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Asymptotic properties of expansive Galton-Watson
trees
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Abstract

We consider a super-critical Galton-Watson tree 7 whose non-degenerate offspring
distribution has finite mean. We consider the random trees 7, distributed as 7
conditioned on the n-th generation, Z,, to be of size a,, € IN. We identify the possible
local limits of 7,, as n goes to infinity according to the growth rate of a,. In the low
regime, the local limit 7° is the Kesten tree, in the moderate regime the family of local
limits, 7% for € (0, +00), is distributed as 7 conditionally on {WW = @}, where W is the
(non-trivial) limit of the renormalization of Z,,. In the high regime, we prove the local
convergence towards 7°° in the Harris case (finite support of the offspring distribution)
and we give a conjecture for the possible limit when the offspring distribution has
some exponential moments. When the offspring distribution has a fat tail, the problem
is open. The proof relies on the strong ratio theorem for Galton-Watson processes.
Those latter results are new in the low regime and high regime, and they can be used
to complete the description of the (space-time) Martin boundary of Galton-Watson
processes. Eventually, we consider the continuity in distribution of the local limits
(7%,0 €0, c]).
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1 Introduction

The study of Galton-Watson (GW) processes and more generally GW trees conditioned
to be non extinct goes back to Kesten [24], see Lemma 1.14 therein. In the sub-critical
and non-degenerate critical case the extinction event £ being of probability one, there
are many non equivalent limiting procedures to define a GW tree conditioned on the
non-extinction event. Those so-called local limits of GW trees have received a renewed
interest recently because of the possibility of condensation phenomenon: a node in the
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Expansive GW trees

limiting tree has an infinite degree. This appears when conditioning sub-critical GW
trees to be large, see Jonsson and Stefanson [22] and Janson [21] when conditioning
on large total population and Abraham and Delmas [3], when conditioning on large
sub-population or [2] for a survey from the same authors. The other typical behavior for
the local limit of GW trees is to exhibit an infinite spine on which are grafted independent
finite GW sub-trees, such as in [24]. Various conditionings lead to such a local limit,
which we call the Kesten tree, for critical or subcritical GW trees, see Abraham and
Delmas [4] and references therein for a general study and [2] for other recent references
in this direction also. Intuitively, the local limit is the Kesten tree when the events
approximating the non-extinction event decrease in probability at polynomial rate. One
of the motivations of the current work is to present local limits of sub-critical GW trees
with different behavior (that is other than an infinite spine or a node of infinite degree),
see the partial results from Section 9, where we present a family of local limits with an
infinite backbone not reduced to a spine.

Recently, with Bouaziz, we considered in [1] the local limits of GW trees 7 with
geometric offspring distribution (see Section 1.4 for a precise definition) conditioned
on the size Z,, of the population at generation n being equal to a,, € IN. Because the
distribution of Z, is explicit for the geometric offspring distribution, it is possible to
compute all the possible local limits (if any) for the sub-critical, critical and super-critical
cases and for all the possible sequences (a,,n € IN*). The local limit, when it exists, is a
random tree which depends on the rate of convergence of (a,,n € IN*) towards infinity.
When this sequence is positive bounded or grows slowly to infinity, the limit is still the
Kesten tree. This result already appears in the critical case in [4], see Section 6. When
the growth to infinity is moderate, then the local limit can be described as an infinite
random backbone on which are grafted independent finite GW trees. Surprisingly the
backbone does not enjoy the branching property as the numbers of children of individuals
at generation n on the backbone are not independent and depend also on the size of the
backbone at generation n. If the growth to infinity is high, then the local limit exhibits
the condensation phenomenon: the root, and only the root, of the local limit has an
infinite number of children. The aim of the present work is to extend those results mainly
to general super-critical offspring distribution and marginally to sub-critical offspring
distribution.

1.1 The main results

Let p = (p(k),k € IN) be a non-degenerate offspring distribution with finite mean
p =3 e kp(k). Let f denote the corresponding generating function so that f/(1) = p,
and let R, > 1 be its radius of convergence. We shall mainly consider the super-critical
case u € (1,400), except in Section 9 where we consider a particular sub-critical
offspring distribution (that is u € (0,1)).

We recall the local convergence of random ordered rooted trees. The ordered rooted
trees, defined in Section 2.1, are subsets of the set of finite sequences of positive integers
U =J,>o(IN*)™ with the convention (N*)° = {9}, and 0 being the root of the tree. For a
tree t and u € U, we denote by k,(t) € N = IN|J{cc} the out-degree of a node u € t or
equivalently the number of children of  in t, with the convention that &, (t) = —1if u & t.
We denote by z,(t) the size of t at generation 2 € IN. A sequence of trees t,, converges
locally to a tree t if k,,(t,,) converges to k,(t) for all u € U/. And we say that a sequence
of random trees 7,, converges locally in distribution to a random tree T if (k. (T,),u € U)
converges in distribution to (k,(T),u € U) for the finite dimensional marginals. See
Section 2.2 for a precise setting.

We consider the random tree 7 defined as the GW tree with super-critical non-
degenerate offspring distribution p and finite mean x, and we define Z = (Z,, = z,(7),n €
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IN) the corresponding GW process, with Z,, being the size of 7 at generation n, starting at
Zo=1. Letac N and b € IN be respectively the lower and upper bound of the support of
p. We have a < b as p is non-degenerate. Let ¢ = P(£) be the probability of the extinction
event. We recall that ¢ € [0,1) is the only root of f(r) = r on [0,1). Notice that ¢ = 0 if
and only if a > 1. When P(Z,, = a,,) > 0, we denote by 7,, a random tree distributed as 7
conditioned on {Z,, = a,, }. We study the local convergence in distribution of (7,,,n € IN¥)
according to the rate of growth of the sequence (a,,n € IN*). According to Seneta [33]
or Asmussen and Hering [6], we shall consider the Seneta-Heyde norming (c,,n € IN)
which is a sequence such that Z,,/c,, converges a.s. to a limit W and P(W = 0) = ¢, see
its definition in Section 4. When p = 400, then such a normalization does not exists and
when the Llog(L) condition holds, that is ), .. Pk log(pr) < +00, then ¢, is equivalent
to u™ up to an arbitrary positive multiplicative constant, see Seneta [34]. However, we
stress that the Llog(L) condition is not assumed in this paper and that we only consider
the case p finite. It is well known that the distribution of W, restricted to (0, +c0), has a
continuous positive density w with respect to the Lebesgue measure, see the seminal
work of Harris [20] and the general result from Dubuc [13]. However, w is explicitly
known in only two cases: the geometric offspring distribution, see Section 1.4 below and
the example developed by Hambly [19].
We now introduce the possible local limiting trees.

Definition 1.1. Let 7 be a GW tree with non-degenerate super-critical offspring distri-
bution p with finite mean p € (1,4+00).

e Ifc > 0, we denote by 7%° a random tree distributed as T conditionally on the
extinction event £.

e Ifc¢ > 0, we denote by 7° the corresponding Kesten tree, see Definition 3.3. If ¢ = 0
(that is a > 1), we denote by 7° the deterministic regular a-ary tree.

e For 6 € (0,+0o0), we denote by 7% a random tree distributed as 7 conditioned on
{W = 0}.

e Ifb < oo, we denote by 7> the deterministic regular b-ary tree.
If b = +00 and R, > 1, we denote by 7°° an inhomogeneous Galton-Watson tree
with offspring distribution at generation h given by

PO (k) = () p(k) forkeNN,
i, (0)=4o0y fork = +oo,

where ¢;,(\) = E [eA/f’LW} and )\, = sup{A > 0, (n(\) < +oo}.

The tree 77 is defined in Section 5 as a random (non-homogeneous in time) infinite
backbone on which, if ¢ > 0, are grafted independent GW trees distributed as 7%°, but
it can indeed be viewed as a regular version of the distribution of 7 conditioned on
{W = 6} for 6 € (0, +00) according to Remark 5.3. The description of the backbone of 7/
and of its offspring distribution is one of the main contribution of this paper. The infinite
backbone does not enjoy the branching property, and the offspring distribution pg , of
the individuals of the current generation depends on the size r of the current generation,
see Definition (4.5). The probability distribution pg , is a function of the density w. The
distribution of 7¥ is in a sense a generalization of the Kesten tree distribution.

The tree 7°° generalizes the tree obtained in [1] as the local limit of a geometric
Galton-Watson tree. Four different shapes must be considered to describe this tree:

e If b < 400, 7™ is the regular b-ary tree.
e If b = +o00 and A, = o0, 7 is the full Ulam-Harris tree, every node has an infinite
number of offspring.
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e If b = 400, Ac < 400 and (p(A:) < +oo, 7 is an inhomogeneous Galton-Watson
tree, the nodes of which having finite degree.

o If b =400, Ac < +00 and (p(\;) = 400, 7 exhibits a condensation phenomenon at
the root but all the other nodes have a finite number of offspring.

The tree 7°° appears as a natural local limit of non-homogeneous GW trees 7})
introduced in Section 8.1 and with a nice representation given in Section 8.2 using again
an immortal backbone on which are grafted independent GW trees distributed as 7%°
(see also an alternative representation given in Section 8.4 as an infinite backbone on
which are grafted independent GW trees distributed as 7).

We can now give the first main result on the local convergence in distribution of 7,
according to the growth rate of (a,,n € IN*). Those local convergences are new, but for
the extinction case and for the geometric offspring distribution.

Theorem 1.2. Let 7 be a GW tree with non-degenerate super-critical offspring distribu-
tion p with finite mean. We assume that the sequence (a,,n € N*) is such that ,, is well
defined for all n € IN*.

e Extinction case: a, = 0 for all n > ng for some ng € N*. If ¢ = 0, then 7,, is not
defined. If ¢ > 0, then 7,, is well defined and we have:
T, ) 7'070.

n—oo
e Low regime: lim,,_, ., a,/c, = 0 and a,, > 0 for all n € N*. Then, we have:

@
Tn — TU .
n—oo

¢ Moderate regime: lim,,_, . a,/c, = 6 € (0,+0c0). Then, we have:

Tn @ 0
n—oo
e High regime: lim,,_, a,/c, = +oo. (Partial results.) If b < oo (Harris case) or if
p is geometric, then we have:
@ o0
Tn ——— T,
n—oo
The local convergence is well known in the extinction case, it is stated in Proposition
6.4 for convenience. For the low regime, it is stated in Proposition 6.5. For the moderate
regime, it is stated in Proposition 6.2. For the high regime, it is stated in [1] for p
geometric and in Proposition 6.3 for the Harris case. All the proofs rely on the strong

ratio theorem, see Section 1.2 below.

Conjecture 1.3. In the high regime, the convergence in distribution of T, towards 7>
holds for any super-critical offspring distribution p such that R. > 1 (or equivalently
such that W has some positive exponential moments, see the first part of Section 8.1).

The existence and characterization of local limits in the high regime when R, =1 is
an open question.

Remark 1.4. We recall from Dubuc [14] some sufficient conditions on z € IN such that
Py(Z, = z) > 0, where P denote, for k € IN*, the distribution of the GW process Z
started from Z, = k. Notice first that if = 0, then P,(Z,, = z) > 0 if and only if ¢ > 0,
that is @ = 0. We now consider the case z > 0. The offspring distribution p is said
to be of type (Lo, 1), if Lo is the period of p, that is the greatest common divisor of
{n—4¢; n > ¢ and p(n)p(¢) # 0}, and ry is the residue (mod Lg) of any n such that p(n) # 0.
It is clear that Py (Z,, = z) > 0 implies = kr§(mod Ly). According to [14], for any b > a
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such that p(b) > 0 (take b = b if b < 00), there exists d € IN such that for all £ € IN* and
x € [ka™ + d, kb™ — d] with = = kr{(mod Ly), we have Py (Z, = x) > 0. Taking k£ = 1 and
T = a,, this provides sufficient conditions for 7,, to be well defined. In particular, notice
that there exist sequences (a,,n € IN*) in all the regime such that 7, is well defined.

Moreover, we have the following continuity result in distribution for the family of
limiting trees.

Theorem 1.5. Let p be a non-degenerate super-critical offspring distribution with finite
mean. The family (9,60 € [0,+oc)) is continuous for the local convergence in distribution.

In particular, we have
7_9 —>(d) TO.
6—0

The continuity of (79,6 € [0,+0c0)) is proven in Section 7 and more precisely in
Corollary 7.1 for the continuity at 0. The continuity at 0 allows to explain and extend
Corollary 3 from Berestycki, Gantert and Morters [9] on the convergence in distribution
of T(e) (distributed as 7 conditionally on {0 < W < ¢}) towards 70 as € goes down to 0,
see Corollary 7.2.

When 6 goes to infinity, we only have the following partial results.

Theorem 1.6. Ifb < oo or if p is geometric, then we have:

d
@ e
0—+oo

Assume b = +00 and R. > 1. If 7 converges in distribution as # goes to infinity,
then the limit is 7°°.

The continuity at infinity is proven in [1] for the geometric case and in Proposition
8.10 for the Harris case. The fact that 7°° is the only possible limit if b = +o00 and R, > 1
is proven in Corollary 8.8. We conjecture that this convergence indeed holds true.

If R. =1, then we have no hint concerning the existence or non-existence of possible
limits for 7% as @ goes to infinity. Notice that it is not clear that 7% is stochastically
non-decreasing with 6.

Remark 1.7. Partial results concerning the sub-critical case are presented in Section 9,
under the assumption that R, > 1 and the equation f(r) = r has a finite root in (1, R.].
This assumption is equivalent to assuming that the sub-critical GW tree is distributed as
a super-critical GW tree conditioned on the extinction event. In this case, we can use the
previous results in the super-critical case to get results in the sub-critical case.

To finish with the description of all the possible limiting trees, let us mention that all
trees 7, for 6 € [0, +0c0], can be described as an infinite backbone of immortal individuals
on which are grafted finite trees distributed as 790 i e. GW trees conditioned on
extinction. This description also arises when conditioning a super-critical Galton-Watson
tree on survival, see [27], Section 5.7. The finite grafted trees in this case are distributed
as 709, This is however not always the case. For instance in [4], Section 5.2, the local
limit of sub-critical GW trees conditioned on their total progeny to be very large, is an
infinite spine on which are grafted independent finite GW trees which are not distributed
as 7°9. In our present context, it appears that conditioning on {Z,, > 0} or {Z,, = a,,}
affects only the immortal backbone and not the distribution of the grafted finite trees.

1.2 Strong ratio theorem for super-critical GW process

We set for k, h € IN*:
IPk(Zn—h - an)

ol k) = =y = an)

(1.1)
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where 7 is under P, a GW process starting from Z; = k. The proofs of Theorem 1.2,
when there is no condensation, rely on the elementary identity (2.6) which states that
P(ry(m) =t) = H,(h, z(t))P(ry(7) = t), where r(s) denotes the restriction of the tree
s up to generation 4 € IN*, and t is a tree with height A (that is z;(t) > 0 and z,41(t) = 0).
Since the local convergence in distribution of 7,, towards a tree with finite nodes is
equivalent to the convergence of P(r,(7,) = t) for all h € IN* and all tree t of height
h, up to the identification of the limit, the local convergence can be deduced from the
convergence as n goes to infinity of H,,(h, k) for all h, k € IN*. The result is in the same
spirit as the strong ratio theorem for random walks.

In the next theorem, completing known results described in the discussion below, we
explicit all the possible limits of H,, (with only partial results in the high regime). Notice
that all the regimes described in the following theorem are valid thanks to Remark 1.4.

Theorem 1.8. Let p be a non-degenerate super-critical offspring distribution with finite
mean p € (1,400). We assume that the sequence (a,,n € N*) is such that P(Z,, = a,,) > 0
for alln € IN*.

« Extinction case: a,, = 0 for all n > ng for some nyg € N*. If ¢ = 0, then P(Z,, =
0) =0 for alln € N, and thus H,, is not defined. If ¢ > 0, then we have:

HO(h, k) := lim H,(h,k) = "1 (1.2)
n—roo

e Low regime: lim,,_,, a,/c, =0 and a,, > 0 for alln € IN*. We havel:

kch=1f (¢)=h ifa=0,
HO(h, k) = Jlim M, (h k) = { f'(0) "Ly ifa=1, (1.3)
p(a)f(ahil)/(ail)l{k:ah} lfa Z 2

¢ Moderate regime: lim,_, a,/c, = 0 € (0,+00). We have, with the notation
k —i, %
wi(0) =, (’f) ck=lw*i(0):

h
0 R _nwe (40)
HY(h, k) :== nhjgo Hy(h, k) = p Wl{k:ré‘(mod Lo)} (1.4)

where (Lg,ro) is the type of p.
e High regime: lim,,_, a, /¢, = +oco. (Partial results.) We have:

H>®(h, k) := lim H,(h,k) =

n—oo

p)—("-1)/(b=1)q ifb < oo,
{p() {k=b"} 1 & (1.5)

if p is geometric.

Contrary to the short proof of the strong ratio theorem for random walks given
by Neveu [29], the proof presented here for the strong ratio theorem rely on explicit
equivalent of Py(Z,_; = a,) for n large. The well known extinction case is given in
Remark 3.2.

The result for the low regime is much more delicate. We shall distinguish between
the Schroder case f'(¢) > 0 and the Bottcher case f/(¢) = 0, and in those two cases
consider the sequence (a,,n € IN*) bounded or unbounded. The case a,, bounded and
a = 0 can be found in Papangelou [31]. The case a,, bounded, a = 1 is an easy extension
of [31], see Case I in the proof of Proposition 6.5 in the Schroder case. The case a,
unbounded and a < 1 (Schroder case) can be derived, see Lemma 6.6, from the precise
asymptotics of Py(Z,, = a,) given by Fleischmann and Wachtel [17]. The case a > 2

INotice that a = 0, resp. a = 1, resp. a > 2, is equivalent to ¢ > 0, resp. ¢ = 0 and f/(c) > 0, resp. f’(c) = 0.
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(Bottcher case) is given in Lemma 12.4 and Lemma 12.5. The former lemma relies on a
precise approximation of Py(Z, = a,) given in Lemma 12.3 for a,, unbounded, which is
an extension of the precise asymptotics given by Fleischmann and Wachtel [18].

The moderate regime is a direct consequence of the local limit theorem in Dubuc and
Seneta [12], see Lemma 6.1 here.

