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Abstract

This paper is concerned with a new expression of the so-called Pennington-Worah
distribution, characterizing the asymptotic empirical eigenvalue distribution of some
non linear random matrix ensembles. More precisely consider M = 1

m
Y Y ∗ with

Y = f(WX) where W and X are random rectangular matrices with i.i.d. centered
entries. The function f is applied pointwise and can be seen as an activation function in
(random) neural networks. The asymptotic empirical distribution of this ensemble has
been computed in [16] and [3]. Here it is related to the Marcenko-Pastur distribution
and information plus noise matrices.
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1 Introduction

The scope of this article is to describe the limiting empirical eigenvalue distribution
(e.e.d.) of some non linear random matrix ensembles considered in [16]. Such ensembles
have been introduced as new approaches to understand deep learning using the theory
of random matrices: we refer the reader to the above cited article as well as [9], [8],
[14], and [13] for a more complete introduction to the subject. These non linear random
matrix ensembles can be defined as follows:

Consider a real random matrix X ∈ Rn0×m with i.i.d elements with distribution ν1. Let
also W ∈ Rn1×n0 be a real random matrix with i.i.d entries with distribution ν2. The
entries are normalized so that∫

xdνi(x) = 0,

∫
x2dνi(x) = 1 for i = 1, 2.

There are also some technical assumptions on the tail of these distributions: assume
that there exist constants ϑw, ϑx > 0 and α > 1 such that for any t > 0

P (|W11| > t) 6 e−ϑwt
α

and P (|X11| > t) 6 e−ϑxt
α

. (1.1)

Regarding the (activation) function f , one assumes that there exist positive constants
Cf and cf and A0 > 0 such that for any A > A0 and any n ∈ N

sup
x∈[−A,A]

|f (n)(x)| 6 CfA
cfn. (1.2)
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In particular this implies that f is real analytic.
Define then

M =
1

m
Y Y ∗ ∈ Rn1×n1 with Y = f

(
WX
√
n0

)
(1.3)

where f is applied entrywise. We suppose that the dimensions of both the columns
and the rows of each matrix grow together in the following sense: there exist positive
constants φ and ψ such that

n0
m
−−−−→
m→∞

φ,
n0
n1
−−−−→
m→∞

ψ

Denote by (λ1, . . . , λn1) the eigenvalues of M given by (1.3) and define its e.e.d. by

µn1 =
1

n1

n1∑
i=1

δλ1 . (1.4)

In order that the entries of Y are roughly centered (using the central limit theorem), we
assume that ∫

f(x)
e−x

2/2

√
2π

dx = 0. (1.5)

Last we set:

θ1(f) =

∫
f2(x)

e−x
2/2

√
2π

dx and θ2(f) =

(∫
f ′(x)

e−x
2/2

√
2π

dx

)2

. (1.6)

[3] and [16] have shown the following result.

Theorem 1.1. There exists a deterministic compactly supported measure µf such that

µ
(f)
n1 −−−−→

n1→∞
µf weakly in probability. The measure µf is characterized through a self-

consistent equation for its Stieljes transform G: for z ∈ C \R, we set

G(z) :=

∫
dµf (x)

x− z
, H(z) :=

ψ − 1

ψ
+
z

ψ
G(z),

Hφ(z) := 1− φ+ φH(z) and Hψ(z) := 1− ψ + ψH(z)

We then have the following fourth-order self-consistent equation:

H(z) = 1 +
Hφ(z)Hψ(z)(θ1(f)− θ2(f))

ψz
+

Hφ(z)Hψ(z)θ2(f)

ψz −Hφ(z)Hψ(z)θ2(f)
,

where θ1(f) and θ2(f) are defined in (1.6).

Theorem 1.1 states that the Stieltjes transform G of the distribution µf is the solution
of a quartic equation depending on θ1(f) and θ2(f) only. The limit is thus universal.

