lemma 2.1, for any L ≥ C1|x|1

P(EL) ≤ P(T(x) ≥ L) ≤ e−L
ε1
. (3.28)

Using this inequality, (3.24) and Lemma 3.4, we get

∑
k≥1

E(|∆k|) ≤ C

|x|1 +
∑

L≥C1|x|1

L2e−L
ε/2


= O(|x|1). (3.29)

Now, Proposition 3.3 (ii) follows from (3.27) and (3.29), since

∑
k≥1

(E(|∆k|))2 ≤
(

max
k≥1

E|∆k|
)∑

k≥1

E|∆k|

 .
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Sublinear variance of first passage time of frog model

3.3.2 Proof of Proposition 3.3 (i)

To estimate Ent(∆k), we decompose a simple random walk (Sxi
. ) into the sum of i.i.d.

random variables. More precisely, for any xi ∈ Zd and j ≥ 1, we write

Sxi
j = xi +

j∑
r=1

ωi,r,

where (ωi,r)i,r≥1 is an array of i.i.d. uniform random variables taking value in the set of
canonical coordinates in Zd, denoted by

Bd = {e1, . . . , e2d}.

Therefore, we can view T(u, v) and Fm as a function of (ωi,r), and hence we sometimes
write T(u, v) = T(u, v, ω) to make the dependence of T(u, v) on ω precise. We define

Ω =
∏
i,j∈N

Ωi,j ,

where Ωi,j is a copy of Bd. The measure on Ω is π =
∏
i,j∈N πi,j , where πi,j is the uniform

measure on Ωi,j . Then we can consider Fm as a random variable on the probability space
(Ω, π). Given ω ∈ Ω, e ∈ Bd and i, j ∈ N, we define a new configuration ωi,j,e as

ωi,j,ek,r =

{
ωk,r if (k, r) 6= (i, j)

e if (k, r) = (i, j).

We define

∆i,jf =
[
E
(
|f(ωi,j,U )− f(ωi,j,Ũ )|2

)]1/2
, (3.30)

where the expectation runs over two independent random variables U and Ũ , with the
same law as the uniform distribution on Bd.
Lemma 3.6. We have

∞∑
k=1

Ent(∆2
k) ≤ 2d

∞∑
i=1

∞∑
j=1

Eπ[(∆i,jFm)2].

Proof. We recall that ∆k = E(Fm | Fk)− E(Fm | Fk−1), where

Fk = σ((Sxi
j ), i ≤ k, j ≥ 1) = σ(ωi,j , i ≤ k, j ≥ 1).

Notice that ∆2
k ∈ L2, since T(x) ∈ L4 by Lemma 2.1. Hence, using the tensorization of

entropy (Lemma 2.7), we have for k ≥ 1,

Ent(∆2
k) = Entπ(∆2

k) ≤ Eπ
∞∑
i=1

∞∑
j=1

Entπi,j
∆2
k.

By Lemma 2.8,
Entπi,j

∆2
k ≤ 2d(∆i,j∆k)2.

Thus

∞∑
k=1

Ent(∆2
k) ≤ 2d

∞∑
j=1

∞∑
i=1

∞∑
k=1

Eπ[(∆i,j∆k)2]. (3.31)
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Sublinear variance of first passage time of frog model

We fix i, j. We define the filtration F̃k as F̃k = Fk if k < i, and F̃k = Fk ∨ σ(U, Ũ) if k ≥ i.
For simplicity of notation, we denote E = EπE. Since

Eπ[(∆i,j∆k)2]

= E[(E[Fm(ωi,j,U )− Fm(ωi,j,Ũ )| F̃k]− E[Fm(ωi,j,U )− Fm(ωi,j,Ũ )| F̃k−1])2]

= E[(E[Fm(ωi,j,U )− Fm(ωi,j,Ũ )| F̃k])2]− E[(E[Fm(ωi,j,U )− Fm(ωi,j,Ũ )| F̃k−1])2],

E[(E[Fm(ωi,j,U )− Fm(ωi,j,Ũ )| F̃0])2] = 0,

and
lim
k→∞

E[(E[Fm(ωi,j,U )− Fm(ωi,j,Ũ )| F̃k])2] = Eπ[(∆i,jFm)2],

we get
∞∑
k=1

Eπ[(∆i,j∆k)2] = Eπ[(∆i,jFm)2],

for any i, j. Combining this equation with (3.31), we get the desired result.