The high regime in the Harris case when limsup,,_, . a,/b"™ < 1 is detailed in Lemma
11.6 with £ = 1. It relies on techniques similar to those developed in [18] or in Flajolet
and Odlyzko [16] to get an equivalent to Py(Z,, = a,), see Lemma 11.5. The proof is
however given in details because the adaptation is not straightforward. The high regime
for the geometric offspring distribution is given in [1].

If b = 0o and f(R.) = +oo, we conjecture that 7,, converges locally in distribution
towards a limit 7°° whose root has an infinite number of children. Using the elementary
identity (2.6), we deduce the following conjecture that if b = co and f(R.) = 400, then:

H*(h, k) := nlgréo H,(h,k)=0. (1.6)
If b = +ooand f(R.) < 400, then 7°° has no condensation and thus H>°(h, k) might exists
and be given by f_;.1(R.)*/f(R.), where, for n € N*, f,, denotes the n-th iterate of f
and f_, its inverse (which is well defined because f,, is increasing). See the martingale
term in the right hand side of (8.7) with A = A..

If R. = 1, the possible existence of a limit for H,, is an open question. See Wachtel,
Denisov and Korshunov [35] for a first step in the study of this so-called heavy-tailed
case.

1.3 Link with the Martin boundary of super-critical GW process

Recall that Z is a super-critical GW process with non-degenerate offspring distribution
p with finite mean p. The Martin boundary M of the non-negative space-time GW process
corresponds to all extremal non-negative space-time harmonic functions H defined on
IN2, and is related to the set of all extremal non-negative martingales N = (N,, =
H(n,Z,),n € IN). Considering only the case Z; = 1, then Remark 1.4 implies that the
functions H are only defined for (n, k) such that & = r§(mod L), where (Lo, ro) is the
type of p. Let H denote the set of non-negative space-time function H such that there
exists a sequence (a,,n € IN*) with H(h, k) = lim, 00 Pr(Z,—n = an)/P(Z,, = ay,,) for all
h,k € IN. According to Kemeny, Snell and Knapp [23] Chapter 10, we have M C H.

Consider the collection H* = {H? 6 € [0,00)}. We deduce from Section 1.2 that
‘H* C H. This appears already in Athreya and Ney [7], see also Section I1.9 from Athreya
and Ney [8]. We also deduce from Section 1.2 that H%° € H if and only if a = 0. We
get a complete description of # and M in the Harris case and geometric case. To our
knowledge, the results for the Harris case in the present work and for the geometric
case in [1] are the first complete descriptions of the Martin boundary for super-critical
GW process. This (partially) answers a question raised in [7], on the identification of
H\H*.
Theorem 1.9. Let p be a non-degenerate super-critical offspring distribution with finite
mean. If b < oo, then we have:

My PO Y ifa=0,
WU {H™) ifa>1.

If p is geometric, then we have M = H = H* U{H*%} ifa =0 and M =H = H* ifa > 0.

Proof. The description of H is a consequence of Theorem 1.8. The fact that H* C M
follows from Lootgieter [26], Corollary 2.3.1I ¢). (Notice that the result in [26] is stated
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under the Llog(L) condition and the aperiodic condition, that is Ly = 1. The Llog(L)
condition is satisfied in the Harris case (b < oo0) and in the geometric case. The periodic
case is an immediate extension.) This result is based on the fact that for all 6 € (0, +c0)
a.s. lim, 00 20(7%)/c, = 0. See Remark 5.3 for a slightly weaker result. The fact that
H%O° (when it is defined) and H> are extremal is immediate. Since M C H according to
[23] Chapter 10, we deduce that M = H. O

In the same spirit, Overbeck [30] has given an explicit description of the Martin
boundary for some time-continuous branching processes, see for example Theorem 2
therein.

We conjecture that H = H* or H = H* U {H*"} as soon as b = +oo and f(R.) = +oo,
keeping H’? if and only if a = 0. Otherwise, existence of a limit function H when
lim,, o an/c, = 400 is still open in the general case.

We end this section with some works related to Martin boundary for GW process. We
refer to Dynkin [15] or to [23] for a presentation of the Martin boundary. For the extremal
non-negative harmonic functions (space only) of GW process, we refer to Theorem 3
in Cohn [11], which is stated under the Llog(L) condition and an aperiodic condition.
(Notice that the Llog(L) and aperiodic conditions are indeed required in the proof of
Theorem 3 in [11] as it relies on Corollary 2.3.11 a) from [26].) For the Martin entrance
boundary of GW process, see Alsmeyer and Rosler [5].

1.4 The geometric offspring distribution case

We consider the geometric super-critical offspring distribution. We collect results
developed in [1] and in this paper.
Let 0 < ¢ < <1 and define the G(n, ¢) geometric offspring distribution by

p(k) = ng(1 — q)*=1 for k € IN*.

We have a = 0if < 1 and a = 1 if n = 1. Moreover, we have b = +o0, (Lo, r0) = (1,0),
w=mn/q € (1,+00). It is easy to compute
1-n)—-s(l—qg—n
foy— = =g )
1-5(1-q)
and deduce that R, = 1/(1 —q), f(R;) = +o00, ¢ = (1 —1)/(1 —¢) € [0,1) and f'(c) = ¢/n.
It is also easy to check that

w(f) = (1 —¢)2 e (1790

for & > 0 and thus A. = sup{\ € R; Efexp(AW)] < 400} =1—¢ > 0. Ifc > 0 or
equivalently n < 1, then 7Y has geometric offspring distribution G(q,7). We have for
6 € (0,+00), r € IN*:

po.r(s) = m (9(1 — ) (p - 1))‘““%—9(1—0@—1), s e (IN*)",

with [s|; = Y77, s; for s = (s1,...,5,); and

i—1
" k\ .. (9(1 - C)Qﬂh)
H@ h k) = h ,—0(1—c)(pn"—1) k—i .

Notice that the definition of HY is similar to the extremal space-time harmonic functions
given in Theorem 2 from [30] for binary splitting in continuous time.
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We have that (7,,,n € IN*) converges locally in distribution towards 7 if

lim a,/u" =0 € [0,+o0] and a,, > 0 for all n € IN*.
n—oo

The family (7,0 € [0,+oc]) is continuous in distribution for local convergence. The
random tree 7°° has only one node of infinite degree which happens to be the root. The
space-time Martin boundary is M = H = H* ifc=0and M =H = H* U{H*%} if ¢ > 0.

1.5 Organization of the paper

We recall the definition of trees, the local convergence and the distribution of the
Galton-Watson tree 7 in Section 2. Section 3 is devoted to the Kesten tree associated with
7. We introduce in Section 4 a probability distribution pg , in (4.5) which plays a crucial
role to describe the local limits in the moderate regime. We present the local limits
in the moderate regime in Section 5. The statements of the local convergence are in
Section 6. The continuity of the local limits is studied in Section 7 and the partial results
on the continuity at § = +oco are presented in Section 8. Section 9 is devoted to the
sub-critical case (when it is seen as the super-critical case conditioned to the extinction
event). After some ancillary results given in Section 10, we give detailed proofs in the
technical Section 11 for the Harris case and state the results for the Bottcher case in
Section 12.

2 Notations

We denote by IN = {0, 1,2, ...} the set of non-negative integers, by N* = {1,2,...} the
set of positive integers and IN = IN U {+o0}. For any finite set F, we denote by {F its
cardinal.

We say that a function g defined on (0, +00) is multiplicatively periodic with period
¢ > 0if g(ex) = g(z) for all x > 0. Notice that ¢ is also multiplicatively periodic with
period 1/c.

2.1 The set of discrete trees

We recall Neveu’s formalism [28] for ordered rooted trees. Let i = J,,~,(IN*)" be
the set of finite sequences of positive integers with the convention (IN*)? = {9}. We also
set U = U,», (IN*)" = U\ {9}

For u € U, let |u| be the length or the generation of u defined as the integer n such
that v € (N*)". If uw and v are two sequences of U, we denote by uv the concatenation of
two sequences, with the convention that uv = vu = u if v = 9. The set of strict ancestors
of u € U* is defined by

Anc(u) ={veld, Jw e lU*, u=rvw},

and for ./ C U*, being non-empty, we set Anc(.”’) = (J,,c.» Anc(u).
A tree t is a subset of U/ that satisfies:

s dct.
» If u € t\{0}, then Anc(u) C t.

» For every u € t, there exists k,(t) € IN such that, for everyi € N*, ui € t <= 1<
1 < ky(t).

We denote by T, the set of trees. For » € IN, » > 1, we denote by t, the regular r-ary
tree, defined by k,(t,) = r for all u € t,. Let t € T, be a tree. The vertex 0 is called the
root of the tree t and we denote by t* = t\{0} the tree without its root. For a vertex
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u € t, the integer k, (t) represents the number of offspring (also called the out-degree)
of the vertex u € t. By convention, we shall write k,(t) = —1 if u € t. The height H(t) of
the tree t is defined by:

H(t) = sup{|u|, u € t} € N.

For n € N, the size of the n-th generation of t is defined by:
zn(t) = H{u € t,|u| = n}.
We denote by T} the subset of trees with finite out-degrees except the root’s:
T; = {t € Too; Yu € t*, ky(t) < +00}

and by T¢ = {t € T}; ko(t) < +oo} the subset of trees with finite out-degrees.
Let h, k € IN*. We define ’IFEh) the subset of finite trees with height h:

T = {t € Ts; H(t) = h}

and Tgi) ={te Tﬁh); ks(t) = k} the subset of finite trees with height » and out-degree
of the root equal to k. The restriction operators r;, and rj, ;, are defined, for every t € T,
by:

ra(t) = {uet; [ul <h} and rk(t) = {0} U{u € ra(t)"; Anc(w) N {1,..., k} # 0},

so that, for t € Ty, if H(t) > h, then r,(t) € Tgh); and for t € Ty, if H(t) > h and
ko(t) > k, then ry, () € TV,

2.2 Convergence of trees

Set N; = {—1}UNN, endowed with the usual topology of the one-point compactification
of the discrete space {—1} UN. For a tree t € T, recall that by convention the out-
degree k,(t) of u is set to -1 if u does not belong to t. Thus a tree t € T, is uniquely
determined by the IN;-valued sequence (k,(t),u € i) and then T, is a subset of IN{. By
Tychonov’s theorem, the set IN{ endowed with the product topology is compact. Since
T is closed it is thus compact. In fact, the set T, is a Polish space (but we don’t need
any precise metric at this point). The local convergence of sequences of trees is then
characterized as follows. Let (t,,,n € IN) and t be trees in T,. We say that lim, ,oo t, =t
if and only if lim,, oo ku(t,,) = ky(t) for all uw € Y. It is easy to see that:

o If (t,,n € IN) and t are trees in T, then we have lim,_, t, = t if and only if
limy, 00 71 (tr) = ri(t) for all h € IN*.

e If (t,,n € IN) and t are trees in T}, then we have lim,,_,. t, = t if and only if
lim,, o0 rh,k(tn) = ’I“}L7k(t) for all h, k € IN*.

If T is a T¢-valued (resp. TF-valued) random variable, then its distribution is charac-
terized by (IP(rh(T) —t);he N, t e Tgh)) (resp. (P(rh,k(T) —t); hkeN* te T,ﬁh))).
Using the Portmanteau theorem, we deduce the following characterization of conver-
gence in distribution:

* Let (T),,n € IN) and T be T-valued random variables. Then, if a.s. H(T) = 400, we
have:
T, BN, PRI

n—oo

lim P(r,(T,) = t) = P(ry(T) =t) forall he N*, t e T, (2.1)

n—oo
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* Let (T,,n € IN) and T be T}-valued random variables. Then, if a.s. H(T) = 400
and ko (T) = +oo, we have:

d
Tn%T@

n—00

lim P(ry4(T,) =t) = P(rpi(T) =t) forall bk e N*, t € TV, (2.2)

n— oo

2.3 Galton-Watson trees

Let p = (p(n),n € IN) be a probability distribution on IN. A T¢-valued random variable
7 is called a GW tree with offspring distribution p if for all h € IN* and t € Ty with
H(t) < h:
Pira(r)=t)= [ »pku(t).
u€ry_1(t)
The generation size process defined by (Z,, = z,(7), n € IN) is the so-called GW process.
We refer to [8] and [6] for a general study of GW processes.
We recall here the classical result on the extinction probability of the GW tree and
introduce some notations. We denote by & = {H(7) < +oo} = J,cn1Zn = 0} the
extinction event and denote by ¢ the extinction probability:

c=P(&). (2.3)

Then, if f denotes the generating function of p, ¢ is the smallest non-negative root of
f(s) = s. We denote by i the mean of p i.e. p = f/(1). We recall the three following
cases:

e The sub-critical case (4 < 1): ¢ = 1.
* The critical case (u =1): ¢ =1 (unless p(1) = 1 and then ¢ = 0).

 The super-critical case (u > 1): ¢ € [0,1), the process has a positive probability of
non-extinction. Notice that ¢ = 0 if and only if a > 1.

We consider the lower and upper bounds of the support of p:
a=inf{n € N; p(n) >0} and b =sup{k; p(k) >0} € IN. (2.4)

We say that p is non-degenerate if a < b. We define f, the n-th iterate of f, which is the
generating function of Z,,. We recall that lim,,_, f,(0) = ¢. We also introduce in the
supercritical case (i > 1) the Schroder constant o defined by:

fe)=p" «a€(0,+x]. (2.5)

We set Py, the probability under which the GW process (Z,,n > 0) starts with Z, = k
individuals and write P for IP; so that:

Pi(Zy = a) = P(ZV) + -+ Z{) = a),

where the (7 (’i), 1 < ¢ < k) are independent random variables distributed as Z under P.
We consider a sequence (ay,n € IN*) of elements of N and, when P(Z,, = a,,) > 0, 7,
a random tree distributed as the GW tree 7 conditioned on {Z,, = a,,}. Let n > h > 1 and
t € T"). We have, with k = 2, (t):
IPIC(Zn—h = an)

P(ryp(mn) =t) = P(rp(r) = t)m~ (2.6)
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3 The Kesten tree

In this section, we consider a GW tree 7 with offspring distribution p = (p(n),n € IN)
having mean p € (0,400). Recall that ¢ € [0, 1] denotes the extinction probability of 7.
We define an associated probability distribution p on IN as follows:

Definition 3.1. (i) If c = 0, we define p as the Dirac mass at point a.
(ii) If ¢ > 0, we define the probability distribution p = (p(n),n € IN) by:

p(n) = " "!p(n) forn € IN. (3.1)

We denote by m the mean of p. If x < 1and p(l) # 1, as ¢ = 1, we have p = p and
m = pu. If ¢ > 0, we have m = f/(¢) € (0,1].
Remark 3.2. If ¢ > 0, let 799 be a GW tree with offspring distribution p defined in (3.1).
It is well known that the GW tree 7 conditioned on the extinction event £ is distributed
as 720, Indeed, we have using the branching property that, for h € IN*, t € ’]T%h), and
setting k = z,(t):

P(E)
P(€)

P(rp(r) =t| &) =P(rp(r) =t) = FIP(ry (1) = t) = P(rp(7%0) = t).

Let k € IN*. If f(*)(1) € (0, +00), that is p has finite moment of order & and the support
of p is not a subset of {0, ...,k — 1}, then we define the k-th order size-biased probability
distribution of p as pp) = (pp)(n), n € IN) with:

!
Pk (1) = Lin>ky (Z) f(,f)'(l)p(n)- (3.2)
The generating function of py, is fix(s) = s*f#)(s)/f*)(1). The probability distribution
p1) is the so-called size-biased probability distribution of p.
We now define the so-called Kesten tree 7° associated with the offspring distribution
p.
Definition 3.3 (Kesten tree). (i) If ¢ > 0, the Kesten tree 7° is a two-type GW tree
where the vertices are either of type s (for survivor) or of type e (for extinction). Its
distribution is characterized as follows.

- The root is of type s.
- The number of offspring of a vertex depends, conditionally on the vertices of

lower or same height, only on its own type (branching property).
- A vertex of type e produces only vertices of type e with offspring distribution

- The random number of children of a vertex of type s has the size-biased
distribution of p that is p;) defined by (3.2) with k = 1. (Notice that ppy) is
well defined as ¢ > 0.) Furthermore, all of the children are of type e but one,
uniformly chosen at random which is of type s.

(ii) Ifc = 0, the (degenerate) Kesten tree 7° is given by t, the regular a-ary tree, with
a > 1 defined by (2.4). It can be seen as a GW tree with degenerate offspring
distribution the Dirac mass at point a. In this case all the individuals have type s.

Informally, when ¢ > 0, the individuals of type s in 7" form an infinite spine on which
are grafted independent GW trees distributed (see Remark 3.2) as 7 conditionally on the
extinction event £.

We define 7° = Ske(7°) as the tree 7° when one forgets the types of the vertices. If
¢ = 0, then 70 is the regular a-ary tree. If ¢ > 0, the distribution of 70 is given in the
following classical result.
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Lemma 3.4. Let p be an offspring distribution with finite positive mean such that ¢ > 0.
The distribution of 7° is characterized by: for allh € N* and t € ’Jl‘gh) with k = z,(t):

P(r(m°) = t) = k" 'm " P(ry,(7) = t). (3.3)

If u < 1, this is the usual link between Kesten tree and the size-biased GW tree. If
@ > 1, the lemma just means that the Kesten tree is the sized biased tree associated
with the tree conditioned on extinction (which is the subcritical GW tree with offspring
distribution p). We give a short proof of this well-known result.

Proof. According to Section 2.2, the distribution of 7° is characterized by (3.3) for all
h e N*and t € TV with &k = z,(t).

Leth e IN*, t € Tgh) and v € t such that |v| = h. Let V be the vertex of type s at level
hin 7°. We have, with k = z;,(t):

1
IP(Th(TO) =t, V= U) = H p(ku(t)) H A (t) p[l](ku(t))
u€rp_1(t)\Anc({v}) u€Anc({v})
_ m_thuET}L—l(t)(k“(t)_l) H p(/fu(t))
u€rp_1(t)

= m L P(ra(r) = ),

where we used (3.2) (with £k = 1, n = k, (t) and p replaced by p) and (3.1) (with n = k,(t))
for the second equality and that 3, . ) (ku(t) — 1) =k — 1 for the last one. Summing
over all v € t such that |v| = h gives the result. O

4 A distribution associated with super-critical GW trees

In this section, we consider a super-critical GW tree 7 with non-degenerate offspring
distribution p = (p(n),n € IN) with finite mean p € (1, +00). We recall that f denotes the
generating function of p and c is the smallest root in [0, 1) of f(s) = s. Notice that a =0
is equivalent to ¢ > 0.