Remark 1.2. The quartic equation is not exactly the one stated in [16]. The correct
statement is given in [3].

When θ2(f) = 0, the probability distribution µf can then be shown to be the Marcenko-
Pastur distribution with parameter c = φ

ψ . Indeed the quartic fixed point equation for G
then reduces in this case to Marcenko-Pastur [15] fixed point equation:

zm(z)2 + (z − (1− 1/c))m(z) + 1/c = 0.

When θ1(f) = θ2(f) = 1, the probability distribution µf can then be shown to coincide
with the limiting e.e.d. of the linear random matrix ensemble 1

n1
WX(WX)∗ which has

first been computed in [1] (see also [11]). We call such a distribution the product Wishart
distribution. In the general case, the limiting e.e.d. µf is an interpolation of these two
limiting distributions.
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Remark 1.3. The result of [3] can be adapted to the case of complex sample covariance
matrices W = W1 + iW2, X = X1 + iX2 for some independent matrices W1,W2 whose
entries have distribution ν2 (and similarly for X1 and X2). In that case, the limiting
distribution is either the Marcenko-Pastur distribution or the product Wishart one.

The aim of this article is to describe the limiting distribution µf , in terms of the two
extremal distributions which are the Marcenko-Pastur one and the product Wishart one.
First, one can observe, from their definition (1.6), that θ1(f) ≥ θ2(f). To state our main
result, we need some more definitions. In addition to the matrices W and X, we consider
an additionnal matrix Z:

Z is a n1 ×m Gaussian random matrix with i.i.d. entries Zij ∼ N (0, 1). (A1).

The three matrices W,X and Z are assumed to be independent.

Theorem 1.4. The probability distribution µf is also the limiting e.e.d. of the information
plus noise sample covariance matrix

M =
1

m

(√
θ2(f)

WX√
n0

+
√
θ1(f)− θ2(f)Z

)(√
θ2(f)

WX√
n0

+
√
θ1(f)− θ2(f)Z

)∗
, (1.7)

where W,X (resp. Z) are independent Gaussian random matrices as in (1.1) (resp. as in
(A1)).

Remark 1.5. Theorem 1.4 has a similar flavor to that of [12], where kernel matrices are
considered. Indeed, in both cases, the limiting empirical eigenvalue distribution can be
related to that of a linear model of random matrices. This is also in the same vein as [14]
where the same phenomenon arises.

Remark 1.6. Theorem 1.4 states indeed that µf is related to the rectangular free
convolution of the pushforward for both the Marchenko-Pastur distribution and the
product Wishart distribution (see [6] Chapter 3 e.g.). This can be related to the results
of [2].

Remark 1.7. Possible outliers for information plus noise random matrices as in (1.7)
have been studied in [5]. We refer the reader to Theorem 4.2 therein: in particular this
may suggest when possible outliers may arise for a deformation of a non linear random
matrix ensemble of the form

M̃ =
1

m

(
f

(
WX
√
n0

)
+B

)(
f

(
WX
√
n0

)
+B

)∗
,

for some (deterministic) matrix B.

The rest of the article is dedicated to the proof of this theorem. The intuition comes
from the combinatorial argument we give in subsection 2.2.

2 Proof of Theorem 1.4

In this section, we assume that θ1 − θ2 = 1 (which can be achieved by scaling).

2.1 Stieltjes transforms

Information plus noise matrices have been studied e.g. in [10], [4] and [5]. We refer
the reader for more references therein. Consider a n1 ×m random matrix Z with i.i.d.
centered entries of variance 1. Let now A be a (possibly deterministic) matrix such that
the e.e.d. of 1

mAA
∗ converges weakly to a probability distribution ν. The information

plus noise matrix is then defined as the sample covariance matrix

M =
1

m
(A+ Z)(A+ Z)∗.
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We denote by µ1 ≥ µ2 ≥ · · · ≥ µn1
the ordered eigenvalues of M and the associated e.e.d.

