Bayesian Analysis (2021) 16, Number 1, pp. 31-60

On a New Class of Multivariate Prior
Distributions: Theory and Application in
Reliability
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Abstract. In the context of robust Bayesian analysis for multiparameter distri-
butions, we introduce a new class of priors based on stochastic orders, multivariate
total positivity of order 2 (M T P,) and weighted distributions. We provide the new
definition, its interpretation and the main properties and we also study the rela-
tionship with other classical classes of prior beliefs. We also consider the Hellinger
metric and the Kullback-Leibler divergence to measure the uncertainty induced by
such a class, as well as its effect on the posterior distribution. Finally, we conclude
the paper with a real example about train door reliability.
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1 Introduction

It is well known that Bayesian statistics provides an excellent theoretical framework
for analyzing experimental data. The key of its success lies on its ability to incorporate
prior knowledge about the quantity of interest as a distribution function. This prior
distribution, together with experimental data, leads in general to a better estimation of
the quantity under study. A thorough review of the Bayesian approach can be found in
Berger (1985) and Bernardo (2003). As it is nicely described in Basu (1994), any elici-
tation process leading to a prior information is to some extent arbitrary. Therefore, the
advantage given by the prior information becomes in some way a disadvantage, being in
fact the critical and even polemical point of Bayesian methodology. This is exactly the
problem addressed by robust Bayesian analysis, also called Bayesian sensitivity analysis,
quantifying and interpreting the uncertainty induced by the partial knowledge of the
prior information. Of course, this also holds for other classical elements in Bayesian anal-
ysis as likelihood and loss. A thorough review of the robust Bayesian approach can be
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found in Berger (1994) and Rios Insua and Ruggeri (2000). With respect to uncertainty
in the loss functions we refer the readers to Makov (1994), Dey et al. (1998), Martin
et al. (1998) and, more recently, to Arias-Nicolds et al. (2006, 2009), among others.

Focusing only on the prior uncertainty, it is a common practice in the literature to
replace the specific prior distribution by a class of priors I'. The use of this class somehow
overcomes the classical criticism about the choice of a unique prior on the grounds of
arbitrariness and bias. For such a reason, we find different valuable definitions in the
literature depending on their use as parametric families, contamination classes, density
bands, densities with a few specified percentiles, distributions bands, etc. Denoting in
bold lowercase and bold uppercase vectors and random vectors, respectively, given a
specific prior 7 and € in (0,1), the classical e-contamination class is defined as

I.={n":7n"=1-¢enm+eQ, Qc Q}, (1.1)

where 7’ is given by a mixture and Q is a family of priors called the class of contam-
inations, see e.g. Berger and Berliner (1986), Moreno and Cano (1991), Betrd et al.
(1994), among others. For a detailed illustration of classes of priors and topological
neighborhoods we refer to Berger (1985, 1994), Fortini and Ruggeri (2000) and Moreno
(2000).

Recently Arias-Nicolds et al. (2016) defined a new class of priors, called the distorted
band, based on stochastic orders and distortion functions. That new class addresses the
problem of uncertainty in models depending just on one-parameter. To better under-
stand the concept of that class, let us first recall the classical Bayesian inference frame-
work. We denote by X the underlying observation with probability density function
(PDF) pg(x), where 0 represents the unknown parameter defined in the set of states
® C R", n € N,n > 1. Then, a specific prior w over @ with PDF 7(0) represents
the state of knowledge before any data X is observed. After taking into account the
observed data, x, and using Bayes’s theorem, the posterior distribution is denoted by
7« and its density is given by

1(6 | x)m(0)
7x(0) ) (1.2)
where (0 | x) and my(x) denote the likelihood function and the marginal density,
respectively.

At this point we also recall the definition of the likelihood ratio order for univariate
random variables. Let 7, and 75 be two prior distributions over © C R. The former is
said to be smaller than the latter in the likelihood ratio order, if the ratio mo(0)/m1(0)
increases over the union of the supports of the two PDFs. We denote this occurrence
by m1 < ™. Roughly speaking, this means that w5 takes on larger values and more
variability than ;. For more details on the concept of likelihood ratio order see Miiller
and Stoyan (2002) and Shaked and Shanthikumar (2007).

We finally recall the concept of distortion functions. These are non-decreasing con-
tinuous functions h : [0, 1] — [0,1] such that A(0) = 0 and h(1) = 1. If 7 is a univariate
prior with cumulative distribution function (CDF) F, the distorted CDF is given by

Fy (6) = ho Fy (6) = h[Fy (6)] V6 € ©, (13)
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and represents the CDF of a particular random variable called the distorted random
variable, with distribution 7. If the distorted CDF is differentiable, then, taking the
derivative in (1.3), we get the distorted density function given by

fr (0) = 1 [Fr (0)] 7(6), (1.4)

see Section 2.6 in Denuit et al. (2005) for a review of the distortion concept. Although
priors can be distorted according to different criteria, Arias-Nicolds et al. (2016) argue
for the use of convex and concave distortion functions based on two arguments. First,
they represent satisfactorily a change in the weighting of the underlying prior. Thus,
a convex (concave) distortion function gives more weight to higher (smaller) values of
the variable. Second, they have desirable properties when we compare the original prior
with the distorted one. If h; is concave and ho is convex, it follows from Lemma 1 in
Arias-Nicolas et al. (2016) that:

Thy <ir T <ip Thy- (1.5)

Inspired by property (1.5), the distortion band, denoted by I'j,, 1., associated with
a specific prior m and based on h; and hs, a concave distortion function and a convex
distortion function, respectively, is defined as

Fhl’hzﬂf = {ﬂj *Thy <ir ud <ir 7Th2} . (16)

As an immediate consequence, it is shown in Arias-Nicolds et al. (2016) that the
posteriors corresponding to 7, and 7y, are also lower and upper bounds for the class
of all posteriors 7, in the likelihood ratio order sense, i.e., for all 7’ € 'y, 4, » then

/
Thy,x Slr Ty Slr Thy,x- (17)

Other interesting properties of the distorted band are studied in detail in Arias-
Nicolds et al. (2016), where the authors show that T'j,, 5, » fulfills all the requirements
that Berger (1994) discussed about the choice of a class of priors. First, its elicitation and
interpretation is easy. Second, the prior uncertainty can be reflected by using different
metrics. Finally, the range of quantities of interest can be computed by just looking
for the extremal distributions generating the class. In conclusion, the distortion band is
regarded as a “neighborhood” of the prior 7. For further information regarding recent
applications of the distorted band see Joshi et al. (2018), Sanchez-Sdnchez et al. (2019)
and Barrera et al. (2019). Also see Huang and Mi (2018) for applications of the likelihood
ratio order in the Bayesian framework.