Following [33] or [6], we consider the Seneta-Heyde norming: (c¢,,n € N) is a
sequence such that (e=%#/¢» n € IN) is a martingale and co € (—1/log(c), +00). This se-
quence is increasing positive and unbounded. Furthermore, we have that a < ¢,11/¢, <
p for all n € IN and that the sequence (c,11/cn, n € IN) is increasing? and converges to-
wards p. We also have that (Z,,/c,,n € IN) converges a.s. towards a non-negative random
variable W with Laplace transform ¢(\) = E [e=*] such that ¢(+00) = P(W =0) = ¢
and for all A > 0:

Fle(N 1) = @(N). (4.1)

The probability distribution of W, up to a multiplicative constant, is the unique probability
distribution solution of (4.1).

Remark 4.1. If one assumes that p satisfies IE[Z] log(Z1)] < +oo, then Kesten and Stigum
results asserts that (1= "Z,,n € IN) converges a.s. towards W up to a scaling factor and
that lim,, o, 1~ "¢, exists and belongs to (0, +c0).

2We provide a short proof of the fact that the sequence (c,+1/cn,n € IN) is increasing, as we didn’t find
a reference. Define g1(\) = log(f(e~*))/\ so that g1(1/cn+1) = —cn+1/cn. So to prove that the sequence
(¢n+1/cn,n € IN) is increasing, it is enough to check that g; is increasing, or more generally that the function
g2(\) = log(E[e=*X])/\ defined for A > 0 is increasing, where X is a non constant real-valued random
variable with finite Laplace transform. Indeed, we have g4 (\) > 0 as E[Y e~ ] + E[e~Y]log(E[e~Y]) < 0 for
any random variable Y such that Y e~Y is integrable, thanks to Jensen inequality with the strictly concave
function —x log(x) applied to e~ Y.
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Remark 4.2. Let R, = sup{r > 1; f(r) < +o0} > 1 be the convergence radius of the
generating function f of p. Set

K ={\eR; Ee*] < 400}, (4.2)

and A\, = sup K > 0. According to Theorem 8.1 in [25] (see also [32]), we have that A\, > 0
if and only if R, > 1. We then deduce that (4.1) holds for A € C such that R(\) € K. We
get that f(R.) = ¢(—X\.) € [1,+00] and thus that:

Re = ¢(~Ac/1)- (4.3)

According to [12] and references therein, the distribution of W is ¢do (dt)+w(t)1 >0y dt,
where w is a positive continuous function defined on (0, +00). Let (W, ¢ € IN*) be indepen-
dent random variables distributed as W. The distribution of Zif:l W, is cF6o(dt) +wy(t)dt,
where (by decomposing according to the number k£ — ¢ of random variables W, which are
equal to 0):

k
wg(0) = Z (f) F=tw*i(9) for 6 > 0, (4.4)
i=1

and w** denotes the i-fold convolution of the function w. We now define a new probability
distribution related to the function w. For r € N*, s = (s1,...,s,) € (IN*)" and 6 €
(0,4+00), we set [s|; = >.._; s; and:

Wt (u6) 7 7000
w*" () sl

por(s) =p (4.5)

=1

Lemma 4.3. Let p be a non-degenerate super-critical offspring distribution with finite
mean. Let 0 € (0,+00), r € IN*. Then pg, = (por(s), s € (N*)") defines a probability
distribution on (IN*)".

Proof. For convenience, we shall prove that py/, . is a probability distribution. Let &
denote the Laplace transform of w: w(\) = fooo w(t) e M dt for A > 0. We deduce from
(4.1) that f(c+ w(N\)) = ¢+ w(pA) = f(c) + w(uA). We deduce that for r € IN*:

B(uA)" = (f(e+BN) = f(c)"
o Tk (e + @) =)

E1,...,kr EN* i=1

k1, kr €IN* =1 si=1
" r oo L,

_ ~ S|1 g ki—s; .

= X AW I (B)eam

s=(81,...,8r)E(IN*)™ i=1k;=s;

T of(si)
-y e e

s=(81,...,57)€(IN*)"

where we used for the last equality that for s € N*, x € [0, 1]:

XK X7k
1w =3 gt =3 (£)ateatm.
—s)! s
k=s k=s
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Since w(uA)" is the Laplace transform of w*"(¢/u)/u, by uniqueness of the Laplace
transform and the continuity of w (and thus of w*’), we get using the definition (4.5) of
po.» that for all 6 € (0, +c0):

T of(si)

S=(51,005r ) E(NY)” a sEN)r

Since w is non-zero, we get that ZSE(]N*)’" Po/ur(s) = 1 and thus py,,, . is a probability
distribution as pg,,, -(s) is non-negative. O

We end this section with the limit of py , as 6 goes to 0 and in a particular case to
+00. Recall Definitions (2.4) and (2.5). One has to distinguish two cases when 6 goes to
0: the so-called Schroder case a < 1 (equivalently p(0) + p(1) # 0, f'(c) > 0 or a < +00)
and the so-called Bottcher case a > 2 (equivalently p(0) + p(1) =0, f'(¢) = 0 or @ = +00).
When 6 goes to infinity we consider the particular so-called Harris case where p has a
finite support (equivalently b is finite).

Lemma 4.4. Let p be a non-degenerate super-critical offspring distribution with finite
mean.

(i) In the Schroder case (a < 1), we get that pg1 converges to the Dirac mass at point
1 as 0 goes down to 0.
(ii) In the Boéttcher case (a > 2), we get that, for all r € IN*, py , converges to the Dirac
mass at (a,...,a) € IN" as § goes down to 0.
(iii) In the Harris case (b < o0), we get that, for all r € IN*, pg , converges to the Dirac
mass at (b,...,b) € N" as 0 goes to infinity.

Proof. We give the proof of (i). The technical proofs of (ii) and (iii) are postponed
respectively to Sections 12.3 and 11.3.

According to [10], there exists a positive continuous multiplicatively periodic function
V defined on (0, +00) with period p such that for all = > 0:

-«

x  w(xz) =V (z)+o(l) asz 0. 4.7)
We have for 6§ > 0 as ¢ goes down to 0:

w(pd) _ V(pud) +o(1)
1) = puf'(c = =1+o0(1),
where we used Definition (2.5) of the Schroder constant for the first equality and that V'
has multiplicative period p for the last one. This implies that limg_, pg,1(1) = 1 and thus

pe,1 converges to the Dirac mass at 1 as 6 goes down to 0. O

5 Extremal GW trees

We are in the setting of Section 4. If ¢ > 0, we define the sub-critical offspring
distribution p by (3.1) and, see (3.2), the corresponding size-biased distribution p(, of
order ¢ € IN*. For ¢ € IN* such that f()(¢) > 0, we have:

!
P (k) = <Iz> f(f;.(c) k), k> (5.1)
If ¢ = 0 but p(¢) > 0 (or equivalently f(*)(c) > 0), then we define p; as the Dirac mass
at point ¢, so that Definition (5.1) is consistent for ¢ > 0. Recall Definition (2.4) of a and
note that p = ppq if ¢ = 0.
Let § € (0, 4+00). We define a two-type random tree 7% and shall consider the corre-
sponding tree 7 = Ske(7?) when one forgets the types of the vertices of 79.
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Definition 5.1 (Extremal tree). Let p be a non-degenerate super-critical offspring distri-
bution with finite mean. The labeled random tree 7% is a two-type random tree where the
vertices are either of type s (for survivor) or of type e (for extinction) and 70 = Ske(%e)
denotes the corresponding random T¢-valued tree when one forgets the labels (or types).
The distribution of 7Y is characterized as follows:

e The root is of type s.

e The number of offspring of a vertex of type e does not depend on the vertices of
lower or same height (branching property for vertices of type e).

e A vertex of type e produces only vertices of type e with offspring distribution p (as
in the Kesten tree).

e For every h > 0, we set

I ={ue 77 |u| = h and the vertex u has type s in %9}.

For a vertex u of type s, we denote by x°(u) the number of children of u with type
s and by x°(u) the number of children of u with type e. Conditionally given r,(7%)
and (.#;,0 < ¢ < h), we have:

(i) (x*(u),u € .#3,) has distribution p,ngy o
(ii) For every u € .%},, conditionally on {x* ( ) =5, > 1,v € S}, £°(u) is such that

ku(7%) = k*(u) + k°(u) has distribution p(,,) and the s, vertices of type s are
chosen uniformly at random among the k, (7%) children.

Notice that Property (i) in the above definition breaks down the branching property.
If ¢ = 0, then a.s. k°(u) = 0, so that there are no individuals of type e. We stress, and
shall use later on, that 7¢ truncated at level h can be recovered from Th(TG) and .%}, as
all the ancestors of a vertex of type s are of type s and a vertex of type s has at least one
child of type s.

Since all the vertices of type s have at least one offspring of type s, we get §.%}, 11 >
£.%4,. The offspring distribution of vertices of type s can also be described as follows. For
every h > 0, conditionally given 7;,(7%) and .#,, we compute the probability that

* we have §.%},+1 — §.¥, = n for some n > 0 i.e. n new vertices of type s appear at
generation h + 1,

e every node u of .%}, has k, offspring, s, of them being of type s, where the integers
((Su, ku), u € ) satisfy 1 < s, < ky, and Zuelsﬂh Sy =n+ 1S,

+ for every u € .%, and every subset A, C {1,...,k,} such that {4, = s,, the
positions of the offspring of u of type s among all the offspring of u, are given by A4,
ie. Fpe1 N{ul,... uk,} = uA, where we recall that uv denotes the concatenation
of the two sequences u and v.

We have:

P (Vu € I, K*(u) + k°(u) = ky and S N{ul, ... uky,} = uA, | ’I“;L(Te), ,Vh)

1
= pung g ((Su,u € 1)) H TEa Pls.) (ku)
ueS (Su)

*(ﬁyh—&-n) h+19 (52)

— ku_gu
TRt IT ¢ );
ueE S

where we used (4.5) and (5.1) for the last equality.
By construction, a.s. individuals of type s have a progeny which does not suffer
extinction whereas individuals of type e (if any) have a progeny which suffers extinction.
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Since the individuals of type s do not satisfy the branching property, the random tree 7/

is not a two-type inhomogeneous GW tree.
Using this definition, it is easy to get that the distribution of the tree r,(7?) is
absolutely continuous with respect to those of the original GW tree 7, (7).

Lemma 5.2. Let p be a non-degenerate super-critical offspring distribution with finite
mean. Let 6 € (0,4+00). Leth € N* and t € Tﬁh). We have, with k = zp,(t):

h
Plra(r") = ) = P(ru(r) = 6 20,

Proof. Let h € IN*, t € Tgh) and S, C {u € t; |u| = h} be non empty. Set k = z,(t). In
order to shorten the notations, we set A = S, |JAnc(S),). We set, for £ € {0,...,h — 1},
Sy = {u € A, |u| = £} the vertices at level £ which have at least one descendant in Sj,. For
u € rp—1(t), we set s, (t) = $(A [ ulN*), the number of children of v having descendants
in Sj,. We recall that 7¢ truncated at level k can be recovered from rh(ra) and .%},. We
compute Cs, = P(r,(7%) = t, .#, = Si). We have, using (5.2):

[ e (Tany’)
co-| I )| Tt L0 Optho)

_uerh,_l(t),uQ.A u€eSy

_ ku(t)—1 ~(su(®-1) | W (")

=| II ptt) IT « ch ; ]u o)
L u€rh—1(t) wETH_1(t) u€A

*(#5n) (141 0)

—P _ 4\ k—tSh  h W )

(ra(t) =t)¢c 1 ) , (5.3)

where we used that for a tree s, we have }©, ., () ku(s) — 1 =2,(s) — 1 and thats = A
is tree-like with z,(s) = #S5. Remark that Cg, depends only of #S},. Since .77, > 1 as the
root is of type s, we obtain:

k
P(ra(r’) =t)=>_ > 1i4s,=i} Cs,,

i=1 S, C{uet; |u|=h}
e i on W (") wi (19)
:;<Z> P(r(r) = t) - MhW—P(rh(T):t)”hW’

where we used (4.4) for the last equality. O

Remark 5.3. Let £¢ = {W > 0} denote the non-extinction event. Using Lemma 5.2, we
getforhe IN*, t € ’]T§h), and g a non-negative measurable function defined on R, that:

+oo
A G(O)P(ra(r") = £) w(0)d6 = B [g(W)1 (1, (r)—t.v)]

This implies that for every non-negative measurable function G defined on T, x R, we
have:

+oo
/O E[G(r?,0)] w(0)dd = E [G(r,W)1igey] -

Thus, the distribution probability of 7% is a regular version of the distribution of 7
conditionally on {W = #}. From Lemma 5.2, we get that this version is continuous on Tgh)
for all h € IN*. In particular, we deduce that for a.e. § € (0, 4+00), a.s. lim, o 2, (7%)/c, =
0 (see also Theorem 2.1I in [26] for an a.s. convergence for all § € (0, +00) under stronger
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hypothesis). The distribution of 7 conditionally on £¢ can be written as a mixture of
distributions of 7¢ as for every Borel set A of T,

/m P(r% € A)w(0)dd = P({r € A} NE°).
0

6 Convergence of conditioned super-critical GW trees

We are in the setting of Section 4, with 7 a GW tree with super-critical non-degenerate
offspring distribution p with finite mean y. We consider a deterministic IN-valued
sequence (a,,n € IN*) such that P(Z,, = a,) > 0 for every n > 0. See Remark 1.4
for conditions on the existence of such sequences. We denote by 7, a random tree
distributed as the GW tree 7 conditioned on {Z,, = a,, }. We study the limit in distribution
of 7,, as n goes to infinity and we consider different regimes according to the growth
speed of the sequence (a,,n € IN*). Recall that Z,, is under P, distributed as a GW
process with offspring distribution p starting at Z, = k.

We say that the offspring distribution p is of type (Lg, 7o), when Ly is the period of
p, that is the greatest common divisor of {n — ¢; n > ¢ and p(n)p(¢) # 0}, and ry is the
residue (mod Ly) of any n such that p(n) # 0. See Remark 1.4 on sufficient conditions to
get P(Z, =a) > 0.

6.1 The intermediate regime: lim,, ., a,/c, € (0,+0o0)

We first state a strong ratio limit which is a direct consequence of the local limit
theorem in [12].
Lemma 6.1. Let p be a non-degenerate super-critical offspring distribution with finite

mean and type (Lg,79). Let 8 € (0,+00). Assume that lim, - a,/c, = 0 and that
an = r§(mod Ly) for alln € N*. For all h,k € IN*, we have:

. Pu(Zpp=an) o, wi (u"0)
nlggo IP(Zn = Cln) s UJ(e) {k:r(’i (mod Lo)}*

Proof. The local limit theorem in [12] states that for all £ € IN*, § € (0,4+00) and
(an,n € IN) a sequence of elements of N* such that lim,,_,« a, /¢, = 0, we have:

nh—>n;o [CnIPk(Zn = an) - Lol{an:krg(mod Lo)} Wk (6)} = 0. (6.1)

We now assume that a,, = kr{}(mod Lg) and lim,,_, a, /¢, = 0 € (0,400). Using Remark
1.4, we deduce that Py(Z,_ = a,) > 0 if and only if a,, = k:rg*h(mod Ly) thatis k =
7 (mod Ly). In this case, noticing that lim,, oo an/cnn = p0 as lim, o0 ¢n/cnn = ph,
using (6.1), we get that:

lim ]Pk(Zn—h = an) — lim Cp Wk (,uhe) _ Mh Wy ('uhe) . O

n—oo IP(Zn = an) n—00 Cp_h w(&) w(@)

We deduce the following local convergence.

Proposition 6.2. Let p be a non-degenerate super-critical offspring distribution with
finite mean. Let 6 € (0,+0c0). Assume that lim,,_,, a,/c, = 0 and that 7,, is well defined
for all n. Then, we have the following convergence in distribution:

d
Tn ___>() TG.
n—o00

Proof. Assume that p is of type (Lo, 7o), so that 7, is well defined for n large if and
only if a,, = r§(mod Ly). Using that a.s. H(7%) = 400, the characterization (2.1) of the
convergence in Ty, (2.6) with k& = r{!(mod L), and Lemmas 5.2 and 6.1, we directly get
the result. O
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6.2 The high regime in the Harris case: lim,,_,, a,/c, = +00

Let p be a non-degenerate super-critical offspring distribution with finite mean. Recall
b (the supremum of the support of p) defined in (2.4). Notice that b finite (Harris case)
implies that p has finite mean. When b < oo, we define 7*° as t,, the deterministic
regular b-ary tree.

Proposition 6.3. Let p be a non-degenerate super-critical offspring distribution with
b < co. Assume that a,, < b™ for all n € N*, lim,,_,o, a, /¢, = oo and that 7, is well
defined for all n. Then, we have the following convergence in distribution:

™ @, oo
n—oo
Proof. We assume that 7, is well defined, that is P(Z, = a,,) > 0. For h € IN*, we have
P(ru(r) = r1(ts)) = p(6)*"~D/C=1) We deduce from (2.6) and (2.1), using that t; has
a.s. an infinite height, that the proof of Proposition 6.3 is complete as soon as we prove
that for all k£ < b":

lim Pk(zn—h = an)

—(ph— —

In fact, it is enough to prove (6.2) for k = b" as P(Z), = b") = p(b)~(®"~1/(t=1) ang;

P(Zy =a,) =P(Zp = 6"\Pyu(Znon =an) + »_ P(Zn =k)Pp(Zy_p =an). (6.3)
k<bh—1

It is also enough to consider the two cases: lim,_, o a,,/b" = 1 or limsup,,_, . a,/b™ < 1
with lim, 00 @y /¢, = +00.

We first consider the case lim,_, a,/b™ = 1. Notice that Py(Z,,—, = a,) = 0 for
kb~ " < a, as each individual produces at most b children. For k < b" — 1, we have
kbn—h < b" — b"~*, Since lim,, o a,/b™ = 1, we deduce that for h, k € N*, if k < b — 1,
then kb"~" < a, for n large enough. Using (6.3), we deduce that for n large enough,
P(Z, = a,) =P(Z, = b"Pyn(Z,_1 = a,) as soon as P(Z,, = a,) > 0. This gives (6.2).

