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Experimental Transmission Study of an
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Abstract. Infectious diseases such as avian influenza pose a global threat to hu-
man health. Mathematical and statistical models can provide key insights into the
mechanisms that underlie the spread and persistence of infectious diseases, though
their utility is linked to the ability to adequately calibrate these models to observed
data. Performing robust inference for these systems is challenging. The fact that
the underlying models exhibit complex non-linear dynamics, coupled with prac-
tical constraints to observing key epidemiological events such as transmission,
requires the use of inference techniques that are able to numerically integrate over
multiple hidden states and/or infer missing information. Simulation-based infer-
ence techniques such as Approximate Bayesian Computation (ABC) have shown
great promise in this area, since they rely on the development of suitable simu-
lation models, which are often easier to code and generalise than routines that
require evaluations of an intractable likelihood function. In this manuscript we
make some contributions towards improving the efficiency of ABC-based particle
Markov chain Monte Carlo methods, and show the utility of these approaches
for performing both model inference and model comparison in a Bayesian frame-
work. We illustrate these approaches on both simulated data, as well as real data
from an experimental transmission study of highly pathogenic avian influenza in
genetically modified chickens.

Keywords: Bayesian model choice, infectious disease models, partially observed
processes, particle MCMC, Approximate Bayesian Computation.

1 Introduction

Infectious diseases such as avian influenza pose a global threat to human health. Mathe-
matical modelling can elucidate on key mechanisms that underlie disease spread, which
can directly inform the control of potential outbreaks. However, the utility of these
approaches depends greatly on the ability to calibrate them to observed data. For ex-
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Figure 1: Data taken from Lyall et al. (2011).

Experiment Exposure Genotype Number of birds

1
In-contact

NTG
12

Challenge 5

2
In-contact TG 12
Challenge NTG 5

3
In-contact NTG 12
Challenge TG 5

4
In-contact

TG
12

Challenge 5

Table 1: Experimental conditions (from Lyall et al., 2011).

ample, Lyall et al. (2011) genetically modified chickens to be resistant to avian influenza.
These transgenic chickens expressed a short-hairpin RNA designed to function as a de-
coy, and hence interfere and hinder viral propagation. In order to assess the efficiacy
of the modification they ran a series of natural transmission experiments. They used
a crossed experimental design in which four experiments were undertaken, where each
experiment used 5 challenge birds (that had been inoculated with highly pathogenic
avian influenza—HPAI) co-housed with 12 uninfected in-contact birds. Each experi-
ment was run over 10 days, with each bird being swabbed twice daily (producing buccal
and cloacal swabs). Some birds were artificially removed from the study (if they were
clinically sick, or sometimes for other blood work to be done), some birds died naturally,
and others were euthanased at the end of the study. From these data it is possible to
derive integer-valued time series counts for the number of infections for each genotype
over each half-day period, which are shown in Figure 1.

It is clear from Figure 1 that there are strong differences between the genotypes, such
that experiments in which the non-transgenic (NTG) birds constituted the challenge
group resulted in many birds dying in greater numbers (and more quickly) than exper-
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iments where the transgenic (TG) birds constituted the challenge group. In Lyall et al.
(2011) these differences were compared using a series of Bonferroni corrected Mann-
Whitney tests. However, a key question that remained was whether these patterns could
be caused by differences in transmission potential between the genotypes, differences in
susceptibility to infection, or both. The supposition in Lyall et al. (2011) was that it
was the former, but the crude Mann-Whitney test is not sufficient to provide evidence
for or against these competing hypotheses. In this paper we develop a framework to
estimate the Bayesian evidence (e.g. Kass and Raftery, 1995) for a series of competing
dynamic transmission models that allows us to directly address these questions.

2 Statistical methods

Infectious disease systems often have complex non-linear dynamics, which are not well
captured by classical statistical approaches to inference, such as generalised linear mod-
elling or null hypothesis significance testing. A common way to model these processes is
to use compartmental models, where individuals progress through a series of different
epidemiological states over time (e.g. Anderson and May, 1991). Stochastic versions of
these models are parameterised by the average rates of progression through the com-
partments, which are dependent on the state of the system at any given time (e.g.
Keeling and Rohani, 2008).

The main challenge for inference is that even in highly controlled settings it is not
possible to directly observe key measurements required to reconstruct a likelihood func-
tion, such as the time of infection, or even the infection status of animals (particularly
in presence of sub-clinical infections). Hence the problem becomes that of inference for
hidden Markov (or non-Markovian) models (HMMs).

The Bayesian paradigm provides a natural framework within which to tackle these
problems, since the uncertainties associated with the hidden process are propagated
through the system and explicitly incorporated into the parameter estimates and pre-
dictions from the model. Here we wish to estimate the posterior distribution for the
parameters, θ, given the observed data y, which is in turn dependent on hidden states
x. In this case the posterior, f (θ | y), is defined as:

f (θ | y) ∝ f (y | θ) f (θ) =

[∫
X
f (y,x | θ) dx

]
f (θ) , (1)

whereX corresponds to the sample space for the hidden variables x and f (θ) is the prior
distribution for the parameters θ. The idea is that by modelling the missing information,
the joint distribution f (y,x | θ) has a specific (and known) mathematical form.

Nevertheless, in practice, the integral in (1) is often still analytically intractable, and
thus to evaluate (1) it is necessary to numerically integrate over the sample space for
the hidden states in a computationally feasible manner. Recent advances for addressing
this problem involve replacing the calculation of f (y | θ) with a Monte Carlo (MC) esti-
mate derived from repeated simulations from the underlying dynamic model (e.g. Tavaré
et al., 1997; Marjoram et al., 2003; Beaumont, 2003; Sisson et al., 2007; Toni et al., 2009;
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Andrieu and Roberts, 2009; Andrieu et al., 2010). Under certain conditions, Andrieu
and Roberts (2009) showed that as long as the estimate of the likelihood is unbiased
and non-negative, then a Markov chain Monte Carlo (MCMC; see e.g. Gilks et al., 1996)
algorithm can be developed that produces samples from the correct posterior distribu-
tion in probability (see also Beaumont, 2003). Due to the dynamic nature of infectious
disease models, direct simulation is often inefficient, but the structure of the models can
often be exploited to produce more efficient estimators. For example, particle filtering
methods (see e.g. Doucet et al., 2001) are now often used to produce a non-negative
and unbiased likelihood estimate for state-space models, which can have a lower vari-
ance than vanilla MC estimators. These hybrid methods are known as particle MCMC
(PMCMC; e.g. Andrieu et al., 2010; Drovandi et al., 2016; Alzahrani et al., 2018), and
are attractive because it is often far easier to code a simulation model than it is to
optimise more traditional approaches to dealing with HMMs, such as data-augmented
(reversible-jump) MCMC (e.g. Gibson and Renshaw, 1998; O’Neill and Roberts, 1999;
Jewell et al., 2009). Despite this, PMCMC methods can be highly computationally in-
tensive, but in practice they can be made more efficient by introducing a discrepancy
function, such that simulations do not have to be exactly consistent with the observed
data but rather have to be within some region ‘close’ to the data (e.g. Del Moral et al.,
2015; Drovandi et al., 2016). This reduces the computational burden of the routines at
the cost of producing an approximate (rather than exact) posterior. Recently Wilkin-
son (2013) provides an alternative interpretation of this approximate distribution as
the exact posterior distribution for a model incorporating specific model discrepancy
(or measurement error) terms.

These latter approaches come under a generic suite of methods known as Approxi-
mate Bayesian Computation (ABC; e.g. Tavaré et al., 1997; Marjoram et al., 2003; Toni
et al., 2009; McKinley et al., 2009, 2018), which aim to improve the efficiency of nu-
merical estimation algorithms through both dimension reduction techniques (by fitting
to summary measures of the data, rather than the full data), in addition to the use
of discrepancy measures. However, in this manuscript we place a discrepancy function
around each data point, and we do not further approximate by reducing the data to a set
of summary statistics, which can cause challenges in ABC-based model choice routines
(see e.g. Marin et al., 2014; though we note interesting recent work by Pudlo et al.,
2016 and Raynal et al., 2017 that aim to perform robust model choice and inference
respectively within the classic ABC paradigm using random forests—see e.g. Breiman,
2001). In our case, as the discrepancy tolerance reduces to zero around each data point,
the approximate posteriors converge to the exact posterior (with no model discrepancy).