µn1
:=

1

n1

n1∑
i=1

δµi .

Then [10] show the following.

Proposition 2.1. Assume that m
n1
→ c1 < 1 as m → ∞. There exists a probability

distribution µ such that µn1
→ µ weakly in probability when n1 → ∞. The Stieltjes

transform m(z) =
∫

1
z−xdµ(x), z ∈ C \R satisfies the fixed point equation

m(z) =

∫
1− cm(z)

(1− cm(z))2z − (1− c)(1− cm(z))− t
dν(t).

In other words Proposition 2.1 states that

m(z)

1− cm(z)
= GA(z), where z = (1− cm(z))2z − (1− c)(1− cm(z)), (2.1)

where

GA(z) :=

∫
1

x− z
dν(x).

We are now choosing A to be the random matrix

√
α2 WX
√
n0

for some α2 to be defined.

For ease, let W and X be Gaussian random matrices (with respective size n1 × n0 and
n0×m). Denote by G the asymptotic Stieltjes transform of the e.e.d. of α2WX(WX)∗/m.
From Theorem 1.1, we first observe that Hψ(z) = zG(z), and Hφ(z) = 1 + φ

ψ (zG(z)− 1).

Thus the Stieltjes transform of the asymptotic e.e.d. of 1
mWX(WX)∗ satisfies the

following equation:

ψz2(zG(z)− 1) = z2G(z)

(
1 +

φ

ψ
(zG(z)− 1)

)
α2(ψ + zG(z)− 1),

which can be rewritten setting c := φ
ψ ,

α2cz
2G3(z) + α2zG

2 (1− c+ c(ψ − 1)) +G (α2(1− c)(ψ − 1)− zψ) + ψ = 0. (2.2)

Replacing z with z in (2.2), we then use the fact G(z) =
m(z)

1− cm(z)
. One can check that

the resulting equation is indeed a quartic equation (and not of degree 5), which holds
true only because the change of variables z = (1− cm(z))2z − (1− c)(1− cm(z)) has the
same parameter c as in (2.2). After some heavy computations, we obtain when α2 = θ2

ψ +m(−ψz − θ2(1− c)(1− ψ) + (1− c)ψ) +m2(θ2(1− 2c)z + ψcz − θ2(1− c)2)
+m3(θ2(1− c)2z2 − 2c(1− c)zθ2)−m4θ2c

2z2 = 0. (2.3)

This is indeed the quartic equation from Theorem 1.1 when θ1 − θ2 = 1. This finishes the
proof of Theorem 1.4.

2.2 Moments

Theorem 1.4 has now been proved. We explain the intuition yielding this result. To
that aim, we turn back to the moments of the distribution µf . Let q ∈ N be the order of
a moment. Let Cq be the cycle of length 2q with vertices labeled i1, j1, i2, j2, . . . , iq, jq in
order. To state the result we need a few definitions.
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Definition 2.2. An admissible graph is a connected graph built up from simple even
cycles obtained from Cq by identifying i-vertices and j-vertices. The cycles are joined to
another by at most a common vertex and each red edge belongs to a unique cycle.

An example of an admissible graph is given in Figure 1. We recall from [3] the
following result. One has that∫

xqdµf (x) =

q∑
Ii,Ij=0

Ii+Ij+1∑
b=0

A(q, Ii, Ij , b)θ1(f)bθ2(f)q−bψIi+1−qφIj , (2.4)

where A(q, Ii, Ij , b) denotes the number of admissible graphs with 2q edges, Ii i-identifi-
cations, Ij j-identifications and b cycles of size 2.

We now consider the same moment evaluation for the random matrix

M =
1

m

(√
θ2(f)

WX√
n0

+ Z

)(√
θ2(f)

WX√
n0

+ Z

)∗
.