Note that the distorted band model defined in (1.6) is valid for prior distributions
defined over ® C R. As a natural extension, we propose in this paper a model for
multiparameter distributions, i.e., for distributions such that the parameter set is ® C
R™ n > 1. Our first attempt is to extend the two key concepts used in the model
(1.6), namely the likelihood ratio order and the distortion function, to the multivariate
setting. Regarding the likelihood ratio order, this can be easily reached by using the
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classical multivariate extension introduced in Karlin and Rinott (1980a) (see also Whitt
(1980) and Shaked and Shanthikumar (2007)) that will be recalled later on. Regarding
the extension of distortion function, although the univariate concept is widely used
in different fields (see e.g., Quiggin (1982), Yaari (1987), Schmeidler (1989), Denneberg
(1990), Wang (1995, 1996) and Goovaerts and Laeven (2008)), there is no unique way to
extend it to the multivariate setting (see, e.g., Valdez and Xiao (2011), Di Bernardino
and Rulliere (2013) and Navarro et al. (2016)), for different multivariate extensions.
Instead of facing the dilemma of choosing among these equally plausible candidates,
we propose a new approach in this paper, based on weighted distributions. Weighted
distributions, first introduced by Fisher (1934) and explicitly defined in Rao (1963) (see
also Rao (1985)) provide a method to adjust a probability distribution in a way that
is different from the one based on distortion functions and that can be unambiguously
extended to the multivariate case (see, e.g., Jain and Nanda (1995) and Navarro et al.
(2006, 2011)). Given a prior 7 with density function 7(8), @ € ® C R", let w be a
weight function, i.e., a non-negative function w : R™ — R¥ such that the expectation
E™ [w(0)] is strictly positive and finite. A weighted random vector 7, is a random
vector with density function given by

w(0)

Ty (0) = Wﬂ(e)a

V0 € ©® C R"™. (1.8)
Note that for n = 1, in the case of an absolutely continuous prior # with CDF F;, the
distorted CDF associated to a differentiable distortion function h has a density function
fr, that can be written as a weighted density function,

fr(0) = 1" [Fr (0)] m(0) = w(0)m(0), (1.9)

where the weight function w(f) = h' [F;; (0)] depends on F; (this is noted, for example,
in Furman and Zitikis (2008) and Blazej (2008)). In other words, when we consider
absolutely continuous random variables, weighted distributions are more general objects
than distorted distributions. Moreover, if this is the case, the distortion A is convex (resp.
concave) if and only if the weight function w is increasing (resp. decreasing). In this new
framework, we construct a weighted band (rather than a distorted band) by making a
perturbation over the prior m by considering two weight functions: wy (decreasing) and
wa (increasing). Under these assumptions, it is well-known (for n = 1) that

Tw, Slr ™ Slr Twg - (110)

Observe that although distorted distributions and weighted distributions are different
in nature, they are used in a similar way to change the weighting of the underlying prior.
Thus, an increasing (decreasing) weight function gives more weight to higher (smaller)
values of the variable.

The multivariate weighted band is introduced in Section 2, along with its main
properties. In particular, we show how this multivariate bands inherits some of the
good properties of the univariate distorted band, including the relative easiness in spec-
ifying it and interpreting the posterior distributions. This fact is very uncommon in the
multivariate case. In Section 3 the Hellinger metric and the Kullback-Leibler divergence
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are introduced to incorporate the degree of uncertainty in the elicitation process. We
present an application about failures of train doors in Section 4, discussing also how to
obtain a sample from the class of posterior distributions. Concluding remarks and some
ideas for future researches are finally presented in Section 5.

In this paper, for any random variable Z and an event A, we denote by [Z|A] the
random variable whose distribution is the conditional distribution of Z given A. Given
a random variable X with distribution function F', we define the quantile function as
Fit(p) = inf{z : Fx(z) > p}, for all real values p € (0,1). The symbol =y means
equality in law. A set U C R" is called upper (lower) if y € U whenever y > (<)x
and x € U. Given two real numbers z and y, we denote = V y = max{x,y} and
2 Ay = min{x, y}. For two real vectors x and y, xVy and x Ay mean the componentwise
maximum and the componentwise minimum, respectively. Finally, we use the terms
increasing and decreasing in a wide sense, that is, a function g : R" +— R is increasing
(decreasing) if g(x) < (>)g(y) for all x <y. Let X be a n-dimensional random vector
and let T C {1,...,n}, then X denotes a random vector constructed by using only the
coordinates of X in [I.

2 A multivariate class of priors: the weighted band

In order to ease the exposition, we will only consider random vectors with absolutely
continuous distributions having densities with respect to a product measure on R™.
However, it is possible to define all key concepts for discrete distributions and the results
are essentially the same. Let’s start by recalling the definition of some multivariate
stochastic orders that we will use in the paper.

Definition 2.1. Let X and Y be two n-dimensional random vectors with CDFs F' and
G, respectively. Then, it is said that X is smaller than Y in the usual multivariate
stochastic order, denoted by X <4 Y, if

P{X € U} < P{Y € U}, for all upper sets U C R".

Roughly speaking, X is less likely than Y to take on large values, where “large”
means any value in an upper set U, for any upper set U. As an immediate consequence,
just taking in account that the complement of any upper set is a lower set, and vice
versa, we can also compare the CDFs, i.e.,

F(x) > G(x), ¥x € R™. (2.1)
Note that condition (2.1) is also sufficient only in the univariate case. The multivari-
ate stochastic order has a characterization in terms of the expectations of increasing
transformations, i.e., X < Y if, and only if,

Elp(X)] < E[p(Y)], (2.2)

for all increasing real functions ¢ on R™ and provided the expectations exist.
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Definition 2.2. Let X and Y be two random vectors with PDFs f and g, respectively.
Then, it is said that X is smaller than Y in the multivariate likelihood ratio stochastic
order, denoted by X <;. Y, if

fx)g(y) < f(xAy)g(xVy), for every & and y in R™. (2.3)

The following implication is also well known:

X<, Y= X<u4Y. (2.4)

The definition of multivariate total positivity of order 2 will be of key importance
for our purpose.

Definition 2.3. A function | : R® — RY, (n € N,n > 2) is said to be multivariate
totally positive of order 2 (MTP,), (T P2 when n = 2) if | satisfies

I(x)l(y) <lxAy)l(xVy), vx,y € R™ (2.5)

Additionally, a n-dimensional random vector X with PDF f is said to be MT Py if its
density f is MT Py or, equivalently, if X <; X.

We will mention briefly some interesting results concerning MT P, and <;,. concepts
that we will use later on.

Lemma 2.4. The product of MTPs functions is still MT P,. Additionally, a function
I : R" — RT defined by I(x) = ] g(x:), where g;, i = 1,...,n, are univariate
non-negative functions, is MTPs.

Lemma 2.5. Let X and Y be two random vectors with PDFs f and g, respectively. If
either X orY is MT Py then X <5, Y if and only if g(x) f(y) < g(y)f(x), Vx <y, or,
equivalently, if g(x)/f(x) is increasing in the union of their supports.

Lemma 2.6. Let X and Y be two random wvectors such that X <;. Y, then for any
Ic{l,...,n} we have X; <; Y.

It is worth mentioning that the relation X <;. Y always implies that the ratio
g(x)/f(x) is increasing in x. The converse is only true in the univariate case.

Both concepts MT P, and <, are explicitly defined in Karlin and Rinott (1980a)
but they are also implicit in many classical papers in the literature, see for instance
Lorentz (1953), Karlin (1968), Sarkar (1969), Rinott (1973), Holley (1974), Kemper-
man (1977) and Preston (1974). Additionally, an excellent review of all previous con-
cepts and multivariate stochastic orders can be found in Miiller and Stoyan (2002)
and Shaked and Shanthikumar (2007). It is also remarkable the equivalence between
log-supermodular and MT P, functions, where a function f: R"™ — R is supermodular
if f(xAy)+ f(xVy)> f(x)+ f(y). This equivalence leads to an interesting analyti-
cal characterization of strictly positive MT P, functions, see for example Topkis (1978,
1998).
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Lemma 2.7. A function | : R® — R with 2 continuous derivatives is MT Py if and
only if
82
8:1:18%-

In(i(x)) > 0, Vi # j.