2.1 The alive particle filter

To fit the models we used the particle MCMC algorithm of Drovandi et al. (2016) using
the alive particle filter (APF) of Del Moral et al. (2015). From now on we discuss the
algorithms in the context of the systems presented in this paper, but note that other
generalisations can also be used (e.g. Drovandi et al., 2016).

Consider data y = (y1, . . . ,yT ) as a set of integer counts at time points t = 1, . . . , T .
These counts could be for different groups of individuals, and hence at time t the
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data yt = (y1t, . . . , yGt) where G ≥ 1. We also introduce a fixed set of tolerances,
ε = {εt; for t = 1, . . . , T}, where εt = {εgt; for g = 1, . . . , G}.

We can then condition the likelihood, f (y | θ), on the tolerances ε, and write this as:

f (y | ε,θ) =
∫
X
[f (y,x | θ)] dx,

=

∫
X

[
fX0 (x0 | θ)

T∏
t=1

fYt|Xt
(yt | xt, εt) fXt|Xt−1

(xt | xt−1,θ)

]
dx, (2)

where fX0 (x0 | θ) is the density function for the initial conditions for the hidden states
at time 0 (which may or may not depend on the unknown parameters θ). The density
fXt|Xt−1

(xt | xt−1,θ) governs the progression from state xt−1 to state xt based on
the underlying model, and fYt|Xt

(yt | xt, εt) is the discrepancy/observation term for
the data yt conditional on the hidden states xt and the tolerances εt. The integral in
(2) is now over the multidimensional space X corresponding to all possible values for
the hidden states xt at time points t = 0, . . . , T . In this manuscript, we consider the
discrepancy term, f (yt | xt, εt), to be an indicator function, such that

f (yt | xt, εt) =

G∏
g=1

fYgt|Xgt
(ygt | xgt, εgt) , (3)

and

fYgt|Xgt
(ygt | xgt, εgt) =

{
1 if |hg(xgt)− ygt| ≤ εgt,
0 otherwise.

(4)

Here hg(·) corresponds to a deterministic function mapping the hidden states xgt to the
same scale as the observed data ygt (e.g. collapsing continuous event times to counts of
events in the period (t − 1, t]). (We note that xgt might be of higher dimension than
ygt, and thus hg(·) might involve reducing the dimensionality of xgt, hence the slightly
unwieldy notation.) The tolerances, εgt, define how closely we require the transformed
hidden states hg(xgt) to match the data ygt. As εgt → 0 for all g and t, then the
transformed hidden states are required to match the data exactly.

Particle filtering techniques aim to approximate (2) by using a finite set of parti-
cles, each corresponding to a particular realisation of the hidden states. In this context
we could implement a classic bootstrap particle filter (Gordon et al., 1993), such that
N particles are initialised by drawing independently from fX0 (x0 | θ) and then prop-
agated over time by simulating from the underlying model—with probability density
fXt|Xt−1

(xt | xt−1,θ)—and weighting each particle according to the discrepancy func-
tion fYt|Xt,εt (yt | xt, εt). There are various straightforward ways to simulate from the
kinds of stochastic compartmental models being studied in this paper, such as Gillespie’s
algorithm (Gillespie, 1977), and thus in the ABC setting described above, the problem
can be reduced to simulating from the underlying model and recording whether the
simulation is consistent with the data according to the discrepancy function.

A key feature of particle filters is that an unbiased, non-negative estimate of the
desired likelihood, f̂ (y | ε,θ), can then be obtained as a direct output from the filter.
However, these filters often struggle with particle degradation, where many particles
end up with zero (or close to zero) weights, which can cause instability in the likelihood
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Algorithm 1 Alive Particle Filter.

Require: Number of particles N , parameters θ, and tolerances εt, for t = 1, . . . , T .

1: Initialise the log of the estimated likelihood: log
[
f̂ (y | ε,θ)

]
= T log(N).

2: for t = 1, . . . , T do
3: Set nt = 0.
4: for n = 1, . . . , N + 1 do
5: Set δ = 0.
6: while δ = 0 do
7: if t = 1 then
8: Set r = n and sample initial states xr

0 from fX0 (· | θ).
9: else

10: Sample an index r uniformly from the set {1, . . . , N}.
11: end if
12: Simulate x′

t from fXt|Xt−1

(
· | xr

t−1,θ
)
.

13: Set nt = nt + 1.
14: if fYt|Xt

(yt | x′
t, εt) = 1 then

15: Set xn
t = x′

t and δ = 1.
16: end if
17: end while
18: end for
19: Set log

[
f̂ (y | ε,θ)

]
= log

[
f̂ (y | ε,θ)

]
− log (nt − 1).

20: end for

estimates. This is keenly felt when the discrepancy function produces binary weights,
in which case it is possible to end up with all particles having exactly zero weight.
Various extensions to the bootstrap particle filter have been proposed that aim to try
to mediate these challenges, and the reader is encouraged to see e.g. Doucet et al.
(2001) and Doucet and Johansen (2011) for comprehensive overviews of particle filtering
techniques. Recently, Del Moral et al. (2015) proposed the alive particle filter (APF) as
a means of tackling this problem for binary weights. The APF continuously resamples
particles at each time point until N particles with non-zero weights have been obtained.
This potentially solves the particle degradation problem, at the cost of making the
number of simulations a random variable with a theoretically infinite range. In practice
the filter can be stopped after a pre-defined number of simulations has been exceeded,
improving the efficiency of particle MCMC algorithms at the cost of some bias in the
estimated posteriors (see Drovandi et al., 2016). We return to this problem in Section 4.

The APF is outlined in Algorithm 1. The estimated likelihood (integrating over the
hidden states) is

f̂ (y | ε,θ) =
T∏

t=1

N

nt − 1
, (5)

where N is the number of particles, and nt is the number of simulations from the
underlying model required to obtain N + 1 matches in the period (t − 1, t] (this must
be N + 1 matches, in order to ensure an unbiased estimate—Del Moral et al., 2015).



T. J. McKinley, P. Neal, S. E. F. Spencer, A. J. K. Conlan, and L. Tiley 845

Algorithm 2 ABC pseudo-marginal Metropolis-Hastings (ABC-PMMH) algorithm. As
ε → 0 then the algorithm converges to the true posterior in probability.

Require: Number of iterations M and tolerances ε.
1: Initialise parameters θ(0) and calculate an unbiased, non-negative estimate of the

likelihood f̂
(
y | ε,θ(0)

)
.

2: for i = 1, . . . ,M do
3: Propose candidate parameters θ′ from some proposal distribution q(·) (here we

use a random-walk proposal).

4: Calculate an unbiased, non-negative estimate of the likelihood f̂ (y | ε,θ′).
5: Calculate the acceptance probability:

α = min

(
1,

f̂ (y | ε,θ′)

f̂
(
y | ε,θ(i−1)

) × f (θ′)

f
(
θ(i−1)

) ×
q
(
θ(i−1) | θ′)

q
(
θ′ | θ(i−1)

)
)
.

6: Sample u ∼ U(0, 1).
7: if u < α then
8: Set θ(i) = θ′.
9: else

10: Set θ(i) = θ(i−1).
11: end if
12: end for

Andrieu and Roberts (2009) showed that substituting an unbiased, non-negative
estimate of f (y | θ) into a standard Metropolis-Hastings algorithm (Metropolis et al.,
1953; Hastings, 1970) will produce samples from the exact posterior in probability. This
general pseudo-marginal Metropolis-Hastings algorithm is shown in Algorithm 2, and
following Del Moral et al. (2015) and Drovandi et al. (2016) we use the APF to produce

a suitable unbiased estimate f̂ (y | θ). We will refer to Algorithm 2 as the ABC-PMMH
algorithm.