The associated spectral moment of order q is then

1

n1mq
ETr

[(√
θ2(f)

WX√
n0

+ Z

)(√
θ2(f)

WX√
n0

+ Z

)∗ ]q
=

1

n1mq

∑
i1,...iq

∑
j1,...jq

E

q∏
t=1

AitjtAit+1jt , (2.5)

where in the last line iq+1 = i1 and A =
√
θ2(f)

WX√
n0

+ Z.

We now use the independence of the three matrices W , X, and Z and the fact that
the entries are centered. We observe that expanding any Aij in terms of entries Wil, Xlj ,
l = 1, . . . , n0 and Zij , each such entry has to arise at least twice in the whole summand (so
that the contribution to the expectation is not zero). Consider the following encoding: to
a possible set of indices {i1, . . . iq} {j1, . . . jq} (identifications inside each set are allowed),
we draw the graph obtained by connecting it to jt and jt to it+1. For ease, edges of this
graph are colored red. In all cases, this yields a connected graph which is cyclic. We
are then going to consider the contribution of each graph to the expectation: thus one
has to assign to each red edge either a “WX” label or a Z label: this comes from the
fact that A is the sum of the two corresponding matrices. Finally for each graph, we
count the number of possible labellings of the vertices and the combined sum of all these
contributions will eventually give the expected trace.

Consider the simple cycle Cq corresponding to the case where all i-indices and j-
indices are pairwise distinct: there are no identifications. It is not difficult to check that
in this case, the only contributing term comes from assigning a “WX” label to each edge
corresponding to A. Indeed it is not difficult to check that if there is at least one Z label
the associated expectation is null. Thus one is left with the same contribution as that of
the non-linear matrix model in [3]. In particular one has that

E

q∏
t=1

AitjtAit+1jt =
θq2n0
nq0

,

for such a cycle: the l index is necessarily the same along the whole cycle so that each
W or X entry arises twice.

Consider now an admissible graph: this graph is then a tree of cycles. Some of these
cycles have length 2 (denote by b the number of such cycles) and let c be the number
of the remaining cycles (which have an even length ≥ 4 in all cases). Similarly for a
cycle of length 2l1 ≥ 4, the contribution to the expectation is not zero iff all red edges
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j5•
i2•

j1•

j2
•

i3
•

j4•

i4
•

j3
•

i1
•

j0•

i0•

Figure 1: An admissible graph: edges from cycles of length 2 are assigned a Z (blue
edge) or WX label (in red) and those of length greater a WX label. Here b = c = 2.

are assigned a “WX” label and the l-index is necessarily constant along the cycle. On
the other side, for a cycle of length 2 red edges can be assigned any label. However so
that the edges all arise with a multiplicity at least 2, the two edges of the cycle bear the
same label necessarily.

As a consequence, when the red graph associated to the i-indices and j-indices is
admissible, the contribution to the expectation in (2.5) can be easily proved to be given
by

θq−b2 (1 + θ2)
b nc0

nq−b0

.

Indeed, in view of [3], the l-index is constant along any cycle of length greater than
3. Counting now the possible labelling of the i and j-vertices: note that i-indices
can describe {1, 2, . . . , n1} while j indices run from 1 to m. The final contribution of
admissible graphs is then

EA =

q∑
Ii,Ij=0

Ii+Ij+1∑
b=0

A(q, Ii, Ij , b)θ1(f)bθ2(f)q−bψIi+1−qφIj (1 + o(1)),

where the error term comes from the number of possible indices i and j only. We note
that this is the same as the moment (2.4).

The proof is finished provided we can show that the contribution of non-admissible
graphs obtained from Cq by i-identifications and j-identifications is negligible. The
arguments can then be copied from [3]. Non admissible graphs can be obtained from
admissible ones by making some further identifications in such a way that one does not
obtain a tree of cycles. There are then more than one way to run through the graph and
some edges may arise more than twice in the summand. This is however compensated by
the fact that ones loses for each additional identification a power of m. We skip the detail
of the proof. The contribution of non admissible graphs can be proved to be negligible.
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