Proof of Proposition 3.3 (i). Using Lemma 3.6 and Jensen’s inequality, we get

∞∑
k=1

Ent(∆2
k) ≤ 2d

∞∑
i=1

∞∑
j=1

Eπ[(∆i,jFm)2]

≤ 2d

#B(m)

∑
z∈B(m)

∞∑
i=1

∞∑
j=1

Eπ[(∆i,jT(z, z + x))2]. (3.32)

By the translation invariance of the passage times, we reach

∞∑
k=1

Ent(∆2
k) ≤ 2d

∞∑
i=1

∞∑
j=1

Eπ[(∆i,jT(x))2]. (3.33)

On the other hand,

Eπ[(∆i,jT(x))2] = Eπ[(E|T(x, ωi,j,U )− T(x, ωi,j,Ũ )|)2]

≤ EπE[|T(x, ωi,j,U )− T(x, ωi,j,Ũ )|2]

= EπE[|T(x, ωi,j,U )− T(x)|2]

= 2EπE[(T(x, ωi,j,U )− T(x))2I(T(x, ωi,j,U ) ≥ T(x))].

We observe that if xi 6∈ γ0,x, or xi ∈ γ0,x but T(xi, x̄i) < j, then

T(x, ωi,j,U ) ≤ T(x).

Otherwise, assume that xi ∈ γ0,x and T(xi, x̄i) ≥ j. Then for any e ∈ Bd,

T(xi, x̄i) ≥ T(xi, x̄i + e− ωi,j , ωi,j,e),

since if we only replace ωi,j by e, by t(xi, x̄i) (also equals T(xi, x̄i), as xi ∼ x̄i ∈ γ0,x)
steps, the simple random walk (Sxi

. ) arrives at x̄i + e− ωi,j . Moreover,

T(xi, ω
i,j,e) = T(xi), T(x̄i, x, ω

i,j,e) ≤ T(x̄i, x),

and

T(x) = T(xi) + T(xi, x̄i) + T(x̄i, x),

T(x, ωi,j,e) ≤ T(xi, ω
i,j,e) + T(xi, x̄i − e+ ωi,j , ω

i,j,e)

+T(x̄i − e+ ωi,j , x̄i, ω
i,j,e) + T(x̄i, x, ω

i,j,e).
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Therefore, we reach

T(x, ωi,j,U )− T(x) ≤ T(x̄i − U + ωi,j , x̄i, ω
i,j,U ) ≤ max

y:|y−x̄i|1≤2
T(y, x̄i, ω

i,j,U ).

Furthermore, since ω differs from ωi,j,U only in the trajectory of (Sxi
. ), for any u, v ∈ Zd,

T(u, v, ωi,j,U ) ≤ T[xi](u, v) ≤ T2(u, v), (3.34)

where we define

T2(u, v) = sup
z∈Zd

T[z](u, v). (3.35)

Therefore, we have

Eπ[(∆i,jT(x))2] ≤ 2E
[

max
y:|y−x̄i|1≤2

T2(y, x̄i)
2I(xi ∼ x̄i ∈ γ0,x,T(xi, x̄i) ≥ j)

]
,

and thus

∞∑
j=1

Eπ(∆i,jT(x))2

≤ 2E
[ ∞∑
j=1

max
y:|y−x̄i|1≤2

T2(y, x̄i)
2I(xi ∼ x̄i ∈ γ0,x,T(xi, x̄i) ≥ j)

]
= 2E

[
T(xi, x̄i) max

y:|y−x̄i|1≤2
T2(y, x̄i)

2I(xi ∼ x̄i ∈ γ0,x)
]

≤ E
[
(T(xi, x̄i)

2 + max
y:|y−x̄i|1≤2

T2(y, x̄i)
4)I(xi ∼ x̄i ∈ γ0,x)

]
.

This yields that

∞∑
i=1

∞∑
j=1

Eπ(∆i,jT(x))2

≤ E
[ ∞∑
i=1

(T(xi, x̄i)
2 + max

y:|y−x̄i|1≤2
T2(y, x̄i)

4)I(xi ∼ x̄i ∈ γ0,x)
]

= E
[ ∞∑
i=1

(T(xi, x̄i)
2 + max

y:|y−x̄i|1≤2
T2(y, x̄i)

4)I(xi ∼ x̄i ∈ γ0,x)
]

≤ E

 ∑
y∈γ0,x

T(y, ȳ)2

+ E

 ∑
y∈γ0,x

max
u:|u−y|1≤2

T2(u, y)4

 . (3.36)