2.2 Bayesian model choice

The ABC-PMMH algorithm provides a straightforward way to produce estimates of
the (approximate) posterior distribution in the presence of hidden states. However, it
is also often the case that there are various different ways in which the dynamics of the
system could be modelled, which could lead to a very different understanding of how
the underlying processes operate. Weighting the degree-of-evidence in favour of different
competing models can help to elucidate some of these key mechanisms.

Bayesian model choice is frequently built around the concept of Bayes’ Factors and
posterior probabilities of association (Jeffreys, 1935, 1961). Formally, if we have W com-
peting models to choose from—denoted M1, . . . ,MW—then we can derive a posterior
probability for model Mw as

P (Mw | y) = f (y | Mw)P (Mw)∑W
l=1 f (y | Ml)P (Ml)

, (6)
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where P (Mw) is the prior probability for model Mw. We note that this is not an
absolute measure of model adequacy, rather it provides a relative posterior weighting
conditional on the choice of W models. However, assuming no uncertainty in the choice
of model can often lead to over-confident inferences (e.g. Kass and Raftery, 1995; Hoet-
ing et al., 1999), and techniques such as such Bayesian Model Averaging (BMA), where
applicable, can use these posterior weightings to help to improve the robustness of model
predictions. The reader is referred to Kass and Raftery (1995) and Hoeting et al. (1999)
for comprehensive introductions to these techniques.

Alternative Bayesian model choice approaches include the Deviance Information Cri-
terion (DIC; Spiegelhalter et al., 2002), and posterior predictive p-values (e.g. Gelman
et al., 2013). The former provides a Bayesian analogy to the popular Akaike’s Informa-
tion Criterion (AIC; Akaike, 1974), and is attractive because it can be easily calculated
directly using posterior samples. It does not provide a probabilistic weight associated
with each model, and thus cannot be used for model averaging, and is most useful for
choosing between nested models. Posterior predictive p-values are a useful tool that
can be used effectively to assess goodness-of-fit of competing models, which can then
be used to inform model choice. The idea is to set up a loss function, which is eval-
uated over a set of posterior predictive samples to generate a measure of discrepancy
against a pre-specified ideal scenario. An effective use of this approach is given in Lau
et al. (2014), in which posterior predictive p-values are used to inform on the validity
of different choices of distance kernel for a spatially explicit infectious disease model.
However, as with DIC, these approaches do not provide a relative probabilistic weight,
and thus cannot be used for model averaging.

As such, the focus of this manuscript is to estimate Bayes’ Factors, and by extension
posterior probabilities of association. The key quantity that underpins these ideas is the
marginal likelihood :

f (y | Mw) =

∫
Θw

f (y | θw,Mw) f (θw | Mw) dθw, (7)

where the integral is over the (multidimensional) parameter space for modelMw denoted
by Θw. The marginal likelihood is equivalent to the normalising constant in (1) and is
often referred to as the Bayesian evidence. In contrast to many frequentist quantities
for weighting models, such as AIC, the Bayesian evidence marginalises (rather than
maximises) over the parameter space. This means that uncertainties due to hidden
states or auxiliary variables are explicitly incorporated into the Bayesian evidence, and
that Bayes’ Factor based model choice techniques are naturally parsimonious.

The key computational challenge is how to estimate the integral in (7), particularly
in the presence of hidden states or missing information. We refer the reader to Touloupou
et al. (2018) for a discussion of recent approaches to tackling this problem. In Touloupou
et al. (2018), the authors provided an efficient and robust means of estimating the
Bayesian evidence using importance sampling, and showed that it outperformed existing
methods (see also Tran et al., 2013). Drovandi et al. (2016) implemented this approach
explicitly in terms of using the APF developed for the ABC-PMMH algorithm as a
means of integrating over the hidden states, and we extend these ideas here.
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These techniques involve a two-stage process: firstly each competing model is fitted to
the data using some numerical algorithm, such as MCMC, and then an approximation to
the posterior distribution is used as an importance sampling distribution for estimating
(7). To start with, consider that in the presence of hidden states the marginal likelihood
for an arbitrary model (dropping the model index for brevity) can be written:

f (y | ε) =
∫
Θ

∫
X
f (y | x, ε) f (x | θ) f (θ) dx dθ. (8)

Under the paradigm of Wilkinson (2013), as ε → 0 then the true marginal likelihood
(for a model with no model discrepancy) is recovered. Drovandi et al. (2016) suggest
approximating (8) as

f̂ (y | ε) = 1

R

R∑
r=1

f̂ (y | θr) f (θr)

q (θr)
, (9)

where the θr are sampled from a distribution with probability density function q (·),
which is an approximation to the posterior distribution f (θ | y) and can be obtained
by fitting an auxiliary distribution to the posterior samples obtained from the ABC-
PMMH algorithm. Tran et al. (2013) show that (9) produces an unbiased estimate of

f (y | ε), and for a given θr, the estimate f̂ (y | θr) can be calculated using the APF
(see also Touloupou et al., 2018; Alzahrani et al., 2018).

3 Data and model structures

The full data for the four experimental settings—as a set of time-series counts (and
ignoring the swab information)—are shown in Figure 1. The initial experimental condi-
tions are summarised in Table 1. We assume that all deaths are recorded at the end of
each half-day period. We do not observe infection times, and so have removal information
only. For simplicity we assume that culled moribund birds would have died naturally
before the end of the corresponding time period in which they were euthanased (and
are thus treated as natural removals within a given half-day period). We note that there
are also healthy birds that were killed for immunohistological studies, which correspond
to censored animals.

We will assume the system follows a stochastic, homogeneously mixing, frequency-
dependent SIR model, in a closed population of size N . Hence at any point in time
birds are either susceptible (S), infected and infectious (I), or removed (dead; R). We
use superscripts to denote genotype, such that for a given experimental setting, there
are NTG transgenic birds and NNTG non-transgenic birds (with total number of birds
N = NTG + NNTG). We define a range of models, with the simplest model assuming
that all challenge birds are infected on inoculation with probability p, and that there
are no differences in either susceptibility to infection or onward transmission of infection
between the genotypes. In this case we can characterise the probability of S → I or
I → R moves in some small time interval (t, t+ dt) as:

P (S → I in (t, t+ δt)) =
βSI

N
dt+ o(dt),

P (I → R in (t, t+ δt)) = γIdt+ o(dt),
(10)
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where I = ITG + INTG is the total number of infected birds, S = STG + SNTG is the
total number of susceptible birds and N = S + I is the total number of birds in the
cage. Here β is the transmission parameter, and γ is the removal rate (hence 1/γ is the
mean infectious period).

We can extend this model in various ways. Firstly, we could assume that the proba-
bility of infection post-inoculation varies between genotypes (e.g. with probability pTG

and pNTG for the transgenic and non-transgenic birds respectively). We can also allow
for different transmission terms (βTG and βNTG), different susceptibility terms (param-
eterised such that νTG = 1 and νNTG �= 1), and/or different removal rates (γTG and
γNTG). Hence the most complex model is characterised by:

P
(
SNTG → INTG at time 0

)
∼ Bin

(
SNTG, pNTG

)
,

P
(
STG → ITG at time 0

)
∼ Bin

(
STG, pTG

)
,

P
(
SNTG → INTG in (t, t+ δt)

)
=

νNTGSNTG

N

(
βTGITG + βNTGINTG

)
dt+ o(dt),

P
(
INTG → RNTG in (t, t+ δt)

)
= γNTGINTGdt+ o(dt),

P
(
STG → ITG in (t, t+ δt)

)
=

STG

N

(
βTGITG + βNTGINTG

)
dt+ o(dt),

P
(
ITG → RTG in (t, t+ δt)

)
= γTGITGdt+ o(dt).

(11)
The full list of models considered are characterised in Table 2.