Although at first glance MT P, property seems to be a technical condition, we find
in Karlin and Rinott (1980a) a large list of multivariate distributions that satisfy the
MT P, condition. For example, as a direct consequence of Lemma 2.4, it is apparent
that independent random variables have a joint MT P» density. Also, the MT P, concept
is fundamental for many probability inequalities that have important applications to
multivariate analysis, multiple hypothesis testing and approximating probabilities, see
for example Karlin and Rinott (1980a,b, 1981), Pearlman and Olkin (1980), Glaz and
Johnson (1984), Sarkar and Chang (1997) and Sarkar (1998, 2008).

To conclude, it is also well-known that MT P; is a positive dependence property that
implies the classical positive associated concept. If X is MT P, then the covariance

Cov(¢(X),9(X)) = 0,

provided ¢ and ¥ are simultaneously monotone increasing or decreasing, see Esary et al.
(1967), Sarkar (1969) and Karlin and Rinott (1980a).

As we have mentioned in the introduction, we find in the theory of weighted dis-
tributions a useful tool to incorporate the uncertainty about specification of a prior
belief. Let 7 be a multivariate prior with density function 7(6), 8 € ® C R™ and let
w : R® — R* be a weight function. The weighted prior m, having density function
7w (6) defined in (1.8) represents a weighted density to measure the uncertainty about
the specific prior density.

A weighted density can be defined according to different criteria, as we will show
later on. We restrict our attention to increasing and decreasing weight functions for
two reasons. First, as explained before, for n = 1 they represent a generalization of the
convex and concave distortion functions used in the distorted band. And second, they
enable an ordering when we compare the specific prior with the weighted one as we can
see in the following result, which extends to n > 2 the property (1.10).

Lemma 2.8. Let m be a specific MT Py prior belief. Let w be an increasing (decreasing)
weight function. Then w <;. (>p,) -

Proof. Let us consider an increasing weight function w and 61,0> € © such that 8; <
0. The product m,(01)7(02) satisfies that

Tw(01)7(02) = Eﬂ[wl()a)]ﬂ(el)w(ez)
w(6s)
= T T
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where the equalities follow directly from expression (1.8) and the inequality comes from
the fact that w is increasing. The proof concludes just using Lemma 2.5. For a decreasing
weight function the proof holds using a similar argument. O

It follows from (2.4) and Lemma 2.8 that, when the prior belief is MT P, and w is
increasing (decreasing), the weighted prior belief 7, is more (less) likely than the prior
belief 7 to take on larger values. This result extends the property (1.10) from the case
n =1 to n > 2. Moreover, for n = 1 this result plays an equivalent role to Lemma 1 in
Arias-Nicolds et al. (2016) and Theorem 1 of Blazej (2008).

Now, let us suppose that the decision-maker is able to represent the changes in a
prior belief, 7r, by a decreasing weight function, wq, and an increasing weight function,
ws. A direct consequence of this fact, jointly to Lemma 2.8, allows us to define two
weighted priors, m,, and m,,, such that m,, <, ™ <, m,,. Then, we present the
following neighborhood band for 7 inspired by these inequalities.

Definition 2.9. Let 7 be a specific MT Py prior belief. We will define the weighted
band L'y, wy,n associated with m based on wy and wa, a decreasing weight function and
an increasing weight function, respectively, (weighted band, for short), as

/. ’
Fw17w2,ﬂ' = {71' P T,y <ir ™ <ir ﬂ'wg} .

As a consequence of Lemma 2.8, it is evident that 7 € I'y, w, ». Therefore the
weighted band can be considered as a particular “neighborhood” band of 7, where
the weighted priors are the lower and upper bound distributions of the class. From
Definition 2.9 uncertainty could be introduced just through an upper (lower) bound by
considering ws (w;) the identity function.

In order to give a meaningful understanding of the weighted band, we provide the fol-
lowing interpretations. First of all, from (2.4) and (2.1) it is apparent that the weighted
band is a subclass of the following multivariate class of priors:

{71" DT, St ' <g 7Tw2}

{n': Fr, (0) > Fr/(0) > Fr, (0),Y0 € ©}. (2.6)

F'w17'w277"

-
-

It is worth mentioning that the class given in (2.6) is a multivariate generalization of
the classical band class defined in Basu and DasGupta (1995) for univariate priors.
Additionally, the weighted band has also some interesting interpretations in terms of
prior probability sets. For example, given a prior «’ € 'y, w, ~ We obtain that

T, (|A) <i 7"/('|A) <ir T, (|A),

for any measurable set A C ® C R"™ of the form A = A; x --- x A, where A; C R,
i =1,...,n, see Rinott and Scarsini (2006) and Shaked and Shanthikumar (2007) for

further information in this sense.

It is worth mentioning that the likelihood ratio order does not apply, in general,
when comparing two priors 7{ and 75 in I'y, 4, ». Each of them is just ordered w.r.t.
Tw, and m,,. However, there are infinitely many priors in the weighted band as it is
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shown in the following result. The next proposition connects somehow the weighted
band with the classical contamination class.

Proposition 2.10. The class Ty, wy,n contains all the priors w, = (1 — €)m1 + ema,
for any pair of priors w1 and mo in Iy, 4, =, obtained as a mizture of ™ and wy and
for any 0 < € < 1. In particular, it contains the mizture between the underlying prior m
and any other prior in the band.

Proof. In order to prove that m¢ € I'y, w,,» we will first prove that m,, <;. m.. From
Definition 2.2 and expression (1.2) a straightforward computation shows that
Tw, (01)7e(02) = (1 — €)my, (01)m1(02) + emy, (61)72(02)
(1 - 6)7Tw1 (01 A\ 02)7‘(1 (01 \Y 02) + ETw, (01 AN 02)7‘1’2(01 V 02)
Tw, (01 N 02)71’6(01 V 02),

IN

where the equalities follow from the expression of the mixture density and the inequality
from the fact that m; and 7y belong to I'y, w, ». Similarly, it is possible to prove that
T Slr T s - O

Since Definition 2.9 is based on w; and ws, there are many possible bands just
by considering different increasing and decreasing weight functions. It is apparent the
choice of those weight functions cannot be arbitrary and it should adjust perfectly to
the problem we are studying. Some useful weight functions can be found in Jain and
Nanda (1995), Nanda and Jain (1997) and Navarro et al. (2006, 2011). In those papers,
the authors study properties related to reliability measures, orderings, characterizations
and dependency analysis. Of special interest is the multivariate size biased distribution
derived from the weight function

i=1
which represents sampling procedures where a vector 8 = (61,...,6,) has a sampling
probability proportional to 6;, for ¢ = 1,...,n. Another classical case is given by
1- F‘ll'(e)
0)=—
w(®) = .

which leads to equilibrium distributions in reliability. Also, other interesting weight
functions are given by

n

w(®) = [[0:(0) and w(6) =Y g:(6)

i=1

where, if g;’s are non-negative increasing (decreasing) functions, then w will be also
increasing (decreasing). For example, the weight functions

n n

w(®) =[]057" and w(®) => 677, (2.7)

i=1 =1

are increasing (decreasing) when a; > 1 (a; < 1), fori=1,...,n.
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Particular attention about the effect of the weight functions in the dependence struc-
ture is discussed in Navarro et al. (2006). For example, it is clear from Lemma 2.4 that
if 7, 1(0]x) and w are MTP», then the weighted prior and the weighted posterior
are also MTP,. Additionally, if 7 has independent components and w is of the form
w(0) = [~ 9i(6;), then the weighted prior has also independent components.