The case limsup,, ., a,/b" < 1 and lim,,_, a, /¢, = +00 is proven in Section 11.4,
see Lemma 11.6 with £ = 1. O

6.3 The low regime: lim, . a,/c, =0

Let p be a non-degenerate super-critical offspring distribution with finite mean. If
¢ > 0 (and thus a = 0), we recall that 79° denote the distribution of the GW tree 7 with
offspring distribution p given in (3.1). According to Remark 3.2, we have the following
result for the extinction regime.

Proposition 6.4. Let p be a non-degenerate super-critical offspring distribution with
finite mean such that ¢ > 0. Assume that a,, = 0 for n large enough so that 7, is well
defined for n large enough. Then, we have the following convergence in distribution:
Tn ——%(d) 700,
n—oo
Recall the Kesten tree 79 from Definition 3.3. Recall that a > 1 implies that a.s.
70 = t,, the deterministic regular a-ary tree.

Proposition 6.5. Let p be a non-degenerate super-critical offspring distribution with
finite mean. Assume that a,, > 1V a™ for alln € IN*, lim,,_, o a,, /¢, = 0 and that 7,, is well
defined for all n. Then, we have the following convergence in distribution:

d
T~ 0

n—oo
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Proof. We give the proof in the Schroder case (a < 1). The Bottcher case (a > 2) is more
technical and its proof is postponed to Section 12.5. We suppose throughout the proof
that p is of type (Lo, ro).

Case I: the sequence (a,,n € IN*) is bounded. We first consider the case a = 0. The
ratio theorem, see (4) in [31] (or [8] Theorem A.7.4), implies, that for all ¢, k, h € IN*, if
P(Z, = k) > 0 for n large enough, then:

 PelZnn=k) i1
Ay Sl
We deduce from (2.6) and (3.3), as m = f/(¢), that for h € N* and t € Tgh), we have
lim,, o0 P(rp (1) = t) = P(r,(7°) = t). Since 7" has a.s. an infinite height, we get that
T, converges in distribution towards 7% using the convergence characterization (2.1).

We consider now the case a = 1. Recall that t, is the regular a-ary tree. According to
Remark 1.4, for k large enough, we get that P(Z,, = k) > 0 and P(Z,_, = k) > 0 forn
large enough. It is easy to check that for h € IN, kK € IN*:

WP (Znn =F)
P(Z, — )

For k = 1, the left hand side member is equal to one. For k£ > 1, it is not difficult to
get, by considering the lowest vertex of 7 with out-degree larger than one, that the
sequence (P(Z,, = k)/P(Z, = 1),n € IN*) is bounded. Then arguing as in [31], one gets
that limy, o 572=22 = p(1)~". This gives that limy, o P(rs(7) = ra(ta)| Zn = k) = 1.
This implies that 7,, converges in distribution towards 7° = t, using the convergence
characterization (2.1).

P(ru(r) = ra(te)| Zn = k) = p(1)

Case II: lim,,_, » a, = +0o. We first consider the case a = 0. Then we have f,,(0) > 0 for
all n € IN*. Since {Zf 1 Z(l) 5 = an} contains U ({ij}h =a,} ﬂi#{Zfl)h = O}), we

deduce that Py(Z,,_j = a,) > £fn_n(0)"'P(Z,_1, = a,). Using that lim, o f_1(0) = ¢,
we deduce from Lemma 6.6, stated below, that:

lim inf —]PZ(Z"_}L = n)

£—1 p1¢ \N—h
n—o0 IP(Zn = an) - EC f (C)

As f’(c) = m, we deduce from (2.6) and (3.3) that

liminf P(ry,(7,) = t) > P(rp(7%) = t). (6.4)

n—oo

Since 7% has a.s. an infinite height, we deduce that (6.4) holds for all t € Tﬁh/) with
0 < 1’ < h. Since singletons are open subsets of the closed discrete set | J,<} <, ’]I‘§h/),
we deduce from the Portmanteau theorem that (r;,(7,),n € IN) converges in distribution
towards rp,(7%). Since this holds for all A € IN*, and since 7° has a.s. an infinite height,
we conclude using the convergence characterization (2.1).

We now consider the case a = 1. Then we have a.s. 70 = t,. We deduce, as

f'(c) = p(1), that P(ry,(7) = r,(ts)) = f'(c)"* and thus, using (2.6) and Lemma 6.6:

IP(anh = an)

1.
IP(Zn = an) n—o0

P(ra(1n) = ra(ta)) = P(ra(r) = 1 (ta))

Since this holds for all » € IN*, and since t, has a.s. an infinite height, we conclude using
the convergence characterization (2.1). O
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The proof of the previous proposition in the Schroder case is based on the following
strong ratio limit.

Lemma 6.6. Let p be a non-degenerate super-critical offspring distribution with finite
mean in the Schréder case (a < 1). Assume that lim,,_ 1 o, a, = 400, lim,, s+ apn/cp =0
and P(Z, = ay,) > 0 for every n € IN*. Then we have for all h € IN*:

. IP(Zn—h = an)
hm —_——
n—+4oo IP(Zn = an)

= f'(e) " (6.5)

Notice that according to Remark 1.4, the condition P(Z,, = a,) > 0 in Lemma 6.6 is
satisfied as soon as a,, = r{f(mod Lo) as lim,_, 1 oc @, = +00 and lim,,_, ;o @y /¢, = 0.

Proof. Since a < 1, we have ry € {0,1}. We deduce from Corollary 5 in [17], that for
k, < ¢, and lim,,_,oo k,, = +00:

: Mn_pk Cor
lim sup P(Z,=k)—-1| =0, (6.6)

N300 kelkn en], k=ro (mod L), | Low(k/pu™=rrc,, )

where pr = min{¢ > 1; ¢, > k}. Recall that lim, . ¢pt1/cn = p. The hypothesis

on a, imply thus that lim,_,. ps, = +00. Set p = p,, for simplicity. Assume that

an = r{(mod Ly), so that P(Z,, = a,) > 0 for n large enough. For n large enough, we
have:

P(Zy—p = ay) N }Lw(an/MTL_'L_pcp) - anVia/cp)

P(Zy =an) " wlanurrc,) M Viaje,)

where we used (6.6) for the first approximation, the representation (4.7) of w in the
Schroder case and that V' is multiplicatively periodic with period p for the second one. O

=1

7 Continuity in law of the extremal GW trees at ¢ =0

We are in the setting of Section 4. Recall the definition of #¢ given in Section 5
for # > 0 and in Section 3 for § = 0. Since the function w is continuous, we get that
the distribution of 7+ and thus of 7, as a function of § € (0, +00) is continuous. From
the convergence of the offspring distribution of the individuals of type s which is a
consequence of Lemma 4.4, we deduce the continuity in distribution of 7¢ for 8 € [0, +c).
This directly gives the continuity in distribution of 7% for 6 € [0, +00). We stress in the
next corollary that only the convergence at 0 is non-trivial.

Corollary 7.1. Let p be a non-degenerate super-critical offspring distribution with finite
mean. We have the following convergence in distribution:
@Dy
6—0

As a consequence of Corollary 7.1, we recover directly Corollary 3 from [9], which
is stated only in the Béttcher case (p(0) + p(1) = 0) and extend it to the Schréder case,
see next corollary. Recall that in the Béttcher case, the random tree 7° is in fact the
(deterministic) regular a-ary tree. For ¢ € (0,1), let 7.y be distributed as 7 conditionally
on {0 < W < ¢}. Notice that if ¢ = 0, then conditioning on {0 < W < ¢} is the same as
conditioning on {0 < W < ¢}.
Corollary 7.2. Let p be a non-degenerate super-critical offspring distribution with finite
mean. We have the following convergence in distribution:

d
7‘(5) —>() 7‘0.
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Proof. Let h € N* and t € Tgh) and set k = z,(t). We deduce from Lemma 5.2 that for
all 6 € (0, 400):

P(ra(7) = t) p" wi(u"0) = P(ri,(r°) = t) w(0).

Integrating with respect to 6 € (0, ¢] for some ¢ > 0, we get:
€
P(ry(1) =t)Pp(0 < W < euh) = / P(ry(7%) = t)w(h) db,
0

where W under P is distributed as Z’;:l W, where (W,,¢ € IN*) are independent
random variables distributed as W under IP. Using Corollary 7.1, we get that:

- Jo P(ra(r?) = t)w(6) db

50 PO<W <e) =P(n(r) =),

This implies that:

IPk(O <W < 5uh)

PO<W<e) P(ra(r") = t). (7.1)

lim P(rp(7) = t)
e—0
On the other hand, we have:

IP(Th(T):t,0<W<E):IP<rh(7—):t’0< lim é <€)

n—00 Cp

=P(ru(r) = t)Py <0 < lim Zn < 5>

n—oo Cn+h

=P(rp(r) = )P, (0 < W <),
where we used that lim,,_,o0 ¢, /¢t = p~" for the last equality. We deduce that:

h
]P(""h('r) =t ‘ 0<W< E) — IP(Th(T) _ t)IPkIP((?)ZWI;/SSzL; )

Then use (7.1) and the characterization (2.1) of the convergence in T to conclude. O

8 Weak continuity in law of the extremal GW trees at § = +oc0

We are in the setting of Section 4. We introduce here the tree 7> presented in
Definition 1.1 that will be the good candidate for the limiting tree of the conditioned GW
tree in the high regime.

In Section 8.1, we introduce a whole family (T™) A<, of inhomogeneous GW trees
which converges in distribution to 7°° as A — A.. These trees are first constructed by
absolute continuity with respect to the distribution of ,(7) and in Section 8.2 viewed
as finite trees grafted on an infinite backbone of immortal particles. This two type GW
trees generalize the Kesten tree and the trees 7% of Section 5.

In Section 8.3, the tree 7°° is indeed proven to be the limit in distribution of the trees
79 as § — +oo for the geometric offspring distribution, see [1], and the Harris case, see
Proposition 8.10. In general, this convergence is more involved and we prove only a
weak limit in Proposition 8.7 which implies that 7°° is the only possible limit, if any, for
79 as § — 400, see Corollary 8.8, but the proof of the convergence remains open.

We give in Section 8.4 an alternative description of the tree TV as a two type GW
tree, where trees distributed as 7 (which are thus possibly infinite) are grafted on an
infinite backbone.
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8.1 A family of inhomogeneous GW trees

We set 9(A) = o(—A) = E[exp(AWW)] for A € R. Recall from Remark 4.2 that: \. =
sup{A € R; ¢(A) < +o0} > 0, R. = ¢(A\/p) > 1 is the convergence radius of the
generating function f of p, see (4.3), and f(R.) = +oc if and only if $(\.) = +00. For
A € [-00,A:] and h € N, we set:

(N = g = Ele™ "W] € [¢, +00). (8.1)
We have for h, ¢ € IN (with an obvious convention when (},¢(\) = +00) that:

I (Chre(N) = Ce(N). (8.2)

The sequence (¢, (\), h € IN) is bounded from below by ¢ and from above by 1 if A < 0 and
from below by 1 and from above by (y()) if A > 0. Notice that if A. = +oco, then we have
Cn(Ae) = +oo for all h € IN. Notice that {,(—o0) = ¢ and thus ¢, (—o0) =0 for all h € IN if
a>1; and ((—o0) > 0 for all h € IN if a = 0. We deduce that:

(i) ¢u(X) € (0,+00) if and only if A € (—oo, A.), or A = —co and a = 0, or A = )\, and
Co(Ae) < 4o (the latter condition being equivalent to f(R.) < +00).
(i) ¢n(A) = +oo if and only if A = A\, = 400, or A = A., h = 0 and (p(A.) = +oo (the
latter condition being equivalent to f(R.) = +00).
(iii) ¢x(A) = 0if and only if A = —co and a > 0.

For h € IN and A\ € [—o0, \;], we define the probability ﬁgf) = (ﬁg’\)(/{),k € ]N) as
follows. Recall a € IN and b € IN defined in (2.4).

(i) If ¢u(N) € (0,+00), we set for k € IN:

) Crrr(N)F
by (k) = NAOR p(k). (8.3)

Thanks to (8.2), we get Zkemﬁg\)(/@) = f(Ch+1(N)/Ch(N) = 1, so that ]59) defined
by (8.3) is a probability distribution on IN.
(if) If {5 (A\) = +oo (which implies A = )\.), we set ﬁELA) the Dirac mass at b.

(iii) If ¢5(\) = 0 (which implies A = —oco and a > 0), we set ]52’\) the Dirac mass at

ae IN*.

For simplicity, we shall write p;, for f)g), and specify the value of A only if needed.

We define TV as a GW tree with offspring distribution p;, at generation h € IN. Since
the case A = A\, will appears later, we will particularize it and write

790 =T, (8.4)

If A\, = 400, then the tree 7 is the regular b-ary tree t,, where b € IN. Notice that
the root of 7°° has an infinite number of children if and only if {y(A.) = +o0 and b = oo,
whereas all the other individuals have an infinite number of children if and only if
Ae = b = 00.

Notice that 7™V, for A = 0, is distributed as 7. Since A ;52’\) is continuous on the set
of probability distributions over IN, for A € (—oo, \.), we get that the distribution of 7(*)
is continuous for the local convergence in distribution as a function of A over (—oo, A..).
It is easy to check that the tree-valued random variable 7(=°°) is in fact distributed as 7
conditionally on the extinction event & = {H(7) < +o0o}, that is 799, if a = 0 or as the
regular g-ary tree t, if a > 1. In the latter case, 7(~°°) is thus defined as the Kesten tree
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70 defined in Section 3. Taking particular care of the cases a > 1 (when )\ goes to —c0),
0 < A < 400 (when A goes to \.), and \. = +oo with either b finite or not (when A goes

to \.), it is not difficult to check that the probability distributions pgl ) over N converge

towards PEL *) as \ goes to —oo, and to p( )

result.

as A goes to \.. This implies the following

Lemma 8.1. Let p be a non-degenerate super-critical offspring distribution with finite
mean. We have that the family (T*), \ € [~o0, \.]) is continuous in distribution.

Let A € [—00, A ]. If {p(A) € (0,+00), then for h € N* and t € Tgh), we have:

PraT™) =)= [ Bui(kult)): (8.5)

u€rp—1(t)

If \c < +00 and {p(A.) = +oo, then for h € N*, kg € N* and t € T(h) we have:

Prag,(r) =t) =  [[  Buku(t), (8.6)

u€rp—1(t)*

where we recall that for a tree s we set s* = s\ {0}. Remark that a.s. T € Ty if and
only if {o(A) or b is finite, and that a.s. 7°° € Ty if and only if ¢; () or b is finite.

We give a representation of the distribution of 7 as the distribution of 7 with a
martingale weight. The proof of the following lemma is elementary and thus left to the
reader.

Lemma 8.2. Let p be a non-degenerate super-critical offspring distribution with finite
mean. For \ € [—oo, )] such that (y(\) € (0,+00), h € N* and t € ']Plﬁh), we have with
k= zp(t):

Ch( )
Go(A)

For A\. < 400 and (p(A.) = 400, h € N*, kg € N* and t € Tg;), we have with k = z,(t):

P (rh(TW) = t) P (ry(7) = t). (8.7)

Ch(Ae)* P (rn(r) =t)
Cl(/\c)ko p(ko)

Notice that \. < +o00 and ¢{y(A.) = +oo occurs in the case of the geometric offspring
distribution studied in [1].

P (rh,ko (T = t) - (8.8)

8.2 A family of two-type GW trees

We keep notations from Section 8.1. For A € (—o0o, A\, we give a description of T
using a two-type GW tree 7).

For h € N and A € (—o0, A.] such that ¢,()\) is finite, we define the probability
distribution p{*° = (pN°(0), £ € IN*) by:

(e (Gt (V) =0 FO(0)
nO="Gh -0 8

(8.9)

Notice that }32’\)’8 is indeed a probability as by the Taylor-Lagrange expansion at ¢ of

f, we have, using (8.2) that 3 _,, p,; pN): ) = (f(Cher (V) — ©)/(Cn(A) — ¢) = 1. For £ € IN*
such that f E)( ) > 0, we also recall the /th-size biased probability distribution py,, see
Definition (5.1), with the convention that p(, is the Dirac mass at ¢ if ¢ = 0.

We define a two type random tree 7)€ in the next definition and write 7)¢ =
Ske(T™-¢) for the tree T when one forgets the types of the vertices of 7)<,
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Definition 8.3. Let p be a non-degenerate super-critical offspring distribution with finite
mean. Let A € (—oo, A.]. The labeled tree TA¢ js a two-type random tree whose vertices
are either of type s (for survivor) or of type e (for extinct).

(i) If {o(N) = ¢1(\) = 400, then TN ¢ is the regular b-ary tree and all its vertices are
of type s (and thus there is no vertex of type e).

(i) If (1(\) < +oo, the random tree T js defined as follows:

- For a vertex, the number of offspring of each type and their positions depend,
conditionally on the vertices of lower or same height, only on its own type
(branching property).

- The root is of type s with probability (o(\) — ¢)/Co(X). This probability is set
to 1 if (o(N) = +oo.

- A vertex of type e produces only vertices of type e with sub-critical offspring
distribution p.