Now using the same arguments for (3.22) and (3.24), we get

E

 ∑
y∈γ0,x

max
|u−y|1≤2

T2(u, y)4

 (3.37)

≤ E

(
max

γ=(yi)`i=1∈PC1|x|1

∑̀
i=1

max
|u−yi|1≤2

T2(u, yi)
4

)

+
∑

L≥C1|x|1+1

E( max
γ=(yi)`i=1∈PL

∑̀
i=1

max
|u−yi|1≤2

T2(u, yi)
4

)2
1/2

P(EL)1/2.
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Lemma 3.7. As |x|1 tends to infinity,

E

 ∑
y∈γ0,x

T(y, ȳ)2

 = O(|x|1).

Lemma 3.8. There exists a positive constant C such that for any L ≥ 1,

(i)

E

(
max

γ=(yi)`i=1∈PL

∑̀
i=1

max
u:|u−yi|1≤2

T2(u, yi)
4

)
≤ CL.

(ii)

E

(
max

γ=(yi)`i=1∈PL

`−1∑
i=1

max
u:|u−yi|1≤2

T2(u, yi)
4

)2

≤ CL10.

We postpone the proofs of the above two lemmas to Section 3.4 and complete the
proof of Proposition 3.3. Combining (3.28), (3.36), (3.37) and Lemmas 3.7 and 3.8, we
get

∞∑
i=1

∞∑
j=1

Eπ(∆i,jT(x))2 ≤ C

|x|1 +
∑

L≥C1|x|1

L2e−L
ε1/2


= O(|x|1).

Thus, we can conclude the proof of Proposition 3.3 by (3.33).

3.4 Proof of Lemmas 3.4, 3.7 and 3.8

Before presenting the proof of these lemmas, we first show the large deviation
estimates as in Lemma 2.1 for T1 and T2.

Lemma 3.9. The following statements hold.

(i) For any u, v ∈ Zd and n ≥ 1, the events {T(u, v) ≤ n}, {T1(u, v) ≤ n} and {T2(u, v) ≤
n} depend only on SRWs {(Sx. ) : |x− u|1 ≤ n}.

(ii) There exist an integer C1 ≥ 1 and a positive constant ε1 such that for k ≥ C1|y|1,

max{P(T(0, y) ≥ k),P(T1(0, y) ≥ k),P(T2(0, y) ≥ k)} ≤ e−k
ε1
.

Proof. For any u ∈ Zd and n ≥ 1, an event A is called Fun -measurable if A depends only
on the SRWs {(Sx. ) : |x− u|1 ≤ n}. It directly follows from definition of T that the event
{T(u, v) ≤ n} is Fun -measurable. By definition of T1 as in (3.19),

{T1(u, v) ≤ n} =
⋂

z:|z−u|≤1

{T(z, v) ≤ n− 1}. (3.38)

In addition the event {T(z, v) ≤ n− 1} is Fzn−1-measurable and Fu1
n−1 ⊂ Fun if |z − u|1 ≤ 1,

so the event {T1(u, v) ≤ n} is Fun -measurable. Moreover, since {T[z](u, v) ≤ n} is
Fun -measurable for any z ∈ Zd, the event {T2(u, v) ≤ n} = ∩z{T[z](u, v) ≤ n} is Fun -
measurable. We now prove (ii).

By repeating the arguments of the proof of Lemma 2.1 (see [19, Proposition 2.4] or
[1, Lemma 4.2]), we can show that there exist positive constants C and ε such that for
any y, z ∈ Zd, and t ≥ C|y|1,

P
(

T[z](0, y) ≥ t
)
≤ e−t

ε

. (3.39)
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By the union bound, for t ≥ C2|y|1 with C2 = 2C, we have

P(T1(0, y) ≥ t) ≤
∑

z∈Zd:|z|1=1

P(T[0](z, y) ≥ t− 1)

≤ 2de−(t−1)ε ≤ e−t
ε2
,

(3.40)

with some ε2 > 0, where we have used (3.39) for t− 1 ≥ 2C|y|1 − 1 ≥ C|z − y|1.

We observe also that if T(y) ≤ k then T[z](0, y) = T(y) for z 6∈ B(k). Therefore, for
k ≥ C3|y|1 with C3 = max{C1, C2},

P (T2(0, y) ≥ k) ≤ P(T(y) ≥ k) + P(T(y) < k,T2(0, y) ≥ k)

≤ P(T(y) ≥ k) +
∑

z∈B(k)

P
(

T[z](0, y) ≥ k
)

≤ e−k
ε1

+ (2k + 1)de−k
ε2 ≤ e−k

ε3
, (3.41)

with some ε3 > 0. Combining (3.40) and (3.41) with Lemma 2.1, we get (ii).