Finally, we present two bivariate weight functions that we will use later on. We will
use them for mathematical convenience. We will be able to compute the conditional
distributions to estimate the characteristics of the weighted priors and posteriors using
Markov chain Monte Carlo (MCMC) methods in the real example

wy(0) = 097105 exp[—ch10,] and wo(0) = 69 108 (6 + 65), (2.8)

where it is apparent that, if a,b < 1 and ¢ > 0, then w; is decreasing and, if a’,b" > 1
and ¢’ > 0, then wy is increasing.

In order to clarify the previous ideas we present the following example.

Example 2.11. Suppose that the specific prior belief w over @ = R xR™ is a bivariate
random vector having independent exponential marginal distributions Exp(\;), i = 1,2,
with joint PDF given by

7'('(91, 92) = /\1)\2 exp(—)\lel) exp(—)\292), (91, 92) < @,

where A;, i = 1,2, are the hyperparameters. It is apparent from Lemma 2.4 that 7(61,62)
is MTP,. Let consider the weight function w defined in the left-hand side of (2.7) as

w(fy,0y) = 07152 (2.9)

where a; > 0, i = 1,2. A straightforward computation shows that the weighted prior
Ty 1S a bivariate random wvariable having independent gamma marginal distributions
G(a;, \i), it = 1,2, with joint PDF given by
(01,6,) = ALY A5 par—1gaa-t, (—=A161) exp(—Xabh), (01,02) € ©

Tw\V1, 02 = F(al)F(az) 1 2 p 1V1) €Xp 202), (U1, 02 .
Let us consider wy and wy defined as in (2.9), taking (a1,a2) = (1/4,1/4) and (a1, a2) =
(7/4,7/4), respectively, and also consider the weighted band Ty, w, =. By taking the
values of the hyperparameters Ay = 2 and Ao = 3, the weighted PDFs m,,(0) (in blue)
and 7,,(0) (in green) are represented in Figure 1, where we can see how they differ
from the baseline prior PDF (a) and from the baseline prior CDF (b) (in yellow). From
the inclusion given in (2.6), the CDF of the specific prior lies between the CDFs of the
weighted versions.

The next result shows that posterior distributions inherit the likelihood ratio order
under M T P; likelihood functions in the parameters. That proposition will be the key
to study the robustness in practice as we will see later on.

Proposition 2.12. Let w be a specific MT Py prior and let 'y, ., = be a weighted band
associated with 7 based on w1 and we. Given the observed data x, if 1(6 | x) is MT P,
in 0, then for all ™ € Ty, wy.n we obtain that Ty, x <ir T <ir Tw, x-
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o5 0o

o

7

[

(a) Prior PDF distribution (b) Prior CDF distribution

Figure 1: Prior knowledge: m,, (in blue), 7 (in yellow) and 7, (in green).

Proof. We will first prove that 7, x <;r ®'x. From Definition 2.2 and expression (1.2)
a straightforward computation shows that

le,x(el)ﬂ';(02) _ 1(01 | X)ﬂ—wl (01) 1(02 | X)’/T/(OQ)

My, (x) Moger (X)
< 1(01 A Oy | X)’iTw1 (01 A\ 02) 1(01 V 04 | x)7r’(01 V 92)
B mﬂ'wl (X) Mgy (X)

= leyx(al A 02)7'(;((01 V 02),

where the inequality follows from the fact that I(0 | x) is MT P, in 6 and m,, <; 7.
Using a similar argument it is shown that ©'x <j 7y, x. O

Proposition 2.12 says that the posterior distributions of the lower and upper bound
of the weighted band are also lower and upper bounds for the family of all posterior
distributions in the <;. order sense. It is apparent that the posteriors 7, x and my, x
can be also interpreted as two weighted distributions of the specific posterior 7y based
on w; and ws, respectively.

Remark 2.13. From Lemma 2.6, it is clear that the orderings in Proposition 2.12 are
also valid for the marginal distributions of the posteriors.

Remark 2.14. If we consider another model with a MT Py likelihood function, denoted
by 1*(0 | x), such that the ratio 1(0 | x)/1*(0 | x) is increasing in 0 in the union of
their supports, it is apparent just using jointly Lemma 2.4 and 2.5 that the posterior
distribution associated with the specific prior 7 and the new model 1*(0,%), denoted by
%, satisfies that Ty, x <ir T <ir Tw,x. Lherefore, in some way the weighted band
also provides sensitivity to the model specification. This fact could be the start point for
a future research line.

Remark 2.15. For the one-parameter model, i.e., when 6 € © C R, we only need a
decreasing weight function wi and an increasing weight function wo to apply Proposition
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2.12. As explained before, this procedure provides a band that is different in nature from
the distorted band defined in Arias-Nicolds et al. (2016).

At this point one may wonder if assumptions in Proposition 2.12 are very strict. To
answer this question we first emphasize that density priors having independent com-
ponents are MT P, and most of the applications in literature are concerned with those
priors. Second, as it is argued in Gésemyr and Natvig (1995, 1997), we find situa-
tions where some particular MT P, priors can be more realistic than one assuming
independent components. Finally, with respect to the likelihood function we find some
well-known models that satisfy the MT P, property as we can see in the following two
examples and in the final application.

Example 2.16. Let X1,...,X, be an i.i.d. random sample from the Pareto income
distribution P(xq,«) with density function f(z) = ax§/z*T, > x¢, where 8 =
(zo,) € ®@ = R x RT represents the unknown parameter and xo and o are the mode

and shape parameters, respectively. It is well-known that the likelihood function is given
by

rg®
Wf[zo,Jroo) (1)),

=11

(0] x)=1(a,z0]x) ="

where Iz, 4oy and x(1y are the indicator function of [z, +00) and the sample minimum,
respectively. From Lemma 2.4, in order to check if 1(0 | x) is MT Py in 0, it is sufficient
to show that the function g(a, xo) = x5 defined in RT™ x R™ is MT Py. This last follows
easily by computing 0% In(g(a, z0))/0adzo = n/wo and using Lemma 2.7.

Example 2.17. Let X;,..., X, be an i.i.d. random sample from a Gamma distribution
G(a, \) with density function f(z) = A*z* e */T(a), x > 0, where 8 = (o, \) €
© = RT x RT represents the unknown parameter and o and X are the shape and scale
parameters, respectively. The likelihood function is given by

AnQ
n 04_1)6_)‘2;1:1 z;

WO 1%) = U Al x) = prm (T

Using the same argument as in the previous example, it is sufficient to show that the
function g(a, X) = A" defined in RY x RY is MTP,. This last follows easily by com-
puting 8% In(g(a, \))/0adX = n/X and using Lemma 2.7.