- Recall that only (y(\) might be infinite. Let h € IN such that (;()) is finite. A
vertex u € T at level h of type s produces k*(u) vertices of type s with prob-
ability distribution ﬁg;\),e and k°(u) vertices of type e such that conditionally
on £5(u) = sy > 1, ky(T™*°) = k%(u) + £°(u) has distribution p(s,, defined in
(5.1), and the s, individuals of type s are chosen uniformly at random among
the ku(T(A)’e) children. More precisely, as for Definition 5.1, we denote by
S = {u € TM=°; |u| = h and u is of type s} the set of vertices of T»)¢ with
type s at level h € IN, and we have for u € .%: for all k,, € N*, s, € {1,...,ky},
and A, C {1,...,k,} such that A, = s,,

P (KZS(U) + k%(u) = ky and S N{ul,. .. uky,} = uA, | rh(T(A)’C), ,5”;1>

_aMe L (G (N) =) s
=Dy (Su) k p[su](ku) = Ch(>\) i ¢

)

- If{o(N\) = +oo, then the root, which is of type s a.s., has infinitely many children
of types s and e, each children being, independently from the other, of type s
with probability (¢1(\) — ¢)/¢1(A). That is for kg € N* and Sy C {1,...,ko}:

P (A N{L,... .k} =5)= <<1C(1A()A)c>ﬁ51 <<15A)>k0_u51 .

p(ku)

Unless a > 1 or {p(\) = (1(N\) = +oo, conditionally on the fact that the root is of type
s, a.s. there exists an infinite number of vertices of type s and of type e. By construction
individuals of type s have a progeny which does not suffer extinction, whereas individuals
of type e have a finite progeny. Informally the individuals of type s in TXe, if any, form
a backbone, on which are grafted, if a = 0, independent GW trees distributed as 7
conditionally on the extinction event £. This is in a sense a generalization of the Kesten
tree, where the backbone is reduced to an infinite spine in the case a < 1. We stress that
T(Me, truncated at level h can be recovered from i (T™)°) and .}, as all the ancestors
of a vertex of type s is also of a type s and a vertex of type s has at least one children of
type s.

The following result states that the random tree 7*) can be seen as the skeleton of a
two-type GW tree.

Lemma 8.4. Let p be a non-degenerate super-critical offspring distribution with finite
mean. Then, for \ € (—oo, \.], the tree TV is distributed as T™).
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Proof. Let A € (—oo, \.]. We first consider the case (y()) finite. We assume ¢ > 0 (or
equivalently a = 0). Let h € IN*, t € Tgh) and S, C {u € t; |u| = h}. Set k = z,(t) =
#{u € t; |u| = h}. In order to shorten the notations, we set A = Sj, | J Anc(S}y,). We set, for
te{0,....,h —1}, S¢ = {u € A, |u| = ¢} the vertices at level ¢ which have at least one
descendant in Sj,. For u € r,_1(t), we set s, (t) = #(A[()uIN*), the number of children of
u having descendants in .S;,. We recall that TN truncated at level h can be recovered
from 7, (T(?)-¢) and .#,. We compute Cs, = P(r,(T™°) = t, .7, = S,). We have by
construction if §5;, > 0:

_ G(A) —¢ (Cjuj+1(N) = C)Su(t) ko (£) s (b)
CSh, = CO(/\) uerh]l;[)’ugAp(ku(t)) 7};!4 C\ul()‘) ¢ ¢ p(ku(t))

ot (G — "
Q)

where we used that for a tree s, we have 3, .. (5 ku(s) —1=2,(s) — 1 and that s = A
is tree-like with z,(s) = #5;. It is elementary to check that Formula (8.10) is also true
when S}, is empty, and the root is thus of type e. Since Cg, depends only of §5},, we shall
write Cyg, for Cg,. We get:

=P(rp(r) =t) (8.10)

k

P =) =3 () &= Pir) =1

1=0

h(N)*
Co(A)

We deduce from (8.7) that 7™)-¢ and 7™ have the same distribution.

The case (p()) finite and ¢ = 0 (i.e. a > 0) is clear, as there is no vertex of type e in
T and the offspring distribution of individuals of type s at level h in T)e given by
(8.9), that is:

Wegpy = G = 0" FOE) _ G’
' (Ch(A)—¢) 2 ()

coincides with the offspring distribution ﬁ;f)(k) given in (8.3) of individuals at level h in

T,

We consider the case (o(\) = 400, (1(A) finite and ¢ > 0. Let ko, h € N*, t € "JF,(JZ) and
Sy, C {u € t; |u| = h}. Set k = z,(t) = #{u € t; |[u]| = h}. Arguing as in the case {y(\)
finite, we get if ¢ > 0O:

i

P(ry(7) =t) 1S (Cn(X) — ©)#5n
p(ko) G(A)k 7

and thus, writing Cyg, for Cg, as the latter quantity depends only on #5:

Cs, = P(rp (TN ) = t, ., = Sp) =

P(rh (T(/\)’e) =t)= Z (ko) C1(A)ko .

=0

- (k) ¢ _ PO =1 G*

Then use (8.8) to conclude. The sub-case ¢ = 0 is handled in the same way as when (y())
is finite.

Eventually, we consider the case (; = +oo. In this case 7V and T are by
definition regular b-ary trees, and they are thus a.s. equal. O

For A > —oo, we denote by TN)* the tree-valued random variable distributed as T

conditionally on the non extinction event (which is distributed as the skeleton of T
conditionally on the root being of type s). Recall the Kesten tree 7° defined in Section 3.
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Lemma 8.5. Let p be a non-degenerate super-critical offspring distribution with finite
mean. We have the following convergence in distribution:

d
T()\)’* % 7—0.

AN —o0

Proof. Considering the cases a = 0 and a > 1, it is easy to check that the distributions
ﬁELA)’e over IN defined in (8.9) converge as A goes to —oo towards the Dirac mass at
max(1,a). This implies the convergence in distribution as A goes to —co of 7M€ con-
ditionally on the root being of type s towards 7°. Using that the extinction event of
T corresponds to the root of 7V being of type s, we obtain the convergence of the

lemma. O

Remark 8.6. In the proof of Lemma 8.5, we proved in fact the convergence of the
two-type random trees T conditionally on the root being of type s towards 7° as A
goes to —oo, using the convergence in distribution of the probability distribution p*)-
as \ goes to —oo.

Similarly, considering carefully the three cases (y(\.) finite; (o(A.) = +00 and (3 (\;)
finite; (o(Ae) = C1(A\e) = +oo, it is not very difficult to check that 7)) converges in
distribution towards 7(*<)¢ as A goes up towards \.. Then, by considering only the
skeleton, this allows to recover the convergence in distribution of 7*) towards 7 as
A goes up to A, thus recovering the continuity at A\. in Lemma 8.1. Notice that when
¢o(Ae) = 00, then the root of T(e)e is a.s. of type s and has infinitely many children.

8.3 Continuity in law of the extremal GW trees at 6 = +oc0

Recall that 7 * is distributed as T conditionally on the non extinction event
(which is distributed as the skeleton of 7'()-¢ conditionally on the root being of type s).

Recall that (p(A) > ¢ for A > —oo. For A € (—o0, \.], such that (y()) is finite, we
consider the function g, defined by:

1
Co(A) —¢

Since, by definition, [ g\ = 1, we deduce that g, is a probability density. Let ©, be a
random variable with density gy. We consider the random tree 7©* and the random
two-type tree 79*, which conditionally on {©) = 6} are distributed respectively as 7¢
and 7¢. We have the following representation.

ax(0) = w(0) e 1o 400 (0).

Proposition 8.7. Let p be a non-degenerate super-critical offspring distribution with
finite mean. Then, for \ € (—oo, \.] such that E[e*"] is finite, we have that 7°* (resp.
79x) is distributed as T")* (resp. as T*)© conditionally on the root being of type s).

Proof. Let h € IN*, t € Tgh) and Sy, C {u € t; |u| = h} with S;, non empty. We recall
that the distribution of 7? up to generation & is completely characterized by r,(7?) its
skeleton up to level h and by the set .%}, of vertices at generation » which are of type s.
We still denote by .7}, the vertices of 7©* at generation h which are of type s. We have
with k = 2z, (t) and £ = §5:

P(ra(r®) = t,.% = Sh) = / P(ra (") = t,.%, = S1) g2(0) df

1
=P(rp(r) = t) ¢ 7/10*‘7 ph0) e phde
On(r) =) e [ )
1 h e ¢
=P(rp(r) =t)Ff ————F M 2= Wi 1w,
( ( ) ) CO()\)_C 21:[1 {W;>0}
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_ A) — )
=P(ry(r) =t) " KL
D =0
where we used (5.3) for the second equality, that (W;,7 € IN*) are independent random
variables distributed as W for the third one and the definition of (;, given in (8.1). Then
use (8.10) and that the root of 7}):¢ is of type s with probability (¢o(\) — ¢)/¢o()\) to get
that:

) (8.11)

P(rp (%) = t,.75 = Sp) = P(ra(T™*°) = t,.), = Sy type of d is ).

Since 79> up to level h is characterized by 7©* and .%},, and similarly for 7, we

deduce from the previous equality that 7©* is distributed as T)e conditionally on its
root being of type s. Then, forgetting about the types, we deduce that 7©* is distributed
as T+, O

When A goes to —oo, we get that the measure g, () df converges weakly to the Dirac
mass at 0. We deduce that ©, converges in distribution towards 0 as A goes to —cc.
We then recover from Proposition 8.7 and Corollary 7.1 the convergence in distribution
of T(:* that is of TM)e conditionally on the non-extinction event, towards 70 given in
Lemma 8.5.

If E[e*"] = +o0 (and thus \. > 0) or equivalently f(R.) = +oc, then when )\ goes up
to \. we get that ©), converges in distribution towards +ococ. We deduce from Lemma 8.1
the following corollary.

Corollary 8.8. Let p be a non-degenerate super-critical offspring distribution whose
generating function blows-up (that is f(R.) = +00). Then, if (19,60 € [0,00)) converges in
distribution as 6 goes to infinity, then the limit is the distribution of 7°°.

Remark 8.9. If R. = +o0, then the tree 7°° has all its nodes with degree b € IN. Since
the distribution of 7°° is maximal in the convex set of probability distributions on T, we
get that the distribution of 7°° is the limit in distribution of a sub-sequence (7g,,n € IN)
with lim,,_,~, 8,, = +00.

We are able to prove the stronger result on the convergence in distribution of
(19,0 € [0,00)) as 0 goes to infinity in the particular case of the geometric offspring
distribution (in this case ). is positive finite, E[e*"] = +0o0 and b = 0), see [1]. The
next proposition, which is a direct consequence of the convergence of py, as § — +oo
given in Lemma 4.4, asserts that it also holds if the offspring distribution has a finite
support which is the so-called Harris case (in this case b < oo and A\, = 4+00). Otherwise,
the general case is open.

Proposition 8.10. Let p be a non-degenerate super-critical offspring distribution with
finite support, that is b < 400 (Harris case). Then we have the following convergence in
distribution:

0 () oo

T — T
0— o0

8.4 A remark on an other trees family

We provide in this section an alternative description of 7(*) using a two-type GW tree
7).

We assume that \. > 0. Notice that the sequence ((,()A), h € IN) defined in (8.1) is
non-increasing and ¢, (\) > 1 for all h € IN, A € (0, \.]. Furthermore, as R, > 1, we get
that f(¥)(1) is finite for all £ € IN. For h € IN and ) € (0, \.] such that ¢, () is finite, we

define the probability ﬁgf)’n as ﬁ;f)’e in (8.9) but with ¢ replaced by 1. That is for ¢ € IN*:

50 () (G (V) = 1) FO(1)

" I (8.12)

EJP 24 (2019), paper 15. http://www.imstat.org/ejp/
Page 28/51


http://dx.doi.org/10.1214/19-EJP272
http://www.imstat.org/ejp/

Expansive GW trees

For ¢ € IN such that ¢ < b, we recall the /th-size biased probability distribution of p
defined in (3.?). We define a twq type random tree 7)1 i the next definition and yvrite
TN = Ske(TA)") as the tree ™)™ when one forgets the types of the vertices of 7'},

Definition 8.11. Let p be a non-degenerate super-critical offspring distribution such
that \. > 0. Let \ € (0, )\.]. We define a labeled random tree T»):*, whose vertices are
either of type s (for survivor) or of type n (for normal).

(i) If {o(N) = ¢1(N\) = 400, then TM)" is the regular b-ary tree and all its vertices are
of type s (and thus there is no vertex of type n).
(ii) If (1()\) < 400, the random tree T™)" is defined as follows:

- For a vertex, the number of offspring of each type and their positions depend,
conditionally on the vertices of lower or same height, only on its own type

(branching property).

- The root is of type s with probability ({o(\) — 1)/(o(N\). This probability is set
to 1 if (o(N) = +oo.

- A vertex of type n produces only vertices of type n with super-critical offspring

distribution p.
- Recall that only {y(\) might be infinite. Let h € IN such that (,(\) is finite.

A vertex u € T™Wn at level h of type s produces k*(u) vertices of type s
with probability distribution ﬁé’\)’n and k™(u) vertices of type n such that
conditionally on £%(u) = s, > 1, k,(T™™) = k%(u) + x*(u) has distribution
D[s,). defined in (3.2), and the s, individuals of type s are chosen uniformly
at random among the ku(T(’\)’n) children. More precisely if we denote by
S = {u € TO"; Ju| = h and u is of type s} the set of vertices of T with
type s at level h € IN, and we have for u € .%: for all k,, € N*, s, € {1,...,ky},
and A, C {1,...,k,} such that A, = s,,

P (n‘(u) + K% (u) = ky and 1 N {ul, .. uky} = wdy | (TR, Yh)

~ n 1 ) A) — 1)5u .
= b (s) iy Pl ) = (QZEA))—l) R (k).

S

If{y(A) = 400, then the root, which is of type s a.s., has infinitely many children
of type s and n, each children being, independently from the other, of type s
with probability (¢(1(A\) — 1)/¢1(A\). That is for kg € N* and S; C {1,...,ko}:

P (AN ko = S)) = (%)M (QEA))WI .

The main difference with 7V is that the individuals of type s in 7™, if any, form a
backbone on which are grafted, if a = 0, independent GW trees distributed as 7 (instead
of 7 conditionally on the extinction event £ in T(’\)’e).

The following result states that the random tree T can also be seen as the skeleton
of this new two-type GW tree. Its proof, which follows the proof of Lemma 8.4, is left to
the reader.

Lemma 8.12. Let p be a non-degenerate super-critical offspring distribution such that
A > 0. Then, for X € (0, \.], the tree T is distributed as T".

Remark 8.13. Recall that (4(A\) > 1 for A € (0, ;). For A € (0,).], such that (s()) is
finite, we consider the function h) defined by:

Pa(6) = ——— = 0(6) (4 1) 1(0,40(0).

Go(N)
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Since, by definition, f hx =1, we deduce that h, is a probability density. Let ©) be a
random variable with density hy. We consider the random tree 794 and the random
two-type tree 7%, which conditionally on {©) = 6} are distributed respectively as 7% and
79, Computation similar as in (8.11) gives that for h € N* and t € Tgh), with k = z,(t),
and Sj, C {u € t; |u| = h} with S}, non empty and ¢ = S}:

G (G =9 = (1=

P(ry(79%) = t,.% = Sp) = P(rp(7) = t)

G(A) —1
Similar computations as in (8.10) give that:
A) — 1)
P(r (T = £, 7, = 51) = Pl (r) = 1) D1
Co(A)
Summing over all non-empty subsets Sj, of {u € t; |u| = h}, gives that:
: M —1
P(rp(t0%) = t) = P(ru(1) = t) Cg((/\))l = P(rp (T™™) = t| root is of type s).
o) —

Thus the random tree 7€ is distributed as 7= conditionally on the root being of type
S.

9 Convergence of conditioned sub-critical GW tree

In this section, we consider a sub-critical GW tree 7 with general non-degenerate
offspring distribution p = (p(n),n € IN) with finite mean p € (0, 1). To avoid trivial cases,
we assume that p(0) + p(1) < 1. We denote by f the generating function of p. We assume
that there exists x > 1 such that f(k) = k and f/(k) < 4oc0. Since f is strictly convex,
k, when it exists, is unique. Those assumptions are trivially satisfied if the radius of
convergence of f is infinite. This is also the case for geometric offspring distribution
studied in [1].

Define f(t) = f(kt)/x for t € [0,1] and note that f is the generating function of a
super-critical offspring distribution p = (p(n),n € IN) with p(n) = k" ~!p(n). The mean
of p is equal to f’(k); the fixed point ¢ € (0,1) of f is given by ¢ = 1/x; and f'(¢c) = pu.

We have that p defined by (3.1) (with p replaced by p) is equal to p by construction.
Notice that we are in the Schroder case and that p is of type (Lo, 0) as p(0) > 0. Let 7 be
the corresponding super-critical GW tree. It is elementary to check that for h € IN* and
te T§h), we have with k£ = z,(t):

P(ry(r) =t) = s*'P(ru(7) = t). (9.1)

Recall that Z,, = z,(7), and set Z,, = z,(7). Following Section 4, let (c,,n € IN) be a
sequence with ¢y > 0 such that (k%" e=%»/», n € IN) or equivalently (e*Z"/C",n € ]N) is
a martingale. This sequence is increasing positive and unbounded. Furthermore, the
sequence (¢,11/cn,n € IN) increases towards i = f'(k).

We consider a sequence (a,,n € IN*) of integers such that P(Z,, = a,) > 0 (see
Remark 1.4). We denote by 7, (resp. 7,,) a GW tree distributed as 7 (resp. 7) conditionally
on {Z, = a,} (resp. {Z, = a,}). Clearly if a,, = 0 for n large enough, then (7,,,n € IN*)
converges in distribution towards 7. So only the case a,, positive for n € IN* is of interest.

It is straightforward to deduce from (9.1) that forn > h>1and t € Tlgh):

P(rp (1) = t) = P(rp(7) = t). (9.2)
Let 6 € (0,4+0o0). Let 7% be defined as 7% in Definition 5.1 where p has to be replaced by
p, and p is then equal to p. When b, the upper bound of the support of p, is finite, we
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denote by 7> the deterministic regular b-ary tree. Let 7° be defined as the Kesten tree
70 in Definition 3.3 where p is equal to p. We deduce from Propositions 6.2, 6.5 and 6.3,
(9.2) and the characterization (2.1) of the convergence in T the following result.

Proposition 9.1. Let p be a non-degenerate sub-critical offspring distribution with

generating function f such that b > 2 and suppose that there exists (a unique) k > 1

such that f(k) = k and f'(k) < +00. Let § € [0,+00). Assume that lim,, o an/cn = 0,

an, > 0 and 7, is well defined for all n € IN*. Then, we have the following convergence in
distribution:

@ g

T —— T .

n—oo

If b is finite, then (9.3) holds also for § = co.

In the sub-critical regime, the local convergence of 7,, and the identification of the
limit if any when 1 is the only root of the equation f(x) = & is an open question.

(9.3)

10 Ancillary results

We adapt the proof of Theorem 1 in [16]. Recall that W, conditionally on {W > 0}
has a positive continuous density w on (0, 4+00). We shall use the following well known
result.