3.4.1 Proof of Lemma 3.7

We decompose

E

 ∑
y∈γ0,x

T(y, ȳ)2


= E

 ∑
y∈γ0,x

T(y, ȳ)2; T(x) ≤ C|x|1

+ E

 ∑
y∈γ0,x

T(y, ȳ)2; T(x) > C|x|1

 .
By a similar argument as in Lemma 2.2, the second term can be bounded from above byE


 ∑
y∈γ0,x

T(y, ȳ)2

2



1/2

P(|γ0,x|1 > C1|x|1|)1/2

≤
(
E
[
T(x)4

])1/2
P(T(x) > C1|x|1|)1/2

≤C|x|21e−|x|
ε
1/2,

(3.42)

and thus for all |x|1 large enough,

E

 ∑
y∈γ0,x

T(y, ȳ)2

 ≤ E
 ∑
y∈γ0,x

T(y, ȳ)2; T(x) ≤ C|x|1

+ 1. (3.43)

For any γ = (yi)
`
i=1, we define

Aγ
M = {yi ∈ γ : T(yi, yi+1) = M}.

Then, we can express

`−1∑
i=1

T(yi, yi+1)2 =
∑
M≥1

M2#Aγ
M . (3.44)
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By definition of A
γ0,x
M ,

#A
γ0,x
M I(T(x) ≤ C1|x|1) ≤ I(γ0,x ∈ PC1|x|1)

∑
y∈γ0,x

I(T (y, ȳ) = M)

= I(γ0,x ∈ PC1|x|1)
∑
y∈γ0,x

I(T (y, ȳ) = t(y, ȳ) = M)

≤ I(γ0,x ∈ PC1|x|1)
∑
y∈γ0,x

Iy, (3.45)

where

Iy = {∃ z ∈ Zd : |z − y|1 ≤M,T(y, z) = t(y, z) = M}. (3.46)

By Lemma 3.9 (i), {Iy, y ∈ Zd} is a collection of M -dependent Bernoulli random variables,
and thus the condition (E1) in Lemma 2.6 holds. In addition, it follows from the union
bound and Lemma 2.4 that

qM = sup
y∈Zd

P(∃ z ∈ Zd : |z − y|1 ≤M,T (y, z) = t(y, z) = M)

≤ (2M + 1)de−M
ε

,
(3.47)

with ε > 0 as in Lemma 2.4. Therefore, the condition (E2) that qM ≤ (3M + 1)−d follows
if exp(Mε) ≥ ((2M + 1)(3M + 1))d, which holds for all M ≥ M0, with M0 = M0(d, ε) a
large constant. Now using (3.45) and Lemma 2.6, we obtain that for M ≥M0,

E(#A
γ0,x
M I(T(x) ≤ C1|x|1)) ≤ E

(
max

γ∈PC1|x|1

∑
y∈γ

Iy

)
≤ C|x|1Md+1q

1/d
M

≤ C ′|x|1Md+2e−M
ε/d. (3.48)

For M ≤M0, it is obvious that

#A
γ0,x
M I(T(x) ≤ C1|x|1) ≤ C1|x|1

M
. (3.49)

Combining the last two estimates with (3.44), we arrive at

E

 ∑
y∈γ0,x

T(y, ȳ)2; T(x) ≤ C|x|1


= E

∑
M≥1

M2#A
γ0,x
M ; T(x) ≤ C|x|1


≤ C|x|1

M0−1∑
M=1

M +
∑

M≥M0

Md+4 exp(−Mε/d)

 = O(|x|1).

Combining this estimate with (3.43), we get the desired result.

3.4.2 Proof of Lemma 3.4

We begin with part (ii), which is easier than (i). Observe that

max
γ=(yi)`i=1∈PL

`−1∑
i=1

T1(yi, yi+1) ≤ L max
u,v∈B(L)

T1(u, v)
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Using the union bound and Lemma 3.9 (ii), for any k ≥ 4dC1L,

P

(
max

u,v∈B(L)
T1(u, v) ≥ k

)
≤ (2L+ 1)2de−k

ε1
.