In this particular situation we have four independent experiments, and thus we can
run the APF for each data set in turn, with an unbiased estimator of the likelihood
being given by:

f̂ (y | θ, ε) =
K∏

k=1

Tk∏
t=1

Nk

nkt − 1
, (12)

where k = 1, . . . ,K denotes the data sets (with K = 4 here), Nk is the number of parti-
cles used in the kth particle filter, and nkt is the number of simulations required to obtain
Nk + 1 matches in time period (t− 1, t]. Since there are two different genotypes (NTG
and TG birds), the different experiments have different numbers of removal curves.
Experiments 1 and 4 have a single curve each (for NTG and TG birds respectively),
whereas experiments 2 and 3 both have two removal curves—one for each genotype. (In
the parlance of Section 2.1, we have that G = 1 for experiments 1 and 4, and G = 2 for
experiments 2 and 3.) We simplify matters by choosing a common tolerance, ε across all
time-points and all curves. Therefore in experiments 1 and 4 a ‘match’ is obtained if the
simulated number of removals matches the data shown in Figure 1, whereas for experi-
ments 2 and 3 a ‘match’ is obtained if the simulated number of removals for both geno-
types matches each corresponding curve in Figure 1 simultaneously—see equation (3).

Data augmentation and censoring

Although the APF will generate N particles with non-zero weight at each time point,
we note an additional challenge for infectious disease models, which is that particles can
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Model Initial infection Transmission Susceptibility Removal
Model 1 p β 1 γ
Model 2 pNTG pTG β 1 γ
Model 3 p βNTG βTG 1 γ
Model 4 pNTG pTG βNTG βTG 1 γ
Model 5 p β νNTG 1 γ
Model 6 pNTG pTG β νNTG 1 γ
Model 7 p βNTG βTG νNTG 1 γ
Model 8 pNTG pTG βNTG βTG νNTG 1 γ
Model 9 p β 1 γNTG γTG

Model 10 pNTG pTG β 1 γNTG γTG

Model 11 p βNTG βTG 1 γNTG γTG

Model 12 pNTG pTG βNTG βTG 1 γNTG γTG

Model 13 p β νNTG 1 γNTG γTG

Model 14 pNTG pTG β νNTG 1 γNTG γTG

Model 15 p βNTG βTG νNTG 1 γNTG γTG

Model 16 pNTG pTG βNTG βTG νNTG 1 γNTG γTG

Table 2: Competing model specifications. Model 1 corresponds to the model defined in
equation (10), where there are no differences between NTG and TG birds. Model 16
corresponds to the model defined in equation (11), where each component of the model
(probability of infection following challenge, transmission, susceptibility and recovery)
differ between NTG and TG birds. Intermediate models can be derived by equating
different components between the genotypes (e.g. Model 15 can be derived from Model
16 by setting pNTG = pTG = p and so on).

have non-zero weight at a time point t, but will never produce particles with non-zero
weights at time points > t. This can happen, for example, if the number of infectives
is zero at time t, but there are additional infections at a time point t∗ > t. In the
SIR framework, the probability of any further infection events is zero if the number of
infectives I = 0. In this manuscript, we follow the approach of Drovandi et al. (2016)
and augment the data at each time point to include the information regarding whether
further infections happen at later time points. For ε = 0, then this is equivalent to
requiring that It > 0 at time point t if there are additional infections at later time points.
For ε > 0 we require that It > 0 if the cumulative number of infections CI

t < NI − ε,
where NI is the maximum number of infections observed in the data. Simulations that
do not adhere to these constraints are rejected. We only built in information on censoring
for exact matching, at which point we randomly removed an animal at the end of the
corresponding time period, and before the matching criteria was employed.

4 Improving the efficiency of the APF in ABC-PMMH
algorithms

The main challenge when using the APF within an ABC-PMMH algorithm is that the
number of simulations required to evaluate the APF is theoretically unbounded, and
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thus could result in a huge computational burden, particularly since the filter needs to
be run for a large number of MCMC iterations. This is further compounded when esti-
mating the marginal likelihood where many more evaluations of the APF are required.
Finally we must repeat this process for multiple models. However, in development terms
the ABC-PMMH approach is attractive, since the method is fairly straightforward to
code and adapt to different models. Therefore methods for improving the efficiency of
the APF in the context of ABC-PMMH can help to alleviate the computational burden
of the models and increase the size and complexities of systems that can be modelled
using this technology.

One way to stop excessive runtimes in the APF is to put a cap on the total number
of simulations that the filter is allowed to evaluate (see Drovandi et al., 2016). Therefore
if, at some time point j ≤ T ,

j∑
t=1

nt > Ns, (13)

then the estimate f̂ (y | θ) is set to 0, where Ns is some arbitrary (large) integer. If
implemented in an ABC-PMMH routine, then this would result in proposals being
automatically rejected if the total number of simulations exceeds Ns. This introduces
bias into the estimated posterior distribution, but the bias will decrease as Ns → ∞.
Thus choosing a suitable value for Ns is a trade-off between efficiency and bias; it needs
to be large enough that few proposals result in Ns being exceeded, but small enough
that it doesn’t result in excessively long runtimes. In small systems this may not be
an issue, but in larger systems, especially in poor regions of parameter space, or for a
poorly specified model, then this can have much more of an impact on the efficiency
of the ABC-PMMH routine. (Note that since the filtering is done over different time
points, we define the total number of ‘simulations’ to aggregate over the time points,
rather than a single simulation being a single realisation across all time points.)

We term the proportion of iterations where the proposal is rejected due to the
particle filter failing to complete within Ns simulations (i.e. failing the criteria in 13)
as the skip rate. A major challenge is that as the tolerances get small, the skip rate
naturally increases, and this will induce more bias in the estimated posterior unless
Ns is also increased. We now introduce an idea that aims to mediate this problem, by
noting that it is possible to reject proposals without necessarily having to evaluate the
APF to completion. This reduces both the computational load of the standard APF
and the bias introduced by the cut-off Ns.

To formulate this idea, consider that at a given iteration i of the ABC-PMMH
algorithm (Algorithm 2), we accept a proposal, θ′, with probability:

α = min

(
1,

f̂ (y | ε,θ′) f (θ′) q
(
θ(i) | θ′)

f̂
(
y | ε,θ(i)

)
f
(
θ(i)

)
q
(
θ′ | θ(i)

)
)
. (14)

Computationally, this is equivalent to simulating a random number u ∼ U(0, 1), and

then accepting θ′ if u < α. Usually we calculate f̂ (y | ε,θ′), and thus α before we simu-
late u. However, since u is independent of α, there is no reason why we cannot simulate
u first, meaning that the only unknown in equation (14) is f̂ (y | ε,θ′). Therefore, we
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reject θ′ if:

u >
f̂ (y | ε,θ′) f (θ′) q

(
θ(i) | θ′)

f̂
(
y | ε,θ(i)

)
f
(
θ(i)

)
q
(
θ′ | θ(i)

)
⇐⇒ log

[
f̂ (y | ε,θ′)

]
< log(u)−A(i), (15)

where A(i) = log[f(θ′)q(θ(i) | θ′)]− log[f̂(y | ε,θ(i))f(θ(i))q(θ′ | θ(i))]. From (5) we can
re-write the inequality (15) as

T∑
t=1

log (nt − 1) > T log(N)− log(u) +A(i). (16)

Now the only unknown is on the left-hand side of equation (16), and this is a monoton-
ically increasing function with respect to nt, where the sum must be conducted in order
from t = 1, . . . , T . Hence, for some time point j ≤ T , if nj reaches a point such that

log (nj − 1) > T log(N)− log(u) +A(i) −
[
j−1∑
t=1

log (nt − 1)

]
, (17)

then the proposal can be rejected with no loss-of-information. This places a finite upper
bound on the number of simulations required to reject the proposal that depends only on
the previous iteration and the simulation of the random variable u. If all time points eval-
uate such that

∑T
t=1 log(nt−1) < T log(N)−log(u)+A(i) then the proposal is accepted.