Lemma 10.1. Let X be a real random variable with a continuous density. Let a < b be
elements of {\ € R; E[e*X] < +o0}. For z € C such that R(z) € K = [a,b], the Laplace
transform g(z) = E[e*X] is well defined and we have:

it
lim sup 7|g(u R )I

=0.
[t|s+oo yek  g(uw)

Let ty > 0. There existsn € (0,1) such that for allu € K, t € R with |t| > t;, we have:
lg(u+it)| < (1 —n)g(w). (10.1)

Recall the function $(z) = E[e*"] is well defined for z € C such that R(z) € K = {\ €
R; IE)[e’\W] < 4o00}. The next Lemma is a direct consequence of (10.1).

Lemma 10.2. Let p be a non-degenerate super-critical offspring distribution with finite
mean. Let a < 0 < b such that Ky := [a,b] C K. Letty > 0. There exists ) € (0,1) such
that for allu € Ky, t € R with [t| > to:

[p(u+it)] < (1 —n)@(u). (10.2)

Proof. Set A = {(u,t); u € Ky and |t| > to}. According to (10.1), with X replaced by W
conditioned on {WW > 0}, there exists 7’ € (0,1) such that |p(u+it) —c| < (1—71")(@(u)—¢)
for all (u,t) € A. Takingn =n'(1—c¢/@(a)) € (0,1) so that n'c < (9’ —n)@(u) for all u € Ky,
we get for all (u,t) € A:

[B(u+it)] < |@(u+it) —c[+e< (L=n)(B(u) =) +c=(1-n)@u)+n'c < (1 -n)p(u).
This gives the result. O

The next lemma, see Lemma 16 in [18], is used for the Fourier inversion formula of
w*t. Set

K'={\ € R; &'(N\) < +oo}. (10.3)
Notice that £’ ¢ K and K’ [J{\.} = K.
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Lemma 10.3. Let p be a non-degenerate super-critical offspring distribution with finite
mean. Leta < 0 < b such that Ky := [a,b] C K. If ¢ € N* is such that ¢ > 1/a, then we
have:

sup / \(,Z(u + it) — C|£dt < +o00. (10.4)
u€EKo JR

If o« < 400 and if Ko C K/, then we have:

sup / | (u +it)| dt < +o00. (10.5)
u€Ko JR

Notice that the proof of Lemma 10.3 insures that ¢(u + it) — ¢ is not L' if £ < 1/a.
This dichotomy appears already in the proof of Lemma 9 from [12]. Recall that, as p is
super-critical, we write m = f/(¢) € [0,1).

Proof. The inequality (10.4) in the Bottcher case is given in Lemma 16 in [18]. So, we now

consider the Schroder case, that is m > 0. In this case, there exists an analytic function S

defined on D = {z € C, |z| < 1} such that the convergence lim,, , ;.o m~"(f,(2)—¢c) = S(2)
[}

holds uniformly on any compact subset of D, see [6] Corollary 3.7.33. Since the functions
are analytic, we also deduce that lim,_, ;.o m~"f/ (z) = S'(z) holds uniformly on any

compact subset of D. We deduce from (4.1) and Remark 4.2 that @(z) = fr (@(pF2))
and thus for & € N* and z € C such that ¢’ (1 7*9(z)) < +oc:

¢ (2) =" (B(n"2)) ¢ (u™"2). (10.6)

There exists € € (0, 1), such that forall z € D with |z—¢| < e(1—c) and k € IN*, we have
|fe(2)—c| < mF /e and |f,(z)| < m*/e. Since 0 € Ko, we get that if u € Ko, then uu=* € K.
Thanks to Lemma 10.1 (with X replaced by W conditionally on {W > 0}), we can take
ko € IN large enough so that |G(pu u + it) — ¢| < (1 — ¢), and thus ¢(u " u +it) € lo) for
all k > ko, u € Ky and t > p*o. Then, for k > ky > 0 and v € K,, we get, with p*s = t,
that:

ko +1 pktko+1

/
[ Bt =diae= [ e i) - dfdr
phtko pkFFko

ko+1

m
— [ Ut is) — o ds
pko
S /,Lk0+157£(/.,bm£)k7 (107)
as well as, using (10.6),
phtko+1 phktkott
/ |s5'(u+if)|dt=ufk/ | Fe (@ (w4 i) 1@ (" (u +it))| dt
pk+ko pk+ko
kot
— [ U s )6 is) s
ko
< pkotte=tmF sup &' (u). (10.8)
ue Ko

We deduce from (10.8) that the integral [}, [’ (u + it)| dt is uniformly bounded for u € K
as sup,¢ , ¢’ (u) is finite since Ky C K’, and from (10.7) that the integral [} |¢(u + it) —
¢|’ dt is uniformly bounded for u € K as soon as um’ = ! ~%® < 1 thatis £ > 1/a. O

o o
3Notice Corollary 3.7.3 stated for z € ¢ + (1 — ¢)D in fact holds for z € D according to Lemma 3.7.2 in [6],

o]
as limy—oo frn(z) =cforz € D.
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We give a similar result on the integrability of ¢;, the Laplace transform of —W; =
—Zj/c;j. See (166) in [18] and a variant of Lemmas 2 and 3 in [12], see also Lemmas
8 and 9 in [17]. By construction the process M = (M,, = e-"» n € N) is a positive
bounded martingale with respect to the filtration (F,, = 0(Zo,...,Z,),n € N). Itis
closed as it converges a.s. towards M, = e~". Let g be a convex non-negative
function defined on (0, +00). We deduce that N9 = (N¢ = g(M,,),n € IN) is a positive sub-
martingale which converges a.s. towards N2, = g(M). By Jensen inequality, we get that
N¢ < Elg(Moo)|Fn]. If E[g(Ms)] < 400, then we get that: N¢ is uniformly integrable,
N9 converges in L' towards N, lim,, .o E[NZ] = sup, i E[N?] = E[NZ] < +oo. For
A € K, consider the positive convex function g(z) = z~* defined on (0,1) and set
&n(N) = N¢ = E[e*"V»]. We deduce that lim,,—, . $n(N) = sup,cn $n(A) = @(N). Using
monotone convergence, we get that ¢,,(z) = E[e*"V"] converges uniformly on compacts
subsets of {z € C; R(z) € K} towards $(z) as n goes to infinity.

For \ € K/, consider the positive convex function g(z) = — log(x)z~* defined on (0,1)
and notice that ¢/, (A\) = NZ. Arguing as for g, we get that ¢/,(z) converges uniformly on
compacts subsets of {z € C; (=) € K’} and that for A € K':

lim @) (A\) = sup @, (\) = @' (N). (10.9)
n——+00 nelN
Lemma 10.4. Let p be a non-degenerate super-critical offspring distribution with finite
mean and type (Lo, o). Let a < 0 < b such that Ky := [a,b] C K. Let t; € (0,mco/Lo).
There exists § € (0,1) such that for allu € Ky, t € R, n € IN*, with t; < |t| < 7ep/Lo:

|Bn(u4it)] < (1= 8)@n(u). (10.10)

Ifo > 1, we have:

sup / |¢n(u+it)—c|dt<+oo. (10.11)
u€Ko,n€N* J[+trey /Lo

If o < 400 and Ky C K’, we have:

sup / |@h (u +it)] dt < +oc. (10.12)
u€Ko,nelN* J[+me, /Lo

Proof. Let t; € (0,7co/Lo). Because of the periodicity Lo, we deduce that for all n € IN*,
u € Ky, 0 < |t| < 2mey, /Lo, we have |@,, (u + it)|/@n(u) < 1. Thanks to Lemma 10.2, there
exists n € (0,1), such that for all u € Ky, |t| > t1, we have |p(u+it)| < (1 —n)@(u). Using
the uniform convergence on compact subsets of {z € C; R(z) € K} of ¢,, towards ¢ and
@ > con K, we deduce that for all ¢; > ¢;, there exists 7’ € (0, 1) such that for all u € K,
n € IN*, min(te, me,,/Lo) > |t| > t1, we have:

|&n(u+it)] < (1 —10")@n(u). (10.13)

Set t1 = 7TC()/L0, to = 7TCO,LC/LO and Jn = [WCO/Lo,WCOCn/Locn_l] C [tl,min(tg,ﬂ'cn/Lo)].
Using the uniform convergence on compacts of {z € C,%(z) € K} of ¢, towards ¢ and
#(0) = 1, we deduce from (10.13) that there exists ¢ > 0 and ry € (0, 1) such that for
all u € Ko with |u| < e, n € IN¥%, |t| € J,, we have |, (u + it)| < ro < 1. Thus, there
exists ko € IN such that supy, |u|c,—,/cn < € for all n > ky. Thus for all k,n € IN* with
k+ ko <n,uc Ky, |t| € J,, we have:

B (uck +z’t>‘ <ro<1. (10.14)

n
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We consider now the Schroder case, that is m > 0. According to the beginning of the
proof of Lemma 10.3, there exists a finite constant B such that for all z € C such that
|z] < 1o and n € IN*, we have:

|fn(2) —¢| < Bm™ and |f,(z)] < Bm". (10.15)

For k € {1,...,n}, set J, 1 = {t € R, mcpco/Lock < |t| < wenco/Lockg—1}, so that t € J,
implies |t|ck/cn € J, as the sequence (¢ /cip—1, k € IN*) is non-decreasing. For k,n € IN*
with &+ ko <n, u € Ky, t € Jp 1, we deduce from (10.14) and (10.15) that:

frn—k (@k (uck + Ztck>> —c
Cn Cn,

and, with Ry = sup,,c- SUp,cx, |2, (u)], that:

y _ ck o, ., Ck
- ti

Notice that Ry = sup,,cr, ¢'(u) and it is finite if Ko C K'.
As cpfcp—1 < pnFFL we get that |J, x| < wcocn/Lock—1 < meou™ **t1/Lg. This
implies that for k + kg < n:

/ |Pn(u+it) —¢| dt <
Ink

|G (u + it) — ¢| = < Bm"*, (10.16)

- . Ck
& (u +it)] = —
Cn

A <uck + ztck>‘ < % Bm" kR,
(10.17)

Bmegu

B
(um)"*  and /J |2 (u+it)| dt < Ro ”Zo“mn—k
n,k

Since [+7¢,/Lo] C [Emcoube /Lo| U Uz;f" Jn .k, we deduce that for all u € Ky:

n—=ko

~ . Ci ~ _

/ |Pn(u+it) —c[dt < % pko sup @ (sup Ko) + p*oc+ Bp Y (pum)" "
[+7en /Lol 0 nelN* 1

(10.18)
and

n—ko
/ |gh (u +it)| dt < meoRo <uk° sup @, (sup Ko) + Bp Z m"k> . (10.19)
[£mcn /Lo Lo nelN~ k=1
The the upper bound (10.18) gives (10.11) when o > 1 that is ym < 1, and the upper
bound (10.19) gives (10.12) when a < +oc and K, C K'.

We now prove (10.11) in the Boéttcher case, that is m = 0 and o = +oo. Notice
then that supy,|<,, |fn(2)| < Bef for any n € IN* and gy > 0 with some finite constant B
depending only on €g. Then we obtain (10.11) using similar arguments as in the Schroder
case.

We now prove (10.10) in the Schrioder case. There exists " € (0,1/2) such that ¢ <
(1—2n")25(a). We can choose an integer kf, > ko such that ¢ + Bm*o < (1 —7")23(a). We
can also choose ng > kf) large enough so that ¢,, > cop*o and inf,, >, @n(a) > (1-1")@(a).
Notice that for n > k{:

’
meopko ey,
Ly 'Ly

n—kgy
TCpCo TCy
C[Lc ’L]:U‘Invk'
/
0Cn—Ekj 0 E—1

Using (10.16), we get that for k € N*, n > ng with k + k) <n, u € Ko, t € Jp i

|Gn(u+it)] < e+ Bm"™* < ¢+ Bm*o < (1-9")*@(a) < (1 —1")ala) < (1 —1")@n(u).

This gives that |@, (u + it)| < (1 — n")@n(u) forall u € Ky, t € [“C%‘;ko , %} and n > nyg.

This and (10.13) with t3 = 7ep, /Lo > wcouké/Lo complete the proof of (10.10) in the
Schroder case.
The proof of (10.10) in the Bottcher case is similar and left to the reader. O
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11 Results in the Harris case

We present detailed proofs of the results, because even if they correspond to an
adaptation of the results known in the Bottcher case (see [17] and [18]), we believe that
the adaptation is not straightforward since in particular the Fourier inversion of w*¢ is
not valid if /o < 1. We keep notations from Sections 2.3 and 4. Recall b defined in (2.4)
is the supremum of the support of the offspring distribution p. We assume b < oo (Harris
case). Following [16] or [10], we define the (right) Béttcher constant Sy € (1, +00) by:

b=yl

11.1 Preliminaries

Since b is finite, the radius of convergence R, of f is infinite. According to Remark
4.2, we deduce that A\, = +o00, that is W has all its exponential moments and that for
every z € C, with ¢(z) = E[e*"V] = p(—2):

¢(2) = f((z/1))- (11.1)

We define the function b on its domain by:

b(z) = log(z +Zb”11 (f}L*(l())>. (11.2)

According to Lemma 2.5 in [16], for every ¢ € (0, 1), there exists a constant § = 6(5) €
(0, 7) such that b is analytic on the open set:

D) ={2€C; 140 <|z| <671, |arg(z)| < 6}. (11.3)
Notice that the function b is analytic and positive on (1, 0) and satisfies on (1, c0):
bo f="0b. (11.4)
According to Lemma 2.6 in [16], the function b satisfies:

(sb'(s))’ >0 on (1,00), lim sb'(s)=0 and lim sb'(s)=1. (11.5)

s—1+ s——+o0

In particular, the function b is increasing on (1, +00).

We set vfz =bo @ on (0,400). We directly recover Proposition 1 in [10], where
it is assumed that ¢ = 0. (We could have used directly the results from [10] using
the generating function f given by the so-called Sevastyanov transform of f: f (z) =
[f(c+ (1 —¢)z) —¢]/(1 —¢), where f/(1) = u, f'(0) = f’(c) and (11.1) also holds with
f replaced by f. But this approach breaks down, when considering the upper large
deviation for Z,,, see Section 11.4.)

Lemma 11.1. The function v is analytic, increasing and strictly convex on (0, +00), and

¥(s) = ¥(us)/b on (0,400), 1_1)%1+1,/~}’(5):O and _lim P (s) = 4o0. (11.6)

s5§—400

Proof. Since ¢ is analytic on € and $((0,+00)) = (1,+00), we get that ¢ is analytic

n (0,+00). It is clear that 1/; is increasing as the composition of two increasing func-
tions. Moreover, using (11.5) as well as ¢'(s)? < ¢”(s)@(s) thanks to Cauchy-Schwartz
inequality, we have for every s € (0, +00),
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(@(s)) + ¢ ()" ((5))
> T (V(9(5)) + ()6 (8(s))) > 0.

@\
IS
—~
VA
N
Il
ﬁi
N
—
VA
N
S

We deduce that 1) is strictly convex on (0, +00). The functional equation v (s) = ¥ (us)/b
is a direct consequence of (11.1) and (11.4). Then use that W ha~s an unbounded support
to get that lims_, 4 ¢’'(s)/@(s) = +o00 and deduce the limits of ¢’ using (11.5). O

Recall Definition (11.3) of 75(6).~ According to Lemma 2.5 in [16], there exists ¢ =
€(d) € (0,b(0)) such that for all z € D(§), we have:

Falz) = p(b) =1/ (=1 b"b() (1 + O(e_ab”)) . (11.7)

We have the following result (see Lemma 13 in [18]).
Lemma 11.2. For all s € (1,400) and all n € IN*, we have:

fals) < p(6) /@D exp {o7b(s) }
Proof. We set

- 1—-bp N

bn(z) = - log(p(b)) + log(z —1—2[; n— 110g( frt1(2) )

(6)fn(2)®

for z € U5>015(5). Notice that by (s) = b= log(fn(s)) for all s > 0. For s > 0, we have:

wﬁ@mwh%mﬁi@—“ﬁmmm_gywﬁm(ﬂw@)

b = p(b) fn(s)®
that is
1 — Vi(s) — —— log(p(b)) — bV 3 b1 ( fe1(5) )
o8(/v () = bVB(s) ~ o log(p S vt (s
For s > 1, we have p(b) f,(s)® < fnt1(s) so that:
log(fx(s)) < 6Vb(s) — —— log(p(b))
This gives the result. O

11.2 Right tail of w

We denote by g the inverse of 1&’, which is one to one on (0, +00) by Lemma 11.1. For
a given v > 0, the maximum of uv — ¥ (u) for « > 0 is uniquely reached at §(v):

max (w0 — $(u)) = glv)o ~ P(3(v)). (11.8)
We define the function M for v € (0, +00) by:
M(v) = v~ Pu/(Bu=1) max (uv - z/;(u)) . (11.9)

According to Proposition 2 in [10], the function M is analytic on (0, +00). It is positive
and multiplicatively periodic with period %! = b/u, thanks to the functional equation
in (11.6) and the definition of By, (see also Proposition 3 in [10]).
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Mimicking the proof of Theorem 1 in [18] (see also Remark 3 therein), we set for
x € b/, 00):

~ 1()g($) ~ m r(x) . r(z)(Bu—1) _ r(z)(Bu—1)/Bu
7“(36) = L (b/ ) and y(m) = (b) =T =zb ,
(11.10)

so that 7(x) > 0 and g(z) € [1,b/u). Notice that 7(z) — 400 as * — +oo. Let £ € IN*. We
define the positive functions for y > 0:
p(b)=¢/(=1) ~ yt/(Br=1)

(Bu=2)/2Bu=1) and M =M —
210052 (y /1) Yy 27£(y) 1,2(?/) g(y/f)

where 62(y) = 4" (§(y)) > 0. For £ € N* and z € [b/p, +00), we set:
My () = My o(§(x)) and  Mae(x) = Mae(§(x)).

Mi(y) =

By construction z + () is multiplicative periodic with period /b = b°#~!. We deduce
that, for fixed ¢ € IN*, the functions Ml’g and J\Zfz, ¢ are multiplicative periodic with period
/b, positive, bounded and bounded away from 0.

We first state an upper bound on w*! whose proof is postponed to Section 11.5.