The last two inequalities yield that

E

(
max

γ=(yi)`i=1∈PL

`−1∑
i=1

T1(yi, yi+1)

)2

≤ CL4

1 + (2L+ 1)2d
∑

k≥4dC1L

k2e−k
ε1


= O(L4).

We now prove (i). For any γ = (yi)
`
i=1 ∈ PL, we define

ĀγM = {yi ∈ γ : |yi − yi+1|1 = M},
ĀγM,0 = {yi ∈ ĀγM : T1(yi, yi+1) ≤ C1M},
ĀγM,k = {yi ∈ ĀγM : T1(yi, yi+1) = C1M + k},

with C1 as in Lemma 3.9 (ii). Then

#ĀγM =
∑
k≥0

#ĀγM,k,
∑
M≥1

M#ĀγM = |γ|1 ≤ L. (3.50)

Therefore,

`−1∑
i=1

T1(yi, yi+1) ≤
∑
M≥1

C1M#ĀγM,0 +
∑
k≥1

(C1M + k)#ĀγM,k


≤ C1L+

∑
M≥1

∑
k≥1

k#ĀγM,k. (3.51)

We shall apply the same arguments as in the proof of Lemma 3.7 to deal with the sum
above. Similarly to (3.45),

#ĀγM,k ≤
∑
y∈γ

Īy, (3.52)

where
Īy = I

(
∃z ∈ Zd : |z − y|1 ≤ C1M + k,T1(y, z) = C1M + k

)
. (3.53)

By Lemma 3.9 (i), {Īy, y ∈ Zd} is a collection of (C1M + k)-dependent Bernoulli random
variables. Hence, using the same arguments for (3.48), we can prove that for C1M + k ≥
M0, with M0 = M0(d) some large constant,

E

(
max
γ∈PL

#ĀγM,k

)
≤ CL(C1M + k)d+1q

1/d
M,k, (3.54)

where

qM,k = sup
y∈Zd

P
(
∃z ∈ Zd : |y − z|1 ≤ C1M + k,T1(u, v) = C1M + k

)
≤ (2(C1M + k) + 1)de−(C1M+k)ε1 ,

by using the union bound and Lemma 3.9 (ii). It is obvious that #ĀγM,k ≤ |γ|1/(C1M + k)

for all M,k. Hence, ∑
M,k:C1M+k≤M0

k#ĀγM,k ≤M
2
0 |γ|1. (3.55)
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Combining (3.51) and (3.54), we have

E

(
max

γ=(yi)`i=1∈PL

`−1∑
i=1

T1(yi, yi+1)

)
≤ CL

1 +
∑

M,k:C1M+k≥M0

(C1M + k)d+3e−(C1M+k)ε1/d


= O(L),

for some C = C(d,M0), which proves (i).

3.4.3 Proof of Lemma 3.8

To show (ii), we notice that

max
γ=(yi)`i=1∈PL

`−1∑
i=1

max
u:|u−yi|1≤2

T2(u, yi)
4 ≤ L max

u,v∈B(L+2)
T2(u, v)4. (3.56)

Now part (ii) follows from (3.9) and (3.56) by using the same arguments as in Lemma
3.4 (ii).

The proof of (i) is similar to that of Lemma 3.7. As in Lemma 3.7, we define for γ ∈ PL,
and M ≥ 1,

A′γM = #{y ∈ γ : max
u:|u−y|1≤2

T2(u, y)4 = M} =
∑
y∈γ

I ′y,

where

I ′y = I

(
max

u:|u−y|1≤2
T2(u, y)4 = M

)
. (3.57)

By Lemma 3.9 (i), for M ≥ 16, {I ′y, y ∈ Zd} is a collection of M -dependent Bernoulli
random variables. By Lemma 3.9 (ii) and the union bound,

q′M = sup
y∈Zd

P

(
max

u:|u−y|1≤2
T2(u, y)4 = M

)
≤ e−M

ε

, (3.58)

for some ε > 0 small. Repeating the arguments as in the proof of Lemma 3.7 with A′γM , q
′
M

instead of Aγ
M , qM , we can show that

E

(
max

γ=(yi)`i=1∈PL

∑̀
i=1

max
u:|u−yi|1≤2

T2(u, yi)
4

)
= O(L)

M2
0 +

∑
M≥M0

Md+2e−M
ε/d

 = O(L),

with M0 = M0(d) a large constant, which proves (i).