To conclude, Corollary 2.18 will allow us to quantify and interpret the uncertainty
induced by the partial knowledge of the prior. Let us suppose we have a functional H
that maps the underlying distribution X to a real number of interest. This functional
obviously inherits the dependency of the parameter. We will denote by Hx(€) that
number. Under the previous assumption we obtain the following result.

Corollary 2.18. Let X be the underlying random variable and let H be a functional of
interest such that Hx (0) is non-decreasing in 0. Given 7, a specific MT Py prior, and
the corresponding weighted band Iy, w, = based on wy and wa, if 1(0 | x) is MTPs in
0, then the univariate random variables obtained by mapping the posterior distributions
by the functional Hx (0) satisfy

HX(Trwl,x) Sst HX(T‘-;C) Sst HX(Ter,x)a Vﬂ-/ S le,wz,‘l\" (210)
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Proof. From Proposition 2.12 and using (2.4) we obtain that
7Tw1,x Sst 77;( Sst 7T'w2,x~

The rest of the proof follows easily from Theorem 6.B.16 in Shaked and Shanthikumar
(2007). O

Under the assumptions of Corollary 2.18 we can obtain bounds for some character-
istic of interest in the Bayesian framework. For example, using the characterization of
the stochastic order given in (2.2) and taking ¢ as the identity function, we obtain that
the predictive expectations of Hx satisfy

B x[Hy (0)] < B™[Hx (0)] < E™2*[Hx(0)], V&' € Ty (211)

Also, using expression (1.A.12) in Shaked and Shanthikumar (2007), we obtain that
quantiles of Hx are also ordered

Fr 0P < Py () < Frp e 3 (0), ¥ € (0,1), V7' € Doy iy e (2:12)

It is remarkable to observe the range of quantities of interest which can be computed
just looking for the extremal distributions generating the weighted class.

Remark 2.19. From Remark 2.13, all inequalities are also valid for the marginal dis-
tributions of the posteriors.

3 Using metrics to measure uncertainty

In robust Bayesian analysis, probability metrics are used to incorporate uncertainty
in the elicitation process by considering an error in the specification, see e.g. Basu
and DasGupta (1995). An excellent review of the most common probability metrics
and divergences and the relationships among them is given in Gibbs and Su (2002).
For one-parameter distributions, Arias-Nicolds et al. (2016) use the Kolmogorov and
Kantorovich metrics due to their mathematical tractability when comparing a specific
prior and its distorted version. However, in our multiparameter context, we find in the
Hellinger distance and the Kullback-Leibler divergence excellent tools to evaluate the
degree of uncertainty between multivariate distributions and their weighted versions.

We first recall the definition of the Hellinger metric. Given two multivariate random
vectors X and Y over 2 C R” with PDFs fx and fy, respectively, the Hellinger metric
is defined by

HXY) = 5 [ (VG0 - Vi)
= 1—/9\/fx(x)fy(x)dx, (3.1)
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which is used to quantify the similarity between two probability distributions. On the
other hand, the Kullback-Leibler divergence (KL) (also called relative entropy) is defined
by

KL(X,Y) = /Q fx(x)ln;i‘g;dx,

which is a measure of how the PDF of X is different from the corresponding one of Y.

(3.2)

Let 7 be a specific prior and let w, w; and wy be different weight functions. From
the fact that posteriors of the weighted versions can be also interpreted as weighted
distributions of the specific posterior having the same weight function, we easily obtain
the distances given in Table 1.

Distributions || Hellinger metric || KL divergence
_ ETlyw(®)] M)
™ Tw N TTO) In (cxp(E"[ln(w(B))]) :
E™[\/w(8)] E™ [w(9)] )
Tx, TTw,x - Ex [w0(0)] In (exp(E""X[ln(w(G))]) )
- _ ET[uwi(9)wa(0)] 1n( E7 [w3(6)]/E™ [w1(6)] )
Wi e VE™ [w1(0)]E™ [w2(6)] exp(ET [In(w2(0)/w1(6))])

7rw1 » X 7Tw2 X

] - _E Vi (0)w:(0)] 1n( BT [ws (0)]/ B [wi (6)] )

VE™ w1 (0)] E™x[w2(8)] exp(E7[In(w2(0)/w1(0))])

Table 1: The Hellinger metric and KL divergence between priors and posteriors.

Expressions (3.1) and (3.2) have been widely used in the literature in many contexts.
For example, in Bayesian experimental inference it is a common goal to maximize the
expected KL divergence between the prior and the posterior. In other words, the KL
divergence is a measure of the information gained when one revises one’s beliefs from the
prior probability distribution to the posterior one. The log-score suffers from the short-
coming of focusing on the tails of the distribution by heavily penalizing observations that
would have been predicted with low probability. However, the Hellinger metric is a sur-
rogate divergence for the Total-Variation and is more robust than the KL divergence in
practice. Further information about the use of these measures in Bayesian inference can
be found in Hooker and Vidyshankar (2014) and more recently in Jewson et al. (2018).

Example 3.1. Let us consider the prior and the weighted function defined in Ezam-
ple 2.11. We will compute the Hellinger metric and the KL divergence to measure the
uncertainty induced by the weight function. From Table 1 we obtain that

E™ 9a1719a271
Himmy) = 1- [\ 07 057 ]

By 05

B EEzp(\) [egal—l)/Q}EEzp(Az) [9502—1)/2]

\/EE.tp()\l) [9‘111 *1]EErcp()\2) [0;2*1}

['((a1 +1)/2)((a2 +1)/2)
I'(a1)I'(az)

= 1

1—

)
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2 >
Ex[n(ef 1657 )

EEzp(A1) [gtllrl]EExp(Az) [95271]
’ (exp“al — DEEPO) [In(0)] + (a2 — 1)EEIP(’\2)[ln(92)]))
In(T'(a1)T(a2)) + (a1 + az — 2),

KL(m,7m,) = In
exp(

where equalities follow jointly from the expectation of the product of two independent
random variables, from the expression of the r-th moment of an exponential distribution
X ~ Exp(A) given by I'(r+1)/\" and, finally, from the well-known fact that the trans-
formation —In(X) has a Gumbel distribution with expectation v+ 1n(X), where v is the
Euler-Mascheroni constant. It is worthwhile noting that both the Hellinger metric and
the KL divergence do not depend on the hyperparameters. Finally, by considering wi
and wy with (a1,a2) = (1/4,1/4) and (a1, a2) = (7/4,7/4), respectively, we obtain that
H(m,my, ) =0.432, H(mw,my,) = 0.14, KL(w, 7, ) = 1.71 and K L(, w,,) = 0.697.

Of course, it is not easy in general to find a closed expression for the Hellinger metric
and KL divergence. However, just observing Table 1 they can be estimated by using
simulation methods as we will see later on. It is remarkable they only depend on the
specific prior and its posterior and the corresponding weight functions.