Lemma 11.3. Let p be a non-degenerate super-critical offspring distribution with b <
+00. For all u; > 0, there exists a finite constant C' such that for all ¢ € N*, z > b/u and
u € [0,u;], we have with r = #(z) and y = g(x):
Cct -
w*(x) < —b"e W0 f.(3(u))h. (11.11)
T
We now state a slightly more general result than Remark 3 in [18]. (Notice in Remark
3 in [18] that there is a misprint in (21) and (22) where the power of x in the exponential
should be negative.)

Lemma 11.4. Let p be a non-degenerate super-critical offspring distribution with b <
+o00. Let ¢ € N*. Asx / +0o0, we have:

w(z) ~ My g(w) 2@=Pm)/2065=1) oxpy {44/%4) zm/(ﬁH*l)M(I/@} . (11.12)
wy(x) ~ w* (@), (11.13)
Po(W > &) ~ Mo () 2= P/268=D oxpy {,g*l/(ﬁbﬁl) xﬂH/(BHfl)M(x/g)} . (11.14)

Using Lemma 3.6.11 in [6], we could derive similar formula as (11.12) for the j-th
derivative of w, for j < a. The proof of Lemma 11.4 is given in Sections 11.6 and 11.7.

11.3 Proof of Lemma 4.4 in the Harris case
Let ¢ € IN*. Using (4.6) and that f(*)(c)/b! = p(b), we get for x > b/u:

¢ )
1 (si)
—wto/p = Y w@ ] f*,() = p(0)w™ () + Re(x),  (11.15)
H $=(81,...,5¢)E(IN*)*¢ i=1 v
where
s T £
Ry(z) = Z 1is), <o) w(w)*50 H 1
s=(81,...,80)E(IN*)¢ i=1 v
Using (11.11), we get for v > 0 with » = #(z) and y = §(«) defined in (11.10):
_uyb'r' ‘Sll - ‘5|1 ¢ S; f(%)(c)
Ry(z) <Ce > Lgef, <o) b1 fr(@ () T P i
$=(81,...,5¢)E(IN*)*® i=1 v
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< S ()t

— xé r )
for some finite constant C’ (depending on u; and independent of = and u € [0, u1]). Using
Lemma 11.2, we get that for all u > 0, n € IN*:

Ja(@(w)) < p() "7 exp {6™i(u)}

Since ¢(u) > 1, this gives with some constant C”’ (depending on u; and independent of =
and u € [0,u1)):

1
Ry(x) < 07 '@ with D(z,u) = (b0 — 1)b"(u) — uyb”.

x
We set u* = g(y/bl). We get:

[(z,u*) =b""¢ [lﬂ(u*) - u*&} — b e (u*)

() ) v

— ¢~/ Ba-1)=1/(Ba—1) ,.Bu/(Bu—1) jy (:EE) - brﬂ;(u*)
1

. /(Ba-1) (x

Br/(Br—1)
)

3 (2) = 0l

where we used (11.8) and (11.9) for the second equality; that y = xb—r(Br—1)/Bm M is
multiplicative periodic with period b/ for the third one; and b = p%# and 1 is positive for
the last one. For = € [b/u, +00), we have (y/bf) € [1/b¢,1/uf) and thus, as ¢ is fixed and §
continuous positive, u* = g(y/b¢) belongs to an interval, say [a,b], with 0 < a < b < +o0.
This implies that ¢y = inf,eib/u,400)} |vb(u*)| > 0. Notice also that ¢y = infr,~0y M ()
is positive as ML@ is bounded away from 0. Thus, using (11.12), we deduce that:
Re() < Tﬁw*e(x/u) o= 108(2)=b"co— 5525 log(a /)
2

for z large enough. Recall r = #(z) defined in (11.10). As © — +oo we have r =
#(z) — 400 and log(x) ~ #(x)log(b/u). Thus, we obtain Ry(x) = o(w*!(x/p)) as x — +oc.
Plugging this in (11.15) we get that:

*bl
lim w(z)

$_>+OOMW P([’)é =1

From the definition of pg , in (4.5), we deduce that limg_,,  pg ¢(b,...b) = 1. This ends
the proof of Lemma 4.4 in the Harris case.

11.4 Upper large deviations for 7,

Recall Definition (4.2) of K and notations from Section 10, and in particular Definition
(10.3) of K’. In the Harris case, we have K = K’ = R. We recall that for ; € IN*,
$j(2) = E[e®Wi] = f;(e*/%), with W; = Z;/c;, is well defined for z € C and that ¢,
converges uniformly on the compacts of C towards ¢ as j goes to infinity. Elementary
computations give that lim, o &} (u)/@;(u) = b7 /c;.

We consider the functions 1/3]- =bo ¢, defined on some open neighborhood of (0, +00)
in C for j € IN*. Following Lemma 11.1, it is easy to check that the functions 1/3]- are
analytic on (0, +0c0), positive, increasing, strictly convex and that:

~ - bj
lim ¢’ (z) =0 and lim ¢%i(z) = —-

r—04 r——+00 Cj
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Let g; be the inverse of 7];; defined on (0,b7/c;). In particular, for a given positive
v < b7 /c;, the minimum of ), (u) — v for u > 0 is uniquely reached at §;(v). Using that ¢,
converges uniformly, on compacts sub-sets of a neighborhood in C of (0, 4+c0), towards
1/;, that b and thus @Z;j and 1[) are analytic, we get that for any compact of (0, +oc0) and j
large enough, the strictly convex functions 1/33» and their derivatives converge uniformly
towards the strictly convex function 1& and its derivatives. We deduce that for any
compact K of (0,+oc) and j large enough (more precisely j such that b7/c; > sup(K)),
g; is well defined on K and converges uniformly towards g on K.

We consider the following general setting. Let £ € IN* and a,, € [lc,/co,£b™) such that
lim sup,,_, . a,/¢b™ < 1. Since b > p > ¢,41 /¢, for all 7 € IN, we deduce that the sequence
(¢,_ib', 0 <1 < n) is increasing. Therefore, the integer I, = sup{l € {0,...,n}, c,_/b! <
coan } is well-defined and strictly less than n. Set j, =n — I, > 1 and y,, such that:

an = yn c;, L0'", (11.16)

so that y, € [1/co, bej,—1/coc;, ). Notice that the conditions lim,,_, a,/c, = +00 and

an < 6™ imply that lim,,—, o [, = +00. The sequence (j,,n € IN*) may be bounded or not.
As ¢,41/c, < b for all r € IN, we deduce that y,, < bcj,_1/cocj, < bin/c; . Thus, we

can define @} , = g;, (y») and 6, , = J)g’ﬂ (@, ) > 0.

Lemma 11.5. Let p be a non-degenerate super-critical offspring distribution with b < co

and type (Lg,19). Let £ € N*. Assume that lim,,_, an /¢, = 00 and limsup,,_, . a, /6" <

1. Then, we have, with lim,, , &, ¢ = 0:

Lop(t) /(Y

SR exp {61 (0, (5, 0) + ) b (1) Lt ot )
Cj,\/2m Lol 52,

The proof, detailed in Section 11.8 is in the spirit of the proof of (175) in [18]. We
end this section with the following strong ratio limit.

IPE(Zn = an) =

Lemma 11.6. Let p be a non-degenerate super-critical offspring distribution with b < co
and type (Lo, 7). Let £ € IN*. Assume that lim,_, a,/c, = 00, limsup,, . @, /06" < 1,
and a,, = ¢r{(mod Lg) for all n € IN*. Then, we have:

. Pppr(Zn—n = an) —(b"—1)¢/(b—
1 = p(b)~ "D/ b=, 11.17

Proof. Let ¢ € IN*. Assume that a, € [lc,/co,06™) and a,, = ¢r{(mod Ly) for all n € IN*
and limsup,, . @, /¢b"™ < 1. An estimation of P,(Z,, = a,) is given in Lemma 11.5. We
now give an estimation of Py (Z, = a,) with n’ = n — h for some h € IN* and ¢ = b"/.
Recall (11.16) and the definition of /,,, j,, and y,,. We have:

an = YnCjr O'bln = YnCjt ol th,
with j/ +1!, =n' =n—hand I/, = sup{l € {0,...,n' =n—h}, c,_p_106"*" < cpa,}. From
the definition of I/, we deduce that I/, = I, — h so that £'b'» = (bl», j/ = j, and thus
Y, = Yn. This gives that g;, (y.) = g;. (y,,) and thus @, , = @}, , as well as 62, ,, = G2 ;.
Thanks to Remark 1.4, we have P,»(Z,—, = a,) > 0 and Py(Z, = a,) > 0 for n large.
We deduce (11.17) from Lemma 11.5. O

11.5 Proof of Lemma 11.3

Let ¢ € IN* be fixed. We deduce from Lemma 10.3 and the Fourier inversion formula
for xw*‘ () that for z > 0, v € R:
il

w*(z) = ~5 / @' (v+1s) (@(v+is) —¢)TLe (0FiD)z g, (11.18)
T JR
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We now follow closely the proofs from (120) to (148) of [18]. Recall notations for 7(x)
and g(x) given in (11.10). Using (10.6) and (11.1), we get with r = 7(x), y = g(z) and
settingu=pu "vandt=pu""s:

PN T g fv+is\ ,, (. [v+is _{v+is _ Z_l_(vﬂ-s)x
w(z)= - 27rx /SO( pr )f’(@( pr )) (fT((p( pr )) c) © o

/Hu—l—zt (11.19)
C2mx
where

H(z) = §'(2) [l (3(2) (f (§(2) =) TTe™*"v. (11.20)
Since ¢(z)—¢ = E[e*"V 1{y50], we deduce that [¢(z) —¢| < $(9R(z)) —¢. The Stevastyanov
transformation of the generating function f given by f(z) = [f(c+ (1 —¢)z) —¢]/[1 —¢]isa
generating function, and the r-th iterate of f is f,(z) = [f.(c+(1—c)z)—c]/[1 —¢]. Since f.

is a generating function, we get that | f,.(z)| < f.(|z|) and thus | f,(¢+2) —¢| < f(c+|2]) —c.
Using this last equality with z replaced by ¢(z) — ¢, we get that:

[fr(@(2)) — ¢l < frle +1@(2) —¢]) — ¢ < [r(@(R(2))) — ¢ < fr(G(R(2))). (11.21)
Since [ (2)] < f1(I2]) < b"fr(I2[)/]2], we get:
1

H(2)| < 17 (2)] b7 £ (P(9R(2))) e R

T e(R(2))
Since ¢(u) > 1 and C := sup,,,,, [ |#'(u+it)| dt < 400, thanks to (10.5), we deduce that:

/ H(u+it)dt < CO f, (3(u)) e~V |
R
Then use (11.19) to conclude.

11.6 Proofof (11.12) in Lemma 11.4

We keep notations from Section 11.5. Set ug = §(1/¢), uy = g(b/(¢p)) and K = [ug, u1].
Since ug > 0, we have ¢(ug) > 1. Let d € (0,1) be such that 1 + 6 < ¢(ug) < p(ur) <"
From the continuity of % on C, and the fact that ¢(K) C D(5), we deduce there exists
to > 0 such that for all (u,t) € K" := K x [~tg, to], we have p(u +it) € D(6), and thus ¢ is
analytic on an open neighborhood of {u +it; (u,t) € K'}. Since ¥(u) > 0and 9" (u) > 0
for v > 0, we can take t; small enough so that R(¢(u + it)) > 0 for (u,t) € K’ and:

to sup |9 (v +is)| < inf " (v). (11.22)
(v,8)EK’ veEK

Recall H defined in (11.20). We shall study the asymptotics of f]R u + it) dt for large x.
Condition (11.22) will be used later on to study the main part of f It <to H(u + it) dt.

First step: the tail part

We first consider the tail part:

I(to) = ‘/lm H(u+it)dt|.

As ¢(ug) > 1, we can take n small enough so that (1 — 1)@(ug) + nc > 1 and (10.2) holds
on A= {(u,t); u € K and [t| > to}. Using the first inequality in (11.21), we get for all
(u,t) € A:

[fr(@(u+it)) —cf < fr (L =m)@(u) — ¢ < fr((1 = n)p(w)).
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We get for all (u,t) € A that |p(u+it)| < |@(u +it) —¢| + ¢ < (1 — n)p(u) and, using
[f7 ()] < fi(I2) <07 fr(|2[)/|2], that:

|fr(@(u+it)] < [fr (1 —n)@(w)] <
Using (11.20) and then Lemma 11.2, we deduce that for all (u,t) € A:

Hu+it)] < @t i) B f (1= () e

ot
(1 —n)p(u)
1

= T n)dw)

Since b is increasing, there exists ¢/ > 0 (depending on ug, u; and tq) such that for u € K,

|3 (u + it)| b"p(b) /(0= QL0 B((1=m)@(u)) —ub"y

b((1=m)@(u)) <b(@(u) —& = P(u) — ¢
We get that for all (u,t) € A:

p(b)~*/~Y
(1 =n")@(uo)
Using (10.5) in Lemma 10.3, we get, for some finite constant c (depending on ug, u1, t1
and /), that for all v € K and = > O:

[H(u+it)| < B/t if)] b7 VT F Ty

I(to) < clb” eft P(w)—ubTy—toTe’ (11.23)

Second step: the main part

We now consider the main part J(tg) = f| H (u + it) dt. An integration by part gives:

t|<to

[(fT (p(u+it)) - C)e e_(“'ﬂ't)ybr} t=to n 1yb”

J(tg) =
(to) t=—tq /

Ji(to),

~| =

with
Ji(to) = / (fr (P(u +it)) — ¢)f e~ (WHiOWE" gy,
[£to]

Arguing as in the first step, we get:

T

b
]J(t()) _ b

—£/(b—1 .
¢ _ pb)7emh Q0" (u)—ubTy—Lo"e" (11.24)

Ji(to)| < 7

Now Ji(to) is~hand1ed as in [18] from (128) to (139). By definition of § and ¢y, we get
that ¢(u +it) € D(0) for (u,t) € K'. Use (11.7), R(¢(u +it)) > 0 for (u,?) € K’ and that
lim, 40 | fr(2)] = 400 on D(), to get there exists € > 0 such that, uniformly in v € K:

Ji(to) = p(b)~4/(=D (1 + O(e*“’r)) D(u), (11.25)
with .
D(u) = / " b (e urin—(utit)y) gy
—to

We have for (u,t) € K':

2

Pt it) = lu) + it (w) — 9" () + bt w),
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with |h(t,u)| < 3CF /6, and Cf = sup(, qexr [ (v+is)| < +oo. Let Cy = infueg [ (v))
which is a positive constant as zﬁ is increasing and strictly convex on (0, +00). Recall that
by definition of t;, see (11.22), we have t,Cy < C, .

We define @} as §(y/¢), so that @} € [ug,u;] and we set 57 = ¢ (ii}). We get:

- - t2
(i + i) — (@ + it)y = 00(T;) — gy — S 05F + Oh(t, Tf),

with |h(t,@})| < t3C5 /6 and |h(t,@})| < t262/6 for t € [~tg,to]. For x large enough (and
thus r large enough), we consider the decomposition D(u}) = D1 + D, with:

b N
D, :/T Qb7 (LB +it)—(a; +it)y) gy

_/,’-b*T
Using that |h(t,@})| < r36=3"/2C5 /6 for [t| < rb~"/2, we get with s = \/(b7G7 t:

~ ,’,b—r/2
Dy = eb"(éw(ﬁz)fﬂj{y)/ o (b"GFE?/2+E07 h(t,4;) gy
—rp—7r/2
~ rb—r/2
_ eb’"(éw(ﬁz)—@y)/ 008757 /2 gy (1 +O(st_r/2)>
—rb—r/2

- r&g\/z
! ebr(&b(ﬂZ)*ﬂZy)/ 6782/2 ds (14’0(7’3577“/2))

\/Kbr&% ""5'1{\/2

=Tx (1+0(%/?)),

with

I= \E/[i% exp {br (Ezﬁ(ﬂ}f) - ﬂ;fy)} .

We now give an upper bound on |Ds|. Since |h(t,4})| < t267 /6, we deduce that for
te [—to, Tfo]:

- - +2

% (05(a; +it) — (@ +it)y) < () —ujy — (57

This implies that:

D, < e (@) —iy) / o O6TGRR 3 gy
|tIErb="/2 o]
< oty &b (EP(@)—a7y) g—Er*57 /3

=Ix0(r*6"/?).

This gives that D(@;) = Z x (1+ O(r®6="/2)). Use (11.25), (11.23), (11.24) to get that:

/ H(ap +it)d nybr p(6) /=1 T (1 + O(r?’bfr/?)) .
Then use (11.19), the definition of 4}, which implies that
g (y/€) — P(ag) = max((uy/£) — D)) = (y/0)P/ P M (y/0)
with y = y(z), and then the periodicity of M to conclude.
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11.7 Proofof (11.13) and (11.14) in Lemma 11.4
From (4.4), we get wy(z) = w*!(z) + R(x), with:

R(z) = § (j) I ().

Jj=1

Using (11.11) and then Lemma 11.2, we deduce there exits a finite constant ¢ such that
forallz > b/pand u € K:

& r (& .7 r
R < Zp" —uyb (& =1 ~ = b 7(Z71)/(b71)br (6—1)6" ¢ (u)—uyb ]
(@) < S0 e £ () < Sple) :

Taking v = 4 and Z defined in Section 11.6, we get that R(z) = Z x O(e*"%(@)ﬁ) =
o(w*(x)). This implies that w,(z) ~ w**(z) as = goes to infinity. This gives (11.13).
An exact computation using (4.4) and (11.18) leads to:
we(x) = _ite @' (v+is) p(v +is)"Le (WHz (g,
2nx JRr

By definition, we have P,(W > z) = f+oo wy(z') da’. Arguing as in Section 11.6, with in

x

particular the integration by part (in s) for the main part, it is easy to get that:

ilc @' (v +is) . -1 ;
P,(W>z)~—— | 22772 (vtis)z g
o x) - ot is Plv+is) e s

as well as (11.14). The details are left to the reader.