We note that this idea to swap the order of evaluations in MCMC accept-reject
steps has been employed before in other contexts, notably Beskos et al. (2006) and Pa-
paspiliopoulos and Roberts (2008), who employed a similar approach in diffusion pro-
cesses and Dirichlet processes respectively, to evaluate an infinite dimensional function in
finite time. They termed their approaches “retrospective sampling”. More recently, Solo-
nen et al. (2012) used these ideas when evaluating the likelihood function in complex
climate models, and termed their approach “early rejection sampling”. This was ex-
tended into the ABC framework by Picchini (2014). Similar ideas of early stopping of
simulations were used in early ABC papers such as McKinley et al. (2009), though
these did not invert the accept-reject step, but exploited the evaluation of specific non-
decreasing summary measures to stop simulations once it was known that it would be
rejected. There are also links to ideas of squeezing approaches to rejection sampling (see
e.g. Devroye, 1986), in the sense of rejecting proposals without having to evaluate com-
plex functions to completion. However, these ideas have not been employed on the APF,
and are important since the evaluation of the APF could take theoretically infinite time.

We also note some recent advances by Deligiannidis et al. (2018) and Tran et al.
(2017), known as correlated and block pseudo-marginal methods respectively, along
with the forward simulation algorithm of Neal and Huang (2015). These aim to improve
computational efficiency by creating a non-centred parameterisation of the model—in
the vein of Papaspiliopoulos et al. (2003)—and then storing the random numbers used
to create the MC estimate of the likelihood. By correlating the random numbers used
to generate the likelihood estimates for the current and proposed parameter values at
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each iteration of the MCMC chain, then these approaches can be used to reduce the
number of particles needed in order to obtain efficient mixing. Whilst these approaches
look promising, we do not explore them further here due to the need to keep track of the
random variables used for each simulation, regardless of whether or not the simulation
is accepted, which can be prohibitively large. In addition, the correlated methods for
updating random variables work best when the observation process is continuous, and in
our case this is a binary indicator based on whether the simulations match the observed
data according to a pre-defined tolerance. Thus small changes in the non-centred random
variables can lead to a previously accepted simulation being rejected or visa-versa, which
may affect the performance of the resulting MCMC algorithm.

4.1 Further efficiency savings

We note that for a given time period j, the value of log (nj − 1) increases slowly with
respect to increasing nj . For example, for a fixed computational effort, a+b simulations
say (with a > 1 and b > 1), then log(a+ b) ≤ log(a) + log(b). Hence it makes sense to
split computational effort across multiple time points if possible (since we are summing
a set of logged counts), rather than focus on individual time points one at a time (where
we are logging a single count). However, since the simulation order cannot be changed in
the particle filter, we can instead try an alternative, but related approach, by considering
writing (16) as:

[
j−1∑
t=1

log (nt − 1)

]
+log (nj − 1)+

⎡
⎣ T∑
t=j+1

log (nt − 1)

⎤
⎦ > T log(N)−log(u)+A(i). (18)

If we are currently evaluating time point j, then the term in the first set of square
brackets in equation (18) has already been calculated. The term in the second set of
square brackets in equation (18) has yet to be evaluated and so is ignored in terms of
whether we reject the proposal based on the current value of nj . However, we know

that there is a minimum value that the future terms
∑T

t=j+1 log (nt − 1) can take. This
corresponds to every simulation at future time points being accepted first time. Under
that scenario, nt = N+1 for t = j+1, . . . , T . Substituting this into (18) and re-arranging
means that at time point j we can reject the proposal if

log (nj − 1) > T log(N)− log(u) +A(i) − (T − j) log(N)−
[
j−1∑
t=1

log (nt − 1)

]
. (19)

The term of the right-hand side of (19) is now smaller than the term of the right-hand
side of (17), and thus we have reduced the upper bound on nj .

This algorithm will converge with no bias in the resulting posterior distribution.
Furthermore, it has the advantage that proposals are rejected more efficiently, requiring
fewer simulations than would be required using the traditional approach. Although this
approach provides an upper bound for the number of simulations required to reject a
proposal, in practice, there are still situations where the absolute number of simulations
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evaluated is still very high, and hence in practice it is still necessary to place some fixed
upper bound Ns on the total number of simulations to reduce the overall computational
burden. However, in general the proposed approach reduces both the skip rate and the
computational load of the algorithms.

In Supplementary Section S1 (McKinley et al., 2019) we discuss additional exten-
sions to this idea that worked well for our specific data. The first, which we denote
APF∗, extends the ideas outlined above to incorporate the fact that the data come
from multiple independent experiments. The second, which we denote APF∗∗ exploits
the independence of the different experiments to enable us to split the computational
load across the different experiments in order to improve efficiency further.

These approaches only work as part of an MCMC algorithm, and for calculating the
marginal likelihood in (9) one has to use the standard APF. We also note that the general
idea of simulating u first could also be used in other routines, such as PMMH algorithms
using the standard bootstrap filter, or even exact MCMC where the computation of the
likelihood function is expensive. However, we expect the efficiency savings to be higher
in the APF case, since there is greater variability in runtimes of the filter.

4.2 Efficiency of methods

We compare these approaches by fitting four different models (Models 1, 4, 7 and 16 from
Table 2) to the Avian Influenza Virus (AIV) experimental data in Figure 1. We produced
15 runs of the ABC-PMMH algorithm, using the standard APF (with no efficiency
adjustments), as well as the APF∗ and APF∗∗ approaches. Initial values were randomly
sampled from the priors in each case, and each run consisted of 10,000 iterations burn-
in, followed by a further 10,000 iterations. We used N = 100 particles and a tolerance
of ε = 4 for all data points, with the skip condition Ns set to 2,000 × N = 200,000
simulations. The results are shown in Figure 2, and the timings were taken from the
final 10,000 iterations (to try to alleviate any bias that might be caused by individual
chains being initialised far away from the area of high posterior mass).

We can see that both the APF∗ and APF∗∗ filters have a much lower skip rate
in general than the standard APF. This corresponds to shorter run times. We note
that the efficiency savings will depend greatly on the computational burden of the
simulation model. Here the simulator is fast to evaluate, so the savings are not perhaps
as pronounced as they would be for more computationally intensive models. In some
cases the APF∗ approach was slightly quicker than the APF∗∗ approach, which results
from the higher overheads of the APF∗∗ approach switching between the different time-
series. However, we note that these differences are not large, and furthermore the APF∗∗

routine has a negligible skip rate in nearly all cases (for these settings), and so we think
this represents the optimal option going forwards.

4.3 Using the APF for model choice using importance sampling

Once we have a set of posterior samples then we can use these to build a suitable proposal
distribution to derive an importance sampling estimate of the marginal likelihood as
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Figure 2: Comparative runs of the ABC-PMMH algorithm using each of the APF, APF∗

and APF∗∗ approaches.

given in (9). One challenge that arose during the simulation study was that poor models
often had higher skip rates than good models. This results in biased posterior estimates
from the ABC-PMMH algorithm. However, as long as the bias is not too great, then we
can still obtain a suitable approximation to the posterior to use as a proposal distribution
in the marginal likelihood calculation. Nonetheless, the requirement to use overdispersed
proposal distributions in (9), meant that often skip rates during the marginal likelihood
calculations (i.e. the proportion of the R proposals that were skipped) were higher
than those obtained from the ABC-PMMH algorithm. This was exacerbated by the
fact that since the R replicates are sampled independently it was necessary to use the
standard APF for the marginal likelihood calculations. Hence an approach for dealing
with skipped simulations is required.

One option is to set f̂ (y | θr) = 0 for skipped proposals. However, this will under-
estimate the true marginal likelihood and lead to bias in the estimates. If the skip rate
is not too high, then it may be that this bias is negligible, however for larger skip rates
then the bias could become important. In principal these challenges could be tackled by
increasing Ns for models with high skip rates. However, this can lead to high computa-
tional burdens, particularly for poor models or if the importance sampling distribution
is too overdispersed. We decided to tackle this problem by finding upper and lower
bounds for the estimate (9) in the presence of the skipped proposals, and then employ-
ing a conservative Occam’s Window (e.g. Kass and Raftery, 1995) approach to remove
poorly supported models. This latter approach has been justified in the literature as a
means of removing models that have been scientifically discredited in the sense of having
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little support under the data and priors compared to better models (e.g. Madigan and
Raftery, 1994; Kass and Raftery, 1995).