Finally, it is natural to wonder how to choose weight functions and how to elicit
their parameters. Obviously, the choice of the weight functions and their parameters
depends on the problem at hand and the level of uncertainty about the priors. First, we
should make sure to understand how the weight function modifies the underlying prior
density. In general, increasing (decreasing) weight functions gives more weight to higher
(smaller) values of the variable but that can be done in many ways. Note that any in-
creasing or decreasing function is a potential weight function for our purpose. We would
like to emphasize that there are particular weight functions associated with classical
multivariate distributions in the literature, see for example Kim (2008) and references
therein. To summarize, weight functions can induce asymmetry, heavy tailed distribu-
tions, truncated distributions, etc. Finally, in order to choose the parameters we should
fix a reasonable distance in terms of the Hellinger metric and/or the KL divergence.

4 A real example about train door reliability

In this section we will illustrate our method analyzing real data in reliability. Stem-
ming from a consulting project, we consider failure data from 40 underground trains
associated with the door opening system. All trains were delivered to an European
transportation company between November 1989 and March 1991 and all of them were
put in service from 20th March 1990 to 20th July 1992. Failure monitoring ended on 31st
December 1998. When a failure took place, both odometer reading and failure date were
recorded, along with the code of the failed component. Those data were first analyzed
in Pievatolo et al. (2003) without making any distinction among seven different failure
modes. They were analyzed a second time in Pievatolo and Ruggeri (2010) where the
authors determined that two failure modes (mechanical and electrical) were the most
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relevant ones. Those components were failing for many different causes, implying that
the two point processes describing the failures were actually obtained superposing the
processes due to each cause. The regularity of the pattern and a theorem due to Grige-
lionis (see, e.g., Thompson (1988), p. 69) about the superposition of many processes into
one justified the use of a nonhomogeneous Poisson process. For our purpose, we will con-
sider one of those two failure modes, namely the mode associated with electrical opening
commands where 530 failures were recorded from 19th September 1991 to 31st December
1998. For further information about data see Pievatolo and Ruggeri (2010). Some related
works about Bayesian inference and reliability can be found in Rios Insua et al. (2019).

Our interest is focused on finding a model to describe the failure history of electrical
opening commands and predicting the number of failures in future time intervals in an
Bayesian framework.

The model

Based on the interpretation of the model as a complex system, it is argued in Pievatolo
and Ruggeri (2010) that the total number of failures that occur in the electrical opening
system in the interval (0, t], denoted by N (¢), follows a nonhomogeneous Poisson process
(NHPP) with a common intensity function, A(¢), and an increasing and invertible mean
value function,

such that m(oco) = co. From the plot of the cumulative number of failures versus failure
time, see Figure 11.2 in Pievatolo and Ruggeri (2010), the authors postulate three
different forms of the intensity function A\(¢), where all of them assume an improvement
in the rate of occurrence of failures. For our purpose we will choose one of those models,
namely the popular power law process (PLP) with intensity function

A\(t1@) = MBtP~1 0 = (M,3) e Rt x RT, (4.1)

such that
m(t|@) = Mt?, 0 = (M,B) € Rt x RY. (4.2)

Our choice is based on the attractive physical explanation of both of its parameters M
and § and the fact that the PLP model is the mostly used NHPP in reliability due
to its simplicity. In our model, we assume 0 < f < 1, indicating a reliability growth
information, excluding the cases of constant (8 = 1) and decaying (8 > 1) reliability.
More details on the statistical analysis of repairable systems and NHPPs can be found in
Thompson (1988), Kingman (1993), Rigdon and Basu (2000), Aven and Jensen (2000)
and Rios Insua et al. (2012) and a comprehensive catalogue of intensity functions is
given in McCollin (2014).

The likelihood function

Let N(t) be a PLP process with intensity function A(t|@) given in (4.1). Suppose that
the vector of observed failure times t* = (71,...,T},) recorded in the interval (0,77,
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where T is a known value, satisfies T} < ... < T}, then, from Theorem 5.4 in Rios Insua
et al. (2012), the likelihood function is given by

n

(Olt") = exp(—m(T16)) [T M)

=1

= exp(fMTB)f[MﬁTf71
=1
= M8 exp((B — 1) exp(—MT?) S In(T)).

i=1

From Lemma 2.7, just computing the partial derivatives of the logarithm of [(8|t*)
given by
9?1In(1(0 | t*))
oOMop

it is apparent that (0 | t*) is MT P, in 0 if, and only if, T < 1. Then, by changing the
scale of the time from the original record T; to T; /T, i.e., considering T as the unit, and
denoting the new vector of observed failure times by t = (T4 /T, ...,T,/T), we obtain
a new likelihood function expressed as

= —In(T)T",

n

1O[t) = M"ﬁ”exp((ﬁ—1)Zln(%))exp(—M)~ (4.3)

i=1

It is clear from Lemma 2.4 that the likelihood function /(@ | t) given in (4.3) is MT P,
in 6.

Remark 4.1. In order to validate our model we will first considerT" the 31st December
1997. We will predict the number of failures in 1998 and we compare it with the actual
value.

The specific prior and posterior

It is assumed that the specific prior belief ™ over ® = Rt x R is a bivariate random
vector having independent exponential marginal distributions Fxp(\) and Exp(u), as-
sociated with the parameters M and 3, respectively, with joint PDF given by

7(0) = Apexp(—=AM) exp(—uB), (M, B) € ©,

where the hyperparameters A and p are assumed to be known; namely they are obtained
from the initial estimates My = 495.5 and By = 0.79. Those estimates are based on an
expert judgment combining the regression analysis between the empirical cumulative
number of failures versus the failure times and the maximum likelihood estimates, MLEs,
when using only some old trains which were not included in the final study. The values
My and By are very reasonable, denoting the latter a clear, although not excessive,
reliability growth, whereas the former expresses the expected number of failures in the
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unit interval since m(1|@) = M. From the initial values My and Sy, we take the values
A =1/My and p = 1/ due to the fact that E™[0] = (1/X,1/u). It is apparent from
Lemma 2.4 that 7(M, ) is MT P, in 8 = (M, ).

On the other hand, just considering the likelihood function given by (4.3) and using
expression (1.2) to update the state of knowledge, we easily obtain that the posterior
distribution is a bivariate random vector having independent gamma marginal distri-

butions G(n+ 1,1+ ) and G(n+ 1, 4 — Z In(%:)), associated with the parameters M
and [, respectively, with joint PDF g1ven by

n n+1
n+1 H—= Zln(%)
7 (0) = %M" exp(—(1+A) M) ( %Z(In ) > " exp(— Zln

The weighted band

Now, we introduce a perturbation scheme on the prior distribution by considering the
weighted band Ty, 4, 7 Where wy and wq are defined by expression (2.8). Then,

Tw, (8) o< AuM~ 13" L exp(—AM) exp(—pB) exp|—cM ],
Ty (8) o AuM® 1Y~V exp(—AM) exp(—uB) (M€ + B). (4.4)

The exact distributions associated with both weighted priors, and having PDFs
Tw, (0) and m,,(0), are unknown. However, after a straightforward computation in
(4.4), we can easily compute the conditional distributions, as shown in Table 2.

Priors H Conditional || Distribution

Ty Tw, (M|ﬁ) G(a,)\+ Cﬁ).

mun (BIM) | Glb,p+ M),

T, T, (M|B) (1—-e)G(a,\)+eG(a + ', N\)
I'(a’+c’)

I(a’+c)+(AB)¢'T(a’)

Tu, (BIM) || (1= )G, p) + GV + ¢, 1)
(b +c)

T(b/ 4c)+(pM)' T (b))

€ =

€ =

Table 2: The conditional distributions of the weighted priors.