4 Proof of Proposition 1.2

Proof. The upper bound on the length of optimal paths is a consequence of Lemma 2.1.
Indeed, if γ ∈ O(x), then l(γ) ≤ T(x). Hence, by Lemma 2.1,

P

(
max
γ∈O(x)

l(γ) > C1|x|1
)
≤ P(T(x) > C1|x|1) (4.1)

≤ e−|x|
ε1
1 , (4.2)

with ε1 and C1 positive constants as in Lemma 2.1. We start the proof of the lower bound
by recalling a definition in the proof of Lemma 3.7. Given a path γ = (yi)

`
i=0, define

Aγ
M = {0 ≤ i ≤ `− 1 : T(yi, yi+1) = t(yi, yi+1) = M}.
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Note that l(γ) ≥
∑
M≥1 #Aγ

M for any γ. Thus, for any γ ∈ O(x) and K ≥ 1

|x|1 ≤ T(x) =
∑
M≥1

M#Aγ
M ≤ K

K∑
M=1

#Aγ
M +

∑
M≥K

M#Aγ
M

≤ Kl(γ) +
∑
M≥K

M#Aγ
M . (4.3)

Rearranging it, we obtain that for any K ≥ 1,

min
γ∈O(x)

l(γ) ≥ 1

K

|x|1 − max
γ∈O(x)

∑
M≥K

M#Aγ
M


≥ 1

K

|x|1 − ∑
M≥K

M max
γ∈O(x)

#Aγ
M

 . (4.4)

Note that if T(x) ≤ C1|x|1, then γ ∈ PC1|x|1 for any γ ∈ O(x), and thus∑
M≥K

M max
γ∈O(x)

#Aγ
M ≤

∑
M≥K

M max
γ∈PC1|x|1

#Aγ
M . (4.5)

We define
Mx = [|x|1/2(d+3)

1 ],

and
E = {∀M ≥Mx, ∀γ ∈ PC1|x|1 , #Aγ

M = 0}.
Then, by using the union bound and Lemma 2.4, we get

P(Ec) ≤ P(∃u, v ∈ B(C1|x|1) such that T(u, v) = t(u, v) ≥Mx)

≤ (2C1|x|1 + 1)2d
∑

M≥Mx

e−M
ε1 ≤ Ce−|x|

ε
1 , (4.6)

for some positive constants C and ε. We recall from the proof of Lemma 3.7 that

#Aγ
M ≤

∑
y∈γ

Iy, (4.7)

where {Iy, y ∈ Zd} is a collection of M -dependent Bernoulli random variables

Iy = I(∃ z ∈ Zd : |z − y|1 ≤M,T(y, z) = t(y, z) = M),

and
qM = sup

y∈Zd

E(Iy) ≤ (2M + 1)de−M
ε

. (4.8)

Then, the conditions (E1) and (E2) of Lemma 2.6 are satisfied. Using Lemma 2.6 (i), we
obtain that

P

(
max

γ∈PC1|x|1

#Aγ
M ≥ |x|1M

−3

)
≤ 2d exp

(
−|x|1/((16M)d+3)

)
, (4.9)

provided that |x|1M−3 ≥ CMd max{1, |x|1Mq
1/d
M }, which holds for |x|1 ≥ 2CMd+5 and

M ≥ K with K a large constant. By (4.9) and the fact that Mx = [|x|1/2(d+3)
1 ] =

o(|x|1/(d+5)
1 ),

P

(
Mx∑
M=K

M max
γ∈PC1|x|1

#Aγ
M ≥ |x|1

Mx∑
M=K

M−2

)
≤

Mx∑
M=K

P

(
M max

γ∈PC1|x|1

#Aγ
M ≥ |x|1M

−2

)

≤ 2d
Mx∑
M=K

exp
(
− |x|1

(16M)d+3

)
.

EJP 24 (2019), paper 76.
Page 25/27

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP334
http://www.imstat.org/ejp/


Sublinear variance of first passage time of frog model

Therefore,

P

(
Mx∑
M=K

M max
γ∈PC1|x|1

#Aγ
M >

|x|1
2

)
≤ e−|x|

ε
1 , (4.10)

for some ε > 0. Combining (4.4), (4.5), (4.6) and (4.10) yields that

P

(
min
γ∈O(x)

l(γ) <
|x|1
2K

)
≤ P(T(x) > C1|x|1) + P(Ec) + P

(
Mx∑
M=K

M max
γ∈PC1|x|1

#Aγ
M >

|x|1
2

)
≤ Ce−|x|

ε
1 ,

which completes the proof of Proposition 1.2.
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