Bounding the marginal likelihood estimates

We note that since the proposals are independent, then (9) can be written:

f̂ (y | ε) = 1

R

[
R1∑
r=1

f̂ (y | θr) f (θr)

q (θr)
+

R∑
r=R1+1

f̂ (y | θr) f (θr)

q (θr)

]
, (20)

where indices r = 1, . . . , R1 correspond to the non-skipped proposals, and r = R1 +
1, . . . , R to the skipped proposals. A lower bound for (9) can then be given by

f̂L (y | ε) = 1

R

R1∑
r=1

f̂ (y | θr) f (θr)

q (θr)
, (21)

which is equivalent to setting the likelihood estimates for the skipped proposals to zero.

An upper bound for (9) can be found by considering that if the APFs for each of
the K experiments are evaluated sequentially, then the log of the estimator (12) can be
written:

log
[
f̂ (y | θ, ε)

]
=

[
l−1∑
k=1

j−1∑
t=1

{log (Nk)− log (nkt − 1)}
]

+ log (Nl)− log (nlj − 1)

+

⎡
⎣ Tl∑
t=j+1

{log (Nl)− log (nlt − 1)}

⎤
⎦

+

[
K∑

k=l+1

Tk∑
t=1

{log (Nk)− log (nkt − 1)}
]
.

(22)

Similarly to Supplementary Section S1 we note that if the proposal skips during time pe-
riod j in experiment l, then the terms in the first line in (22) have already been evaluated;
the second line has been partially evaluated; and the third and fourth line have yet to be
evaluated. The maximum value that the third and fourth lines can take is zero, and the
maximum value that the second line can take is log (Nl)− log (nlj + [Nl + 1− n∗]− 1)
where n∗ is the number of particles with non-zero weight in the current time period j.
This bound follows from the fact that we need to continue simulating until we obtain an
extra Nl+1−n∗ matches, which would take at least Nl+1−n∗ additional simulations.
Hence an upper bound for log[f̂(y | θ, ε)] can be given by:

log
[
f̂U (y | θ, ε)

]
=

[
l−1∑
k=1

j−1∑
t=1

{log (Nk)− log (nkt − 1)}
]
+log (Nl)−log (nlj +Nl − n∗) ,

(23)
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and therefore an upper bound for (9) can be given by:

f̂U (y | ε) = 1

R

[
R1∑
r=1

f̂ (y | θr) f (θr)

q (θr)
+

R∑
r=R1+1

f̂U (y | θr) f (θr)

q (θr)

]
. (24)

Hence, f̂L (y | ε) ≤ f̂ (y | ε) ≤ f̂U (y | ε) where f̂L (y | ε) = f̂U (y | ε) = f̂ (y | ε) when
no proposals are skipped (i.e. when R1 = R).

Problem specific extension

We can also perform a similar trick to Supplementary Section S1 where we split the
computational effort amongst the different time series and iterate through them until
we either complete the calculation or skip the proposal. In the ABC-PMMH algorithm
the aim of this approach was to reduce the number of simulations required to reject
proposals. In the marginal likelihood calculation the aim is instead to reduce the upper
bound estimate f̂U (y | ε).

Appealing to pragmatism

In practice the upper bounds f̂U (y | ε) can be large, particularly when proposals are
skipped at early points in the time series. This means that particles in poor regions of
the parameter space can still require very large values of Ns in order to reduce the upper
bound enough for us to make reasonable inference. For example, if we pick a particle
with a very low transmission rate in a high transmission setting, then the probability of
matching at each time point is very low, and thus we can use up our Ns simulations at
the first couple of time points, but still have a high upper bound due to having evaluated
only a few time points (since for a fixed computational effort, a + b simulations say—
with a > 1 and b > 1—then log(a+ b) ≤ log(a) + log(b)). Given that the proposals are
evaluated independently, if we saved the state of the system for the skipped proposals
then we could restart the simulations with a higher Ns for the skipped particles. Here
we chose a simpler solution, and just re-ran the skipped simulations with a higher Ns

until the upper bound was sufficiently close to the lower bound.

There is also a relationship between the number of particles N used in the APF,
and the variance of the importance sampling estimate (9), such that higher values of N
required lower numbers of proposals R to get the same variance in the estimator. We
chose to run the APF using the value of N optimised for the ABC-PMMH algorithm
(see Supplementary Section S2) for each model, but note that it is not a requirement
of the importance estimate to use a fixed N . For skipped proposals in the marginal
likelihood calculation, we opted to reduce N to a single particle when re-running since
this meant we could increase Ns to high values but control the computational burden
for the subset of very poor proposals.

We generated estimates of uncertainty in the marginal likelihood estimates using
bootstrapping. Hence we re-sampled (with replacement) the R samples used to estimate
the marginal likelihood, and calculated the upper and lower bounds for each of these
bootstrapped replicates. From these we could derive empirical confidence intervals for
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the upper and lower bounds. Thus if the bootstrapped confidence intervals for the upper
and lower bound estimates were similar then we would conclude that we didn’t have to
re-run any more skipped proposals; whereas the size of the confidence intervals help to
inform about whether or not we need to increase the number of proposals R.

Sequential Occam’s Window

To decide on how to remove models, we calculated the maximum lower bound estimate
across the competing models:

f̂M
L (y | ε) = max

[
f̂L (y | ε,M1) , . . . , f̂L (y | ε,MW )

]
.

We then set the minimum difference between the best fit model for model w (on the
log-scale) as:

log
[
f̂∗ (y | ε,Mw)

]
= log

[
f̂M
L (y | ε)

]
− log

[
f̂U (y | ε,Mw)

]
,

before selecting all models w such that log[f̂∗(y | ε,Mw)] ≤ log(20). This will provide a
conservative way to select models that reduces to an exact Occam’s Window criterion
when the skip rate for all models is zero.

The key point here is that we may not have to increase Ns for poor models, as
long as the upper bound is sufficiently far away from the best model, so this method
allows us a pragmatic way to understand the impact of the skip rate on the marginal
likelihood estimates. We found that once Occam’s Window has been employed, then the
remaining models tended to fit the data better and thus had lower skip rates, whereas
poor models took a disproportionate share of the computational burden and often ended
up with negligible posterior weight. Since both the number of simulations and the skip
rate can be reduced by using larger tolerances, we chose to employ a sequential Occam’s
Window approach (across a series of waves) to efficiently remove poor models from the
analysis. Initially, we performed model selection at some value εtarget, chosen such that
the models were required to fit the data reasonably well, but so that the skip rate for the
worst models was not too high. We then removed models where the marginal likelihood
was less than a factor of 20 away from the best model using the conservative Occam’s
Window routine described previously. We then repeated the whole fitting process again,
using only those models selected at the previous wave, with starting tolerances εini equal
to the original target tolerance and a new target tolerance εtarget ≤ εini. The cut-off Ns

can be tweaked at each stage to reflect that the matching probability decreases as the
tolerance decreases. This is not a perfect solution to the problem, since the ratio of
marginal likelihoods for two models at a tolerance of ε is not always larger than the
same ratio at a tolerance of ε∗ < ε, hence there is a chance that we remove a model at an
earlier stage that may have been included at a later stage. However, as long as the initial
target tolerance is small enough that there is enough information in the approximate
posterior to distinguish between relatively good models and the set of poor models,
then it is unlikely to make a huge impact, since the models that were removed would
most likely have had low posterior weights in any case. (We choose a factor of 20 as
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our cut-off following Kass and Raftery, 1995, however this could be made more or less
stringent if desired.)

We note that this approach improves efficiency greatly, since the computational load
tends to be spread disproportionately across poor models, given that the probability
that they produce a match is much lower and thus they require a much larger number of
simulations and/or particles in order to evaluate. Removing these models earlier allows
us to focus computational effort on models that are more likely to produce good fits to
the data and thus reduces the computational burden.