We notice that the conditional distributions of the weighted prior m,, are given by
a mixture of gamma distributions.

The posterior weighted distributions

Also the joint posterior distributions do not have closed-form expressions. However, just
taking in account the conditional distributions given in Table 2, we can also compute
their conditional distributions, as shown in Table 3.
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Posteriors H Conditional H Distribution

T, ¢ T, t(M|B) || Gin+a,14+ A+ cf).
Ty t(BIM) || Gn+ b, u+ cM — Zln(%))
i=1
T t T, t(M|B) || 1 —€)G(n+d,1+N)+eGn+a +, 1+ N),
T'(n+a’+c)

€= T(n+a’+c )+ (n+a’)(B(14+N))¢
Tuat(BIM) || 1= €)Gn+V,p—1') +eGn+b +c,pu—t)

_ T'(n+b +c') ; n i
€= Trb +e) 1T (n b)) (M (a—t)) A =30 In (7).

Table 3: The conditional distributions of the weighted posteriors.

We notice again that the conditional distributions of the weighted posterior 7, ¢
are given by a mixture of gamma distributions. The conditional distributions shown
in Table 2 and 3 can be used to estimate the characteristics of the weighted priors
and posteriors using Markov chain Monte Carlo (MCMC) methods, using the Gibbs
sampling method. In general, w; has more effect on 7 than the corresponding ws as a
consequence of the positive skewness of the specific prior. Finally, it is apparent from
Table 2 and 3 that w; and ws induce a dependence structure in both weighted priors
and weighted posteriors.

Choosing the degree of uncertainty

At this moment, a natural question is how to choose the parameters a, b and c and o', V',
¢ for wy and ws of the two weight functions, respectively. One possibility is to require
that the resulting weighted priors are symmetrically close to the specified prior in terms
of Hellinger metric or KL divergence. Due to the complexity of our real problem, we
decided to consider a great amount of uncertainty in order to evaluate the effect on the
final decision. Having set a goal of symmetric Hellinger distance approximately equal
to 0.7, we found, after some trials, that it can be achieved taking a = 0.8, b = 0.4 and
c=0.17 and o’ = 3.8, b/ = 3.4 and ¢/ = 1.17 as we can see in Table 4. We first notice
that the Hellinger metric is a symmetric measure. The maximum uncertainty 1 in the
Hellinger metric is achieved when one density assigns probability zero to every set to
which the other density assigns a positive probability, and vice versa. With respect to
the KL divergence, we recall it is an asymmetric measure. Then, we can only interpret
that the amount of information lost when m,,, is used to approximate 7r is larger than
the corresponding information lost when we use m,,. We notice that all measures in
Table 4 have been estimated from a sample of the exact distribution of the specific prior
using jointly the Markov chain Monte Carlo (MCMC) method and Table 1.

Priors || ™, T, T, Ty,  Twys Twsy
0.69916 0.69590  0.99982
66.724 7.552 27.101

Hellinger metric
KL divergence

Table 4: The Hellinger metric and the KL divergence for priors.



50 On a New Class of Multivariate Prior Distributions

From the exact distribution of the specific posterior and using again the MCMC
method and Table 1, we obtain in Table 5 the Hellinger metric and the KL divergence
for the posterior weighted distributions.

Posteriors || Tty TTw, ,t Tt Twsy t Twi,ty Tw,t

0.72191  0.00713 0.77096
5.1661 0.02869 4.43343

Hellinger metric
KL divergence

Table 5: The Hellinger metric and the KL divergence for posteriors.

Finally, in order to graphically see the effect of the weighted functions, we represent
in Figure 2 (a) and (b) the histograms and the CDFs for the prior distributions 7,
(in blue), 7 (in yellow) and m,, (in green), respectively. We also represent in Figure
2 (c¢) and (d) the corresponding ones for the posterior distributions. As expected, the
uncertainty decreases when we incorporate experimental data. At first glance, the con-
tribution to uncertainty of the weighted function w, is greater than the corresponding
induced by ws. This result is coherent with a greater improvement in the failure rate
with respect to the expected one by the PLP model, as we will see later on.

(c) Histograms for posterior distributions (d) The CDFs for posterior distributions

Figure 2: The weighted prior distributions and the posterior weighted distributions.
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Forecasts for the expected number of failures

As we previously mentioned, we have first considered 31st December 1997 as the (ending)
calendar day T'. We are interested in predicting the expected number of failures in future
time intervals of the form [T, T+u]. Such functional, conditional on 0, is easily computed
by the mean value function of the PLP model given in expression (4.2) and takes the
form

1+h
Hx(0) = E[N(1+ h) — N(1)] = / A#|0)dt = M((1+ h)? — 1),

where T is represented by the unit in the above expression and h is computed pro-
portionally in the time scale, i.e., h = u/T. A straightforward computation shows that
Hx (0) is increasing in 6. Then, recalling that both 7 and (0|t) are MTP, in 6 and
using Corollary 2.18, we obtain that

HX(le,t) Sst HX(W:;) Sst HX(ﬂ-wg,t)a Vﬂ-l € F’LUl,'MJQ,‘IT'

From the above orderings we obtain bounds for some characteristics of interest in the
Bayesian framework. First, from expression (2.11), we know the predictive expectations
of the number of failures of the weighted posterior distributions are bounds for the
corresponding expectation of the specific posterior, i.e.,

E™1 ¢ [Hx (6)] < E™[Hx (0)] < E™2¢[Hx(0)], V&' € Ty, wy.me-

Second, from (2.12) the endpoints of the 95% Bayesian credible quantile-based intervals
are ordered, i.e.,

Fp. (ruy ) (P) < Fp. () () < ng(m%t)(p), p € {0.025,0.975}, V7' € Ty oy -
From the mentioned fact that the posterior weighted distributions are unknown, the
bounds in the above inequalities have been estimated from the conditional distributions
given in Table 3 using the Gibbs sampling. Table 6 shows the effect of the weighted
functions on the prediction of the expected number of failures in 1998, i.e., when T
represents the 31st December 1997 and v = 1. We notice that we ran the corresponding
MCMC algorithm for 10000 iterations using a burn-in of 1000. The iteration numbers
were chosen after experimentation to deliver stable results over multiple runs.

True  95% Post.  95% Post. 95% Post.

value credibility mean credibility mean credibility mean
Int. 7y, ¢ Tw, ¢ Int. mg e Int. 7y, ¢ Tyt

23 [22.75, 45.40] 34 [29.73, 55.04] 42 [30.46, 56.03] 43

Table 6: Forecasts and credibility intervals of the number of failures in 1998. Forecasts
and intervals are shown for the specific posterior and the weighted posteriors.