11.8 Proof of Lemma 11.5

Recall a,, = yyc;, (b!" > 0. Using Fourier inversion formula, we have for v > 0:

L ) )
]PZ(ZTL = an) — 70/ fn (ev+ls)éef(v+zs)an dS
27 it/ Lo)
L . )
-0 (fn (ev+zs)e _ CZ) ef(erzs)an ds
27 J(dn/Lo)

since either a > 1 and thus ¢ = 0, or a = 0 and a,, = 0 (mod Ly). Setting v = u/c;, >0,
s =t/c;, and Hy ;(z) = fi (¢;(2))" — ¢, we get using I, + jn = n:

L
Py(Zy = ay) = —2

— / H,, ;, (u+ it) e~ (wriunlo™ gy (11.26)
2me;, [£ej,, m/Lo]

We now make explicit the range of the possible choice for u we shall consider. Without
loss of generality, we can assume that there exists § > 0 such that sup,,c- a, /0™ <
1 — 8o The restriction to R of the domain of definition of g; is D; = (0,67 /c;). Set F; =
[1/co,bej—1/cocs] for j > 2 and Fy = [1/cy, (1 — 6o)b/c1]. From the uniform convergence
of §; towards § on compact sets of (0,c0) and the fact that F; C D; for all j € IN* and
Ujen- £5 C [1/co, b/c1], we deduce that there exists 0 < ug < u1 < +oc such that for all
j € N* and all y € F};, we have §,(y) € K := [ug, u1]. Since y,, € F;, , we deduce that the
sequence (i, ,,n € IN*) belongs to K.

11.8.1 Preliminary upper bounds

Using the continuity of ¢; and their uniform convergence towards ¢ as j goes to infinity,
we get that there exists ¢y > 0, § € (0,1) such that forall (u,t) € K’ := K x[—tg,to] and j €
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IN*, we have @, (u+it) € D(é) and mo = inf{R(; (u+1t); (u,t) € K',j € N*} > 0. We set
Cf = SUD, e+ SUP (4, 1) e K |z/) "(u + it)| which is a finite constant since the derivative of v,
converges uniformly on K’ towards the derivative of 9. Let Cy = infjc- inf,ex |1/~)” (u)]

which is a positive constant since the derivative of 1/}j converges uniformly on K towards
the derivative of ¢ and that zbj as well as w are increasing and strictly convex on (0, +00).
Taking a smaller ¢, if necessary, we can assume that:

toCy < Cy. (11.27)

We deduce from (11.7) and the definition of z/~)j and ¢; that there exits ¢ > 0 and a
finite constant C such that for all [, j € IN*, (u,t) € K':

Fi(@;(u+ it)) = p(b) =/ =D P03t (1 1 R(u, ¢,1, 5))

and sup(, ek jen [ B(u,t, 1, 5)] < Ce=<*. Since m = inf{t;(u); u € K,j € N*} > 0,
taking ¢ smaller than m if necessary, we get that:

H j(u+it) = p(b)ff/(bfl) b5 (utit) (14 R (u,t,1,5))

and sup(, ek jen+ |1 (u,t,1,j)| < C' e~% for some finite constant C’. Since fi(@(w)) >
1> ¢ for u > 0, we deduce from Lemma 11.2 that for all [, j € IN*, u € (0, 40c0):

0 < Hyj(u) < fi(@(w)" < pb) /"D exp {éblzz?j(u)} . (11.28)

11.8.2 The tail part

We first bound the tail of the integral which appears in (11.26):

Th4(to) = / Hy j(u+ it) e~ (rinwee’ gyl
[t|€[to,cjm/Lo]

where y belongs to [1/cg, bej—1/coc;). Using an integration by parts, we get:
/ Hyj(u+ it) e~ (whiweet gy — ;#1114 1
[t|€[to,c;m/ Lol

where, for e € {+1,—1}

, ) ef(u+it)yfhl
and I, = —z’/ Hj (u+it) —————dt.
tleltorcsm/Lo] ylb!

Set A; = {(u,t) € R* u € K,ty < |[t| < ¢;m/Lo}. According to (10.10), there exists
0 € (0,1) such that for all j € N* and (u,t) € A;:

i
ef(quit)y@bl ‘| 075

I$ = |iH; it
T [z (w4 it) 70!

dto

|8 (u+it)| < (1= 8)@;(u). (11.29)
Taking § small enough, we can assume that m; = inf{(1 — 90)@;(u); j € N*,u € K} > 1.
We have H; ;(z) = g(1) fo s)ds, with g(s) = fi(sp;(2) + (1 — s)c)*. We get:

|9 ()] < 185(2) = el £fi(s(1 = 0)@;(w) + (1 = £)e) 71 f (s(1 = 8)@;(w) + (1 = s)c).
We deduce that for all [, j € IN* and z = u + it with (u,t) € A;:

— G () — ¢t )
fi(( 51)sig(c)) P (p()fz(( 17)c()).

|H5(2)| < |@j(z) — ¢
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Using Lemma 11.2, we get there exists a constant C' such that for all [, € IN* and

(u,t) € A
[Hy5(2)] < Cexp { 015((1 — 6)@;(w) }

Using that b is analytic and increasing on (1,400) and m; > 1, we deduce that there
exists ¢’ > 0 such that for all j € N*, u € K:

(1= 0)@;(u)) < 1hj(u) — €.

We deduce that for all [, j € IN*, (u,t) € A;:
\Hyj(u+it)| dt < Cexp {%%(u) - ébls’} .
This gives that forall u € K, [,j € IN*:

2C b '
1] < g T (11.30)

We have H; ;(z) = (5 (2) f] ($;(2)) fi (géj(z))e_l. For (u,t) € A;, we have using (10.9),
(11.29) and f/(|z]) < 6! fi(|2])/|2|:

|H ;(u+it)] < mijgo}(u+ it)|ol fi (1 — 6)¢j(u))€.

Arguing as in the upper bound on I li we get there exists a finite constant C such that
foralll,j e N*, ue K

C 7 ’
L] < = ol (P(u)—uy)—Lo'e / ‘@;(U‘F it)| dt.
Y [£c;m/Lo]

Then use (10.12), to conclude that |I5| < (C/y) e V(W —un)=to'e’ f51- some finite constant
C. This and (11.30) give there exists a finite constant C' such that for all/,j € IN*, u € K:

I ;(to) < C 8!y —uy)—t'e’ (11.31)
‘ y

11.8.3 The main part

The main part is handled as in [18] from (168) to (172), see also [16]. For (u,t) € K', we
have ¢;(u +it) € D(6) and we deduce from (11.7), that there exists ¢ > 0 such that for
(u,t) € K', 1, j € IN*:

to ]
H,; (u 4 it) e*(u+zt)yZbl dt — p(b)ff/(bfl) (1 + O(efebl)> D(], l, u)7

—to
and ,

—to

where O(e‘d’l) = R(u,t,j,1,y) and there exists some finite constant C such that for all
l € N*, we have sup;cn- SUpycp, (u,yek [2(w:t, 5,1 y)| < Ce*'. We have for (u,t) € K"

~ ~ ~ 2 ~
G+ it) = ) + it} () — 3 )+ (8, ),
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with |h; (t,u)| < t°C5 /6, Recall that uy, , belongs to K. With the definition of u;, ,, we get
that:

2

7 ~ % . * . 7 ~ % * e ~ %
Z/}jn (un,ﬂ + Zt) - (un,f + Zt)y’ﬂ = ’(/}jn (un,f) - un,fyn - 50-721! —+ h.jn (t7 un,é)?

with 57, = 07 (@, o), |hy, (8,3, )| < t°CF /6.

We consider the decomposition D(jy, {5, ﬁ;e) = Dy + D5 with:

lnb—ln/2

D, = / o0 ($3 (8 o i) — (@5 o it)y) gy
1, b—In/2

Using that |hy, (t, @ ,)| < 1367%/2C /6 for [t| < 1,b7"»/2, we get:

. Lo/
Dy = " (9 (@5, =5 ) / o (BTG A7 /200 Ry, (15 )
—l,b—ln/2
5 lr"‘b_3lﬂ'/2
:e%zn(wjn(a;qe)fa;’,,yn)/ e toman 122 gy (1+O(lf’lb73l”/2)>
1, b—ln/2
1 ooln (s (" . lnGn,eVe )
= (w"”(u”l)_“”v@y”)/ e 5 /2 ds (1 + 0(125_31”/2))
loing2 , e VE
=T, x (1 + ouib—?’ln/?)) :
with
T V2T e (i, @ ) )

\/folna?
We now give an upper bound for [Ds|. Thanks to (11.27), we have |h;, (¢, 4}, ,)| <

tG7 ,/6 for t € [—to, to]. We deduce that for ¢ € [—t, t]:

- ) ~ ) -~ ~ 2
R (4, (i3, + ) = (G5, + i)y ) <y (05 ) = 5 90 — 0

This implies that:
|D2| < elbln (1Z)jn (a;,g)fafhzy")/ e_gbl"ffi,eﬂ/?’ dt

[t|€[lnb=tn/2,t0]

< 2ty " ($in (@0 =5 eyn) o—01357 /3

=T, x O(I36731/2),

11.8.4 Conclusion

To conclude, we deduce from (11.31) with y = y,, that:
/| [t0: 7/ Lol | H, g, (@ ¢+ it) e @t iuml™ | gp = 7 O(e=0"/2)
t|€lto,cj, ™/ Lo

This implies that:

T

iy (i g+ i) e et g ()~ ONT, o (14 062 )
,%

Jin
Lo

Then use (11.26) to conclude.
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12 Results in the Botcher case

We present mostly the results without proof as their correspond either to a slight
generalization of [17] and [18] or can be proven by mimicking the proof in the Harris
case presented in Section 11. Recall the Bottcher constant § € (0, 1) is defined by a = ue,
where a is the minimum of the support of p. We assume a > 2.

12.1 Preliminaries

We define the function b on its domain which is a subset of {z € C; 0 < |z| < 1} by:

b(z) =log(z) + > _a~" 'log (f;*(;(;)) : (12.1)
n=0 n

According to Lemma 10 in [18], for every ¢ € (0,1), there exists a constant § = 6(J) €
(0, 7) such that b is analytic on the open set:

D(6,0) ={z€C;0< |z| <1-19, |arg(z)| < 0}. (12.2)

On (0,1), the function b is analytic, negative and satisfies bo f = ab. We also have, see
Lemma 14 in [18] that:

’ / . ’ o . ’ _
(sb'(s)) >0 for s € (0,1), ll/(Hi sb'(s) = +o0 and ll\r"%sb (s)=1.

Recall that ¢ denotes the Laplace transform of W. We also consider the function v = boyp
defined on (0, +00). According to Lemma 17 in [18], the function ¢ is analytic on (0, +00)
strictly decreasing, strictly convex and such that:

. ’ _ : / —
zlggﬂlﬁ(x)— oo and 16Er}}mw(m) 0.

Let g be the inverse of —¢’. In particular, for a given v > 0, the minimum of ¢(u) + uv
for w > 0 is uniquely reached at g(v):

min ((u) + uv) = $(g(v)) + g(v)v. (12.3)

u>0

12.2 Left tail of w
We define the function M for v € (0, +0o0) by:

M(v) = —pP/1=P) m>118 (¥(u) + uv) . (12.4)

The function M is analytic on (0, +00), see Proposition 3 in [10], positive and multiplica-
tively periodic with period p!=#. For z € (0, a/pu], we set:

log(x) P @)
= | —7_ d =z(= 12.5
0= |t v = () (129
so that y(x) € (a/u,1]. For £ € N* and y > 0, we define the positive functions:
p(a) =Y 008 y
M =t and M =M —
1,@(9) omlo? (y/ﬁ) Yy 2,@(y) 176(?]) g(y/g)

where 02(y) = 1" (g(y)) > 0. For £ € N* and z € (0,a/u], we set:

My (7)) = My (y(z)) and M (z) = Mo (y(z)).
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By construction z + y(z) is multiplicative periodic with period a/u = a'~#. We deduce
that M, , and M> , are multiplicative periodic with period a/p = al=#, positive, bounded
and bounded away from O.

Let IP; be the distribution of Ele W,;, with (W;,i € IN*) independent random variables
distributed as W. Since a > 0 and thus ¢ = 0, we get that W has density w and that
Zle W; has density w*‘. Mimicking very closely the proof in [18] stated for ¢ = 1, it is
not very difficult to check the following result. The verification is left to the reader.
Lemma 12.1. Let p be a non-degenerate super-critical offspring distribution with finite
mean and a > 2. Let £ € IN*. As x \, 0, we have:

w () ~ we(x) ~ My o(z) 2B=2/20-5) expy {_gl/(l—ﬁ) x—B/(l—ﬂ)M(w/g)} . (12.6)

Py(W < ) ~ My (x) 2P0 exp {—él/“—ﬁ) x—ﬁ/“—ﬁ)M(a:/z)} . (12.7)
Using (118), (119), (122) (with f replaced by f;), (123) and (78) in [18], we also get
the following upper bound, see also Lemma 11.3 in the Harris case.
Corollary 12.2. Let p be a non-degenerate super-critical offspring distribution with
finite mean and a > 2. There exists a finite constant C such that for all ¢ € IN*, z > 0 and
u >0, we have withr = r(x), y = y(z):

T
euya

p(u)

w*(z) < Cu” fr(p(u))®. (12.8)

12.3 Proof of Lemma 4.4 in the Bottcher case

Mimicking the arguments given in Section 11.3, it is easy, using Corollary 12.2 to get

that:

w*uf(

. ) L _

wgr(r)IJer*f(x/u) ple) = 1.

From the definition of pg ¢ in (4.5), we deduce that limg_,o+ pg’g(ﬂ, ...a) = 1. This ends
the proof of Lemma 4.4 in the Bottcher case.

12.4 Lower large deviations for 7,

For j € IN*, let ¢, denote the Laplace transform of W; = Z;/c;: ¢j(u) = Ele™*Wi] =
fi(e=%/¢) for u € C4, where C4 = {u € C, R(u) > 0}. Notice that ¢; converges uni-
formly on the compacts of C_. towards ¢, the Laplace transform of W, as j goes to infinity.
We also have that ¢ (u)/p;(u) = —E[W; e=*Wi]/Ele~""7] so that lim, , o ¢} (u)/¢;(u) =
—a’ /Cj .

We consider the functions ¢; = b o ¢, defined on (0, +c0) for j € IN* and the function
1 =bo . According to Lemma 17 in [18], the function ¢ is analytic on (0, +00) strictly
decreasing, strictly convex and such that lim, o+ ¢'(z) = —oco and lim,_, - ¢'(z) = 0.
Mimicking the proof of Lemma 17 in [18], it is easy to check that the functions 1), are
analytic on (0, +00) strictly decreasing, strictly convex and such that:

al
lim ¢j(z) = —oc0 and lim ¢j(z) = ——-

z—0+ r—+00 Cj
Let g; (resp. g) be the inverse of —Tﬂ} (resp. —¢’) on (a’/c;,+00) (resp. on (0,+00)).
In particular, for a given v > a’//c;, the minimum of v;(u) + uv for v > 0 is uniquely
reached at g;(v). Using that ¢; converges uniformly on compact of C; towards 1, that

b and thus ¢; and ¢ are analytic, we get that for any compact of (0, +c0), the strictly
convex functions 1; and their derivatives converge uniformly towards the strictly convex
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function ¢ and its derivatives. We deduce that for any compact of (0, +c0), g; converges
uniformly towards g.

We consider the following general setting. Let ¢ € IN* and a,, € (¢a”, fc,, /o] such that
liminf, o a,/€a™ > 1. Since a < ¢,41/¢, < p for all r € IN, we deduce that the sequence
(cn_1al, 0 <1< n) is decreasing. Therefore, the integer [, = sup{l € {0,...,n}, ¢,_fa’ >
coan} is well-defined and strictly less than n. Set j, =n —1,, > 1 and

ln
an = Yn cj, La™,

with y,, € (ac;, —1/coc;j,,1/co]. Notice that the conditions lim, o @, /¢, = 0 and a,, > fa”
imply that lim,,_,~ l,, = +00. The sequence (j,,n € IN*) may be bounded or not.

As a < ¢ry1/¢, for all r € IN, we deduce that y,, > ac;,—1/cocj, > uj"/cjn. Thus, we
can define v}, , = g;, (y») and o7, , = ¢% (u}, ,). Mimicking very closely the proof of (175)
in [18] (which is stated for ¢/ = 1 and lim, . jn = 00), it is not very difficult to check
the following slightly more general result. The verification, which can also be seen as a

direct adaptation of the detailed proof of Lemma 11.5, is left to the reader.

Lemma 12.3. Let p be a non-degenerate super-critical offspring distribution with fi-
nite mean, a > 2 and type (Lo,ro). Let ¢ € N*. Assume that lim, o a,/c, = 0 and
liminf, ,~ a,/¢a™ > 1. Then, we have, with lim,_,~ €y ¢ = O:

P/(Zn = an)
Lop a _Z/(a_l) * *
Lo o {hat (5, 150+ ) (L (1)Lt o £
Cj,\/2m baln o2,

We end this section with the following strong ratio limit, whose proof is similar to the
proof of Lemma 11.6.

Lemma 12.4. Let p be a non-degenerate super-critical offspring distribution with finite
mean and a > 2. Assume that lim, o an/c, = 0, liminf, . a,/¢a™ > 1 and a, =
Lrl(mod Lg) for all n € N*. Then, we have:

— p(a)~ (" D/ (@D, (12.9)

12.5 Proof of Proposition 6.5 in the Bottcher case

For h € IN, we have P(r,(7) = rp(tq)) = p(a)©@" ~D/(a=1 We deduce from (2.6) and
the convergence characterization (2.1), using that t, has a.s. an infinite height, that the
proof of Proposition 6.5 is complete as soon as we prove the following strong ratio limit.

Lemma 12.5. Let p be a non-degenerate super-critical offspring distribution with finite
mean and such that a > 2. Assume that lim,, .~ a,, /¢, = 0 and that P(Z, = a,) > 0 for
every n € IN (which implies that a,, > a"). Then, we have for h,k € IN*:

. ]Pk(anh = an) —(a" =1 -1

In fact, it is enough to prove (12.10) for k = a" as P(Z), = a") = p(a)~ (" ~D/(a=D) 1t
is also enough to consider the two cases: lim,,_,, a,/a” = 1 and liminf,, o, a,/a"™ > 1.

The case lim,,_, a,/a™ = 1 is handled as in the Harris case, see the first part of the
proof of Proposition 6.3 in Section 6.2. The case lim inf,,_, ., a,/a™ > 1 is a consequence
of Lemma 12.4.
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