The complete training pipeline that we used is described in detail in the Supple-
mentary Section S2. We optimised the number of particles N at each stage using the
approach of Sherlock et al. (2015), and used an adaptive MCMC proposal distribution
from Roberts and Rosenthal (2009)—see Supplementary Section S3.

5 Simulation study

To test the performance of the algorithms we conducted a simulation study. We picked
a series of models in Table 2 (Models 1, 4, 7, 16) and a set of parameter values (listed
in Supplementary Table S1). For each model we ran 1,000 replicate simulations. Hence
for each time point we obtained a discrete distribution of counts, from which we could
estimate the mode count. We then picked the individual simulation that was closest
to the mode (according to its L2 norm across all time points). These provided a series
of simulated data sets on which we could test our algorithms. All simulations were
aggregated to counts of infection and removals at daily time intervals.

In Section 5.1 we explore these approaches in large population sizes (scaling the
cohorts in Lyall et al., 2011 by 4, providing 20 challenge birds and 48 in-contact birds in
each experiment). We then ran the simulated experiments for 30 days. This was in order
to test the scalability of these techniques in larger populations and their performance in
data-rich situations. Section 5.2 then provides analogous simulation studies where the
experimental setup mirrors that of Lyall et al. (2011) (shown in Table 1).

For each model we chose uniform U(0.01, 1) priors for any parameters bounded
between zero and one, and gamma Exp(1) priors for any other parameters. In all cases
we used the same tolerance, ε, around each data point. We ran each simulation study
twice, the first time requiring that simulations matched both infection and removal
curves within each experiment, and the second time requiring that simulations matched
just the removal curves.

5.1 Large-population simulations

Pseudo-code for the training pipeline described in Section 4.3 is given in Algorithm S1.
To summarise: in the first wave we start by producing a short training run of M train

MCMC iterations using a “large” initial tolerance εini and an initial number of particles
N . From this training run we extract the posterior medians for each of the parameters,
and use these to optimise the number of particles N . (Pseudo-code for this optimisation
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procedure is provided in Algorithm S2.) We repeat this process multiple times using
smaller tolerances each time until we hit some value εtarget. At this point we then
produce longer MCMC runs for each model, from which we can calculate the marginal
likelihood estimates and apply the conservative Occam’s Window approach described in
the previous section to remove poor models. We repeat this whole procedure for a series
of subsequent waves, using the remaining models from the previous wave, with the initial
tolerance εini set equal to εtarget from the previous wave, before updating εtarget < εini.

For each simulation scenario we ran a single initial wave at a fixed threshold of
εini = 20, starting with N = 100 particles. We sampled initial values, θini, from the
prior(s). Since the optimal number of particles, N , varied between the different models,
we chose to define the skip cut-off, Ns, as a multiple of the number of particles, such
that Ns = 10,000 × N . In practice we found that these default choices were usually
sufficient to provide good mixing, although occasionally we tweaked them if we couldn’t
find suitable starting values.

At each stage we used two chains of M train = 10,000 iterations for each training run,
and reduced the tolerance such that ε �→ ε−1 each time. As described in Supplementary
Section S2 we sometimes needed to extend the training runs for longer depending on
the mixing. We used N rep = 500 replicates when optimising the number of particles
(see Algorithm S2 for details), and chose default ranges of between 1 and 200 particles
across which to optimise. After training, the final run produced two chains of 50,000
(approximate) posterior samples assuming that εtarget = 20.

We then used an approximation to this posterior distribution from this longer run to
calculate the marginal likelihood estimates for each model using the method described
in Section 4.3, with R = 20,000 samples. The proposal distribution was chosen to be
a truncated multivariate normal distribution, with a covariance matrix equal to the
empirical covariance matrix of the posterior samples, but with the diagonals scaled by
1.05 (to make the proposals overdispersed compared to the posterior). The truncation
was necessary to ensure that the proposals were on the correct scale (bounded in (0, 1) for
proportions, or > 0 for all other parameters). We chose prior probabilities for each model
to be equal, such that P (Mw) = 1/W , where W is the number of competing models. To
get a feel for the uncertainty in the estimates, we generated 95% confidence intervals for
the posterior probabilities and marginal likelihoods using 100 bootstrapped replicates.

Subsequent waves assumed values of εini = 19 and εtarget = 12, followed by εini = 11
and εtarget = 5, and finally εini = 4 and εtarget = 1. The simulated removal curves, along
with the target regions defined by εtarget = 20, 12, 5 and 1 are shown in Supplementary
Figure S1. For brevity we do not show the infection curves. When it was necessary
to re-run the skipped simulations during the marginal likelihood calculations, we used
N = 1 particle and a cut-off Ns > 1,000,000 for the re-runs.

We can see the log-marginal likelihood estimates from the intermediate waves in
Supplementary Figure S2 for the case where we match to both infection and removal
curves; and Supplementary Figure S4 for the case where we match to the removal curves
only. For brevity we show the posterior weights for each remaining model from the final
waves in Figure 3. We can see that in each case the routine picks the correct model,
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Figure 3: Posterior probability estimates at the final wave for the large-scale simula-
tion studies, for all scenarios across all simulation variants: (a) fitting to infection and
removal curves; and (b) fitting to removal curves only. Uncertainty bounds come from
100 bootstrapped replicates.
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with larger weights on the correct model in the case where we match to both infection
and removal information, relative to the case where we match to removal curves only.
The only exception is for Scenario 16 when fitting to removal curves only. In this case
there is preferential support for the simpler M15 over M16, which corresponds to the
loss-of-information due to matching to removal curves only.

The corresponding weighted posterior distributions for the parameters are shown in
Supplementary Figures S3 and S5, and again we see an improvement in inference if we
include more information in the data, though in all cases the approximate posteriors
capture the true values for the parameters. One point to note is that when we have set
the probability of initial infection to 1, such as for the pNTG parameter in scenarios 4
and 16, then this value sits on the upper bound of the prior distribution, and hence
by definition the bulk of posterior mass lies below this point. We chose to stop at
ε = 1, and hence the degree-of-approximation to the exact posteriors should be small
here.

5.2 Small-population simulations

In the small-scale case we used a similar approach to Section 5.1, using an initial tol-
erance of εini = 5 and a target tolerance of εtarget = 2 in the first wave, with εini = 1
and εtarget = 0 in the final wave. The simulated removal curves, along with the target
regions defined by εtarget = 2 and 0 are shown in Supplementary Figure S6. Again, for
brevity we do not show the infection curves.

We can see the log-marginal likelihood estimates from the intermediate waves in
Supplementary Figure S7 for the case where we match to both infection and removal
curves, and Supplementary Figure S9 for the case where we match to the removal curves
only. For brevity we show the posterior weights for each remaining model from the final
waves in Figure 4.

In contrast to the larger study, although the true model is always contained in the
subset of final models, it is not always associated with the largest posterior weight.
This is because there is much less information in the data, due to smaller sample sizes.
In this case the Bayesian model choice paradigm will tend to naturally favour more
parsimonious models where the model fits are comparable, though in some cases a lack
of detailed information in the data can allow parameters to trade-off against each other.
(This can be seen for Scenario 4 in Figure 4a, where the preferred model is M8 rather
than M4. In this case the difference between these two models is simply that M8 has
an additional susceptibility term, which in this case allows it to fit the particular data
set better than the simpler model.)

The corresponding weighted posterior distributions for the parameters are shown in
Supplementary Figures S8 and S10, and again we see an improvement in inference if
we include more information in the data, though in all cases the approximate posteri-
ors adequately capture the true values for the parameters. We note that since ε = 0
here, the final weighted posteriors and marginal likelihoods are estimates of the exact
quantities.
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Figure 4: Posterior probability estimates at the final wave for the small-scale simula-
tion studies, for all scenarios across all simulation variants: (a) fitting to infection and
removal curves; and (b) fitting to removal curves only. Uncertainty bounds come from
100 bootstrapped replicates.
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Parameter Mean
βNTG 1.45
βTG 0.48
γNTG 0.53
γTG 0.51
pNTG 0.49
pTG 0.50
νNTG 1.05

Table 3: Model averaged posterior summaries from the models fitted to the experimental
data.