We first note that weighting the prior information causes a change in the final
Bayesian prediction. Therefore, the model can not be considered robust from a Bayesian
point of view. From another point of view, a similar conclusion is pointed out in Pieva-
tolo and Ruggeri (2010). It is also interesting to observe that the weighted prior 7,
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provides a more accurate result than the PLP model and the latter is close to the result
predicted by the weighted prior m,,. A reason for this behavior is that the PLP model
overestimates the number of failures in 1998 and does not reflect the “true” failure pro-
cess closely enough. It is also remarkable that the credibility interval for the decreasing
weighted posterior contains the true value which solves somehow the problem detected
in Pievatolo and Ruggeri (2010) about the sharp change in slope of the curve of cu-
mulative number of failures in the last years. Finally, we know from Proposition 2.10
that all priors of the form 7. = (1 — €)my, + €my, (obtained as a mixture of m,,, and
T, ) belong to the class 'y, w,.x, for all 0 < e < 1. Since Iy, w, = is & convex class of
distributions and . is continuous (see Lemma 3.1 in Ruggeri and Sivaganesan (2005))
it follows that any value in any interval of interest obtained for the weighted priors can
be expressed as a value from a particular prior for some e.

To end up, and using a similar procedure than above, we present in Table 7 forecasts
after forecasting horizons of one, two and three years beyond different ending periods, T',
which is set on 31st December of the indicated years, denoted by year-i, s = 1,2 and 3.

T True 95% Post.  95% Post.  95% Post.
value credibility mean credibility mean credibility mean
Int. 7y, ¢ Tw,t Int. mg T Int. 7y, ¢ Tyt

1992-1 83 [47.63, 78.53] 63 [66.25, 101.95] 84 [70.95, 107.79] 89

]
1992-2 72 [42.81,72.30] 57  [63.20,98.12] 80  [68.45, 104.64] 86
1992-3 62 [39.83,6837] 54  [61.25,95.66] 78  [66.84, 102.62] 84
1993-1 72 [35.90, 63.29] 49 [48.22,79.32] 63  [50.67,82.44] 66
19932 62 [35.52, 58.77] 45 [45.28, 75.51] 60  [47.82,78.78] 63
1993-3 42 [30.15, 55.58] 42 [43.16, 72.78] 57  [45.76,76.13] 60
1994-1 62 [31.59,57.54] 44  [42.01,71.31] 56  [43.53,73.29] 58
1994-2 42 [29.12, 54.22] 41 [39.77,68.38] 54 [41.35,70.45] 55
1994-3 35  [27.28,51.68] 39 [38.05, 66.12] 52 [39.66, 68.24] 53
1995-1 42 [30.84, 56.54] 43 [40.92, 69.91] 55  [42.10, 71.45] 56
1995-2 35  [28.92,53.94] 41 [39.21, 67.66] 53 [40.42, 69.26] 54
1995-3 23 [27.40,51.86] 39 [37.82, 62.84] 51 [39.08, 67.48] 53
1996-1 35  [26.20,50.21] 38 [34.49, 61.42] 47  [35.35,62.58] 48
1996-2 23 [24.65, 48.05] 36 [32.99, 59.43] 46 [33.88, 60.61] 47
1997-1 23 [22.75,45.40] 34  [29.73,55.04] 42  [30.46, 56.03] 43

Table 7: Forecasts and credibility intervals of the number of failures from 1993 to 1998.
Forecasts and intervals are shown for the specific posterior and the weighted posteriors.

Just observing all predictions, it is clear that uncertainty decreases when the sample
size increases. Also, in only two cases the true value does not belong to any credibility
interval, namely when the ending periods are on 31st December 1995 and 31st Decem-
ber 1996 and we estimate the expected number of failures in 1998, i.e., in forecasting
periods of three and two years, respectively. As we have previously analyzed in Table 6,
the forecasts in 1998 slightly improve when the recording period is on 31st December
1997. Finally, Figure 3 summarizes graphically the information about posterior means
contained in Table 7. In general, it is interesting to note that the weighted function
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wy provides more accurate results than the PLP model when this latter overestimates
enough the expected number of failures. On the contrary, when the PLP underesti-
mates enough the expected number of failures the weighted function we will lead to
better results.
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Figure 3: Range of the posterior means of the number of failures from 1993 to 1998.

5 Concluding remarks

In this paper we have provided a methodology to induce uncertainty in the choice of
a specific prior by using a particular class of priors called the weighted band. We have
followed the typical approach of Bayesian robustness, as outlined in Rios Insua and
Ruggeri (2000) which provides a thorough review of the motivations and the methods
which lead to consider classes of priors. In such work classes of likelihoods or sampling
models are considered as well, but most of interest of the researchers (and ours, as well)
has concentrated on priors. Stemming from the practical impossibility of specifying an
exact, unique prior distribution, Bayesian robustness proposes to weaken the request
considering a distribution which is deemed as a good approximation to the prior beliefs
and then building a neighborhood around it to express the uncertainty about such
prior. Our work goes in such direction since it embeds a prior in a class where weight
functions, with adequate properties, are used to give more or less weight to part of the
parameter space. This theoretical construction corresponds also to practical situations,
like the one we have considered in our work about train door failures. Of course many
classes of priors can be considered (see Rios Insua and Ruggeri (2000)) and the choice
should be based on the problem at hand and the available expert knowledge (as an
example, consider the class based on generalized moments presented in Betro et al.
(1994)). Whereas the choice of a class of priors could be motivated by practical problems
where the experts are unable to specify a unique prior distributions, more theoretical



54 On a New Class of Multivariate Prior Distributions

studies are interested in specifying probability distributions over prior distributions,
like in Bayesian nonparametrics. The idea of combining Bayesian nonparametrics and
Bayesian robustness lead to some works, like Ruggeri (2010, 2014). Our methodology
combines practical motivations and theoretical contributions involving stochastic orders.
Although it is inspired by the distorted band introduced by Arias-Nicolés et al. (2016), it
provides a different way of inducing uncertainty in the univariate model and can be easily
generalized for multiparameter distributions. The proposed prior class is also relatively
easy to specify, an inheritance from the selected weight functions used to specify the
distorted band. These weight functions also help when interpreting the resulting class
of posterior distributions.

We have also shown how the proposed methodology has not only a theoretical inter-
est but it can be also applied to real problems. On purpose, we have chosen a complex
problem in reliability which had been already investigated elsewhere with not completely
satisfactory results. Here we have shown how a weighted priors on the parameters of the
very popular power law process can lead to better forecasting of the expected number
of failures.

The models considered in Pievatolo and Ruggeri (2010) pose new challenges, also
from a methodological viewpoint, which could be addressed in future works. In the cur-
rent paper we have considered only failure dates whereas the available data consist also
of odometer readings upon failures. The nonhomogeneous Poisson process considered in
Pievatolo and Ruggeri (2010) is one of the few examples of bivariate intensity function
in reliability. Those authors performed an informal sensitivity analysis with respect to
the model considering three different baseline univariate intensity functions for the fail-
ure times. Sensitivity with respect to changes in the model has been rarely considered
in the Bayesian framework, apart from informal approaches. The reasons are manifold:
computational complexity and major focus on the most critical aspect of the Bayesian
approach, i.e. the prior choice, are the most relevant ones.

The extension of our approach to a class of models, instead of priors, is very chal-
lenging, especially when considering a class of Poisson processes, possibly with bivariate
intensity functions. Also the notion of class of Poisson processes should be considered
carefully.

The train door failure data suggest another methodological approach: the extension
of our approach to hierarchical models. Data are from 40 trains and each train could
have its own model with exchangeable parameters, leading to a hierarchical model.
Such model has a clear physical interpretation: differences in construction, operation
and maintenance make trains more similar rather than equal. In this case the distorted
class would be on the common prior for the distinct parameters of each model.
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