Parameter Number of parameters Posterior probability

β
1 0.21
2 0.79

γ
1 0.72
2 0.28

ν
0 0.7
1 0.3

p
1 0.58
2 0.42

Table 4: Model averaged posterior weights for the number of parameters of each type,
from the models fitted to the experimental transmission data. Bold font highlights the
specification with highest posterior support.

6 Application to experimental transmission study of AIV

We now apply our approach to the experimental transmission data from Lyall et al.
(2011), shown in Figure 1 and Table 1. These data are openly available from the Uni-
versity of Exeter’s institutional repository at: https://doi.org/10.24378/exe.1644. (Note
that the measurements are now at half-day intervals, rather then daily intervals as per
the simulation study.)

We used the same approach as in the Section 5, using an initial tolerance of εini = 5
and a target tolerance of εtarget = 2 in the first wave, and a fixed tolerance of εini =
εtarget = 1 in the second wave. The target regions defined by εtarget = 2 and 1 are shown
in Supplementary Figure S11.

We can see the log-marginal likelihood estimates from the intermediate waves in Sup-
plementary Figure S12. Weighted posterior distributions at the final wave are shown in
Supplementary Figure S13 and weighted posterior means for each parameter are given
in Table 3. Note that we can also derive model averaged posterior weights regarding
certain hypotheses of interest, such as whether there are one or two transmission, sus-
ceptibility or initial infection probability terms. These are shown in Table 4. We can
see that under these choices of models and priors, there is some evidence for a differ-
ence in transmission parameters between the competing models, but weaker evidence
for differences between the other terms.

https://doi.org/10.24378/exe.1644
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7 Discussion

We have presented a re-analysis of the experimental transmission study of Lyall et al.
(2011) in which we provide estimates of the Bayesian evidence between a series of com-
peting mechanistic models of transmission, up to an ABC tolerance of ε = 1 around each
data point. In this case, after the models with extremely poor support were removed
(according to the Occam’s Window criteria), there remained some evidence for a differ-
ence in the transmission parameters between the two genotypes (posterior probability
of 0.79), but weaker evidence to support any difference in susceptibilities (posterior
probability of 0.3). There was weak support for a difference in the probabilities of ini-
tial infection (posterior probability of 0.42). This reinforces the view in Lyall et al.
(2011) that the observed differences in the removal curves were most likely being driven
by differences in transmission potential between the genotypes, rather than differences
in susceptibility. Furthermore, our methodology allows us to produce model averaged
posterior distributions for the different epidemiological parameters, and in particular
the analysis suggests that the non-transgenic birds show a much higher transmission
potential than the transgenic birds (on average 3.0 times larger). We also note that we
can use information about where the models struggle to fit to help diagnose model/data
mismatches. For example, when we attempted to fit using an ABC tolerance of zero,
the models became very computationally expensive. By monitoring where the routines
skipped out, it became clear that most of the routines were struggling to capture the
sharp rise in removals between days 6–6.5 in Group 2 (Figure 1). In fact, we made an
assumption here that culled moribund birds would have died before the end of time
period in which they were culled, which may have led to a slightly sharper spike at
that time point than in the raw data (one bird was culled during this period in the TG
class). This suggests that it may be beneficial to come up with a better way to handle
these culled animals in future studies.

We performed a detailed set of simulation studies to assess the efficacy of the method-
ology. For large sample sizes the approach picked up the correct model in each case. For
the scenarios where time series counts for both the infection and removal curves was
known, then the weight of evidence for the ‘true’ model was stronger than the respective
scenarios where the data were restricted to removal times only. For smaller sample sizes,
where there is less information in the data to distinguish between the models, then the
selection routines tend to pick up a larger set of supported models (as expected under
the Bayesian paradigm).

We have made some contributions to the way in which ABC-PMMH algorithms
can be implemented in order to reduce bias and improve efficiency when using com-
putationally demanding estimators such as the APF. One challenge that remains is to
develop more sophisticated ways to deal with skipped proposals when calculating the
marginal likelihood estimates. In the examples in this paper, when we re-ran these sim-
ulations using a larger cut-off Ns, the upper bounds for the log-marginal likelihoods
converged on the lower bounds. This means that parameters that produced estimates
that skipped at early time points did end up having low posterior weights. However, it
sometimes took very many more simulations to get to this point (usually setting N = 1
particle with Ns between 1,000,000 and 10,000,000 for the re-runs worked sufficiently
well, though some proposals required an Ns = 100,000,000). For completeness we ran
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these to completion, but in practice an improved rule-of-thumb for setting a suitable
Ns would help to alleviate some of these challenges.

Another area that could be improved is the training of the filters. For consistency
we used sequential ABC-PMMH runs, with different choices of tolerance ε as a means
of calibrating our training runs. An alternative could be to use some more generic
ABC sampler, such as ABC Sequential Monte Carlo (ABC-SMC; e.g. Toni et al., 2009)
in the early stages, to cut down the prior space and produce suitable training data
to help optimise the number of particles required for the alive or bootstrap particle
filter-based MCMC. However, these still require the development of suitable summary
statistics and tolerances. A related approach to the one presented here was developed
in Drovandi and McCutchan (2016), in which the APF was used to generate estimates
of the likelihood function that could be used in an (ABC-)SMC routine. They call their
approach “alive SMC2”. This approach generates estimates of the marginal likelihood
as a by-product of the fitting mechanism, rather than requiring a separate importance
sampling step. However, the authors note that in some cases the SMC estimator of
the marginal likelihood could contain a large amount of Monte Carlo variability, in
which case a separate importance sample estimate such as the type employed in this
manuscript can alleviate this. This is in line with Touloupou et al. (2018), who show
that the importance sampling approach often outperforms various existing methods
in terms of reducing the MC error of the marginal likelihood estimates. Similarly to
mixing problems in pseudo-marginal MCMC caused by the use of an estimate in place
of the true likelihood, Drovandi and McCutchan (2016) also note that if the MC error
arising from the APF is too high, then they observe an increase in particle degradation,
resulting in more re-sampling and perturbation steps being required. In addition, the
alive SMC2 algorithm will still suffer with the problems of high skip rates for poor
models, and thus some of the ideas introduced here, relating to the sequential Occam’s
Window selection approaches may still be relevant.

We note alternative recent advances in model comparison (Pudlo et al., 2016) and
model inference (Raynal et al., 2017) techniques that use random forests (Breiman,
2001) within the ABC paradigm. These approaches look promising, since they inform on
optimal choices of summary statistics and do not require the specification of tolerances.
They do require suitably large reference tables to be generated, and it is of great interest
in future work to compare the performance of these approaches to the types of routine
that have been developed in this manuscript. Another alternative might be to use a
tempering approach (e.g. Ratmann et al., 2007).

Alternative estimation methods, such as constrained simulation algorithms (McKin-
ley et al., 2014) could also be used within an MCMC algorithm to provide exact infer-
ence. However, these are much more challenging to implement and generalise to multiple
models. This is true also of data-augmented (reversible-jump) MCMC (e.g. Gibson and
Renshaw, 1998; O’Neill and Roberts, 1999), since again these methods are much harder
to implement, even for a single model, let alone multiple models. In addition some form
of forward simulation algorithm would still be required in order to generate the impor-
tance sample estimates of the marginal likelihoods. The advantage of the bootstrap or
alive particle filters is that they are straightforward to code, and thus can be extended in
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a straightforward manner to fit and compare different models, which is a key advantage
when modelling complex dynamical systems.

Supplementary Material

Supplementary Materials: Efficient Bayesian model choice for partially observed pro-
cesses: with application to an experimental transmission study of an infectious disease
(DOI: 10.1214/19-BA1174SUPP; .pdf).
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